
/

1 1

J. Heering

Implementing higher-order algebraic specifications

Computer Science/Department of Software Technology Report CS-R9150 December

C 1. nationaal instituut voor onoerzoe~ op ~et ge~ieo van wis~unoe en informatica

CW! is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11 , 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

/

Copyright © Stichting Mathematisch Centrum, Amsterdam

Implementing Higher-Order Algebraic Specifications

J. Heering
Department of Software Technology, CW/,

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Writing algebraic specifications that are to be executed as rewrite systems is similar to functional pro
gramming. There are some differences, however. Algebraic specification languages allow left-hand
sides of equations to be complex first-order patterns that would not be allowed in functional languages.
Functional languages, on the other hand, have powerful higher-order features not offered by algebraic
specification languages. Some functional languages combine higher-order functions with linear first
order patterns involving free data type constructors, thus offering a limited (but highly expressive) mix
ture of functional ,pi'ogramming and algebraic specification. A more ambitious integration of the two is
obtained by allowing both signatures and equations in algebraic specifications to be higher-order.
Operational experiments with such higher-order algebraic specifications can be performed by translating
them to A.Prolog, an extension of Prolog to polymorphically typed A.-terms based on higher-order
unification.

Key Words & Phrases: higher-order algebraic specification, integration of algebraic specification and
functional programmiflfl, higher-order term rewriting, higher-order matching, A.Prolog.

1991 CR Categories: D.1.1 [Programming techniques]: Applicative (functional) programming; D.2.1
[Software engineering]: Requirements/specifications - Languages; D.3.3 [Programming languages}:
Language constructs and features - Abstract data types; F.3.2 [logics and meanings of programs]:
Semantics of programming languages - Algebraic approaches to semantics; F.4.2. [Mathematica! !ogle
and formal languages]: Grammars and other rewriting systems.

1991 Mathematics Subject Classification: 68N17 [Software]: logic programming; 68042 [Theory of
computing]: Rewriting systems; 68065 [Theory of computing]: Abstract data types; algebraic
specification.

Note: Partial support received from the European Communities under ESPRIT project 2177 (Generation
of Interactive Programming Environments II - GIPE II).

1. INTRODUCTION

1.1. Higher-order algebraic specifications

1

Conventional algebraic data type specifications consist of a first-order signature and a set of equations.
Equations may contain first-order variables, which are implicitly or explicitly universally quantified. The
signature defines the abstract syntax of a language of terms whose semantics is given by the equations.
Such specifications are usually implemented by interpreting them as (first-order) term rewriting systems
[Klo90]. Each equation is interpreted as a left-to-right rewrite rule and the resulting rewrite system is used
to evaluate terms by reducing them to normal form (if any). The annoying fact that this asymmetric
interpretation of inherently symmetric equations may lead to rewrite systems that are incomplete with
respect to equational deduction from the original specification does not concern us here.

Writing algebraic specifications that are to be executed as rewrite systems is similar to functional
programming. There are some differences, however. Algebraic specification languages allow left-hand
sides of equations to be complex first-order patterns that would not be allowed in functional languages.
Functional languages, on the other hand, have powerful higher-order features not offered by algebraic
specification languages.

Report CS-R9150
ISSN 0169-1i8X
CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

Some functional languages (e.g., Hope [BMS80, Bai90]) combine higher-order functions with linear
first-order patterns involving free data type constructors, thus offering a limited (but highly expressive)
mixture of functional programming and algebraic specification. A more ambitious integration of the two is
obtained by allowing both signatures and equations in algebraic specifications to be higher-order. The
higher-order signature defines the abstract syntax of a language of typed A-terms whose semantics is given
by the equations.

Recently, development and implementation of higher-order algebraic specification languages was
advocated by Jouannaud and Okada [J091] and, having frequently felt the need for higher-order equations
in algebraic specifications ourselves, we thought it would be interesting to be able to perform operational
experiments with them. Higher-order term rewriting requires, first of all, higher-order matching, which is
the special case of higher-order unification in which one of the terms involved does not contain free vari
ables. Two readily available systems incorporating higher-order unification are A.Prolog [NM88], an exten
sion of Prolog to typed A-terms, and the generic theorem prover Isabelle [PN90]. Since we had some
experience with schemes for translating first-order algebraic specifications to Prolog (see the surveys by
Drosten [Dro88] and Bouma and Walters [BW89]), we chose AProlog as our target system.

