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1. INTRODUCTION 

The design of semantic models for parallel programming languages poses various problems which are 
not (so much) encountered in the study of sequential languages. Our aim in this lecture is to discuss a 
sample of these problems: we have selected four topics which illustrate some of the notions and tech­
niques of concurrency semantics. Partly, these are of a foundational or comparative nature, partly 
they stem from our experience with the semantic modelling of 'real-life' languages. The latter owes 
much to our involvement in ESPRITs project 415: Parallel Architectures and Languages (cf. 
[BNTl,2, B2]). 

The first theme concerns the modelling of possibly infinite behaviour using tools from (infinitaiy) 
formal language theory. We investigate the rather natural question: what happens when one extends 
formal language theory with (a version of) parallel composition. Our main (and fairly recent) result 
may be phrased either as a natural generalization of an old theorem of ScHUTZENBERGER (!Sc], in 
tum generalized in [Nil)), or, if one prefers, as an equivalence result for the operational and denota­
tional semantics for such a language. 

The second part exemplifies the central role of domain theory in concurrency semantics. We intro­
duce two kinds of distinctions: linear time versus branching time, and interleaving versus synchronous 
step concurrency. The induced four types of concurrency are embedded into four languages, and each 
of these is provided with operational and denotational semantics. Thanks to the use of a somewhat 
advanced definitional machinery, we are able to obtain a unified proof of the equivalence of the two 
models in all four cases. 

The next section deals with some problems of a different nature: we discuss how to design semantic 
models for two interesting notions from present-day concurrent languages, viz. process creation and 
rendez-vous. As always in this lecture, we illustrate the problem by focusing on a stripped-down ver­
sion of the phenomenon at hand, referring for a discussion of the full version to work appearing else­
where. 

The three topics mentioned so far are all characterized by the property that they are expressed in 
terms of uninterpreted or schematic elementary actions (atoms are just symbols). In the final section, 
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we discuss the complications arising when articulating the elementary actions. It is no longer clear 
how to satisfy the requirement that denotational models should be defined compositionally. The solu­
tion we present is based on Plotkin' s resumption model. 

In several papers of our group (references in the concluding section) we have used a combination of 
the concepts and tools to be outlined below in the design of semantics for a range of parallel 
languages, including imperative, datafl.ow, object-oriented and logic programming styles. 

Acknowledgement. I am grateful to all colleagues in Amsterdam (at the Centre for Mathematics and 
Computer Science and at the Free University) and elsewhere (notably in Eindhoven, Kiel and Buffalo) 
with whom I have cooperated over the years. I am indebted to Jan Rutten for discussions concerning 
the selection of topics for this lecture. 

2. NOTATION AND MATHEMATICAL PRELIMINARIES 

The phrase 'let (x e)X be .. .' introduces a set X with variable x ranging over X. The notation 
x ( E X) : : = 1121 · · · introduces the syntactic class X with elements x specified by the BN F-syntax 
112 1 · · · . 'il'(X) or 0',,.(X) denotes the set of all subsets (all subsets with property 'TT) of X. For f :X - Y 
a function, f [y!x ] denotes the function which equals fin arguments -:l=x, and which satisfies 
f[ylx](x) = y. For f :x-x, any x EX such that/ (x) = x is called a fix.point of f. In case/has. pre­
cisely one fix.point, we denote it by fix (j). 

We assume as known the notions of (complete) metric space (M,d), of closed or compact subsets of 
M, and of isometry between metric spaces. We also assume as known how to construct composed 
spaces (product, disjoint union, function space, all closed subsets of ... ) from (a) given metric space(s) 
(cf. [AR]). A function f :(M 1 , d 1)-r(M 2,d2 ) is called contracting if, for some a e(O, I) and all x,y EM 1, 

we have d 2(j(x),f (y))~a·d1 (x,y). According to Banach's theorem, contracting functions on complete 
metric spaces have unique fix.points, a property which we exhaustively exploit below. 

3. LANGUAGES WIT!H INFINITE WORDS 

Infinite or perpetual processes frequently occur in (theory and practice of) distributed, in particular 
embedded, systems. Rather than concentrating on input I output behaviour, one focuses here on 
(observable abstractions from) the interactions between a reactive ([Pn]) system and its environment. 
Such behaviour is reflected in various mathematical models incorporating some notion of (possibly 
infinite) history. For many purposes, it is sufficient to take as a starting point the framework of 
(infinitary) formal language theory. In fact, concurrency semantics has profited extensively from the 
machinery of formal language theory (see, e.g., several chapters in [BRR 1,2]), and we shall be able to 
touch only briefly upon these connections. 

Our starting point is the theory of context free languages with infinite words. We rephrase a 
theorem of NIVAT [Nil} (which itself extends a classical theorem of ScHUTZENBERGER [Sc]) as stating 
an equivalence result for operational and denotational semantics of a simple (sequential) language. 
Next, we indicate how this theorem is preserved under the addition of parallel composition (in the 
form of interleaving or shuffle) as f11llldamental operator. 

