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ABSTRACT

Final coalgebras of a functor F are suited for an abstract description of in�nite datatypes and
dynamical systems. Functions into such a domain are speci�ed by coinductive de�nitions. The
format these speci�cations take when their justi�cation is directly based on �nality is called the
coiteration schema here. In applications it often turns out to be too rigid to allow for a convenient
description of the functions under consideration. Thus, generalisations or variations are desired.

We introduce a generic �-coiteration schema that can be instantiated by a distributive law �

of some functor T over F and show that { under mild assumptions on the underlying category {
one obtains principles which uniquely characterise arrows into the carrier of a �nal F-coalgebra
as well. Certain instances of �-coiteration can be shown to specify arrows that fail to be coit-
erative. Examples are the duals of primitive recursion and course-of-value iteration, which are
known extensions of coiteration. One can furthermore obtain schemata justifying recursive spec-
i�cations that involve operators such as arithmetic operations on power series, regular operators
for languages, or parallel and sequential composition of processes.

Next, the same type of distributive law � is used to generalise coinductive proof techniques.
To this end, we introduce the notion of a �-bisimulation relation, many instances of which are
weaker than the conventional de�nition of a bisimulation. It specialises e.g. to what could be
called bisimulation up-to-equality or bisimulation up-to-context for contexts built from operators
of the type mentioned above. We give a proof showing that every �-bisimulation only contains pairs
of bisimilar states. This principle leads to simpler proofs through the use of less complex relations.

2000 Mathematics Subject Classi�cation: 68Q65, 68Q85
Keywords & Phrases: Coalgebra, coinduction, bisimulation, bisimulation up-to-context, distribu-
tive law, bialgebra
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1 Introduction

In theoretical computer science, initial algebras are commonly used to formally specify �nitely
constructed datatypes like the natural numbers IN or �nite lists A� over elements from a given
set A. Around the early nineties, the dual concept of a �nal coalgebra was found useful for the
abstract description of possibly in�nite objects. These include datatypes such as in�nite streams
or dynamical systems like processes or automata.

Initial algebras come with the de�nition and proof principle of induction for functions having
their carriers as the domain. Dually, �nal coalgebras provide the so called coinduction de�nition
and proof principle for functions into their carrier. To distinguish the very basic formats of these
de�nition schemata as given by initiality and �nality from generalised variants, we will call them
iteration and coiteration in this paper.

Since they o�er only limited exibility, it is reasonable to look for generalisations. In the
algebra world those are familiar { to such an extent that the reader may not even recognise our
presentation of the iteration schema as the basic one. Examples of generalised induction schemata
range from primitive recursion and course-of-value iteration to well-founded recursion.

However, the situation with coalgebras seems less advanced. Dualisations of de�nition by
primitive recursion and course-of-value iteration have been stated on an abstract level (see e.g.
Vene/Uustalu [UV99]), but for many frequently encountered situations solutions are known for
special cases only. One example is the use of operators in the speci�cation of dynamical systems like
sequential or parallel composition, as in process algebra. Similarly, one uses operators like addition
and multiplication to combine formal power series [Rut00a] or regular operators on languages
[Rut98a]. But these problems are usually studied in isolation.

When it comes to proof principles, again often the canonical tool for proving behavioural
equivalence appears too rigid, namely that of bisimulation relations. These are relations on the
state spaces of two coalgebras that are suitably closed under the coalgebra operations. The closure
condition often forces the relations to be larger than desired in the following sense: starting with a
relation containing all pairs of states to be shown bisimilar one needs to iteratively add new pairs
encountered by applying the coalgebra operations to states already included. The bisimilarity
of the new pairs needs to be established in order to conclude the bisimilarity one was initially
interested in. But technically the process of enlarging the relation has to be continued even with
pairs that can immediately be seen to be bisimilar. The simplest example arises when one is forced
to relate a state to itself. Or one may need to add a pair of states the bisimilarity of which can
be suitably derived from that of other pairs already present. It is interesting to look for weaker
suÆcient conditions for a relation to still only contain bisimilar states. The goal is to reduce
the complexity of the relations exhibited and hence the amount of work needed for a proof. In
the literature one can �nd some of these conditions for individual types of systems, which are
sometimes called bisimulations up-to. In the two cases above one could talk about bisimulation
up-to-equality or bisimulation up-to-context [San98].

