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Abstract. 

In this paper we will show how the Jacobi-Davidson iterative method can be used 
to solve generalized eigenproblems. Similar ideas as for the standard eigenproblem 
are used, but the projections, that are required to reduce the given problem to a 
small manageable size, need more attention. We show that by proper choices for the 
projection operators quadratic convergence can be achieved. The advantage of our 
approach is that none of the involved operators needs to be inverted. It turns out that 
similar projections can be used for the iterative approximation of selected eigenvalues 
and eigenvectors of polynomial eigenvalue equations. This approach has already been 
used with great success for the solution of quadratic eigenproblems associated with 
acoustic problems. 
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Our friend Albert died on November 12, 1995 

1 Introduction. 

The Jacobi-Davidson method [29] constructs iteratively approximations of cer­
tain eigenvectors. It finds the approximate eigenvector as "best" approximations 
in some search subspace. 

In this paper we are interested in numerical methods to compute accurate 
approximations of the solutions (µ, ..\, x) of the following generalized eigenvalue 
problem 

(1.1) µAx= ..\Bx, 

*Received November 1995. Revised March 1996. 



596 G.L.G. SLEIJPEN, A.G.L BOOTEN, D.R. FOKKEMA, AND H.A. VAN DER VORST 

where A and B are n x n matrices, x is a non-trivial n-vector and (µ, ,\) is an 
element in the one dimensional complex projective plane (one may think of /t 
and,\ in the complex plane, scaled such thatµ E [O, l] and lµl 2 + l>.1 2 = 1). 
Typically, n is large and A and B are sparse. 

For the moment, for ease of presentation, we assume B to be non-singular and 
we scale µ to be 1 and take ,\ E C. 

General remarks. Observe that both the eigenproblem Ax = ,\x, as well as 
the inverse eigenproblem (1/,\)x = A-1x (assuming that A is non-singular) fit 
in the frame of the generalized eigenproblem. 

Conversely, for non-singular B, the generalized eigenproblem can be formu­
lated as a eigenproblem, B- 1Ax = ,\x or AB- 1w = ,\w with x = Bw. 

If Bis positive definite (implying Bis hermitian), then, in order to maintain a 
possible symmetry of the matrix A, one might wish to represent the generalized 
eigenproblem as an eigenproblem of B-~AB-L B-2AB-~w = >.w with 
x= B-~w. 

Since the generalized eigenproblem is "symmetric" in A and B, similar ob­
servations can be made, interchanging A and B, in case A is non-singular or 
positive definite. 

2 The updating process for the approximate eigenvector. 

The idea of the Jacobi-Davidson method in [29] is to construct a correction, 
for a given eigenvector approximation, in a subspace orthogonal to the given 
approximation. The computation of the correction in a given subspace is done 
in a Davidson manner; the idea to look for orthogonal corrections is Jacobi's, 
hence the name for the method. 

Suppose we have a non-zero Ritz approximation u of an eigenvector x with 
Ritz value i9 corresponding to the eigenvalue ,\ associated to x. Then from the 
Ritz Galerkin conditions it follows that 

(2.1) r = Au -19 Bu 1- u. 

Then the goal is to find an update z for u in the space orthogonal to u, such 
that 
(2.2) z 1- u for which A(u + z) = ,\ B(u + z), 

and x is a scalar multiple of u + z. By taking the inner product of the equation 
in (2.2) with the given u, and by projecting the same equation onto the space 
orthogonal to u, with the projector I - ~!'~, we obtain two coupled equations 
for,\ and z: 

(2.3) { (a) 

(b) z 1- u and 

,\- u*A(u+z) 
- u•B(u+ z)' 

( uu*) I-- (A->.B)I z=-(a->.b), 
u•u u.L 
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where lu1- indicates that the action of the matrix is restricted to vectors orthog­
onal to u, and the vectors a and b are defined by 

u*Au 
a:=--, 

u•u 
a= Au- a:u, 

u*Bu 
;3 = u•u ' b = Bu - 13u. 

Note that a:, /3, a and b can be readily computed. Moreover, because of the 
Ritz-Galerkin condition 2.1 we have 

.Q -- _a: v /3 and r = a - t?b. 

Following another suggestion of Jacobi [15], made for the standard eigenprob­
lem for diagonally dominant symmetric matrices, it was proposed in [29], for 
general matrices, to solve this system iteratively, computing >.j ((2.3.a)} with 
z replaced by Zj, and computing Zj+I from (2.3.b) with>. replaced by >.1 (the 
Jacobi orthogonal correction method). 

'With z0 = 0 as an initial guess we have that >.0 = iJ and that z 1 is the solution 
of the following correction equation. 

(2.4) z1 .l u and ( uu*) I - - (A - iJ B) I z1 = -r. 
u•u ul. 

Since Zj is only an approximation for the exact correction z there is no need 
to solve (2.3.b) (nor the one in (2.4)) very accurately: for instance, we may use 
a few steps of an iterative method to solve linear systems of equations (e.g., 
GMRES [25] or Gauss-Jacobi [14], as Jacobi did for the symmetric standard 
eigenproblem [15]). 

In the computation of this approximate z i, one may use the fact that 

( uu*) 1--- z.lu 
u•u 

for any z, 

for the construction of an approximation Zj that is orthogonal to u. The expres­
sion in (2.3.a) offers the possibility to update the approximation of the eigenvalue 
during the phase of solving approximately the linear system in (2.3.b). 

In a related context, Davidson [7] pointed out (see also [29]) that the speed of 
convergence may be improved if we do not restrict ourselves to simply finding 
the new approximation by correcting u(k) = u with an approximate correction 
Zj, but instead compute the Ritz approximations with respect to the subspace 
spanned by all previous corrections. For computational reasons (efficiency, sta­
bility, ... ), it is more convenient to use an orthogonal basis V1 ••.. , vk+ 1 of 
vectors that span the same subspace as the set of approximating eigenvectors. 
This leads to the Jacobi-Davidson strategy, that will be further explained in §4. 

If we update u in each step by the exact solution z1 of the correction equa­
tion (2.4) (that is, with Uk= u, in the next step we take u = Uk+1 =Uk+ z1), 

then we obtain an asymptotically quadratic convergent process, when B = I 
(see Theorem 3.2, or [29, §4.1]). To retain quadratic convergence also for the 
case where B 'f. I, we have to adjust the projection I - ~!1~. We will address 
the choice of the proper projection in the next section. 
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3 Other projections for the eigenvector approximations. 

Suppose we have a non-trivial approximation u of an eigenvector x with ap­
proximation {} of the eigenvalue >. associated to x. Assume also that we have a 
vector w for which 

r = Au - {} Bu 1- w. 

We look for an update z of u in the space orthogonal to some u (ii t u): we 
are interested in 

(3.1) z 1- ii for which A(u + z) = >. B(u + z). 

As in §2 we have, except for a scalar multiple, x = u + z. The introduction of 
u is not so obvious at the moment, we could simply have taken the vector u. It 
will appear that other choices for u may be convenient, like ii = Bu. 

For similar reasons we select a wt w, and we consider the projections 

(3.2} 
ww* uii* 

P = --- and Q = --- . 
w*w u•u 

The projection Q splits the space en into the subspace spanned by u and the 
orthogonal complement of ii, that is, v = Qv + (I - Q)v, Qv = /U and 
(I - Q)v 1- u for each v. Similarly, the projection P splits the space into the 
subspace spanned by wand the orthogonal complement of w. The projections 
can also be used to decompose the eigenproblem: 

(3.3) 

With 

(3.4) 

and 

(A - AB)x = 0 {::} { 
P(A - AB)(Qx +(I - Q)x) =0 & 

(I - P)(A - AB)(Qx +(I - Q)x) =0. 

w*Au 
a= -- a=: Au-au, - w*u' 

w*Bu 
/3= --, w•u b = Bu - /]u, 

u'= (1- wV::)u=u- (~,w)w 
w•w (w, w) 

we now see that problem (3.1) is equivalent to the following problem. 

(a) >.- w*A(u+z) 
- w•B(u+z)' 

(3.5) (b) z J_ u and 

( I- w':*)(A->.B)I Z=-(a-Ab)-(a->./3)u'. 
w•w iJ...l 

The quantities a, /3, a, b and u' can be easily computed. Moreover, 

(3.6) {} = ~ and r = a - t?b = Au - t? Bu. 
/3 
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Algorithm 3.1: The basic algorithm. 

Choose a non-trivial u 

Repeat: 

(a) 

(b) 

(c) 

(d) 
(e) 

Select a w. 
w*Au 

Compute 8 = --- and r =:Au - iJ Bu. 
w*Bu 

Stop. Stop if u and iJ are accurate enough. 

Select a ii and a w. 
Solve the correction equation (approximately). 

Compute an approximate solution z 1 .l. ii 
of the correction equation 

( ww*) I - -- (A - iJ B) I z = -r. 
w•w ii..L 

(f) Update u. q = u + z1. u = q/l\qll-

Note that r .l. w. 

If we solve equation (3.5.b) only approximately by replacing A by the approx­

imation iJ, then we arrive at the following correction equation: 

(3.7) (a) z= I-=-- z ( u ii*) 
u*u 

and (b) Fpz = -r, 

where 

(3.8) ( w w• ) ( u ii*) F =: I - --- (A - iJ B) I - =-- . 
P w*w u*u 

This suggests the iterative process as described in Algorithm 3.1: compute an 

approximate solution z 1 from equation (3.7.b); update u, (i.e., Unew = u 0 1d + 
z 1 ); choose appropriate w, ii, and w, in order to satisfy the non-orthogonality 

conditions for these vectors, and repeat the procedure until the approximate 

eigenvector u is accurate enough. If the correction equation is solved exactly, 

then, according to the following theorems, THEOREM 3.2 and THEOREM 3.4, 

we may expect superlinear, and even quadratic convergence, depending on the 

choices of the w, ii and w. 