It would be nice if the notion of initial algebra specification, which has unequivocal meaning in the
first-order case [MG~], had an equally unequivocal higher-order analogue. This does not seem to be the
case, however, since it depends on the precise notion of higher-order model one prefers. Meinke, for
instance, assumes models to be extensional higher-order algebras and shows that in this setting higher
order initial algebra specification is strictly more powerful than its first-order counterpart [Mei90, Mei91].
Poigne, on the other hand, considers both extensional and intensional models [Poi86]. Although these
questions are beyond our present scope, we shall briefly return to them since the precise notion of initial
algebra semantics adopte.{i affects the degree of incompleteness of our implementation scheme.

1.2. Higher-order term rewriting

Higher-order term rewriting, the mechanism we use to execute higher-order algebraic specifications, is
more powerful, but also considerably less manageable than its first-order counterpart. The following
examples illustrate some of its possibilities and problems.

(I) Consider the signature

sorts s, boo!

functions a: s
f,g: s -7 s
if: boolxsxs -7 s

variables X,Y: s
F: s -7 s (second-order variable)
B,B': bool

and the second-order equation

if(B,F(X),F (Y)) = F(if(B,X,Y))

(cf. Section 3.3 of [Hee86]). The left-hand side of (1) matches

if(B' ,g(j(a)),g(j(j(a))))

in three different ways, namely, for

F = A.V.g(j(V))
F=A.V.g(V)
F=A.V.V

X=a
X=f(a)
X=g(j(a))

Y=f(a)
Y=f(j(a))
y =g(j (j (a)))

B=B'
B=B'
B=B'.

(1)

Thus, whereas a first-order match has at most a single solution, a higher-order match may have many. It
may even have solutions that leave some of the variables in the left-hand side of the rewrite rule uninstan
tiated, something that cannot happen in the first-order case either. For instance, the left-hand side of (1)
matches

3

if(B',a,a)

for

F='AV.a X=X Y=Y B=B'

F='AV.V X=a Y=a B=B'.

The first solution leaves X and Yuninstantiated. If (1) is interpreted as a left-to-right rewrite rule, this is no

problem since both variables are eliminated by ~-reduction after substitution of the solution in the right

hand side:

if(B',a,a) ~ ('AV.a)(if(B',X,Y)) PJ a.

A solution instantiating F to 'AV.V exists for any if-term and is -at least in this case--algebraically harm

less. The danger of non-termination it entails can be averted by adopting a parallel reduction strategy treat

ing all solutions on an equal basis, or by a simple loop check. For reasons of efficiency we have chosen the

latter alternative.

(II) Consider the second-order equation
/

cons(X,G(cons(X,L))) = cons(X,G(L))

with the signature from example (I) plus the additional declarations

sort lst

functions cons: sxlst ~ lst
nil: lst ~

variables L: lst
G: lst ~ lst (second-order variable).

(2)

If interpreted as a rewrite rule, equation (2) deletes the rightmost element of a pair of identical list ele

ments. For instance, its left-hand side matches the list

cons(a,cons(f(a),cons(a,nil)))

in two ways, namely, for

X=a
X=a

G ='AV.cons(f(a), V)
G =')...V.cons(f(a),cons(a,nil))

Substitution of the first solution in the right-hand side of (2) yields

cons(a,(')...V.cons(f(a), V))(nil)) PJ cons(a,cons(f(a),nil)).

L=nil, and
L=L.

The second solution is algebraically harmless, but useless from an operational viewpoint. In fact, the left

hand side of (2) matches any list of the form co~ (x,l) for

X=x G='AV.l L=L

whether x occurs in l or not, yielding
(2) (~)

cons(x,l) ~ cons(x,(')...V.l)(L)) ~ cons(x,l).