The aim of the research presented here is to develop a categorical framework justifying gener-
alised coinductive de�nition and proof schemata. In this setting one talks about F-coalgebras for
a functor F : C ! C, which describes the type of behaviour one is interested in. The approach
we take is parametric in a distributive law � of another functor T over F. Although we state our
theory for some category C, all our explanations and examples work with the category of sets and
total functions, Set.

The coiteration schema assigns in�nite behaviours to the states of a set X by specifying for
each element a direct observation and successor states determining the next layer of the behaviour.
Since these successors are taken from X again, the observation can be continued with the same
speci�cation. A di�erent approach is taken by the �-coiteration schema that we introduce here.
It allows these successors to be taken from TX for a functor T. This increases the expressiveness
of the format in case TX can be regarded as being richer than X . For the observations to be
continued with these successors, the distributive law � of T over F is used to lift the speci�cation
for X to TX .

We give two di�erent suÆcient conditions for the �-coiteration schema to uniquely characterise
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behaviours. The �rst is that the underlying category has countable coproducts. The second
assumes the functor T to be taken from a monad and � to be a distributive law of this monad
over F. The proof for the �rst condition is given in detail.

Making similar use of T and �, we de�ne the notion of a �-bisimulation and show that under
the assumptions from above it is a suÆcient condition for all related states to be bisimilar. A small
example demonstrates that the technique enables simpler proofs involving less complex relations.

We show that primitive corecursion and the dual of course-of-value iteration as presented by
Vene and Uustalu [UV99] can be obtained from the �-coiteration schema for suitable instantiations
of T and �. Moreover, we briey explain how it can be used to justify the validity of speci�cations
involving operators of a certain type. The same operators were considered by Turi and Plotkin
[TP97] and shown to be closely related to those de�nable by structured transition rules in GSOS
format [BIM95].

Showing that the schemata from above are instances of our framework at the same time
produces the corresponding variants of the �-bisimulation proof technique. In case of primitive
corecursion and the dual of course-of-value iteration the conditions on the relations amount to
what one could call bisimulation up-to-equality and multi-step bisimulation, the latter we do not
know from the literature (see Section 6). For the case of de�nitions via operators one obtains a
notion of bisimulation up-to-context [San98] for multivariate contexts (i.e. context with several
\holes") built from operators of the type mentioned above.

We view our theory as an advancement of Lenisa's coiteration up-to-T de�nition and proof
schema [Len99a], who presented the �rst categorical framework for generalised coinduction schemata.
Furthermore, our notion of �-bisimulation can be seen as a starting point for a categorical refor-
mulation of Sangiorgi's set-theoretical bisimulation proof method for labeled transition systems
[San98] (see Section 8 for a detailed comparison with related work).

1.1 Organisation of the Paper

In Section 2 we recall the de�nition of initial T-algebras and �nal F-coalgebras for functors T and
F and demonstrate the use of the coiteration principle in an example. In Section 3 we consider
two functions that cannot be handled by this basic format directly. We take them as a motivation
to develop our �-coiteration schema and give suÆcient conditions for it to indeed uniquely de�ne
arrows into the �nal F-coalgebra. The following Section 4 is devoted to proof principles. After
explaining the technique based on bisimulations, we consider again two problematic cases. They
lead to the introduction of the notion of a �-bisimulation and a corresponding proof principle.
Section 5 extends the framework developed in the two preceding ones to allow for a more general
type of distributive law. The following two Sections 6 and 7 treat slightly more advanced examples
yielding a principle dual to course-of-value iteration and a format for recursive de�nitions using
operators. Both make use of our most general version of the schema from Section 5. In the last
two sections we treat the related work mentioned above in some more detail and give conclusions.

1.2 Preliminaries

The theory that we are going to present assumes some abstract category C to be given. Of course,
the most important situation is C = Set, the category of sets and total functions. This was the
starting point of our investigation and is our source of examples and motivation. We will also use
sets and elements within informal explanations. Still, the theory is abstract enough to allow for
other choices of C.