3.1 Fast convergence with right eigenvectors. 

In this section A is assumed to be a simple eigenvalue of AB- 1 with eigenvector 

x j:. 0 of the generalized eigenproblem: (A - A B)x = 0. 



600 G.L.G. SLEIJPEN, A.G.L BOOTEN, D.R. FOKKEMA, AND H.A. VAN DER VORST 

LEMMA 3.1. Consider w and u for which u*x # 0 and (Bx) *w # 0. 
Then, the map 

( Bxw*) ( xii*) F = I - -- (A - ,\B) I - ~ 
P w*Bx u*x 

is a bijection from u.L onto w.L. 
PROOF. Suppose y .l u and F pY = 0. Then (A - ,\. B)y is a scalar multiple 

of Bx, and both By and Bx belong to the kernel of (AB- 1 - A.1) 2 . 

The simplicity of ,\ implies that By is a scalar multiple of Bx, and hence y is 
a multiple of x. The fact that y .l u and u*x =I- 0 implies y = 0, which proves 
the injectivity of Fp. An obvious dimension argument implies bijectivity. D 

The vectors u and w can be chosen differently in each step, and one has to 
do this carefully in order to ensure the non-orthogonality conditions. One can 
work with the same vectors at the risk of a breakdown and we will discuss more 
robust choices in our discussion after the next theorem. We need these vectors 
to converge in order to be able to make statements on the convergence of the 
approximations u. 

THEOREM 3.2. Assume that the correction equation is solved exactly in each 
step of Algorithm 3.1. Choose w = Bu in each step. Assume that the u and 
w converge and that both u*x and w*Bx have non-trivial limits. Then, if the 
initial vector u is close enough to x, the sequence of u converges in direction to 
x and the sequence of 19 = w* Au/w*Bu converges to ,\. If the u converge in 
direction to x then the convergence is quadratic. 

PROOF. Suppose (A - ,\ B)x = 0 with x such that x = u + z for z .l u. Then 

(3.9) (A - 19 B)z =-(A - 19 B)u +(A. - 19)Bx = -r + (>. - 19)Bx. 

Consider the exact solution z 1 .l u of the correction equation: 

(3.10) (I - P)(A- dB)z1 =-(I - P)r 

(note that (I - P )r = r, since w .l r). Since x - ( u + z i) = z - z 1 and z = x - u, 
for quadratic convergence, it suffices to show that 

II x - (u + zi)ll =II z - z1ll = 0(11z11 2 ); 

obviously, this relation also implies local convergence. 
Multiplying (3.9) by (I - P) and subtracting the result from (3.10) yields 

(3.11) 
(I - P)(A - 19 B)(z - zi) 

= (,\ - 19)(1 - P)Bz + (,\ - 19)(1 - P)Bu. 

Multiplying (3.9) by w* and using that r .l w leads to 

(3.12) ,\. _ 19 = w* (A - 19 B)z. 
w*Bx 
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Since, by assumption, w*Bx has a non-trivial limit, we obtain 

11(.A - fi)(I - P)B zll = 0(11z112). 

Because of (3.11), this implies quadratic convergence, if (I - P)(A -1JB)1-;;:.t is 
non-singular and (I - P)Bu = 0. This last condition holds since w =Bu. The 
non-singularity follows from LEMMA 3.1 and the assumption that the sequences 
of u, w and ii have limits. D 

We will now make some remarks with respect to the choices for w, w, and ii 
REMARK 3.1. If the sequence of approximate eigenvectors u converges then 

Au~ .ABu, and the choice w = 1J Au+Bu also leads to a quadratic convergent 
process. 

REMARK 3.2. If ii and w are kept fixed during the iterative process, the 
sequences of vectors ii and w clearly converge. In this case, we are looking for 
an eigenvector x with non-trivial component in the direction ii (the condition 
ii*x I o) and we hope to find this vector by keeping the residual orthogonal 
to w. As mentioned earlier, there is no guarantee that all the inner products 
involved in the projections P and Q do not vanish. 

Inspection of the arguments in the proof of THEOREM 3.2 reveals that a choice 
of ii and w correlated to u, as ii = w = u or as ii = B*u, w = u, leads to 
converging sequences provided that the initial guess u is sufficiently close to x 
and provided that the limit inner products are non-zero (x*Bx I 0). 

3.2 Fast convergence with left eigenvectors. 

In the previous section we discussed fast convergence for the case where w 
converges to a (right) eigenvector of AB- 1. As we will see in this section, 
we may also expect fast convergence if the w converge to a left eigenvector of 
A - .A B. This approach allows the choice of more natural projections: P may 
be selected to be equal to Q (this will be further exploited in §3.3). 

Similar arguments as in the proof of LEMMA 3.1 lead to the following lemma. 

LEMMA 3.3. The map 

(3.13) F := I-- (A-.AB) I-=- , ( x w*) ( xii* ) 
P w*x u*x 

is also a bijection from ii.l onto w.l if 0 is a simple eigenvalue of the matrix 
A - .AB. 

REMARK 3.3. The scalar iJ is a simple eigenvalue of the generalized eigen­
problem if 1J is a single root of the characteristic polynomial det(A - .AB), or, 
equivalently, if 1J is a simple eigenvalue of the matrix AB-1 (recall that B is 
non-singular by assumption). However, generally this does not imply that 0 is 
a simple eigenvalue of the eigenproblem for the matrix A - 1J B. Although the 
geometrical multiplicity is one, the algebraic multiplicity can be larger. If the 
geometric and the algebraic multiplicity coincide, for instance if both A and 
B are self-adjoint (A* = A and B* = B), and fJ is real, then 0 is a simple 
eigenvalue of A -19 B when 1J is a simple eigenvalue of AB-1 . 

't. 
' 
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THEOREM 3.4. Assume that 0 is a simple eigenvalue of A - >.B. Assume 
that, in each step of Algorithm 3.l, the correction equation is solved exactly. 
Assume the ii 's, w 's and w 's converge, u*u, w*w and w*Bu have non-trivial 
limits and (A - t9 B)*w converges towards 0. Then u converges in direction to 
x if the initial vector u is close enough to x. If u converges in direction to x 
then the convergence is superlinear. 

PROOF. The assumptions and (3.12) imply that j>. - t9j = o(ll z II) and, as in 
the proof of Theorem 3.2, superlinear convergence follows from (3.11). D 

REMARK 3.4. If both A and B are self adjoint and >. E R then, for the 
choice w = u, we have that w*(A - >.B) = -z*(A - >.B). Therefore, in this 
"symmetric case", we have that 

(3.14) 

which implies quadratic convergence for any choice of w. 
REMARK 3.5. More general, we obtain quadratic convergence if we select our 

w to converge to the left eigenvector of A - >. B, by an obvious adjoint version 
of Algorithm 3.1, that is, with rt = (A - t9B)*w, solve exactly the adjoint 
correction equation: 

(3.15) Zt J_ w such that z; (1- WW~) (A- t9B) (1 - ~ u*) = -r£, 
w•w u*u 

and update w similar to u: w' = w + Zt, w = w' /llw'll· Note that rt J. u. 
With this approach we also have converging u, w, ii, and w, if the initial u is 

close enough to x, the initial w is close enough to the left eigenvector of A->. B, 
and u, w are fixed or ii = w, w = u, and the non-zero conditions on the inner 
products are fulfilled. We obtain cubic convergence if, in addition, we choose 
w=Bu. 

3.3 The choice of the projections P and Q. 

If w i ii. then the domain space u .L of the map F P in (3.8) differs from the 
image space w .L of this map F p· Powers of F P cannot be formed, and to solve 
equation (3.7) by some Krylov subspace method, we need a "preconditioner" K 
that maps the image space w ..L bijectively onto the domain space ii .L: then we 
can apply Krylov subspace methods to the preconditioned system (see §7.1). In 
other words, for unpreconditioned Krylov subspace methods, it is desirable to 
have (I - P)(I - Q) =I - Q, or, equivalently, ii.= w. 

The choice w = Bu, ii = w leads to a fast converging process in which 
the correction equation requires a solution in the space that also contains the 
residual. 

The choice w = u, ii = w and w some approximate left eigenvector leads 
to fast convergence (cf. §3.2), and the projections P and Q coincide. If 0 is a 
simple eigenvalue of A - >. B, and u and w converge to the associated right and 
left eigenvector, respectively, then w*w = u*w has a non-trivial limit value. 
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By embedding the correction equation into the entire space C', we also cir­
cumvent the problem of having a domain space that differs from the image 
space: in the whole space, we trivially have the same image and domain space. 
For instance, the choice w = Bu, ii = B*w, implies BQ = PB. Hence, 
(I - P)B = (I - P)B(I- Q). Since r = (I - P)r, the solution z of problem (3. 7) 
is precisely z = (I - Q)z where z E C" is the solution of the equation 

( Buw*) ( uw*B) (3.16) (Ap -?JB)z = -r where Av = I- -- A I- -- . 
w•Bu w•Bu 

The embedded equation in (3.16) is non-singular if the equation in (3.7) is non­
singular, fJ ':/; 0 and f3 ':/; 0 (or, equivalently, w*Bu ':/; 0). 

The choice w = Bu, ii = B*w, leads to a fast converging process and the 
correction equation can be embedded in the entire space. If, in addition, w = u 
and B is self-ad.joint then P* = Q. With w = w = Bu and ii = B*Bu the 
inner product w*w = ii*u ( = 11Bull2 ) is non-zero. This is also the case if B is 
positive definite and w = u. 

3.4 Equivalent formulations for the correction equation. 

The dimension of the problem defined by the correction equation (3.7) is 
smaller than the dimension of the space of the eigenproblem: the projections are 
used to restrict the image space and domain space to a space of co-dimension 1. 
As is stated by the following theorem, the projections can also be used for an 
equivalent formulation in a space of larger dimension. This equivalent aug­
mented formulation may be useful for the construction of preconditioners for 
the correction equation (3.7) (cf. §7.1). For similar reasons [9], such an aug­
mented equation also appears in the theory for numerical continuation methods 
for nonlinear equations (cf., e.g., [11]). 