The danger of non-termination can be averted in the same way as before, but one clearly has to check all

matches of a higher-order rule carefully. For instance, deleting the leftmost element of a pair of identical

list elements by means of

cons(X,G(cons(X,L))) = G(cons(X,L))

(which has the same left-hand side as (2)) leads to
(3) (~)

cons(x,l) ~ (A.V.l)(cons(x,L)) ~ l.

This is incorrect since l need not contain x. The simpler equation

(3)

4

cons(X,H(X)) =H(X) (4)
with Ha second-order variable of type s -7 lst has the same problem.
(Ill) Although it did not happen in examples (I) and (Il), variables in the left-hand side of a higher-order
rewrite rule that are left uninstantiated after matching may enter the reduct. We borrow the following
example from Nipkow's paper on higher-order critical pairs [Nip91]. The rule

/(g(F(X),F(a))) -7 /(X) (5)

can be applied to the term f(g(a,a)) in two ways, one of which instantiates F to A. V.a and leaves X unin
stantiated, thus yielding the result /(X).
To get rid of this problem and to eliminate ambiguous rules such as (3) and (4), Nipkow restricts left-hand
sides of rules to so-called patterns. A pattern is a term in P-normal form such that each free variable F
occurring in it is applied only to terms that are 11-equivalent to distinct bound variables. Unfortunately, this
restriction also rules out many useful equations such as (1) and (2), both of which have left-hand sides con
taining free variables whose arguments again contain free variables. Clearly, as Nipkow himself points
out, more general left-hand sides should be allowed. Since equations (2) and (3) have the same left-hand
side, a more liberal ~striction that accepts (2) but rejects (3) will have to take both sides of equations into
account. See also Section 4.4 of [J091].
We do not impose any a priori restriction, but equations that may cause uninstantiated variables to be intro
duced in the reduct are not necessarily treated correctly by our A.Prolog code and should be avoided.
(IV) Whereas first-order term rewriting requires subterm matching, higher-order rewriting can do without
explicit subterm lookup if each equation t 1 = t 2 is extended to H (t 1) = H (t 2) with H a polymorphic
higher-order variable not free in t 1 or t2 . In this case, higher-order matching of the extended left-hand side
with the full input term performs the subterm lookup implicitly. Like before, useless instantiations of H to
AX.s, where s does not contain X, can be rejected by a simple loop check. This approach is used in Section
2.

1.3. A.Prolog

A.Prolog is an extension of Prolog to typed A-terms [NM88]. Basically, the functions declared in a A.Prolog
program generate a domain of polymorphically typed A.-terms, and polymorphic higher-order unification
takes the place of first-order unification in the proof procedure.

Since A-terms may be subject to a.-, ~-,and ri-reduction, the term domain underlying a A.Prolog pro
gram is not purely syntactic. Furthermore, unlike first-order unification, higher-order unification is neither
decidable nor unitary. As a consequence, in A.Prolog backtracking to an alternative 1mifier of the same pair
of terms may occur and the search for a higher-order unifier may go on forever.

Higher-order matching, the special case of higher-order unification we need, was conjectured to be
decidable in the simply typed case (no polymorphism) by Huet [Hue76], but this is still an open problem.
The third-order case was recently shown to be decidable by Dowek [Dow9la]. On the other hand, Dowek
also showed that strongly polymorphic higher-order matching is undecidable [Dow9lb]. l\.Prolog supports
ML-style polymorphism, so we included it in our notion of higher-order algebraic specification as well. As
far as we know, the "intermediate" case of higher-order matching in combination with ML-style polymor
phism has not yet been settled, so it may still tum out to be decidable. In the version of A.Prolog we used*
the implementation of polymorphic higher-order unification was incomplete and this caused some prob
lems. These will be explained in due course. The examples in Section 1.2 show that higher-order matches
with multiple solutions, none of them subsumed by any of the other ones, are no exception. In our A.Prolog
code, backtracking to an alternative solution may occur as a result of loop checking.