Most of the proofs in this paper are given in the diagrammatic proof style. For readability,
usually the subparts of the diagrams are inscribed with a justi�cation for them to commute.

By functoriality, the application of a functor F to every object and arrow of a commuting
diagram yields a commuting diagram again. If this is used in a proof, we will inscribe F(< s >)
in the latter diagram in case < s > was the argument for the �rst diagram to commute. Here is
an example:
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X

f

��

�X //

nat. �

TX

Tf

��
Y �Y

// TY

implies FX

Ff

��

F�X //

F(nat. �)

FTX

FTf

��
FY

F�Y
// FTY

The (co)projections and universal arrows (i.e. the pairing and case analysis) for a product
X � Y and a coproduct X + Y are denoted as in the following diagrams:

Z
f

{{xxxxxxxxx
g

##F
FFFFFFFF

hf;gi

��

X
inl //

f
##G

GGGGGGGG X + Y

[f;g]

��

Y
inroo

g
{{xxxxxxxxx

X X � Y�1
oo

�2
// Y Z

The �nal object of a category will be denoted by 1. In Set we usually write 1 = f�g for an arbitrary
singleton set.

2 (Co)Algebras and (Co)Iteration

In this section we will briey present a categorical view on algebras and coalgebras. More detailed
expositions can be found e.g. among the papers of Jacobs and Rutten [JR96, Rut00b]. We take C

to denote a category and T;F : C ! C for two functors on it.

De�nition 2.1 (T-algebra, F-coalgebra) A T-algebra is a pair hX; �i where X is an object of
C and � : TX ! X is an arrow in C. We will sometimes call X and � the carrier and operation
of the algebra.
Dually, an F-coalgebra is a pair hX;�i where the operation � : X ! FX is an arrow going into
the reversed direction.

Example 2.2 Consider the Set functors N and S de�ned as

NX := 1 +X Nf := Id1 + f

and
SX := IR �X Sf := IdIR � f

for a set X, a function f , and the singleton set 1 := f�g.
Given a set X, a constant z 2 X and an operation s : X ! X, we get an N-algebra hX; [z; s]i.

One concrete instance of this is the algebra of natural numbers hIN; [0; :+ 1]i.
Given again a set X and this time two functions o : X ! IR and s : X ! X, we get an

S-coalgebra hX; hh; tii. The in�nite streams of real numbers for example form the S-coalgebra
hIR!; hhead; tailii, where for � = h�0; �1; : : :i 2 IR! we set

head(�) := �0 and tail(�) := h�1; �2; : : :i:

We will use these streams for most of our examples. They are often denoted by �, � , or �. We
often write �i 2 IR for the i-th element of a stream � 2 IR!, in particular �0 for head(�), and
�0 2 IR! for tail(�).

Generally, algebra operations can be seen as a means for constructing elements of their carrier.
In the case of the N-algebra hX; [z; s]i from above either as the constant z or as the successor s(x) of
another element x 2 X . On the other hand, the operation of a coalgebra { also called destruction
or unfolding elsewhere { gives us information about its states, either in terms of attributes or
(potential) successor states. In the �rst case we will talk about the observation a state allows,
in the second about its dynamics. In the concrete example of an S-coalgebra hX; ho; sii from the
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example above, for every element x 2 X the observation is given by the attribute o(x) 2 IR and
the dynamics by a successor state s(x) 2 X .

If the dynamics of a state x 2 X inside the F-coalgebra hX;�i leads to other states, like with
s(x) above, then we can repeatedly apply the operation � to those successors. If we assume that we
have no other way of inspecting the states in X , the observation of all these successively reachable
states may still give us quite some information about the element x that we started out with, and
we will call it its behaviour. For example, an element x 2 X in some S-coalgebra hX; ho; sii gives
rise to the in�nite sequence of successive states

hx; s(x); s(s(x)); : : :i 2 X!

for each of which all we can observe is its attribute in IR. Thus, the behaviour of x is described
by the in�nite stream

ho(x); o(s(x)); o(s(s(x))); : : :i 2 IR!:

This is why we will call S-coalgebras stream systems in the following.