THEOREM 3.5. Equation (3.7) is equivalent to 

(3.17) [ A - t9 B w ] [ z ] _ [ -r ] 
ii* 0 e - 0 ' 

that is, z is a solution of ( 3.17) if and only if z is a solution of (3. 7). 
PROOF. Obviously, equation (3.17) implies that ii*z = 0, and this holds if and 

only if z l.. ii. 
Since r l.. w, the first block coordinate (A - ?JB)z + eW = -r in (3.17) is 

equivalent to 

(3.18) { 
( ww*) 1-w•w ((A-t9B)z+ew)=-r and 

w*((A-t9B)z+ew) =0. 

Since (1 - ~) w = O, we see that the first equation in (3.18) is equivalent 
w•w 

to (3.7). The second equation determines e (= -w*(A - t? B)z/w*w). 0 
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REMARK 3.6. In (3.7), the vectors u and w play a role. These vectors do 
not occur in equation (3.17). However, they enter through r =(A - '!? B)u and 
the condition r ..L w. For the construction of incomplete factorizations that 
may serve as preconditioners it may be advantageous to reorder the equations 
in (3.17). 

Using the fact that r =(A - ~ B)u, (3.17), and therefore (3.7), can be solved 
exactly in terms of the solution t of the equation (A - '!? B)t = w: 

THEOREM 3.6. The solution z of (3.7) (and o/(3.17)) is given by 

(3.19) 
z=(A-'l?B)-1(-r+w) 
= - u+c(A- ~B)- 1w 

ii*u 
with e = ii*(A-'l?B)-1-w· 

PROOF. With z as in (3.19), it is easily verified that ii ..L z and (A - {) B)z = 
-r + cw. Since r ..L w it follows that (3. 7) holds. · D 

For w = Bu, this theorem gives a relation to Rayleigh Quotient Iteration. 
In particular, we see that Algorithm 3.1 leads to cubical convergent sequences 
if B = I, A is symmetric, ii = w = w = u, and if the correction equation is 
solved exactly, which is in agreement with observations made in §3.2. In §4 we 
use the approximate solution z to expand a subspace in which we search for new 
approximations for the eigenvector x. This subspace will contain the current 
approximation u and expanding it by z (as in (3.19)) is equivalent to expanding 
it by (A - 79 B)- 1w. For w = Bu, this reveals a relation between the method 
to be discussed in §4 and Shift-and-Inverse Arnoldi; see D1scussION 4.1. 

4 Projections on subspaces for approximating the eigenproblem. 

In the previous sections we have used projections P and Q defined with only 
single vectors w and ii. The older approximations were discarded, but following 
Davidson's approach, we will now take also these approximations into account, 
in order to prevent a search in a subspace that has already been explored. In 
this approach we store vectors that have been computed in previous steps, and 
we update u in the best way that is possible using all these vectors. The gen­
eral Jacobi-Davidson (JD) algorithm, Algorithm 4.2, that we introduce in this 
section, is the basic Algorithm 3.1 with an improved updating strategy for the 
approximate eigenvector u. 

At the beginning of the kth step we have two sets of linearly independent 
vectors Vi, ... , vk and wi, ... , Wk. Vk is the matrix with the vi as columns 
(i = 1, ... , k), Vk = span(Vk), i.e., Vk is the subspace spanned by the columns 
Vi of vk. We use a similar notation wk and wk in relation to the Wi. Then we 
construct our new approximating eigenvector u, our new approximating eigen­
value 79 by solving the projected eigenproblem: 

(4.1) that r =: Au - 79 Bu ..L Wk. 

Since this projected problem is equivalent to finding a y E Ck, 79 E C such that 

(4.2) 
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Algorithm 4.2: The Jacobi-Davidson algorithm. 

Choose a non-trivial v and a non-trivial w. 
Set V = [v], W = [w]. k = 0. 

Repeat: 

(a) Solve the projected eigenproblem. 
Compute non-trivial solutions y E <ek+i 
the projected eigenproblem 

and associated {} E <C of 

W*AVy-'l'JW*BVy = 0. 

(b) Select approximating eigenvector and eigenvalue. 
Select a solution y and associated Petrov value 'l'J. 
Compute the Petrov vector u +-Vy and 
the residual r +-Au - {}Bu. 

(c) Stop. Stop if u and{} are accurate enough. 

(d) Select a win span(W) and select ii and w. 
( e) Solve the correction equation (approximately). 

Compute an approximate solution z 1 J_ ii of 
the correction equation 

( ww*) I - -- (A-1JB)I z = -r. 
w•w ij-1 

(f) Restart. k +- dim(span(V)). 
If k is too large: 

select an e < k, select k x f matrices Rv and Rw, 
compute V +- VRv. W +- WRw. k +- £. 

(g) Expand the search subspace. 
Select a v E span(V, z 1)\span(V) and V +- [V, v]. 

(h) Expand the test subspace. 
Select a v, v r:J_ span(W) and W +- [W, v]. 

we only have to solve a small generalized eigenproblem of size k (Wk, AVk and 
w;;,Bvk are k x k matrices) and compute u as a linear combination of the Vi. 

DEFINITION 4.1. Since we look for the new approximate eigenvector in the 
subspace V,c, we call Vk the search subspace. The subspace Wk is used in the 
projection to define an approximating problem. Analogously to the situation 
with Petrov-Galerkin methods, we will refer to Wk as the test subspace. We use 
the words Petrov value for the approximate eigenvalue 1J and Petrov vector for 
the approximate eigenvector u = Vky (i.9, y solution of (4.2); see also §5.1). 

The approximate solution z 1 of the correction equation (3. 7) is used to expand 
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the k-dimensional search subspace vk to the subspace vk+l of dimension k + 1. 
Next, we select (or construct) a new Vk+l vector in the set of vi; vk+l belongs 
to vk+l> and is linearly independent of V1, ... 'Vk. Finally, we construct a new 
Wk+i · Algorithm 4.2 shows an algorithmical formulation of this strategy. In this 
formulation, we have suppressed the index k and we have included the possibility 
of reducing the search subspace and the test subspace (step (f)). 

By expanding our subspace, we may expect better global convergence prop­
erties. But, moreover, we also may expect better local convergence. The choice 
w = Bu (cf. Theorem 3.2) leads to 'superquadratic' convergence (in analogy 
with the 'superlinear' convergence for Krylov subspace methods): the test sub­
space increases and will contain better approximations for the left eigenvector, 
which also leads to better approximations for rJ (cf. (3.12), since in this case, 
by (4.1), for w we may take any vector in Wk). 

Any of the substeps (a)-(h) in Algorithm 4.2 can be performed in a number 
of ways. Different choices in any of the substeps (b), (d), (f) and (h) lead to 
different sequences of approximating eigenvectors and eigenvalues. The specific 
choice of the basis vectors vk+l and Wk+l in (g) and (h) affect the computational 
complexity and the stability of the algorithm. The choice of the subspaces Vk 
(through (d), (e) and the restart strategy in (f)) and Wk (in (h)) affects the 
convergence behavior, while the choices of the basis of these subspace (in (g) 
and (h)) affect the computational complexity and the stability. In this paper we 
will comment on the following substeps: on (a) in §6; (d) in §3; (e) in §7 (and 3); 
(g) and (h) in §5. For (b) and (f) we refer to (10]. 

DISCUSSION 4.1. In order to keep our arguments simple, we will assume in 
this discussion that B = I. Furthermore, we will not consider restarts, and in 
Algorithm 4.2, we will take W = V, w = u. v 1 is the initial vector v. 
THEOREM 3.6 indicates a relation to Shift-and-Invert Arnoldi (cf., e.g., (24, 
ALG. 8.1]). For this algorithm the user has to provide a complex value µ and 
the algorithm locates the approximate eigenvalue nearest to µ with associated 
eigenvector. The algorithm is based on Arnoldi's method for (A- µl)- 1 . Ifwe 
take in step (e) of Algorithm 4.2 for z1 the exact solution of the correction equa­
tion (in which rJ is replaced by µ), then our search subspace Vk coincides with 
the Krylov subspace Kk((A- µl)- 1;vi) (cf.Theorem 3.6), i.e., the 'search sub­
space' of Shift-and-Invert Arnoldi. Therefore, if we orthogonalize in step (g) of 
Algorithm 4.2 against the previously constructed V, then (except for some scalar 
multiple) the orthonormal basis vectors for both algorithms coincide and both 
algorithms produce the same approximate eigenpair. Since, Arnoldi's method 
exploits the Hessenberg structure of the projected matrix (here the projection of 
(A - µ 1)-1), Shift-and-Invert Arnoldi is more efficient than JD in this special 
case. 

Replacing the 'target value'µ by the currently optimal approximate eigenvalue 
{}in Shift-and-Invert Arnoldi may be expected to lead to faster convergence but 
it affects also the efficiency: the projected matrix will be dense and in exact 
arithmetic both methods lead to the same results at the same costs. Since it may 
be expensive to work with (A- iJ 1)-1 (i.e., to solve equations as (A-{} I)z = r 
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exactly) in each step, one might prefer suitable approximations K of A - {)I 
or of A - µI (preconditioners; cf. [5, 8, 17, 18, 20]). Then, in JD, the search 

subspace is expanded by some appropriate linear combination of K- 1 (A - 7'J I) u 

and K- 1u while the Shift-and-Invert Arnoldi, properly adapted, will expand by 

K- 1 u only. However, in view of the success of Davidson's method the component 
K- 1(A- rJI)u is apparently important. 

5 The search subspace and the test subspace. 

For the approximation of the eigenvector x in a relatively small number k of 

sweeps, we wish to construct a search subspace Vk that makes a (very) small 

angle with the vector x. The choice Vk = span(x) is optimal, but impractical. 