3.1. Languages with infinite words: the context free case 
Let (a E)A be a finite alphabet, and let (x E)Var be a set of variables. Let (u, v, w E)A 00 = A• UA"' be 
the set of all finite (A') or infinite (A'"') words over A. We introduce a metric don A 00 as follows: For 
each u and integer n ;;a.Q, u (n) denotes the prefix. of u of length n, if this exists; otherwise, u (n) = u. 
We put d(u,v) = z-k, where k = sup{n:u(n) = v(n)} (and T 00 = 0). Let (X,Ye)& = ~ncCA"") be 
the set of all nonempty closed subsets of A 00

• 

The language (s E)Lq - cf for context free - has the syntax given in 

DEFINITION 3.1. 
a. s(ELcf) : :=a l x l s1;s2ls1 + s2 
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b. guarded statements g(e Lf-1) :: = a lg ;s lg 1 + gi 
c A declaration D is a finite set of pairs < x,g > , and a program t is of the form <D,s >. 
Remark. Programming terminology differs here from formal language terminology. A construct 
t = <D,s > is (isomorphic with) a context free grammar in Greibach normal form, and the meaning 
of s with respect to D(fJn[s] or 6DD[s], to be introduced in a moment) yields a context free language 
in language theoretic terminology. 

Conventions 
1. We do not bother about syntactic ambiguities. The reader may add parentheses, if desired. 
2. All variables occurring in a program t = <{ <x;,g;> }f = i.s > (i.e., in the g; and in s) are 

among x i, ... ,xn. 
3. Usually, we suppress explicit mentioning of D, and write ' the statements' rather than 'the pro­

gram <D,s >', etc. 
We proceed with the definition of the operational semantics, i.e. of the mapping f)D:Lif _,, &. Let 

E (E 1$.Lq) be a special symbol denoting the 'terminated statement'. We first introduce a transition sys· 

tem Tc/ (in the style of Plotkin's SOS [HP,Pl2,Pl3]), with transitions s~ns' or s~DE. (We shall use 
1-213 as shorthand for i-2 and 1-3.) 

DEFINITION 3.2 (T if). Assume some fixed D. 
IJ 

1. 0-"DE 
IJ IJ • 

2. If g-"D s I Ethen X-"D s IE, for <x,g > m D 

3. 

4. 

" _u __ _ u _ a 
If S-"D s'I Ethen s ;s-"D s';s Is ,s + s-D s'I E, s +s-"D s' IE 
(both in 2 and 3, the choices- are to be made consistently) 
wef)D [s] if either 

u , a,. 1 a,. 
w = a1a2 ... an ands-:, DS1-" · · · -"D Sn - 1-"v E, or 

a1 U2 

w = a1a2 • · ·, ands4nS1~Ds2~ · • • 
>From, e.g., [Ni2] we know that f)D [s] is indeed closed (even compact). 

The denotational definition 6D uses an auxiliary argument from the set (yE)r = Var-finai, where a 
finite mapping y:x;-X;,i = 1, ... ,n is abbreviated! to <X;lx;>;, or even to <·>. We have as 
definition of "D:Lrr _,,a; and of 6DL> :Lrai: 

DEFINITION 3.3. "Dia]<·> = {a}, 6D[x]<X;l x;>; = J0, where x = xi, 6D(s 1;s2]<·> = 
6Dls1J<·>.6D[s2 ]<·> (. is concatenation), 6D( s 1 +s2]<·> = 6D(si]<·>U 6D[s2 ]<·>, and 
6DD[s] = "D[sj<Y;lx;>;, where <Yi.···· Yn> = .fix(<<lli. ... ,<I>n>), with tl>j = A.Y'1· ... ·A.Y'n · 
6Dlgi)<Y';lx;>;,j= 1, ... ,n (and D = {<x;,g;>;})-

Remarks. 
1. The fixpoints exist due to the contractivity of the <Iii; this is in tum a consequence of the guard­

edness requirement on the g1 (cf., e.g., [BM2]). 
2. Nivat considers greatest fixpoints in the domain ~,.(A 00

) which does include the empty set. For 
our purposes, this coincides with unique fixpoints in the domain '5>nc(A 00

), equipped with the 
Hausdorff metric (cf. [Ni2]) induced by the metric don A 00

• 

A central theorem for Lif is 

'THEOREM 3.4. For each <D,s >, fJD[s] = 6Dv[s]. 

The proof of this theorem (in [Nil]) requires substantial language theoretic manipulations. We shall 
introduce some more advanced tools, facilitating the definition of eD and 6DD. and the proof of 
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0v = 6Dv. In fact, the tools be introduced in a moment pervade all semantic equivalence proofs to be 
discussed below. The key idea (from [K.R]) is to use higher-order (contracting) mappings which have . 
semantic operators or even semantic meaning functions such as fJv or 6Dv as (unique) fixpoint. 

>From now on, we shall systematically omit the subscript D on 0 or 6D, on ~. etc.: all considera­
tions have to be supplemented, where relevant, by reference to some given D. By way of further 
simplification, we often drop parentheses around arguments of functions. 

Let (Fe)M = Lr?J, and let 'lt:M-+M be defined in 

DEFINITION 3.5. i'Fs = u {a·Fs':s~s'} u {a :s~E } 

LEMMA 3.6. 0 = fix ('It). 