De�nition 2.3 (homomorphism) An arrow h : X ! Y is a T-algebra homomorphism from
one T-algebra hX; �Xi to another T-algebra hY; �Y i if it makes the following diagram commute:

TX
Th //

�X

��

TY

�Y

��
X

h
// Y

Similarly, an F-coalgebra homomorphism from one F-coalgebra hX;�Xi to another F-coalgebra
hY; �Y i is an arrow h : X ! Y making this diagram commute:

X
h //

�X

��

Y

�Y

��
FX

Fh
// FY

We will often just talk about homomorphisms when it is clear from the context whether T-
algebra or F-coalgebra homomorphisms are meant.

Example 2.4 Consider again the functors N and S form Example 2.2.
Given two N-algebras hX; [zX ; sX ]i and hY; [zY ; sY ]i, a function h : X ! Y is an N-algebra

homomorphism if we have

h(zX) = zY and h Æ sX = sY Æ h:

Similarly, a function h : X ! Y is a homomorphism from one S-coalgebra hX; hoX ; sXii to
another S-coalgebra hY; hoY ; sY ii if we have

oX = oY Æ h and h Æ sX = sY Æ h:

Since identities can easily be seen to form homomorphisms and homomorphisms compose, we
get two categories: AlgT and CoalgF, categories having as objects T-algebras and F-coalgebras
respectively and as arrows homomorphisms of the appropriate type. Both categories come with
a forgetful functor UT : AlgT ! C and UF : CoalgF ! C. They forget about the algebra and
coalgebra operations, i.e. they map algebras and coalgebras onto their carriers and homomorphisms
to the underlying C arrows.
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De�nition 2.5 (initial T-algebra, �nal F-coalgebra) An initial T-algebra is an initial object
in the category of T-algebras AlgT, that is an algebra h�T; ÆTi such that there exists exactly one
homomorphism from it to every other T-algebra.
Dually, a �nal F-coalgebra is a �nal object in the category of F-coalgebras CoalgF, that is a
coalgebra { usually denote here by h
F; !Fi { such that there exists exactly one homomorphism
from every other F-coalgebra to it.

Example 2.6 Consider again the functors N and S from Example 2.2.
For an arbitrary N-algebra hX; [z; s]i we get a homomorphism

f : hIN; [0; :+ 1]i ! hX; [z; s]i

by setting h(n) := sn(z).
Given an S-coalgebra hX; ho; sii, we get a homomorphism

h : hX; ho; sii ! hIR!; hhead; tailii;

mapping every element x 2 X to the stream ho(x); o(s(x)); o(s(s(x))); : : :i.
One can actually show that these homomorphisms are the only ones between the respective

algebras and coalgebras. Thus, hIN; [0; :+ 1]i is an initial N-algebra and hIR!; hhead; tailii is a
�nal S-coalgebra (see e.g. Rutten's work on stream calculus [Rut00a] for the latter statement).

In the above example the carrier of the �nal coalgebra contains exactly those elements that
we used above to informally describe the behaviour of a state in a stream system. This is an
instance of the general observation that the states of a �nal coalgebra { if it exists { represent
abstract behaviours: Since it can be argued that the behaviour is preserved by homomorphisms,
the existence of a homomorphism in the de�nition of a �nal coalgebra says that any behaviour
exhibited by some state in some coalgebra can be matched by an element of 
F. The uniqueness
of homomorphisms on the other hand says that there is only one such candidate. In that sense,
the coiterative morphism maps a state of a coalgebra to the abstract behaviour it exhibits.