We will first consider the construction of suitable test subspaces and after that 
we will consider the search subspace. 

5.1 The test subspace. 

We will be interested in the non-trivial solutions u, {) of the projected eigen­

problem (4.1). The test subspace determines the way of projection, e.g., orthog­

onal with Wk = Vb or oblique with other choices. 
Different choices can be made for Wk. Besides the choice for Wk as a subspace 

of approximating left eigenvectors ( cf. §5.1.3), the following three other choices 

are obvious and allow for a familiar interpretation that we will discuss (in §5.1.1 

and 5.1.2): Wk = Vk, Wk = AVk, and Wk = BVk· These interpretations involve 
Ritz vectors and harmonic Ritz vectors: if A is an n x n matrix and V is a k­

dimensional subspace of Ck then a non-zero vector u in V and a scalar {) E C 

are called a Ritz vector and Ritz value, respectively, of A with respect to V if 

Au - tJ u J_ V. They are referred to as harmonic Ritz vector and harmonic Ritz 

value, respectively, of A with respect to V if Au - {! u J_ AV [22, 29]. Note 

that u is a harmonic Ritz vector of A with respect to V if and only if Au is a 

Ritz vector of A- 1 with respect to the subspace AV. Note that, although we 

compute Ritz vectors of A- 1 , we never have to compute any inverse because of 

the search space AV. 
In computations, sequences (Vk) of subspaces of increasing dimension are con­

structed, where the k-dimensional subspace vk is a subset of the k+ 1 dimensional 

subspace Vk+l· When A is normal (or close to normal) then the extremal Ritz 

values usually exhibit some regular convergence behavior towards extremal eigen­

values, while the in absolute value smallest harmonic Ritz values usually show a 

regular convergence behavior towards the in absolute value smallest eigenvalues 

(for this property for symmetric matrices, see [22]). These properties may be 

used for the selection of the approximations of interest, especially for restarting 

purposes. 
Once we have Vk, any of the matrices AVk and BVk can easily be computed, 

and probably will be computed anyway to facilitate the computation of the k x k 

matrices w;AVk and w;BVk. 
In the next subsections we will discuss some choices for W for the important 

case that B is nonsingular. 
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5.1.1 B is non-singular. 

(a) W =AV. The solutions of (4.1) with Wk = AVk correspond to harmonic 
Ritz values of AB- 1 with respect to the subspace V = BV. That means that 
for ii= Bu with u E V the requirement 

AB- 1ii- '!9ii _l_ AB- 1V 

is equivalent to (4.1) with Wk = AVk. Note again that, although the inverse of 
B appears, operations with B are never necessary, for instance B- 1u = u. 

(b) W = BV. The solution of (4.1) with Wk = BVk corresponds to Ritz 
values of AB- 1 with respect to the subspace V = BV in the following sense. 
For ii = Bu with u E V we have that 

AB- 1ii - '!9 ii _l_ V 
is equivalent to (4.1) with Wk = BVk· 

5.1.2 B is positive definite. 

If B is positive definite then we can exploit a B-inner product and associated 
orthogonality. 

(a) W = V. The solutions of (4.1) with Wk = Vk correspond to: 
(al) Ritz values of AB- 1 with respect to the B- 1-inner product and the 

subspace V = BV, in the following way. For ii= Bu with u E V it follows that 

AB- 1ii - '!9 ii _l_B-1 V 
is equivalent to ( 4.1) with wk = vk. 

( a2) Ritz values of B- ~ AB- ~ with respect to the subspace V = B ~ V, as 
follows: for ii = B ~ u with u E V we have that 

B- ~ AB- ~ii - 19 ii _l_ V 

is equivalent to ( 4.1) with wk = vk. 
(b) W =AV. The solutions of (4.1) with Wk = AVk correspond to harmonic 

Ritz values of B- ~ AB- ~ with respect to the B-inner product and the subspace 
V = B ! V in the following way. For ii = B ~ u with u E V we have that 

B-~AB-~ii-'!9ii _l_B B-~AB-~V 

is equivalent to (4.1) with Wk = AVk. 

5.1. 3 The test subspace as a search subspace. 

As explained in §3.2, we obtain fast convergence if the w converge to the 
left eigenvector. Therefore, the construction of Wk similar to Vk is straight­
forward: solve both the correction equation (3. 7) and the adjoint correction 
equation (3.15) approximately (the Bi-CC method seems to fit quite naturally 
in this approach), and extend the search subspace and the test subspace by the 
computed corrections. Then take w = Wky, where y is the left eigenvector of 
the projected eigenproblem associated with {}. 
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5.2 On the choice of w. 

We have discussed choices for w, w and ii in §3. However, these choices 
cannot be completely independent from the subspaces Vk and Wk· For instance, 
w should be in wk) and should not be orthogonal to w. 

For a number of choices (cf. §3.3), w should not be orthogonal to u as well. In 
particular, u should not be orthogonal to wk and it is quite natural to require 
that the subspaces vk and wk are not mutually orthogonal. 

If W = BV, then the choices w = w = Bu and ii = B*w are obvious. 
The same remark applies to the combination of W =AV, w = w =Au, and 
u = A*w. 

Also if the test subspace W1;; is not constructed as to approach a subspace of 
left eigenvectors ( cf. §5.1.3) then still the use of left eigenvectors may help to 
improve the convergence: select w = W1;;yR., where Yt is the left eigenvector of 
the projected problem. 

5.3 The basis of the search subspace and its test subspace. 

For stability reasons the basis of the search subspace as well as of the test 
subspace should satisfy certain orthogonality properties. 

For instance, Vk+i = v' /llv'll, with v' = Z1 - vk v;z1 leads to an orthonormal 
basis for the search subspace and Vk,V1;; = I. Of course, the vector v' can also 
be computed by modified Gram-Schmidt. For accuracy reasons, this modified 
approach is even to be preferred. 

If B is positive definite, then Vk+l = v' h with v' = Z1 - vk v;,Bz1 and 
"(2 =: v'*Bv', leads to a B-orthonormal basis: V;'BVk =I which simplifies the 
projected problem to V;' A Vk - iJ I if Wk = V1;;. 

Assume that wk = BV1;; is the selected test subspace. Then W1o+1 = w' /llw'll, 
Vi;;+i = v' /llw'll with w' = Bz1 - W1;; w;,Bz1 and v' = Z1 - vk w;Bz1, leads 
to an orthonormal basis for the subspace Wk: W;'Wk =I, while BV1;; = Wk. 
The projected problem reduces in this case to W;'AVk - 191. 

6 The solution of the projected eigenproblem. 

The projected eigenproblem (4.2) is a relatively small eigenproblem of dimen­
sion dim(span(V1;;)) and can be solved relatively efficiently by standard algo­
rithms such as the QR-algorithm. Of course, if one is interested in, for instance, 
only the eigenvalue with largest real part, then there is no need to compute all 
eigenvalues of the projected problem. However, if one is interested in a inte­
rior eigenvalue, then it may be helpful to compute all Petrov values: this may 
facilitate the selection of the appropriate approximating eigenvalue. 

The computation of the projected matrix, e.g., w;, AVk involves the evaluation 
of a number of inner products. Using the fact that 

W;'Avk+l ] 
Wk+ 1Av1;;+1 ' 
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ifVk+l = [Vb VA,+1L Wk+I = [Wb wk+iJ, reduces the number of inner products 
per sweep. 

7 The correction equation. 

We will have an accurate approximation for the eigenvector x if the anglP 
between x and the search subspace Vk is sufficiently small. We can achieve small 
angles in two ways: by building high dimensional search subspaces vk (k large), 
or by carefully selecting the vectors z1 by which we extend these subspaces Vk. 
To make this more precise, we extend Vk by z 1, where z 1 is an approximate 
solution of 

(a) the correction equation (3. 7) or of 

(b) the complete set of eigenvalue equations (3.5). 

More accurate solutions of (3.5) will involve more computational work in terms 
of matrix vector multiplications for the solution of part (3.5.b), while for (3.7) 
the higher dimensional subspaces Vk require more vector updates in the steps 
where the matrices are projected onto Vk and for the construction of the Ritz 
vector. We have the alternative of inexpensive inner loops (where the corrections 
equation is solved) in combination with more expensive outer loops (where the 
projected eigenproblem is solved) and expensive inner loops with inexpensive 
outer loops. The optimal strategy will depend on the convergence properties 
and on costs of a matrix-vector product as compared with vector updates. 

For local efficiency reasons one may prefer more accurate solutions of (3.5). 
However, since the quadratic convergence of the JD process will only occur 
for larger k (the convergence is asymptotically quadratic), one may postpone 
the fast convergence by investing the computational effort in obtaining accurate 
solutions of (3.5) rather than building larger search subspaces Vk. For instance. 
if one uses Newton's process for the solution of (3.5), then one may see a very 
slowly converging or even a diverging process if the initial guess (computed from 
results in the outer loop) is not accurate enough. 

There are a number of ways to achieve efficiently more accurate solutions 
of (3.5) with iterative methods. One may think of 

(a) preconditioning (cf. §7.1), 

(b) using the subspace, that was constructed to solve (3.7) approximately, in 
order to obtain an approximate solution of (3.5), 

( c) using the subspace that has been constructed in the outer loop, in order 
to obtain a more accurate approximation of (3.7), 

(d) iterating (3.5), say, f times (E 2: 2) by the Jacobi correction method (as 
described in the paragraph following (2.3)), 

(e) iterating (3.5), say, e times with Newton process, or 

( f) combinations of these strategies. 
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If one uses£ steps of some iterative process to solve (3.5), as in (d) or (e), then 
there will be an optimal £ as far as the overall efficiency is concerned. 

In the next subsections we will discuss the option of preconditioning, the other 
possibilities will be subject of further study. 