Moreover, we define 'P:M-+M in 

DEFINITION 3.7. <PFa = (a},<I>Fx = <PFg {with <x,g> in D), 'PF(s1;s2) = 4>Fs1·Fs2, 
<f>F(s1 +s2) = <f>Fs 1 U<l>Fs2 . 

Using induction on the complexity of, first g, then any s, one may show that cl> is well-defined for all 
(F and) s. Moreover, we have that <I>® = ®. Finally, one may show (cf. [KR,BM2]) that '1'6D = 6.D, 
hence yielding 6D = 0 by the contractivity of 'It. Thus, an alternative (and shorter) proof of theorem 
3.4 is obtained. 

3.2. Languages with infinite words: adding parallel composition 
We extend Le/ by adding the parallel composition operator ( II), an operator yielding the interleaving 
or shuffle of the elementary actions making up its operands. To simplify our considerations, we omit 
discussion of synchronization features (which may be added without undue effort to the framework to 
be developed, cf. [BMOZ) or [K.R]). For finite u, v we assume the definition of u llv as known (e.g. 
ab llc = {abc,acb,cab)). If at least one of u,v is infinite, one may take as definition (cf. [MeD 
ullv = {weA"' 13w'[weh - 1(w')/\(h 1(w')...;;u)/\(h 2(w')...;;v))}, where ....;; is the prefix order, and the 

- - -
homomorphisms h,h i.h 2 are defined by h 1(Q) = h 2(li) = a, h 1(ti) = h 2 (Q) = f.,h (a) = h(Ci) = a. 
(Note that our II is not fair.) An alternative definition which is advantageous when variations on 
parallel composition are considered (cf. Section 4) is the following approach, again exploiting the idea 
of a higher-order mapping: Let (<j>e)'5" = ?JX~-+?J, and let the mappings ~.~1 :'5°-+'3" be given by 

~(cp)(X)(Y) = U {cp(u)(v): ueX, veY} 
- -
<l>{!)(v) = { v }, cp(a.u )(v) = a. <I>( { u} )( { v)) 

~1(<1>)(X)(Y) = ~(cp)(X){Y)u~(4>)(Y)(X). 
We put 0 =fix(~), II = fix(~1), IL = ~(II). 

Now that we have defined II (and the auxiliary lL), let us extend L<f to Lsh : 

DEFINITION 3.8. s ( ELsh) :: = a Ix Is 1;s2 ls1 + s2 ls tlls2,g( eLfh) : : = a lg;s lg1 + g 2 lg illg 2 (and the 
induced extensions to D and t = <D,s > ). 

The operational semantics S:Lsh-+~ is given in 

DEFINITION 3.9. 
I . Add to T if the rule 

· ifs 1 ~s2 I E, thenslls 1 ~slls2ls ands ilis~s2 11sls 
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2. Define '1r as before (def.3.5), now with respect to T sh . 

3. Put e = fix (-Ir) 
The denotational definition is even more simply extended: Add to definition 3.7 the clause 
<l>F(s h lls2) = <l>Fs 1 llfl>Fs2. We have 

THEOREM 3.10. For each s ELsh• 8[s] = 6D[s] . 

Theorem 3.10 is in fact a quite recent result. Announced in [BKMOZ), in [BMOZ] it is obtained by 
an intricate analysis, applied in particular to the behaviour of recursive constructs and to the deriva­
tion of 0[s 1 lls2) == '9[s 11 ll6[s2] (for II involving synchronization). A substantial simplification was 
obtained in [KR] for a language with nested recursion (with µ.-constructs) and in [BM2] for a language 
with simultaneous procedure declarations (as our D). Denotational variations may be induced by 
modifying the underlying framework. In [BMl], the metric model is compared with a model with 
cpo's, where the order is the Smyth order on sets of streams (cf. [Me]). In [BMO], the Smyth order is 
in turn compared to a model with (sets of) finite observations, a model representative of a class of 
models due to the Oxford school (cf. [OH]). Finally, in [BBKM] the simple order of reverse set inclu­
sion is used, among others to compare what is called linear time semantics for Lsh with branching time 
semantics, a notion discussed further in the next section. 

4. FOUR DOMAINS FOR CONCURRENCY 

Whereas Section 3 addresses issues where language theory and concurrency semantics encounter each 
other, we now focus on some topics situated at the interface of concurrency semantics and domain 
theory. We shall vary our language Lsh in two ways. First, we shall replace the (normal) sequential 
composition (;) by the, not so customary, commit operator (:, an operator from parallel logic pro­
gramming) which influences the failure (or deadlock) behaviour of a program. Secondly, we shall 
replace the interleaving semantics by a modest approximation to the notion of 'true concurrency': we 
shall replace ' II' by •x', and assign it the meaning of synchronous step concurrency (cf. [TV]; our 
semantics was inspired by [MV]). Combining the two variations introduces four concurrent languages, 
and we shall introduce four corresponding domains (replacing 8' from Section 3) the elements of 
which are used as meanings for the statements in these four languages. More specifically, we intro­
duce the languages Lu,Lb;.L1.s,Lbs (/-linear, b-branching, i-interleaving, s-step). In each language, a 
primitive syntactic construct fail is included which we employ to bring out the differences between the 
linear and branching cases. 