We will now give a name to the use of the existence aspect of initiality or �nality of an algebra
or coalgebra as a de�nition principle:

The initiality of the T-algebra h�T; ÆTi provides us with a unique arrow h : �T ! X for every
T-algebra operation � : TX ! X that is a homomorphism from h�T; ÆTi to hX; �i. We call h
the iterative arrow de�ned (or induced) by �, since { as in Example 2.6 { the function value cana
usually be obtained by iteratively applying the constructors of the algebra:

T�T

ÆT

��

Th //___ TX

8�

��
�T

9!h
//____ X

Dually, the �nality of an F-coalgebra h
F; !Fi yields an arrow h : X ! 
F for every F-coalgebra
operation � on X by assuming it to be the unique homomorphism from hX;�i to h
F; !Fi. Such
an arrow is then called the coiterative arrow de�ned (or induced) by �:

X
9!h //____

8�

��


F

!F

��
FX

Fh
//___ F
F

Example 2.7 (Coiteration for Streams) The coiteration schema for stream systems from Ex-
ample 2.2 states that for every S-coalgebra hX; ho; sii there is a unique arrow h : X ! IR! making
the diagram below commute:
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X
9!h //_____

8ho;si

��

IR!

hhead;taili

��
IR �X

IdIR�h
//___ IR � IR!

In other words, every pair of functions o : X ! IR and s : X ! X de�nes a function h : X ! IR!

by assuming it to satisfy the equations

head(h(x)) = o(x);

tail(h(x)) = h(s(x)):

Example 2.8 As an example for a function into the streams of reals we take a look at the element-
wise addition of two such streams. By the coiteration schema there is a unique function � :
IR! � IR! ! IR! satisfying the following two equations:

head(� � �) = head(�) + head(�)

tail(� � �) = tail(�)� tail(�)

Whereas the existence part of initiality and �nality of an algebra or coalgebra provides arrows
in a de�nition principle, the uniqueness aspect brings about a principle to prove two given arrows
equal:

To show that for an initial T-algebra h�T; ÆTi two arrows h1; h2 : �T ! X are equal, it
suÆces to come up with a T-operation � on X such that both, h1 and h2, are homomorphisms
from h�T; ÆTi to hX; �i. We will call this the induction proof principle. The reader probably
associates with this name a principle that in the example of the natural numbers for a predicate
P � IN looks as follows:

(0 2 P ^ 8n 2 IN : n 2 P ) n+ 1 2 P )) 8n 2 IN : n 2 P:

But as argued by Jacobs and Rutten [JR96, Section 5], this way of stating the principle with
predicates is equivalent to our formulation based on initiality.

In a dual manner, one can show that for a �nal F-coalgebra h
F; !Fi two arrows h1; h2 : X !

F are equal by providing an F-coalgebra operation on X for which both arrows are homomor-
phisms. But this schema is usually not applied directly. Instead, one uses a technique derived
from it which is based on the notion of bisimulation. We will present it in detail in Section 4.

3 De�nition by �-Coiteration

As already mentioned, the states of a �nal F-coalgebra h
F; !Fi represent abstract behaviours of
the type F. Thus, an arrow f : X ! 
F assigns such behaviours to the elements of X . The
coiteration schema allows us to de�ne this function such that it maps every element of X to the
behaviour it exhibits as a state in a given F-coalgebra hX;�i. Unfortunately, for many functions
f : X ! 
F that one wants to specify there is no F-coalgebra operation � on X itself making f

the coiterative morphism or it may not be obvious from the given speci�cation of f .
In this section we are �rst going to present two examples of this kind. As it turns out both

share a common underlying pattern which will then lead to the de�nition of a framework that we
called �-coiteration. As the main contribution of this paper we later establish suÆcient conditions
for the instances of it to be valid de�nition schemata in the sense that they uniquely characterise
arrows.
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3.1 Example 1: Multiplication of Formal Series

Like Mc Ilroy [McI99] or Rutten [Rut00a], we will this time consider in�nite streams of real numbers
� = h�0; �1; : : :i 2 IR! as representations of formal power series

P1
i=0 �iX

i. The operation � from
Example 2.8 turns out to be such that � � � represents the sum of the two series represented by
� and � , i.e.

1X
i=0

�iX
i +

1X
i=0

�iX
i =

1X
i=0

(�i + �i)X
i:

We would like to de�ne an operation 
 on IR! such that �
 � represents the convolution product
of the two series represented by � and � , i.e.