7.1 Preconditioning. 

If Mp is an approximation for the inverse of the projected matrix Fp in (3.8), 

then one may use this operator in order to get an accurate solution z of the 
correction equation (3.7) in fewer iteration steps. The preconditioner should 

map the image space wl. of Fp onto its domain space iiJ.. Therefore, Mp 
should satisfy 

(7.1) ( uii*) ( ww*) Mp= I-=-- Mp I----. 
u*u w*w 

Then the preconditioned correction equation for z J_ ii reads as 

(7.2) 

Here we exploit the fact that projections are involved: applying such a map 

once has the same effect as applying it twice. In the context of Krylov subspace 
methods, the following similar observation is useful: 

since the vectors involved in the iteration process usually can be written in the 
latter form. 

7.1.1 Projecting preconditioners. 

In most cases, preconditioners are specified as approximations K for A - 79 B, 
and such that the equation Kt = r can be solved relatively easily. For instance, 

Davidson [7] suggested K = diag(A) - {) diag(B) (see also [19, 8]). In view of 
our observations in §3 we expect to create better preconditioners by taking the 
projections into account. Therefore, we consider the inverse as a map from iiJ. 
onto wl. of Kp, the projection of K, 

(7.3) ( ww*) ( uii*) Kp:= I---- K I-=--. w•w u*u 

The following propositions (PROP. 7.1, 7.2 and 7.4) express the inverse of Kp 

in terms of the inverse of K. The operator K; 1 denotes the inverse of Kp as a 

map from iiJ. onto wJ.. 

PROPOSITION 7 .1. If K maps ii .L onto wl. then K; 1 exists with respect to 

the subspace wl., and 

(7.4) K-1 = (1- ~ii*) K- 1 (1- w':*) = K- 1 on WJ_. 
P u*u w•w 
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PROOF. If y J_ w and t is such that Kt = y then t J_ ii and Kpt = y. O 
REMARK 7.1. The condition in PROPOSITION 7.1 is satisfied if, for instance, 

K is diagonal and ifw = u is a standard basis vector. Then, for any y J_ w, we 
can compute K; 1y without projection: K; 1y = K- 1y. 

In general, for non-diagonal preconditioners, the projections cannot be ignored, 
that is, skipping the projections may lead to slower convergence. For a numerical 
example, see §9.3 (see also [32]). For this general situation, it is not so obvious 
how to compute Kp, and the following proposition may be helpful. 

PROPOSITION 7.2. If K is non-singular and ii*K- 1w f. 0 then K; 1 exists 
with respect to the subspace w.l, and 

(7.5) 

where Yr solves K*yr =ii and Yt solves Kyt = w. 
PROOF. Observe that u•y1 = y;w f. 0. Clearly the second equality holds. 
If Kt = r + f3w with scalar f3 such that ii J_ t then Kpt = r, leading to the 

first equality in (7.5). O 

THEOREM 7.3. If K is non-singular and u•K- 1w f. 0 then' the correction 
equation (3.7) preconditioned by K; 1 (cf. PROP. 7.2) is equivalent to 

(7.6) zJ_ii and (1-~ij·)K- 1 (A-t?B)(I-~ij•)z=-r', 
u•y1 u*yt 

where 

(7.7) K-1 - d I (1 Yt ij•) K-1 Yt = w an r = - --- r. 
U*Yt 

PROOF. Since, with Yr as in PROPOSITION 7.2, 

(I _ w Yi_) (l _ w w~) = (l _ w ~) , 
y;w w•w y;w 

equation (7.5) shows that the preconditioned correction equation is equivalent 
to 

(7.8) zJ_ii and (1-~ii*)K- 1 (A-t?B)(1- ~ij*)z=-r', 
u•y, u•u 

with Yt and r' a.sin (7.7). Finally, the equivalence of (7.6) and (7.8) follows from 
the fact that 

( Yt ij•) zJ_ii {o} z= 1---- z 
u*ye 

{o} z = (1 - ~ii* ) z. 
u•u 

0 
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In [32] a diagonal block approximation K of A - iJ B, in combination with 
a block approximation of the projections using the 8ame block structure, was 
reported to be succe8sful for the application considered there. 

R.EMARK 7.2. In the Davidson methods [5, 7, 18, 19] the search subspace is 
expanded by the vector K- 1r, the·vector that appears in the first step of the 
computation of r' (cf. TH. 7.3). In Olsen's method (cf. [21]), for symmetric 
eigenproblems with ii = w = u, the search subspace is expanded by the vector 
r' (see also [29]). 

If K is a good approximation of A - ,\ B then K may be singular and the 
following proposition may be useful 1. 

PROPOSITION 7.4. If Ker(K) = span(a) for some non-trivial vector a then 
there is a non-trivial vector b for which Ker(K*) = span(b) and 

(7.9) K- 1 = (1- ~ii~)K- 1 (1- w~*) on w..L. 
P u*a b*w 

where K- 1 is the inverse of K as a map from aJ.. onto b..L. 
PROOF. If Kt = K(t+na) = r+.Bw with scalars n and J such that b ..L r+Jw 

and ii ..Lt+ na then Krt = r. This leads to (7.9). D 

7.1. 2 The augmented correction equation. 

Formulation ( 3.17) of the correction equation (3. 7) (for the case r ..L w) may be 
more accessible for the construction of suitable preconditioners, avoiding explicit 
projections as in §7.1.l. 

The following lemma, for which we omit the obvious proof, is helpful for the 
construction inverses corresponding to equation (3.17). 

LE!\IMA 7.5. For z and y we have 

[:* ~]=[zl* ~][;. _:J wher~ v=z*y, 

and the matrix is invertible if and only if z*y f. 0. 
If K is an easily invertible approximation of A - iJ B then the augmented 

equation (3.17) can be preconditioned by 

[K w]-l [I -y1] [I OJ [K-1 OJ {y' = K- 1w 
(7.10) ii* 0 = O* 1 ~; -;-,! o· 1 ' where I/= u*ye, 

and 

w-]- 1[A - tJ B w-) 
0 ii* 0 

(7.11) 

lThe idea exposed in the proposition was also suggested by Dr. F. \Vubs (private 
communication). 
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For more efficient computation, we prefer the factorized form at the right hand 
sides of equations (7.10) and (7.11). 

Clearly (7.10) has also a 'left variant' (with K- 1 at the left in the right hand 
side). The left variant may be more suitable for post preconditioning of the 
augmented equation (3.17). Both variants are obvious analogues of the precon­
ditioners in (7.5); likewise, (7.11) is an analogue of (7.6). 

8 Polynomial eigenvalue equations. 

Polynomial eigenproblems are relevant for scientific modelling, for instance in 
mechanical systems with friction. Bai (see §8 in [2]) refers to an interesting 
5-th order problem that waits for solution. With the classical subspace meth­
ods one has to linearize the given problem, by forming the companion matrix. 
This matrix is not only much bigger than the order of the matrices involved in 
the given problem, but it is usually also very ill-conditioned. As we will see, 
the Jacobi-Davidson approach offers the possibility to handle the polynomial 
problem directly without any linearization. 

For f EN, and n x n matrices A 0 , .•. , At, consider the generalized eigenprob­
lem of finding an eigenvector x (non-trivial) and associated eigenvalue ,\ E C 
such that 

(8.1) 

In terms of a matrix-valued polynomial '11, we are interested in pairs ( ,\, x) of 
scalars >. and non-trivial vectors x for which 

To solve this problem, we can proceed as before. Suppose we have a k­
dimensional search subspace vk and a k-dimensional projection subspace wk. 
Then, we can compute an approximation u of x with associated approximation 
{) of >., by solving the projected problem: 

(8.3) 

We define the residual r by 

(8.4) r=:'ll({))u, 

and, for a some u, we correct the approximation u by z 1, where z1 1- ii is an 
approximate solution of the correction equation: 

(8.5) zl.ii and (1- wv:_*)'ll(tJ)(I- ~ii*) z=-r, 
w•w u*u 

for relevant choices of wand w, with w orthogonal tor. As before, the approx­
imate correction z1 can be used to extend the search subspace Vk. By choosing 
basis in Vk and in Wk, the projected problem (8.3) is equivalent to a small eigen­
problem involving a k x k-matrix-valued polynomial. If the sequences of u, w 
and ii converge then, the choice 
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leads to asymptotic quadratic convergence. 

Recently, this approach with w = u = u has been used successfully for the 
solution of quadratic eigenvalue problems associated with acoustic models [23]. 

9 Numerical examples. 

The purpose of this section is to illustrate our theoretical observations with 
suitable experiments. We will show how various choices of subspaces and pro­
jections affect the convergence. Our examples have been chosen deliberately to 
be small, since that gives us the opportunity to compute the full spectrum and 
to compare our findings with exact results. It is not our purpose to show how 
well given problems can be solved with the new approach; that has been done, 
for a complete implementation taking care of various criteria, in [10]. 

Our examples have been coded in Fortran. The small projected eigenvalue 
problem is solved with the Householder-QR (or QZ) algorithm [13], with routines 
from the LAPACK library [l]. With this algorithm we computed also the 
complete spectra of the matrix pairs in the examples, and we refer to these 
results as true (or correct) eigenvalues. 

First, in §9.1, we illustrate the effect of specific choices for w, w and u on 
the speed of convergence of JD. Then, in §9.2 we give some examples of the 
performance of JD, where V is B-orthogonal and V = W, comparing this 
version of JD applied to the generalized eigenproblem with a naive version where 
JD is applied to the standard eigenproblem B-1 Ax= .\x. In §9.3, we discuss 
the effect of augmenting or projecting the preconditioner. There is a trade­
off between the computational work, needed to solve the correction equation 
accurately enough, and the speed of convergence of JD. This issue will be 
discussed in §9.4. We also consider the performance of a block version (see 
§9.5). 