DEFINITION 4.1 . 
a. s(eLu) ::= alxl fail ls1;s2 lst + s2ls1 lls2 
b. s(eLb;) ::== alx l fail ls1:s2 ls1+s2lsills2 
c. s(EL1.s) ::== a lxl fail ls1;s2 is1+s2 ls1Xs2 
d. s(eLbs) : : = alxl fail ls1:s2ls1 + s2 ls1Xs2 
In concurrency semantics, often a distinction is made as well between internal I external or local I 
global choice (e.g. in [BMOZ]). Since this has been investigated extensively elsewhere, we feel free to 
ignore the distinction here (a modest version appears in Section 5.2). 

We assume the naturally induced definitions of L*, ... , and of declarations and programs. The 
crucial clauses for g are g : : = g ;s and g : : = g :s for the linear and branching cases, respectively. All 
other composed constructs pass the guardedness requirement on to both components. 

We now discuss the four domains used to assign. semantics to the four languages. The domains are 
obtained as solutions to domain equations as introduced by Scorr ([Gi] is a comprehensive reference) 
or f>L.OTKlN (f Pll]). We have introduced our own metric version of the techniques to solve such equa­
tions, described in (BZl] and essentially generalized in [AR]. The domain equations to be discussed 
are in fact isometrics between complete metric spaces, but lack of (another kind of) space does not 
permit our treating any of the mathematical details here. There is one point too important to be 
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omitted: all domains include - thanks to the underlying mathematical machinery - besides the finite 
objects specified by the structure of the equation also the corresponding infinite objects. For example, 
in equation (Ii) below we have that Qli contains all elements a in A and all elements in A X Q6 , i.e., all 
a EA, all finite sequences <a 1, <a2, .•. , <an,a > ... > > and all infinite sequences 
<a 1, <a2 , .•• , <an•···> ... >>. We now exhibit the equations for Pli,Pb;,P1s,Pbs, each expressed with 
the aid of an auxiliary equation for a corresponding Q .. . In the linear case we also include a special 
element 6 for failure, and in the step semantics we encounter (ae)~n(A), the set of nonempty subsets 
of A . Of course, we have to provide evidence that the domains to be defined serve their purpose. We 
shall do this by designing operational and denotational semantics employing the four domains, and 
by establishing (without proof) the expected equivalence results. 

(Ji): Q,,. = A U(A X Q11) U {6}, Pu = ~nc(Qli) 
(bi): Qb1 = A U (A X Pb;), Pb; = GJ>c(Qb;) 

(ls): Q1s = GJ>n (A)U(~,,(A)XQ1.s)U{B},P1s = GJ>,,c(Qls) 

(bs): QbJ = GJ>,,(A)U (GJ>,,(A)XPbJ),P1>.s = GJ>c(Qbs) 

We present several examples of elements in the respective domains, each also obtained as meaning 
(denoted, for the moment, by ( ·)) of some s: 

(Ii): (a llb) = {<a,b>,<b,a >}, [a;(b + c)] = [(a ;b)+(a;c)] = {<a,b>,<a,c>} 

(bi): [a:(b + c)] = {<a,{b,c}>}, [ (a :b)+ (a :c)] = {<a,{b}>, <a,{c}>} 

(Is): ((a Xb);(cXd)) = {<{a,b},{c,d}> } 

(bs): [(aXb):(c+d)j = {<{a,b},{{c},{d}}>} 

We proceed with the semantic definitions proper. 

DEFINITION 4.2 (operational semantics). 
(Ii). Tu is as Tsh (thus, no axiom or rule is introduced for fail ) 
(bi). Tb1 is as T,h, with':' replacing';' 
(ls). T1s is as T slt• with the rule for II replaced by 

. ~ ~ ~u~ 
·ii s1-s',s2-s" then s 1 Xs2 ~ s'Xs" 
(and three simpler rules in case s' ors" equals E) 

(bs). Tru is as T1s, with':' replacing ';'. 
Before indicating how e.. is obtained from T.., we first define the auxiliary reduction operator 
red:Pu~Pu (or P1s~P1s) which inductively applies the simplification {6} Up = p, wherever possible. 
We use the auxiliary notationpu = {q:<a,q>Ep} and pa = (q :<a,q >ep} . Note thatpu or Pa 
may be empty. 

DEFINITION 4.3 (reduction). 
(Ii). red({6}) = {o}. For p::fo{o} 

r ed(.p) = {a:aep}U{<a,q'> :p"::fo0 and q'E red(.pu)} 
(ls). as (II), with a: replacing a. 

Remark. Use of higher-order functions may make this definition rigorous. 