This rudimentary knowledge of A.Prolog in combination with a basic understanding of Prolog (see,
for instance, [Bra86]) suffices to understand the next section.

*Version 2.7 (October 1988). It was obtained by anonymous ftp from duke.cs.duke.edu.

2. TRANSLATING HIGHER-ORDER ALGEBRAIC SPECIFICATIONS TO A.PROLOG

2.1. A very simple scheme

Consider the following higher-order algebraic specification:

modu.leN
begin
sorts nat, bool, lst(A)

functions zero: nat
succ: nat ~ nat
add: natxnat ~ nat
t, f: bool
if: boolxAxA ~A
nil: lst (A)
cons: Ax lst(A) ~ lst(A)
map: (A ~ B) x lst(A) ~ lst(B)
compose: kB ~C) x (A ~B)~A ~C

equations add(X,zero) = X

endN.

add(X,succ(Y)) = succ(add(X,Y))

if (t,X,Y) = X
if(f,X,Y) = Y
if(B,F(X),F ([)) = F(if(B,X,Y))

cons(X,F(cons(X,L))) = cons(X,F(L))

map(F,nil) =nil
map(F,cons(X,L)) = cons(F(X),map (F,L))

compose(F,G) = 'AX.F(G(X))

(6)
(7)

(8)
(9)
(10)

(11)

(12)
(13)
(14)

5

Identifiers whose first character is a capital letter are variables. Their type is not declared explicitly

(although it might have been), but is determined by the context in which they occur. For instance, X has

type nat in (6), but polymorphic type A (with A a type variable) in (8).

In addition to the two carriers corresponding to sorts nat and boot, the higher-order initial algebra of

N has an infinite number of first-order carriers corresponding to lst('t) for any monotype 't. In particular, 't

may be a functional monotype such as nat ~ nat or another /st-monotype. The higher-order carriers (func

tion spaces) of the initial algebra consist of the appropriately typed functions definable in terms of the sig

nature ofN.

Equations (10) and (11) are polymorphic versions of (1) and (2) in Section 1.2. Because the structure

of their left-hand side is too complicated, neither would have been allowed in a first-order algebraic

specification or a functional program. Equations (12)-(14), on the other hand, could have been written in

virtually the same way in Hope (see Chapter 6 of [Bai90]). Note, however, that in view of equation (11)

cons is not a free constructor.

Using the scheme outlined in example (N) of Section 1.2, we translate N to the following A.Prolog

module:

module lpN.

kind nat
kind bool
kind lst

type zero
type succ

type.
type.
type -> type.

nat.
nat -> nat.

6

type add nat -> nat -> nat.
type t bool.
type f bool.
type if bool -> A -> A-> A.
type nil (lst A).
type cons A -> (lst A) -> (lst A).
type map (A -> B) -> (lst A) -> (lst B) •
type compose (B -> C) -> (A -> B) -> A -> C.

type reduce A -> A -> o.
type ext rule A -> A -> o.

ext rule (H (add X zero)) (H X) • %%% (6')
ext rule (H (add X (succ Y))) (H (succ (add X Y))) • %%% (7')
ext rule (H (if t X Y)) (H X) • %%% (8')
ext rule (H (if f X Y)) (H Y) • %%% (9')
ext rule (H (if B (F X) (F Y})) (H (F (if B X Y))) • %%% (10')
ext rule (H (cc{ns x (F (cons XL)))) (H (cons x (F L))) • %%% (11')
ext rule (H (map F nil)) (H nil). %%% (12')
ext.rule (H (map F (cons X J~))) (H (cons (F X) (map F L))) • %%% (13')
ext rule (H (compose F G)) (H (X \ (F (G X)))) • %%% (14,)

reduce X Y . ext rule X Z,

not(X = Z), %%% loop check - X,Z ground
reduce Z Y. %%% (15)

reduce X X. %%% (16)

Arguments of predicates are separated by spaces rather than commas in A.Prolog, and the argument
list of a predicate i.s not delimited by brackets. The syntax of A-terms is similar to that of Lisp. Every
predicate or function is at most unary, so larger arities have to be reduced to arity 1 by cunying, that is, by
replacing types s 1 x · · · xsk ~ s 0 in the algebraic specification with types s 1 - > . . . -> sk -> s 0
in AProlog. As usual, the type constructor ->is right-associative. Predicates always have type · · · -> o.