1X
i=0

�iX
i �

1X
i=0

�iX
i =

1X
i=0

(

iX
j=0

�j�i�j)X
i:

The expression on the right hand side of the equation can be rewritten to

�0�0 +X � (�0 �

1X
i=0

�i+1X
i +

1X
i=0

�i+1X
i �

1X
i=0

�iX
i):

The single constant �0 = head(�) can be represented by the series [head(�)] where for r 2 IR we
set [r] = hr; 0; 0; : : :i 2 IR! (or coiteratively: head([r]) = r and tail([r]) = [0]). Furthermore the
series

P1
i=0 �i+1X

i is represented by tail(�) and the same for � . Thus, we arrive at the following
equations for the multiplication of streams (see also Rutten [Rut00a]):

head(� 
 �) = head(�) � head(�);

tail(� 
 �) = ([head(�)]
 tail(�)) � (tail(�) 
 �):

These two equations do not form a coiterative de�nition of a stream because of the use of � in
the expression for the tail. To get a better picture of the type of de�nition we have here, we set
X := IR! � IR! and s1; s2 : X ! X; o : X ! IR with

o(�; �) := head(�) � head(�);

s1(�; �) := h[head(�)]; tail(�)i;

s2(�; �) := htail(�); �i:

Now the question is whether there exists a unique function 
 : X ! IR! satisfying for x 2 X

head(
(x)) = o(x);

tail(
(x)) = 
(s1(x)) � 
(s2(x));

or, diagrammatically, a unique arrow 
 �tting into the following diagram:

X

 //__________

ho;hs1;s2ii

��

IR!

hhead;taili

��
IR � (X �X)

Id�(�Æ(
�
))
//______ IR � IR!

3.2 Example 2: Sorted Insertion into Streams

Assume we need a function that inserts a new element into a sorted stream of real numbers at such
a position that the resulting stream is again sorted, if possible. Practically, we specify a function
insert : IR� IR! ! IR! that inserts an element r 2 IR into a given stream � = h�0; �1; : : :i 2 IR!

9



just in front of the �rst �i such that r � �i. The head and tail of the result of insert(r; �) can
be characterised as follows:

head(insert(r; �)) =

�
r if r � head(�),
head(�) otherwise,

tail(insert(r; �)) =

�
� if r � head(�),
insert(r; tail(�)) otherwise.

Since in the case r � head(�) the tail of insert(r; �) is not speci�ed as insert(~r; ~�) for new
arguments ~R 2 IR and ~� 2 IR!, the equations do not lead to an S-coalgebra on X := IR� IR!, the
domain of insert. Instead, they give rise to operations o : X ! A and ~s : X ! X + IR!, where

o(r; �) =

�
r if r � head(�),
head(�) otherwise,

~s(r; �) =

�
inr(�) if r � head(�),
inl(r; tail(�)) otherwise.

That insert satis�es the above equations is then equivalent to saying that it �ts as the function
into the diagram below:

X
insert //_____________

ho;~si

��

IR!

hhead;taili

��
IR � (X + IR!)

IdIR�[insert;IdIR! ]
//_________ IR � IR!

This example �ts into the known schema that arises as the dual of primitive recursion and is
thus called primitive corecursion e.g. by Vene and Uustalu [VU97, UV99]. They give the following
answer:

Theorem 3.1 (primitive corecursion) Assume that the category C has binary coproducts and
the functor F : C ! C has the �nal coalgebra h
F; !Fi. Then for every object X and operation
� : X ! F(X + 
F) there is a unique arrow f : X ! 
F making the diagram below commute,
called the corecursive arrow induced by �:

X
f //________

�

��


F

!F

��
F(X +
F)

F[f;Id
F ]
//_____ F
F

3.3 The Common Pattern

We have seen speci�cations of two functions assigning behaviours to elements of a given set that
do not �t into the original format of coiteration. And we have seen an extension of the coiteration
schema that could be used to de�ne the desired function in the second case, but it is still not
suÆcient for the �rst. Now we are going to explain that both speci�cations can be seen to fall into
a similar pattern after all. This will pave the way for a generalisation of Theorem 3.1 covering
both examples that we are going to develop in the next section.