We next define the various e .. : 

DEFINITION 4.4. Let (F E)Mli = L li-P11, and similarly for the other indices. We define '1' :M ->M 
in - .. -

(Ii}. 'l'uFs = red({ < a,q'> l s~s' and q'eFs'} U (als~E}), if the argument of red=fo0 
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= { 8}, otherwise (with - according to T1;) 

" " (bi). 'l!b;Fs = { <a,Fs'> ls-+s'} U {a Is-£} ( - from Tb;) 
(Is). it ls is as itu, with a replacing a 
(bs). it bs is as it bi, with a replacing a 
Moreover, eu = fix('l!u), and similarly for the other indices. 

Next, we define the operators which are used in the denotational semantics. In all (relevant) cases, 
• U' denotes set-theoretic union, and·+·= red(-U·). We now define ' 0 ', ':',' II ', and 'X' in 

DEFINITION 4.5. 
(Ii). Let (f/>E)Ru = P1;XPu-Pli. We define <l>.,<l>u:Ru-Rli by 

<l>.(</>)(p1)(/J2) = red(U {4".q1)(q2):q1 Epi.q2EP2}) 
- ~ 

4>(a)(q) = {<a,q>},f/l(S)(q) = {8} 

4'<.<a,q1>)(q2) = {<a,q>:qe4>({qi})({q2}) 

<l>11(</>)(p1)(p2) = <l>.(4i)(p1)(p2)+<l>.(<f>)(p2)(p1) 

(bi). Let q,,<l>:,<1>11 have the appropriate types. We put 

<l>,(</>)(p1)(p2) = {</>(q1)(p2):q1 Epi} 
- -
</>(a)(p) = <a,p>,</>(<a,p1>)(p2) = <a,#p,)(p2)> 

<1>11 (</>)(p 1)(p2) = <l>:(</>)(p 1)(p2)U<l>:(<P)(p2)(p 1) 

(Is). <I>. is as <I>. for (Ii), with a replacing a. Next, we define <I> x: 

<l>x (c/>)(p 1)(p2) = red( U { <l>(q 1)(q2):q 1Ep1t q2 Ep 2 }) - - -</>(a1)(a2) = { a 1 U a 2 },</>(a.)(8) = 4>(8)(a) = { 8} 

</>(a.1)( <a.2, q >) = { <a.1 u a2,q > }, and symmetric 

</>(<ai.q1 >)(<a2,q2>) = { <a.1 Ua2,q >:qe<l>({qi})({q2})} 

(bs). <I>: is as <I>: for (bi), with a replacing a. Next, we define <l>x: 

<l>x(<f')(p1)(p2) = {4>(q1)(q2):q1 Ep ltq2 Ep2} 
- -
</>(a1)(a2) = a1 U a 2, 4>( <ai.p 1 >(a2) = <a1Ua2,p 1 > and symmetric 

</>(<a.1tp1>)(<a2,p2>) = <a1 Ua2,<P{p1)(p2)> 

Finally, we put 0 = fix (<I>.), etc. 
The definitions of 6D for Lu, ... are now straightforward. Fors = fail, we define GD(fail) = { 8} for 

the linear time, and GD[fail] = 0 for the branching time case. All other definitions are as expected. 
E.g., following the strategy as in definition 3.7, we put 4>F(s 1:s 2) = <l>Fs 1 :Fs 2, etc. Recursion is again 
dealt with in the clause <l>Fx = <l>Fg, for <x,g > in D. Thanks to our preparatory work, in particular 
the unified style in treating the four different cases, it is now not difficult to prove the 

THEOREM 4.6. For each s eL1,j e(li,bi,ls,bs }, we have e[s) = 6D[s). 

5. PROCESS CREATION AND RENDEZ-VOUS 

After having devoted two sections to foundational questions in concurrency semantics, we now spend 
two sections on application - oriented topics. In the present section we discuss how to model two pro­
gramming concepts which are important in 'real-life' concurrent languages, viz. process creation and 
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rendez-vous. In the next section we turn to the treatment of so-called nonuniforrn phenomena: the 
elementary actions are no longer left schematic but are interpreted as assignments, send and receive 
actions and the like. Additional machinery is then necessary to develop the semantic definitions. 

In the present section, everything remains uninterpreted or 'uniform'. 

5.1. Process creation 
We return to the semantic universe of & = '3>n"(A '"'), and we introduce Lpc• a small but essential 
modification of L,h which incorpoTates the interesting notion of process creation. (This section 
presents a fragment of [AB,BM2], papers in turn inspired by our research on the semantics of POOL, 
Philips' parallel object-oriented language. POOL is defined in [A]; see [ABK.Rl,2,Rl] for its seman­
tics.) The syntax for~,. is presented in 

DEFINITION 5.1. 
a. s(El-pc) ::== alx ls 1;s 2 1s 1+s2 1new(s) 
b. g(eLfc) ::= h lg 1 +g2 lnew(g) 

h ( eL;,) : : = a I h ;s I h i + h 2 

c. Declarations with pairs <x,g > and programs for Lpc are as usual. 

Remarks 1. The guardedness requirement now involves the auxiliary h. 1bis is necessary since we do 
not want a construct such as new(a); x to qualify as guarded (since new(a);x is to have the same 
effect as the Lsh-statement a llx). 
2. Note that 'II' has disappeared from the syntax. 