9.1 The effect of the projections on the speed of convergence. 

In the previous sections various choices for the subspaces Vk and Wk and the 
vectors w, wand ii are discussed. Their implication for the speed of convergence 
is analyzed and it is shown theoretically that some of these choices lead to 
quadratic or even cubic convergence, while other choices only lead to linear 
or superlinear convergence. The purpose of this subsection is to illustrate by 
numerical examples our findings on the convergence speed. 

We present some numerical results obtained for a generalized eigenvalue prob­
lem Ax = ,\Bx taken from the "Test Matrix Collection" [3], namely the Bounded 
Fineline Dielectric Waveguide problem of order 398. This problem stems from 
a finite element discretization of the Maxwell equation for propagating modes 
and magnetic field profiles of a rectangular waveguide filled with dielectric and 
PEC structures. The resulting matrix A is non-symmetric and the matrix B is 
positive definite. Both matrices are real (but may be complex in realistic appli­
cations). Of special interest are the eigenvalues with positive real part and their 
corresponding eigenvectors. 



616 G.L.G. SLEIJPEN, A.G.L BOOTEN, D.R. FOKKEMA, AND H.A. VAN DER VORST 

The correction equations (3.7) are (approximately) solved by (at most) 10 
steps of GMRES, left preconditioned with an Incomplete LU(2) factorization of 
A - TB, for T = 2500. This had the effect that the correction equations were 
solved with a relative residual norm reduction of 10-9 as soon as the relative 
residual norm of the selected Petrov pair became smaller than 10-2 . We choose 
the starting vectors v = v 0 and w = wo for the first sweep both equal to the 
vector with all ones scaled to unit length. 

The selected Petrov pair, was the one with the Petrov value closest to T and 
the iterations were stopped as soon as the relative residual norm for the Petrov 
vector was smaller than 10-9 . 

Since the 5 rightmost eigenvalues of this problem are (to 5 digits of accuracy): 

.X.1 +2.9483e03, 

.X.2 +4.0338e02, 

.\3 - l.0082e03, 
,\4 -l.5907e03, 
J\5 = -2.0820e03, 

our choice of T leads to convergence of the Petrov pair to the largest eigenvalue 
.X.1. 

9.1.1 Linear versus quadratic. 

We start with considering the following choices for w, w and ii: 

1. w = w = ii = u, expecting linear convergence ( cf. Theorem 3.4), 

2. w = Bu, ii= w = u, expecting quadratic convergence (cf. §3.1), and 

3. w = Bu, ii= B*u, w = u, also expecting quadratic convergence (cf. §3.3). 

Figure 9.1 shows the convergence of JD for these choices when we restart at 
every iteration (taking vo = w 0 = u) and Figure 9.2 shows the convergence for 
full JD with W = V. In these figures, log10 llrll/c is plotted, where r is the 
residual of the Petrov pair and c is the norm of the initial residual. As can be 
seen clearly from Figure 9.1, the speed of convergence confirms our expectations. 
Taking the proper projections has a dramatic influence on the speed of conver­
gence, changing linear into quadratic behavior. Notice that there is hardly any 
difference in the speed of convergence for the last two cases. 

By comparing Figure 9.1 with Figure 9.2 we can see the benefits of an increas­
ing search and test subspace: it has an accelerating effect, changing linear into 
super linear convergence and even the quadratic convergence is faster (the cases 
2 and 3 coincide in the figure). In fact, there is not much difference between the 
three choices. 

REMARK 9.1. From the point of view of overall performance and efficiency, we 
recommend the second choice. The additional matrix multiplication (compared 
with the first choice) with B can be compensated by combining its computation 
with the computation of the residual but this cannot be done for case 3 where 
the transposed matrix B * is involved. 
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9.1.2 Quadratic versus cubic convergence 
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In §3.2 the convergence with left eigenvectors is discussed. The statements 
made in that section about the speed of convergence are nicely confirmed by our 
numerical experiments, if we make the following choices for w, w and u: 

1. w = u = u, w = z, where z is the left Petrov vector. This should lead to 
faster than linear convergence (cf. Theorem 3.4); 

2. w = U: = u, w = z, where z is the approximation for the left eigenvector 
obtained by solving the adjoint correction equation. This should lead to 
quadratic convergence (cf. Remark 3.5); 
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3. w == Bu, ii = B*z, w = z, where z is as above. Now we may expect cubic 
convergence, according to the last part of Remark 3.5. 
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Figure 9.3: Example §9.1. Restarted JD using left Petrov vectors. 

-2 

-12 

-14 

8 10 12 
Number of iterations 

14 16 

1-+-
2 -+--· 
3 ·El·· 

18 20 

Figure 9.4: Example §9.1. Full JD using left Petrov vectors. 

Figure 9.3 shows the convergence of JD for these choices when we restart at 
every iteration (with Vo= u and Wo = z), and Figure 9.4 shows the convergence 
for full JD where now the test subspace is spanned by the approximations z of 
left eigenvector. Again, the speed of convergence is in line with our expectations. 
Using the left Petrov vector (cf. §5.2) speeds up the convergence, which is now 
superlinear. Solving the adjoint correction equation and using the approximation 
to the left eigenvector results in quadratic, or even cubic speed of convergence 



c 

JACOBI-DAVIDSON TYPE METHODS FOR GENERALIZED EIGENPROBLEMS 619 

(note the reduction of the relative residual norm from 10-5 to 10-15 in the final 
step), when the proper projections are used. And in addition, for the last two 
choices, one obtains the left eigenvector almost for free. 

Figure 9.4 shows the accelerating effect of increasing search and test subspace. 
REMARK 9.2. Using the left Petrov vector speeds up the convergence, but 

there is a catch: it may happen that this left Petrov vector does not converge 
and this may result in slow or even no convergence for the JD process. 

REMARK 9. 3. Incorporating (approximations to) the left eigenvector in JD 
improves the speed of convergence, but at the cost of solving the adjoint correc­
tion equation ( cf. (3.15)). This almost doubles the computational work, which 
is in general not compensated through a reduction in the number of iterations. 
Therefore, it appears that such a scheme can only be efficient when used for 
applications where both left and right eigenvectors are desired. 

9.2 Reducing a generalized eigenproblem to a standard one. 

Now we consider an example of order 80. The nonsymmetric matrix A is 
tridiagonal and has the following non-zero entries (all other entries are zero): 

if j = i, 
if j = i + 1, 
if j = i - 1, 

and the symmetric matrix B is pentadiagonal, with the following non-zero en­
tries: 

b;; ~ ! 2 if j = i, 
-1 if j = i + 1, 
-1 if j = i - 1, 

1 if i = 1 and j = n, 
1 if i = n and j = 1. 

Note that B is positive-definite. This allows for the construction of a B-ortho­
normal basis, i.e., V*BV = I. We selected W = V, and then the projected 
generalized eigenproblem reduces to a standard one. If z is the approximate solu­
tion of the correction equation, the set [ Vk, z] is B-orthonormalized with results 
in Vk+ 1 , via the modified Gram-Schmidt (ModGSB) procedure (see e.g. [13, 24]): 

for i = 1, ... , k do: 

a= v;:Bz; 
z = z - avi; 

end; 
f3 = llzlls; 
Vk+l =: z/(3. 

Here we introduced the B-norm of a vector: llzllB = (z*Bz)~. For an efficient 
implementation of this B-orthogonalization process it is convenient to store the 
matrix BV in addition to the matrix AV, which is necessary for the computation 
of the projected matrix V* AV. 
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Table 9.1: Example §9.2. Number of outer iterations for different inner iteration pro­
cesses. 

GMRES JD Ref. [4] JD ALG. 4.2 
m # iter #MVs # iter #MVs 
5 3490 62805 91 1082 

10 151 4953 29 618 
15 46 2163 20 610 
20 29 1767 17 674 
25 20 1485 12 574 
30 20 1770 11 622 

The in absolute value largest eigenvalue of this matrix pair is real and its value 
is 

>. = 34865.927904249 ... 

This eigenvalue is well separated from the other eigenvalues. We have tried to 
obtain an approximation for this eigenvalue with our JD method (ALG. 4.2). 
The starting vector v 1 is chosen as a(l, ... , l)T, with a such that the B-norm 
of v 1 equals l. The correction equation is solved approximately with m steps of 
GMRES with initial guess 0 and without preconditioning. 

According to (3.16), the correction equation is embedded in the entire n-space 
with w = u and w = ii = Bu (recall that B is symmetric). The algorithm 
is restarted every 10 iterations with the current eigenvector approximation, i.e., 
when k = dim(span(V)) = 10 in Algorithm 4.2 we set k = £ = 1 and v 1 = u. 
The eigenvector approximations u were normalized to have B-norm 1 and the 
algorithm was stopped if the residual norm is smaller than 10-8 . 

In Table 9.1 we have listed the number of outer iterations for convergence for 
different numbers of GMRES steps: from 5 up to 30. We compare the results of 
this JD variant with the variant for which w = Bu, w = B-•u, ii = u. The 
latter approach corresponds to JD with ii = w = w = u applied to the standard 
eigenproblem B- 1Ax = .Ax, and has been discussed in detail in [4]. Note 
that the second variant requires inversion of B* (or exact solution of a system 
involving B*). In order to have a fair comparison we terminate this process as 
.soon as the eigenvalue approximation has reached the same accuracy as obtained 
with the first, inversion-free, variant. From Table 9.1 we see that convergence 
is much faster for the first approach. Moreover, the work per iteration for the 
second variant is 50% more. This is reflected in the total number of matrix­
vector multiplications (MVs), also given in the table, when we take the numbers 
of GMRES iterations into account. 