To formulate this common pattern, we make the following two de�nitions:

De�nition 3.2 (T-extension) Let � : TY ! Y be a T-algebra. For a given arrow f : X ! Y ,

we call f j
�
:= � Æ Tf : TX ! Y the T-extension of f along �:

10



TX
Tf //

f j� ""F
F

F
F TY

�

��
X

f
// Y

De�nition 3.3 (homomorphism up-to-�) Let hX;�i be an FT-coalgebra and hY; �i an F-
coalgebra with a T-algebra operation � : TY ! Y on its carrier. An arrow f : X ! Y is
called a homomorphism up-to-� from hX;�i to hY; �i, if it makes the following diagram com-
mute (note that in the picture we added an arrow for � to visualise its typing, though it does not
contribute to the commutativity expressed):

TY
���

X
f //

�

��

Y

�

��
FTX

Ff j�
// FY

For the two previous examples we can �nd functors T and T-algebra operations � on the �nal
F-coalgebra such that the arrows under consideration become homomorphisms up-to-�:

� For the speci�cation of 
 from Section 3.1 we set

TX := X �X; for a set X ,

Tf := f � f; for a function f : X ! Y .

Now we can rewrite the arrow at the bottom of the diagram covering its speci�cation as
follows:

IdIR � (� Æ (
�
)) = S(� Æ (
�
))

= S(� Æ T
)

= S
j
�

Thus, it turns out that we were looking for is a homomorphism up-to-� from the ST-
coalgebra hX; ho; hs1; s2iii to the �nal S-coalgebra hIR!; hhead; tailii.

� In the case of primitive corecursion from Theorem 3.1 we set

TX := X +
F; for an object X ,

Tf := f + Id
F ; for a function f : X ! Y ,

Again, the bottom arrow in the corresponding diagram can be rewritten:

F[f; Id
F ] = F([Id
F ; Id
F ] Æ (f + Id
F))

= F([Id
F ; Id
F ] Æ Tf)

= Ff j
�
;

where � := [Id
F ; Id
F ] : T
F ! 
F. Thus, the corecursive arrow induced by � : X !
F(X + 
F) turns out to be a homomorphism up-to-� from the FT-coalgebra hX;�i to the
�nal F-coalgebra h
F; !Fi.
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3.4 Distributive Laws

In the following section we will develop a framework in which a homomorphism up-to-�F into a �nal
F-coalgebra uniquely exists for a certain T-algebra operation �F on its carrier. This result means
that an FT-operation on an object X speci�es an arrow h : X ! 
F, i.e. an assignment of abstract
F-behaviours to the elements in X . Not surprisingly, this requires some general information about
the behavioural e�ect of T. In our setting it is given as a distributive law of T over F de�ned
below. The T-algebra operation �F is a unique one that respects this behavioural meaning of T in
a sense to be made precise shortly. It will turn out that in the case of our two driving examples,
these distributive laws can be given such that the resulting T-algebra operations �F are the ones
considered above, namely � and [Id
F ; Id
F ].

De�nition 3.4 (distributive law) Let T;F : C! C be two functors. A natural transformation
� : TF ) FT is called a distributive law of T over F. We will sometimes alternatively use the
phrase that T distributes over F via �.

We call � a distributive law to stress the analogy with the use of a natural transformation of the
same type by Turi and Plotkin [TP97] and Lenisa [Len99b]. There the name is explained by the
additional assumptions made on the interaction of � with the monad from which T is taken (and
similarly with the additional comonad structure for F in the �rst paper). Here we have neither
monad nor comonad and hence � is just a natural transformation, but it will still serve a similar
purpose.

Regarding the elements from TX as structured entities containing elements from X as argu-
ments, a distributive law tells us how to assign an F-step to such an entity given the steps the
arguments can do. With this information, we can derive an F-coalgebra operation for TX from
the F-coalgebra hX;�i: First we unfold the arguments inside an element form TX (i.e. we apply
T�) and then we use �X to derive an F-step of the whole entity from those of the arguments.