Before providing the formal semantic definitions, we first present an informal explanation of pro­
cess creation. The execution of some s eLp, is described in terms of a dynamically growing number of 
processes which execute statements in parallel in the following manner: 
I. Set an auxiliary variable i to 1 and set s 1 to s, the statement to be executed. A process, numbered 

1, is created to ·executes. 
2. Processes I to i execute in parallel. Process j executes sj (1..;;;.j ..;;;.i) in the usual way in case sj 

does not begin with some new(s ') statement. 
3. If some process j (I o;;:;j ...;;;;;) has to e:icecute a statement of the form new(s'), then the variable i is 

set to i + 1, S; is set to s', and a new process with number i is created to executes;. Process j will 
continue to execute the part after the new(s') statement. Go to step 2. 

4. Execution terminates if all processes have tenninated their execution. 
We proceed with the formal definitions. We use a transition system TP, expressed in terms of con­

structs (re)Seq and (pe)Par defined as r ::= E ls ;r and p ::= rlp,rlr,p. Transitions are now con-
a 

structs of the form fJ~p'. The transition relation is speeiiied in 

DEFINITION 5.2. 
IJ 

a. a;r~r 

b. if g ;r~p then x ;r~p, with <x,g > in D 
• a a 
if s 1 ;(s2 ;r)~p then (s 1 ;s 2);r~p 

if s;r~p then (s +S);r~p and (S+s);r~p 

if r, (s ;E)~p then new(s);r~p 
. " a a if p1~p2 then r,p 1 ~r,p2 and p1 ,r~f>2,r 

c. Let (Fe)M = Par~'S, and let 'l!:M~M be defined by 

'VFp = £,if p = E,E, ... ,E 

= U { a.F(p') I p~p'}, otherwise 
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d. Let 0 = fix (..Y). 
df 

The denotational semantics for L,,t· employs the familiar tool of continuations. Let (X e)Cont = ~- Let 
N = Seq-+Cont-+'i.i. We define iP:N-+N in 

DEFINITION 5.3. (/)FaX = a.X, (f)FxX = (f)FgX, with <x,g > in D, (f)F(s 1 ;s2)X = 4>Fs 1(Fs2X), 
4>F(s 1 +s2 )X = (4>Fs 1X)U(4>Fs 2X), and the essential clause 

WF oew(s)X = (iPFs{c})llX 

Let 6D = fix (4>). 

Remark. Though ' II ' is not in the syntax for Lpc• we assume it available as semantic operator: &X'ii-+'ii 
( cf. Section 3). 

We ·can now prove 

'THEOREM 5.4. 
a. Let $:Par-+& be given by$(£] = {t:},&[s;r] = 6D(s]$[r),$(r,p] = 0[r)ll$(p1 and symmetric. 

We then have it(&;) = $. 
df. 

b. Putting0(s) = 0[s;E1 wehave,forallsELpc, e[s) = 6D[s]{t:}. 

Proof See [BM2] for part a. Part b is direct from part a. D 

Remark. J,,c and Lsh are incomparable: it has been proved by [AA] that there exists s e Lsh such that 
for no s'eLpc we have e[s] = 6[s'), and vice versa. 

3.2. Rendez-vous 
Rendez-vous is a concept of concurrent languages such as ADA or POOL. We shall be concerned 
with a primitive version of this notion, were it only since we take it in a uniform setting, without fac­
ing problems such as parameter passing and the like. Stripped down to its essentials, rendez-vous is 
an extension of synchronization or communication such as, e.g., in CCS[Mi] or ACP[BeK]. In CCS, 
synchronized execution of the actions c and c delivers c le = T. In ACP, synchronized execution (or 
communication) of a and b delivers a I b = c. The situation we shall deal with involves synchronized 
execution of some m? and m! (m for method, as in POOL), which then results in the execution of the 
associated (guarded) statement (m? Im ! =)gm. The information which gm belongs to m is contained in 
the (extended) set of declarations. 

As syntax for L,,, we use 

DEFINITION 5.5. Let (m e)GJlt be the set of method names, let M? = {m?:m e~}, 
M! = {m!:meGJlt},M = M?UM!, andlet(ee)E = AUM. 
1. s(eL,,,) ::= elxls1;s2is1+s2lsills2 
2. g(eLlf..,) ::= alg;s lg1 +g2lg1 llg2 
3. A declaration D consists of finite sets of pairs <x,g > and <m,g >. Programs are as usual. 
Next, we introduce the semantic domains. For 0, we use &6 defined as follows: Let 
Al' = A * UA"'UA*.o. Then~&= <5'nc(A§°). For 6j) we shall introduce a new domain P,.., in a 
moment. We already announce that no simple equivalence 0 = 6D will hold. Rather, an abstraction 
mapping abs :P ,,,-+'?>6 will be defined, and we shall assert that e = absoOD. 

The operational definitions are based upon the transition system T,.,, which resembles Tsh• though 
there axe also important differences. 