Kind declarations are used to introduce type constructors. The three kind declarations in the first
lines of lpN introduce the zero-adic type constructors nat and bool, and the monadic type constructor
lst. These correspond to the sorts nat, bool, and lst(A) of N. Thus, apart from the declarations of the
auxiliary predicates ext rule and reduce, the correspondence between the signatures of N and lpN
is straightforward. The translation of equations is equally straightforward. Put in the context of a new
higher-order variable H, the left- and right-hand side of an equation become the first and second argument
of the corresponding ext rule fact. Note that AX.··· in the right-hand side of (14) becomes (X \ · · ·
in AProlog. In addition to the ext rule facts corresponding to the equations of N, the body of lpN con
sists of the clauses (15) and (16) for reduce. TheseareindependentofN.

The normal form of a term t in the term language defined by the signature of N is obtained by sub
mitting to lpN the question

?- reduce t' NF.

where t' is the corresponding term in the term language of lpN. Since free variables in t (if any) should
not be instantiated during rewriting, they do not correspond to A.Prolog variables in t. ' , but are modelled
by "simulated variables" (generic constants) x, y, . . . in the following examples. Th.us, even if t con
tains free variables, t' is a ground term.

Rewriting proceeds as follows. The reduce predicate attempts to apply extrule and, if suc
cessful, calls itself recursively on the reduct after performing the loop check not (X = z) , where not

7

is the negation-as-failure predicate and = denotes higher-order unification. The loop check rejects alge
braically correct but operationally useless matches (cf. Section 1.2, examples (I) and (II)). When it is

evaluated, the values of both X and z are ground terms because (i) the translated input term t' is always
ground, and (ii) the equations are assumed to be such that their interpretation as left-to-right rewrite rules
does not cause uninstantiated variables to enter the reduct (cf. Section 1.2, example (Ill)).

The rewrite strategy of lpN is determined primarily by the fact that P-reduction is a built-in rewrite

rule that is performed implicitly by A.Prolog during unification, and by the order of the ext rule facts.

Redexes for rule r m are reduced before redexes for rule r n if m <n. The redex selection strategy for each
individual rule is determined by A.Prolog's higher-order Wlification strategy. The latter can be influenced to
some extent by the setting of the projfirf't switch of the A.Prolog system. We reproduce a short sam
ple run of the A.Prolog system using lpN:

?- use lpN.
lpN
yes

?- switch projfi~t on. %%% slightly more efficient in this

yes %%% application than projfirst off

?- switch tvw off.
yes

%%% no type variable instantiation warnings

?- reduce (add (add~ zero (succ zero))) NF.
%%% first add is partially parameterized

NF = Var49 \ (add (succ zero) Var49)
yes

?- reduce (if y (cons f nil} (cons t nil)) NF.

%%% y is a "simulated variable" - :see above
NF cons (if y f t) nil .

yes

?- reduce (if y (add (succ zero) (succ ze:r.)) (succ (succ zero))) NE.

%%% y is a "simul 0 d variable" - see ribove

NF succ (succ zero)
yes

?- reduce (cons (cons sue 1il) (cons (cons succ nil) nil)) NF.

NF cons (cons succ nil) niJ .
yes

?- reduce ((compose (X \ (add X X) \ (X \ (add X X))) (succ zero}) NF.

NF succ (succ (succ (succ zero)))
yes

?- reduce (map (X \ (add X X))
(cons zero (cons (succ zero) (cons zero nil)))) NF.

NF cons zero (cons (succ (succ zero)) nil) .
yes

8

?- reduce (map (compose succ) (cons succ (cons succ nil))) NF.
%%% compose is partially parameterized

NF =cons Varl900 \ (succ (succ Varl900)) nil
yes %%% see also Section 2.2

?- reduce (if y succ succ) NF.