When we increase the number of G MRES steps, then the convergence is im­
proved for this example. This is not necessarily the case, as will be shown by the 
example in §9.3. For 30 GMRES steps convergence is reached in only 11 outer 
iterations. The convergence history for this inversion-free process is presented in 
Table 9.2. In the second column we have listed the eigenvalue approximations. 
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Table 9.2: Example §9.2. Convergence history of the inversion-free JD method with 
30 GMRES steps. 

iteration eigenvalue residual residual 
approximation norm norm GMRES 

1 810. 000000000 1135.79 2.469E-2 
2 13206. 799065923 4053.61 2.728E-l 
3 1327 4.221312254 3812.23 2.913E-l 
4 32278.051603129 1897.00 l.005E-l 
5 33629.919920062 636.30 2.331E-l 
6 34809.830442647 489.94 2.791E-2 
7 34865.920209700 12.12 2.473E-3 
8 34865.927902280 2.676E-2 2.227E-2 
9 34865.927904258 l.113E-3 3.824E-3 
10 34865.927904250 2.503E-6 3.199E-3 
11 34865.927904249 8.265E-9 

Note that the true eigenvalue is reproduced up to machine precision in the final 
iteration. In the third column the residual norm of the eigenpair is shown. We 
observe that the convergence is at least more than linear, although the correction 
equations are solved with a very modest accuracy, as can be seen from the last 
column. 

9. 3 How to include a precondition er? 

Our next example is from a magnetohydrodynamics (MHD) model, where 
the interaction of hot plasmas and a magnetic field is studied. These MHD 
phenomena occur, e.g., in the solar corona and in thermonuclear fusion reactors. 
The dynamical behavior of magnetically confined plasmas is described by the 
MHD equations, which form a system of coupled nonlinear PDEs. The stability 
analysis of the linearized MHD equations leads to a generalized non-Hermitian 
eigenproblem. For more details on the physical background, see for instance [12]. 

The matrix A in this MHD-eigenvalue problem is non-Hermitian and the ma­
trix B is positive-definite Hermitian. Both matrices are block tridiagonal with 
rather dense blocks. Quite large MHD eigenproblems have been successfully 
solved with a generalized nonsymmetric Lanczos procedure (6] and with an im­
plicitly restarted Arnoldi method (16]. The latter method was a modification of 
a method proposed by Sorensen [31). In both methods a Shift-and-Invert strat­
egy is used, which requires the LU factorization of the shifted matrix A - µB. 
The additional storage requirements due to the L and U factors put severe lim­
itations on the maximum problem size that can be handled with these methods 
on a given computer. In the Jacobi-Davidson algorithm the factorization of ei­
ther matrix is avoided, which may in principle enable plasma physicists to study 
larger matrix problems. Several other algorithms that avoid factorization of a 
matrix have been presented in the literature, see e.g. [27, 28), but to our know!-
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edge they only apply well to the symmetric positive definite case, i.e. A, B 
symmetric and B positive definite. 

What makes this problem extremely difficult is that the eigenvalues of interest 
are in the interior of the spectrum, see Figure 9.5. In fact, there are many large 
eigenvalues, and almost any approach that avoids inversion, like for instance 
the standard Arnoldi method, tends to find these large dominating eigenvalues. 
In this section we will study a very small MHD test problem, in order to see 
whether an inverse free Jacobi-Davidson iteration method is feasible at all, and 
also in order to get an impression of how well the Jacobi-Davidson correction 
equation has to be solved. 

The ~IHD test problem, that we will solve with the Jacobi-Davidson method, 
is obtained from [16]. The order of the matrices is n = 416, the size of the 
blocks is 16 by 16. The interesting part of the spectrum in MHD problems is 
determined by an interior branch of eigenvalues, known as the Alfven spectrum. 
The relevant part of the spectrum, which includes the Alfven branch, is shown in 
the lower figure of Figure 9.5. Note the strong clustering of unwanted eigenvalues 
around the origin; other much larger eigenvalues are shown in the upper part of 
Figure 9.5. 

In order to force convergence towards interior eigenvalues, we select the Petrov 
values tJ that are closest to some target value T, i.e. we search for the eigenvalue 
closest to T. For T we take T = -0.3 + 0.65i, indicated by the square box (0) 
in Figure 9.5. As in §9.2 we construct a B-orthonormal basis, starting with 
v1 = a:(l, .. .,lf, with a: such that the llv1lls = 1. 

We compare the results for two different forms for the correction equation: 

(a) the embedded correction equation (3.16) 

(b) and the augmented correction equation (3.17), 

and we take w = u and w = ii = Bu for both situations. 
It turns out that without preconditioning the correction equation was not 

solved sufficiently accurately to achieve convergence to the desired eigenvalue. 

For the augmented correction equation we follow the prescription of (7.10) 
and (7.11), where we explicitly compute y and v. For K we take the block 
diagonal part of A - TB, with the blocks 2 x 2 block matrices (i.e., the blocks 
in K have size 32 x 32). Note that K is computed only once for the initial value 
Of T. 

We precondition the embedded correction equation with K without any modifi­
cation. Vv'e use the same K as for the augmented correction equation. In contrast 
to the augmented correction equation (3.17), the embedded equation (3.16) is 
formulated in the whole space and it is an option to apply K without any mod­
ification. However, we will show that this is not an advisable option. In exact 
arithmetic, the augmented formulation is equivalent to the projected one. This 
seems to be the case also in finite precision arithmetic. Therefore, if the formu­
lation using projections is preferred, we advise to project the preconditioner as 
well. 
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Figure 9.5: The spectrum of the MHD test problem (cf. §9.3). 
The top figure gives an overview of the complete spectrum, while the bottom figure 
shows an amplification of the relevant part. Note that the figures have different scalings. 
Correct eigenvalues are shown (o) and the location of the target (0). 

The correction equations are solved approximately with m steps of full G MRES 
with initial guess 0. The maximum dimension of the subspaces Wk and Vk, 
that are constructed in the iteration process, is 50 and we restart with the 
current eigenvector approximation. Eigenvector approximations are normalized 
to have B-norm 1 and the algorithm is terminated when the residual norm of 
the approximate eigenpair is smaller than 10-8 . 

In Table 9.3 we present the total number of outer iterations necessary to 
achieve convergence to the desired eigenvalue. We do this for the two different 
inner iteration processes, where we either solve the embedded correction equa-
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Table 9.3: Example §9.3. Number of outer iterations for different inner iteration pro­
cesses. 

GMRES Embedded Augmented 
Correction Equation Correction Equation 

m # J-D iterations # J-D iterations 
15 no conv 197 
20 133 48 
25 84 77 
30 75 40 
35 47 34 
40 41 33 
45 41 29 
50 34 42 
55 31 27 
60 35 29 
65 29 27 
70 26 22 
75 37 25 
80 24 24 
85 24 24 
90 29 25 
95 36 19 
100 21 20 
105 17 18 
110 16 17 
115 13 21 
120 11 16 

tion or the augmented correction equation, each approximately with m steps of 
GMRES. We vary the number of GMRES steps m from 15 up to 120. 

From Table 9.3 we observe that convergence is already achieved when we 
approximate the solution of the augmented correction equation with only 15 
GMRES steps. Convergence is in general obtained in fewer iterations for the 
augmented correction equation with an augmented preconditioner than for the 
embedded correction equation with unmodified preconditioner (except for large 
m (m 2: 80): then the results are comparable). 

Note that simply increasing the number of GMRES steps m, that is, selecting 
a better preconditioner, will not a priori lead to better convergence results. For 
instance, for m = 45 we need 29 outer iterations for convergence with the aug­
mented correction equation, whereas for m = 50 the number of outer iterations 
is 42. An explanation for this is suggested by the path that the approximate 
eigenvalues follow to the desired eigenvalue. It turns out that for m = 50 the 
convergence is much more affected by nearby other eigenvalues than for m = 45. 
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Figure 9.6: Example §9.3. Convergence history MHD problem (n = 416): norm of the 
residual vector r. The augmented correction equation is solved approximately with 120 
GMRES iteration steps (*), 80 GMRES iteration steps (o) and 40 GMRES iteration 
steps(•). 
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Figure 9.7: Example §9.3. Residual norm for the approximate solution of the aug­
mented correction equation obtained with m steps of the GMRES algorithm: m = 120 
(*), m = 80 (o) and m = 40 (•). 

In Figure 9.6 we have plotted the log10 of the residual norm of the eigenpair 
approximation as a function of the outer iteration number. The augmented 
correction equation is solved approximately with 120 GMRES steps(*), 80 GM­
RES steps ( o) and 40 G MRES steps ( •). The residual norm of the approximate 
solution of the augmented correction equation is displayed in Figure 9.7. 
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In Figure 9.6 we observe that the convergence is asymptotically quadratic if 
the correction equation is solved with high accuracy (120 GMRES steps). This 
mimics the situation where we do exact inverse. If we decrease the level of ac­
curacy for the solution of the correction equation, that is, if we use only 80 or 
40 GMRES steps, then the convergence has a more linear behavior. An ex­
planation may be deduced from Figure 9. 7, where we see that with 120 steps of 
GMRES the linear systems are solved very accurately during the final iterations, 
whereas for 80 or 40 steps only a modest accuracy is achieved for the approxi­
mate solution of the correction equation, even during the final iterations. The 
results for 120 GMRES steps in Figure 9. 7 indicate that the condition number of 
the correction equation improves during the convergence process, as might have 
been anticipated, since the eigenpair approximation moves towards the eigen­
pair. FIGURES 9.6 and 9.7 also illustrate that the progress made during the 
initial iterations is virtually the same, whether we solve the correction equa­
tion rather inaccurately (with 40) or to high accuracy (120 GMRES steps); this 
indicates an relatively early stagnation in the GMRES inner iteration process. 
Therefore it is probably more economical to solve the correction equation during 
the initial outer iterations with only a limited number of inner iteration steps 
and to increase this number as the convergence proceeds; see also §9.4 

In this example we have seen that it is in principle possible to use the Jacobi­
Davidson method for interior eigenvalues without the necessity for exact in­
version of any matrix. The total number of matrix evaluations for this small 
example makes an iterative method completely unattractive with respect to a 
direct method. However, if we are in the situation that we cannot invert any 
of the involved matrices, and if the distribution of the eigenvalues for the given 
problem is more or less the same as for our small test problem, then we see 
that is is not necessary to solve the correction equation very accurately. For 
the test problem the 11 Jacobi-Davidson steps with the accurate solver (120 
steps with GMRES) results in 3632 matrix vector operations, whereas the 75 
Jacobi-Davidson steps with the more inaccurate solver (20 steps of GMRES) 
requires 'only' 1976 iteration steps. Unfortunately, it is impossible to predict 
the proper choice for the number of GMRES steps. This example really tells us 
that in practice we will need rather powerful preconditioners for the correction 
equation. 