DEFINITION 5.6 (T ,..,,0 for L,.,,). 

a. e~E 
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· if g~s I E then x~s I E, with <x,g > in D 

- if s~s' I E then s ;s~s';slS, s lls~s';slS, and sl ls~slls'ls 
·if s~s' I Ethen s +s~s' I E and s +s~s' I E 

m? m! ' . D d c - th - if s 1-4S',s2 -+s ',<m,g> in , an g~s, en 

s 1 lls 2~s;(s'lls") 
(and a number of simpler cases if E replaces s',:s" or S). 

b. Let (Fe)M = Lrv-+&8, and let i!:M-4M be defined by 

i!FS = U {a.Fs'ls~s'} U{a ls~E} if this set is nonempty 

{ o}, otherwise. 

Let e:L,.,-+&a be defined bye = fix('¥). 
Remark. Note that t"J(a;(b+m?)] = {ab}=;6(ab,ao) = 0[(a;b)+(a;m?)]. This is a consequence of 

the rule for '+' and the fact that only ~-steps contribute to e. 
The denotational domain P,., is, for convenience, defined in terms of a set (oe)Step consisting of 

atoms a or m?, or pairs <m !,p >,where p will be used to store the meaning of g171 (with <m,g171> in 
D). We put 

Step =A UM?U(M!XP"') 

P,., = QJc:(Step U(Step XP ,.,)) 

The definition of 6D follows the usual pattern. New are the clauses lf)Fm? = {m?}, 
~Fm ! = { <m!,Fgm>} (<m,g171 > in D). Also, th·e definitions of lf)F(s 1;s2) and ~F(stlls2) require 
the operators '0 ', 'II': P,., XP ,..,-+P ,.,. The essential clauses (which may be embedded in a complete 
definition using the techniques of Section 3) are the following: 

o0p = <o,p>,<a,p1> 0p2 = <a,p1°p2> 

P illp2 = (pi li..p2)U(p2llp 1)U(pilp2),p ilLP2 = {qllp2:qepi} 

ullp = <a,p>,<a,p1>1l..p2 = <o,p1 lip2> 

and the crucial rules for the rende:z-vous 

P1lp2 = u {qil q2:q1Ep1,q2Ep2} 

<m?,p1>l<<m!,p>,p2> = pc(v1lip2), 

(and three simpler rules ifp1 or p 2 is missing) 

and q 1 I qi = 0 for q 1,q2 not of one of the above forms. 
We conclude with the formulation of the relationship between tJ and 6D. Let (<PE)L = (P ,.,-~~), 

and let ll:L-L be given by 

6.4>p = (a :a Ep} U (<a, 4>p'>:<a,p'> ep }, if p=l=0 

= (8}, ifp = 0 

Let abs = fix(6.). Note that abs(p) deletes all <<m?, ... > or <m !, ... >steps fromp. We have 

THEOREM 5.7. For each seL,.,,e(s] = (absoGD)[s]. 
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6. INTERPRETING THE ATOMS 
We discuss two non.uniform languages Las and Lw In Las, we interpret the elementary actions of L,h 
as assignments (and introduce a conditional construct). In L"0 we add to Las a simple version of 
(CSP-like) communication. 

6.1. States and resumptions 
Let ( v E )Ivar be the syntactic class of individual variables, and let (j E )Exp and (b E )Bexp be the 
classes of expressions and booleans, respectively. We omit specification of a syntax for f and b. In the 
syntax for Las (definition 6.1) we do not introduce a subclass of guarded statements. A re.mark 
explaining this follows below. 

DEFINITION 6.1. 
a. s(ELus) ::= v:=/lxls 1;s21 ifbthens1 elses2 fi lsiils2 
b. A declaration Dis a finite set of pairs <x,s >.A program is as usual. 
Let (ae)Vand (fie)W be the sets of values or truth-values. Let (o e)}; = lvar-v be the set of states. 
We assume as given two fwictions [·]:Exp_};_V and [·]:Bexp-};-W. The operational semantics 
for Lus is defined in terms of transitions <s, a>-<s',a'> I <E, a'>. T"' is defined in 

DEFINITION 6.2. a. <v:=f,a>~<E,a(alv]>, with a= [/](<1). 
b. <x,a>-<s,u>, for <x,s > in D 
c. If <s, a>-<s', o'> I <£, o'> then 

· <s ;S,o>-<s';s,o'> I <s,o'> 
· <slls,<J>-<s'lls,<J'> I <s,a'> 
· <slls, a>-<slls',o'> I <s,u'> 

d. if - 6 case omitted. 
e:Las-};-~nc(};00) is 'defined' in 

0[s](o) = {o'I <s, a>-<E, a'>} U U {o'.0[s'](o'): <s, o>~<s',o'>} 

Remark. A consequence of this definition of e is that we do not have, in general, that 
0[sills 2 ] = 0[s1] 110[s2 ] (assuming a suitable semantic ' II'). We shall see in a moment how (the com­
positionality of) GD requires a more complex domain: 

Let (p e)P us,(q e)Qus be domains solving the equations 

Pus = L-Qus 

Qus = <?.Pc1os .. d(~U(~XJ>:us)) 