NF
yes

if y succ succ . %%% NF succ expected - see below

The last example is not reduced properly because the implementation of polymorphic higher-order
unification in the version of A.Prolog we used was incomplete. When matching if y succ succ with
the left-hand side of (10'), the polytype Al -> nat -> nat initially inferred for His never instan
tiated to (na t - > na t) - > na t - > na t. It is interesting to see how the matching behaves in this
case: /

?- switch tvw on.
yes

%%% give type variable instantiation warnings

?- switch printtypes on. %%% print types of terms
yes

?- if y succ succ = (H (if B (F X) (F Y))).
%%% "=" denotes higher-order unification

Trying to project on an argument with type
Al

Do you want to go on? (y/n)y
Assuming for the moment that target type is primitive

H

B

x
F
y

no

Var24 : Al \ Var25 : nat \
(if y Var26 : nat \ (succ Var26)

B bool
X Al
F Al -> A2
y Al

Var27 nat \ (succ Var27) Var25)

The only solution found leaves all variables in the left-hand side of (10 ' } except H uninstantiated and is
rejected by the loop check (cf. the examples in Section 1.2). The expected solution is found if the more pre
cise type (nat -> nat) -> nat -> natisassociatedwith Hinanadhocfashion:

?- if y succ succ = (H {nat -> nat) -> nat -> nat (if B (F X) (F Y))) .

H Var~6 : nat -> nat \ Var27 : nat \ (Var26 Var27)
B y
X X : Al
F Var28 : Al \ Var29 nat \ (succ Var29)
Y Y : Al ;

H Var54 : nat -> nat \ Var55 nat \

9

(if y Var56 nat \ (succ Var56) Var57 nat \ (succ Var57) Var55)

B B bool
x x Al
F F Al -> nat -> nat
y y Al

no

The first solution yields the expected reduct when substituted in the right-hand side of (1 O') . The
second solution is a more precisely typed version ofthe useless one found previously.

One of the rules of higher-order equational logic is the abstraction rule

l-t1==t2

I- IJU1=')JU2.

According to this rule, one would expect /.S.add(Y,zero) to be reduced to A.Y.Y, since add(Y,zero) reduces
to Yby equation (6). lJ?N does not do this, however:

?- reduce (add y zero) NF.

%%% y is a "simulated variable"
NF y . %%% OK, but . " "

yes

?- reduce (Y \ (add Y zero)) NF.

NF y \ (add Y zero) %%% no reduction - first argument of (6' }
yes %%% does not match "inside" an abstraction

Although this behavior of lpN is in accordance with ordinary functional programming practice, it should
be noted that it is incomplete with respect to the above abstraction rule.

If the initial model is a~· umed to be extensional [Mei901 (see also Section l.1), on<': .vould not only
expect f..Y.add(Y,zero) to be reduced to A.Y:nat.Y, but 'AY.add(?ero,Y) as well since it is exteus,_,nally equal

to A.Y:nat.Y. Needless to say, O<.f implementation does not do tL. either (cf. [Hee86]).

Finally, we give an example showing that lpN is not cu,.., ~nt for terms containing fo::e variables.
An alternative normal form can be obtain.ed by backtracking. J\1- te that lpN does not do this automati

cally.

?- reduce (if y (add x zei~ (add x (succ zero))) NF.
%%% x and y are "simulatel variables"

NF if y x (succ x) ; %%% first normal form

NF if y x (succ (add x zero)) ;
%%% not a normal form

NF =add x (if y zero (succ zero)) ;
%%% second normal form

no

10

The general translation scheme should be clear from lpN. The auxiliary names reduce,
extrule and H should be chosen carefully to avoid clashes with user-defined names. Similarly, over
loading of names that have a predefined meaning in A.Prolog (true, false, list, ...) should be
avoided. Apart from the above-mentioned incompleteness problems and the possible non-termination of
higher-order matching (which we have not encountered so far), the scheme is correct for higher-order
rewrite systems that do not introduce new variables in the reduct, and that are terminating with the simple
loop check shown as well as confluent. For rewrite systems lacking the latter property, the input term may
have other normal forms besides the one computed.