9.4 The computational costs. 

In view of our theoretical results in §3.1, we expect a faster converging JD 
process if the correction equation is solved more accurately. The numerical 
results in the previous subsections are in line with these observations: the number 
of outer iterations tends to decrease if the number of inner iterations increases. 
Unfortunately, a more accurate solution of the correction equation will involve 
more computational costs. The example in this section will illustrate that these 
costs can be compensated for by the faster convergence of the outer iteration. 

For problems of interest, the matrices will be sparse, and a few iteration steps 
may not be expected to yield an accurate eigenpair approximation. Therefore, 
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the vector updates and inner products, both in the outer iteration as well as in 
the inner iteration, will form a substantial part of total computational effort: to 
get an impression of the total amount of work to compute an eigenpair it is not 
enough to count the number of MV s. 

Our example from the previous subsection does not give a realistic impression 
of the trade-offs in the computational costs: this model example is very small and 
a feasible preconditioner for large realistic MHD examples is still not available. 

As in §9.1 we take a Dielectric Waveguide problem from the "Test Matrix 
Collection" [3]. Except for the order, which is now 782, the present problem 
has the same characteristics as the smaller one in §9.1. Again we search for the 
eigenvalue ;\with largest real part (.:\ ~ 2523) by selecting the Petrov value with 
largest real part. We precondition with the ILU(O) of A - TB, with T = 2500. 

The eigenvalue with largest real part is almost double, which makes this exam­
ple more difficult than the one in §9.1. The 5 rightmost eigenvalues (computed 
with JD) are (in 5 decimal places): 

..\1 2.5233e03 - i 3.1674e-05, 

..\2 2.4843e03 + i l.0288e-04, 

A3 l.2640e03 - i 2.1413e-04, 

5.6467e02 - i l.3443e-05, 

..\5 -l.1373e03 - i 2.7123e-04. 

We select w = w = Bu and u = u. Observe that the preconditioner has to 
map the image space in the correction equation to the domain space ( cf. §3.3 
and 7.1). We incorporate the preconditioner as explained in THEOREM 7.3. Our 
test subspace is spanned by BV. 

As an initial guess for v and w we take the normalized vector with all coor­
dinates equal. In all runs, in the first 10 JD sweeps, we solve the correction 
equation with 1 step of preconditioned GMRES; in the subsequential sweeps we 
allow more GMRES steps. Such an approach was already suggested at the end 
of §9.3. This may be motivated by the fact that we find the exact eigenvector 
in the next step if we solve the correction equation exactly with ;\ instead of {); 
actually we replaced ..\ by {) arguing that {) is the best approximation of;\ that is 
available ( cf. §2). However, especially in the initial stage of the process, {) may 
be worse than, say, T. Since the present preconditioner is designed for a correc­
tion equation with T rather {), the result of 1 step of preconditioned GMRES 
applied to the '"0-correction equation" will actually approximate the solution of 
the "T-correction equation" better, whereas the result of more steps of GMRES 
is a better approximation for the solution of the "13-correction equation". 

The results are shown in the Figures 9.8-9.10, where, for several values of m, 
the correction equation is solved with (at most) m steps of GMRES. Figure 9.8 
gives the number of JD sweeps required to obtain an eigenpair approximation 
with a residual norm less than 10-9 . As may be expected this number decreases 
if m increases. For the number of MVs, shown in Figure 9.9, we have the op­
posite situation. In terms of computational work, there is not such a monotonic 
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Figure 9.8: Example §9.4. Number of JD iterations. 

dependence on m. In Figure 9.10 we give the number of floating point operations 
{in millions) {neglecting the operations at low dimensional levels). The method 
turns out to be four times faster with m = 8 than with m = 1. 

Arnoldi did not converge within 80 x 106 flops. In other examples, we did not 
obtain convergence with a few steps of GMRES, while in other examples 1 step 
of GMRES turned out to be the most efficient approach. What the best strategy 
is depends on the problem and, of course, on the quality of the preconditioner. 

9. 5 Computing several eigenvalues simultaneously. 

So far we have restricted our numerical tests to the computation of a single 
eigenvalue. In order to obtain several eigenvalues at the same time, we try a block 
variant of the basic Jacobi-Davidson algorithm (ALG. 4.2), that is similar to a 
block variant suggested for the classical Davidson method applied to standard 
eigenproblems [26]. 

For simplicity assume that the matrix B is Hermitian positive definite. We 
construct a B-orthonormal basis with the modified Gram-Schmidt B-orthogo­
nalization process (ModGSn), and solve the augmented correction equations (ap­
proximately) with w = u and w = ii = Bu. The block variant has the form as 
in Algorithm 9.3. Note that we try to obtain approximations fore eigenvalues 
simultaneously. At every outer iteration we increase the dimension of the sub­
space Vk by e. The maximum dimension of the subspace is m. The restart is 
carried out with the e current eigenvector approximations. 
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Algorithm 9.3: A block variant of Jacobi-Davidson. 

Choose an initial B-orthonormal matrix V1 = [v1 , ... , ve]; 
For k = 1, 2, ... do: 

(a) Wt::=:: AV k· Wf ::=:: BV k· Hk ::=:: VJ;Wf; 

(b) Compute the£ desired eigenpairs ({h,i,Yk,i)I5'iS£ of Hk; 
For i = 1, ... , £ compute: 

Uk,i ::=:: VkYk,i, Pk,i ::=:: WfYk,i· qk,i:::: Wfyk,i· 
rk,i ::=:: Pk,i - 'l9k,iqk,i; 

( c) If convergence then exit; 

(d) Fori=l, ... ,£ 
solve the augmented correction equation (approximately): 

[ A - ?k,iB qk,i ] [ Zk,~ ] [ -rk,i ] ; 
qk,i 0 E:k,t 0 

(e) If dim(Vk) :Sm-£ 

end for 

then vk+l = ModGSB(Vk,Zk,l1···1Zk,.e); 
else Vk+l = ModGSB(uk,1, ... , Uk,e, Zk,1, ... , zk,.e); 

end if; 

As an alternative block variant, one can also combine Algorithm 4.2 with the 
block variant discussed here, i.e., at a certain stage in Algorithm 4.2 one restarts 
and switches over to the block variant described above. Another possibility 
for computing several eigenvalues is to incorporate deflation techniques, see for 
instance [24, 30, 9, 23]. 

We have applied this block variant for the MHD test problem (§9.3) and we 
have tried to reproduce the Alfven spectrum. Therefore we have run the algo­
rithm, for several suitably chosen targets, with m = 48 and we have computed 
approximations for the £ = 4 eigenvalues nearest to the target. For the initial 
matrix we have chosen: V 1 = ModGS3(e20 1, . .. ,e204 ), with ej the j-th canon­
ical unit vector. The eigenvector approximations Uk,i are normalized to have 
B-norm unity. The algorithm is stopped when the residual norm of the eigen­
pair approximation nearest to the target is smaller than 10- 10 . 

' We have solved the augmented correction equation with (at most) 100 steps 
of GMRES, using the same block Jacobi (left) preconditioning as in §9.3. 

The results are given in Table 9.4. We have listed the target ( T), the number 
of outer iterations(# iter), the number of converged eigenvalues(# EVs), the 
minimum of the residual norms of the converged eigenpairs (min. res.), and the 
maximum of the residual norms of the converged eigenpairs (max. res.). We have 
used as criterion that an eigenpair approximation is considered to be converged 
when the residual norm is smaller than 10-5 . For eigenvalues close to the 'bifur­
cation' point (see Fig. 9.5; targets 5 to 11) the results are obtained with£= 3, 
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Table 9.4: Example §9.5. Results of the block variant applied to the MHD test problem. 

target # iter # EVs min. res. max. res. 
T1 =-0.6 + 0.25 i 16 3 6.06E-13 l.62E-08 
T2 =-0.5 + 0.45i 27 4 5.35E-13 2.51E-07 
T3 = -0.325 + 0.525 i 22 4 9.94E-11 8.83E-10 
T4 =-0.25 + 0.55i 18 3 5.03E-12 3.33E-09 
Ts =-0.2 + 0.65i 26 3 l.42E-08 3.06E-07 
T6 = -0.125 + 0.625 i 23 3 6.05E-08 8.07E-07 
T7 = -0.075 + 0.625 i 26 3 5.03E-08 5.06E-07 
Tg = -0.075 + 0.59 i 28 2 4.IOE-08 l.50E-07 
Tg = 0.0 + 0.525i 24 3 1.62E-08 7.56E-08 
T10 = -0.04 + 0.68i 27 3 2.35E-10 l.45E-08 
Tu = -0.0275+ 0.6225 i 25 3 2.58E-08 4.48E-07 

m = 45 and stopping tolerance 10-7, starting with V 1 = ModGSB(e20i, ... , e203). 
The motivation for this is that in that region the eigenvalues are very close and 
consequently the eigenpairs are difficult to distinguish. This has also been ex­
perienced in ref. [16] for the generalized Lanczos method as well as for the shift­
and-invert Arnoldi method. From Table 9.4 we see that 11 targets have been 
necessary to reproduce the entire Alfven spectrum (34 eigenvalues for this test 
problem). 
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