Processes p in Pas are functions delivering, for input state o, sets p (a) of results of the form a' or 
<<J',p'>. In <o',p'> the new state (J' is delivered together with the new process p', a reswnption of 
p (these ideas are from [Pll]). The semantic operators ' 0 ' and 'II' on Pas are defined as follows (essen­
tial clauses only, and with some abuse of notation): p 1°p2 ='Ao.p 1(u)op 2, p 1 llp2 ='Au. 
(p 1(0')llp2)U(p 2(o)llp 1). Also, qop = (yop :y e q},oop = <u,p >, <o,p'>op = <o,p'op >, and 
qllp = {yllp:yeq},ollp = <o,p>,<o,p'>llp = <o,p'llp>. Next, we define GD. Let 
(Fe)M = Lus-Pus- We put GD= fix(if.>), with 4>:M-M given in 

DEFINITION 6.3. 4>F(v:=f) = A<J.{o[alv]}, with a= (/](<1),'PF(if.6): omitted. 4>F(s 1;s2) 

= ('1>Fs 1) 0 (4>Fs2 ), and similarly for 11,cl>Fx ='Ao.{ <o,Fs> }, with <x,s >in D. 

Remark. A procedure call x is defined in terms of a skip (mapping o to a) followed by execution of its 
body s. 1bis device obviates the need for a syntactic guardedness requirement. 

We now discuss how to relate e and GD. We cannot expect a simple equivalence, since the relevant 
(co) domains diJfer. We define another abstraction trace :P-};-~ncC£00). The function of trace is 
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twofold: First, it linearizes the tree (-like) structure of processes p. Moreover, in pairs <o,p > - to be 
interpreted as 'p is ready to execute a' it ensures that p is indeed applied to o. Let 
(F e)N = P-:£~'8> ncC:£ 00

). We define I':N ~N by 

fFpa = {o':o'Ep(o)} U U {a'.Fp'a':<o',p'>Ep(a)}. 

Putting trace = fix(['), it may now be shown that 

THEOREM 6.4. Fors eLas, 0(s) = (traceo6D)(s). 

6.2. Communication 
Let ( c e )Chan be a set of channels. We extend Las to L,.0 by putting s ( eL,0 ):: = c ?v I c !/I (as for Las). 
Synchronized execution of c?v and c!fin a parallel construct s 1 ils2 induces the 'handshake' commun­
ication v : = f In this section we concentrate on 6il, and do not discuss how to define 19 (which 
requires small variations on earlier techniques). In order to define 6D for Leo we need another domain 
Pco, obtained as follows: let (TJE)H = {c?v:ceChan,v e lvar} U{c!a:ceChan,aeV}, and let 
(re)T = '2u H. We define (p e)P,0 • (q e)Qco as solution of 

Pco = :£-Qco 

Q,"O = '!J'compacr(TU(TXPco)) 

The definition of ' 0 ' on P,0 is almost as that for P ,... For ' II' we put 
p1 llp2 = .>..o.(p1(a)llp2)U(p2(a)llp1)U(p1(a)l 0p2(a)). The definition of qllp is similar to that in Section 
6.1. The termp 1(a) 10p 2(o) is new. We define it in the clause 

q 1 l 0 q2 = { <a[alv ],p illp 2 >: <c?v,p 1 > eql> <c !a,p 2 > eq2 or vice versa, 

<a[alv],p 1 >: <c?v,p 1 > Eq .,c !aeq2 or vice versa, 

<a[alv ],p2>:c?v eq l> <c !at,p2 > eq2 or vice versa, 

a[alv ]:c?v eq .,c !aeq2 , or vice versa} 

The definition of 6D for Leo is now an immediate extension of that for L,... In particular, it contains 
(what amounts to) the clauses 6D[c?v] = .>..o.{c?v}, and 6il[c!J1 = A.o.{c!a}, with a= U'J(o). Finally, 
we mention that it is, again, possible to define a suitable abstraction operator abs - this time combin­
ing features of trace and of a restriction operator throwing away unsuccessful (i.e. one-sided) com­
munications, cf. abs for L,.., - such that 0 = abso6D. 

7. CONCLUSION 

We have discussed a variety of fundamental techniques which may be (and have been) applied in the 
design of semantics for concurrent languages. We mention a few distinguishing features: 

the metric framework which allows a simple treatment of infinite behaviour, effective use of 
higher - order techniques, and a smooth transition towards formal language theory and domain 
theory 
a unified method of comparing operational and denotational semantics 
the option of modelling language concepts at the schematic (uninterpreted) or interpreted level, 
together with the choice to switch from linear time to branching time (as well as intermediate, cf. 
(R2]) models. 

In recent years, we have collected evidence that the tools illustrated in our lecture may fruitfully be 
applied to (parallel versions of) imperative languages ([BZ2, BMOZ]), object-oriented languages 
((ABKRl,2,Rl]), datafl.ow ([Kl) and logic programming languages [Bl,BK.BoKPR,Vi]). 
We conclude with a list of three challenges for future work: 

perform a systematic study of Juli abstraction (has 6j) the right level of detail w.r.t. 0?, cf. [HP,R2]) 
for (all) the languages discussed; 
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(for logic programming) investigate the relationship between its 'declarative' semantics and the 
kind of models outlined above; 
exploit semantic knowledge in the design and justification. of logical systems for parallel 
languages. 
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