2.2. Improving efficiency by adding specialized A.Profog code

Some efficiency can be gained by combining the above method with one of the first-order schemes dis
cussed in [Dro88, BW89]. To illustrate the general idea, we take Drosten and Ehrich's first-order scheme.
In this case the A.Prolog code generated for N becomes:

module lpN2.

import lpN. 0~9< 15 0 see Section

type reduce2 A ->
type analyze A ->
type prenormalize A ->
type rule A ->

rule (add X zero)
rule (add X (succ Y))
rule (if t X Y)

rule (if f X Y)

rule (if B (F X) (F Y))

A ->
A ->
A ->
A ->

rule (cons X (F (cons XL)))
rule (map F nil)
rule (map F (cons XL))
rule (compose F G)

2.1

o.
o.
o.
o.

x.
(succ (add X Y)).
x.
Y.
(F (if B X Y)) •

(cons X (F L)) •
nil.
(cons (F X) {map F L)).
(X \ (F (G X))) •

analyze (succ Il) K ·- analyze Il Kl,
prenormalize (succ Kl) K.

analyze (add Il I2) K ·- analyze Il Kl, analyze I2 K2,
prenormalize (add Kl K2} K.

analyze (if Il I2 I3) K ·- arialyze Il Kl, analyze I2 K2,
analyze I3 K3,
prenormalize (if Kl K2 K3) K.

analyze (cons Il I2) K ·- analyze Il Kl, analyze I2 K2,
prenormalize (cons Kl K2) K.

analyze (map Il I2) K ·- analyze Il Kl, analyze I2 K2,
prenormalize (map Kl K2) K.

%%% (6, f)

%%% (7, ')

%%% (8'')
%%% (9''}
%%% (10',)
%%% (11'')
%%% (12'')
%%% (13' ')
%%% (14'')

%%% (17)

%%% (18)

%%% (19)

%%% (20)

%%% (21)
analyze (compose Il I2) K ·- analyze Il Kl, analyze I2 K2,

prenormalize (compose Kl K2) K.%%% (22)

analyze X K

prenormalize X Y

prenormalize X X.

®- prenormalize X K® %%% (23)

·- rule X Z,
not(X = Z), %%% loop check
analyze Z Y. %%% (24)

%%% (25)

11

reduce2 X Y ·- analyze X Z, reduce Z Y. %%% (26)

%%% reduce is defined in lpN

lpN2 extends lpN with code that is very similar to the Prolog code that would be generated by

Drosten and Ehrich' s scheme for N had it been a first-order specification. For each p-ary function fin the

signature of N (p~l), lpN2 contains a clause

analyze (f Il ... Ip) K analyze Il Kl, ... , analyze Ip Kp,

prenorrnalize (f Kl ... Kp).

Clause (23) catches everything not matched by the first argument of the preceding analyze cases.

The facts (6 ' ') - (14 ' ') correspond directly to the equations (6)-(14). Clause (2 6) links the new

code to the old code imported from lpN. The clauses (2 3) - (2 6) are independent of N.

The normal form of a term t in the term language defined by the signature of N is obtained by sub

mitting to lpN2 the qu~tion

?- reduce2 t' NF.

where t' is the corresponding term in the term language of lpN2 (which is the same as that of lpN).

Like before, free variables in t have to be replaced by "simulated variables" in t' (see Section 2.1).

On the examples we tried, lpN2 was from 1to5 times faster than lpN. It may actually be slightly

slower if analyze is unable to perform any reductions. Consider, for instance, the term

(compose succ succ) zero.

The first argument of (22) does not match (its type is not even compatible), so the work done by

analyze is wasted and the reduction to succ (succ zero) is performed by reduce using

(14') with

H Var : nat -> nat \ (Var zero)

F succ
G succ .

On the other hand, the reduction of

map (compose succ) (cons succ (cons succ nil))

to cons Var \ (succ (succ Var)) nil is speeded up oy a factor of 5. Whereas lpN spends a

large amount of time on useless matches, lpN2 performs the rnduction in a highly deterministic manner

using analyze.

3. FURTHER WORK

From a logical viewpoint, higher-order algebraic specification constitutes J. n::itural integration of first-order

algebraic specification and functional programming. Whether it is also a useful one, remains to be decided.

We intend to perform further experiments with it using the implementation schemes discussed in this paper

and perhaps more efficient ones still to be developed.

REFERENCES

[Bai90]

[BMS80]

[Bra86]

[BW89]

R. Bailey, Functional Programming with Hope (Ellis Horwood, 1990).

R. Burstall, D. MacQueen, and D. Sannella, Hope: an experimental applicative language, in:

Conference Record of the 1980 Lisp Conference, Stanford, 1980, 136-143.

I. Bratko, Prolog Programming for Artificial Intelligence (Addison-Wesley, 1986).

L.G. Bouma and H.R. Walters, Implementing algebraic specifications, in: J.A. ::Jergstra, J.

Heering, and P. Klint, eds., Algebraic Specification (ACM Press/Addison-Wesley, 1989) 199-

12

282.

[Dow9la] G. Dowek, Third-order matching is decidable, Rapport de Recherche, INRIA-Rocquencourt,
1991.

[Dow91b] G. Dowek, The undecidability of pattern matching in calculi where primitive recursive func
tions are representable, Rapport de Recherche, INRIA-Rocquencourt, 1991.

[Dro88] K. Drosten, Translating algebraic specifications to Prolog programs: a comparative study, in: J.
Grabowski, P. Lescanne, and W. Wechler, eds., Algebraic and Logic Programming, Lecture
Notes in Computer Science, Vol. 343 (Springer-Verlag, 1988) 137-146.

[Hee86] J. Heering, Partial evaluation and co-completeness of algebraic specifications, Theoretical
Computer Science, 43 (1986) 149-167.

[Hue76] G. Huet, Resolution d'equations dans les langages d'ordre 1,2, ... ,ro, These de Doctorat
d'Etat, Universite de Paris-Vll, 1976.

[J091] J.-P. Jouannaud and M. Okada, A computation model for executable higher-order algebraic
specification languages, in: Proceedings of the Sixth Annual IEEE Symposium on Logic in
Compute1)Science (IEEE Computer Society Press, 1991) 350-361.

[Klo90] J.W. Klop, Term rewriting systems, Report CS-R9073, CWI, Amsterdam, 1990. To appear in:
S. Abramsky, D. Gabbay, and T. Maibaum, eds., Handbook of Logic in Computer Science,
Vol. II (Oxford University Press).

[Mei90] K. Meinke, Universal algebra in higher types, Report CSR 12-90, Computer Science Division,
Department of Mathematics and Computer Science, University College of Swansea, Sep
tember 1990.~

[Mei91] K. Meinke, A recursive second order initial algebra specification of primitive recursion, Report
CSR 8-91, Computer Science Division, Department of Mathematics and Computer Science,
University College of Swansea, June 1991.

[MG85] J. Meseguer and J.A. Goguen, Initiality, induction, and computability, in: M. Nivat and J.C.
Reynolds, eds., Algebraic Methods in Semantics (Cambridge University Press, 1985) 459-541.

[Nip91] T. Nipkow, Higher-order critical pairs, in: Proceedings of the Sixth Annual IEEE Symposium
on Logic in Computer Science (IEEE Computer Society Press, 1991) 342-349.

[NM88] G. Nadathur and D. Miller, An overview of A.Prolog, in: R.A. Kowalsi and K.A. Bowen, eds.,
Logic Programming - Proceedings of the Fifth International Conference and Symposium, Vol.
1 (The MIT Press, 1988) 810-827.

[PN90] L.C. Paulson and T. Nipkow, Isabelle tutorial and user's manual, Technical Report No. 189,
Computer Laboratory, University of Cambridge, January 1990.

[Poi86] A. Poigne, On specifications, theQries, and models with higher types, Information & Control,
68 (1986) 1-46.