De�nition 3.5 (�-lifting) Given a distributive law � : TF) FT of a functor T over a functor
F, we can lift T : C! C to the functor T� : CoalgF ! CoalgF on the F-coalgebras by setting

T� hX;�i := hTX; lift��i

T�h := Th;

for an F-coalgebra hX;�i and an F-homomorphism h, where

lift�� := �X Æ T� : TX ! FTX:

For this de�nition to make sense we have to check that T indeed maps homomorphisms to
homomorphisms for the respective coalgebras. This is where the assumption on � being natural
is needed:

Lemma 3.6 (see also [Rut00b, Theorem 15.3]) Let h be an F-coalgebra homomorphism from
hX;�Xi to hY; �Y i, then Th is a homomorphism from T� hX;�Xi to T� hY; �Y i.

Proof: The statement is easily proved using the naturality of � and the T-image of the assumption
on h:

TX
Th //

T�X��
lift��X

  

�
�
6

T(ass. h)
TY

T�Y ��
lift��Y

~~

6
�

�
TFX TFh //

�X�� nat. �
TFY
�Y ��

FTX
FTh

// FTY

2

Again, we will check what these new notions mean for our two examples:
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� Consider again the speci�cations of 
 in Section 3.1. It involved the functor TX = X �X .
A pair of states from a stream system here is intended to behave like the addition of the two
streams. Thus our distributive law, which has to be of the shape �X : (IR�X)� (IR�X)!
IR � (X �X), will be de�ned as

�X(hhx; x
0i; hhy; y

0i) := hhx + hy; hx
0; y0ii: (1)

It is easy to verify that we get a natural transformation indeed.

Given a stream system hX; ho; sii, the system T� hX; ho; sii has pairs of states from X as
states. Unfolding such a pair hx; yi yields the sum of the two observations o(x) + o(y) and
the pair of the successors hs(x); s(y)i, that is the behaviour of hx; yi in T� hX; ho; sii is the
(stream) sum of the behaviours of x and y in hX; ho; sii as wanted.

� In the case of primitive corecursion (Theorem 3.1) we considered the functor TX := X+
F

where h
F; !Fi is a �nal F-coalgebra. A distributive law of T over F is of the shape �X :
FX +
F ! F(X +
F). We set it as

�X := [Finl;Finr Æ !F]: (2)

For an F-coalgebra hX;�i, the states of the system T� hX;�i are either states from X or
from 
F. They behave as the states in the corresponding systems would do. With other
words, T� hX;�i is the coproduct of hX;�i and h
F; !Fi (see [Rut00b, Section 4.1]).

With the lifting from above, a distributive law � assigns F-behaviours to the set TX , given
the behaviours of the elements from X appearing as arguments inside the elements form TX .
The generalised coinduction schema we are about to state and justify makes use of T-algebra
operations � which preserve these behaviours. More precisely, for a given F-coalgebra hX;�i we
consider homomorphisms � from T� hX;�i to hX;�i. It turns out that this situation is captured
by the notion of a �-bialgebra occurring in the literature, thus we recall its de�nition here:

De�nition 3.7 (T,F-bialgebra, �-bialgebra) A T,F-bialgebra is a triple hX; �; �i of an object
X and two arrows � : TX ! X and � : X ! FX, i.e. a T-algebra and an F-coalgebra operation
on a common carrier.
Given two T,F-bialgebras hX; �X ; �Xi and hY; �Y ; �Y i, a T,F-bialgebra homomorphism from
hX; �X ; �Xi to hY; �Y ; �Y i is an arrow h : X ! Y which makes the following diagram commute:

TX
Th //

�X

��

TY

�Y

��
X

h //

�X

��

Y

�Y

��
FX

Fh
// FY

I.e. it is both, a T-algebra homomorphism and an F-coalgebra homomorphism. Like with T-algebras
and F-coalgebras, T,F-bialgebras and their homomorphisms form a category, denoted by BialgTF .
Given a distributive law � : TF) FT of T over F, a �-bialgebra is a T,F-bialgebra hX; �; �i such
that the following diagram commutes:

TXT�
vvllll

�

��
TFX

�X

��
X

�

��

�-bialg.

FTX

F� ((RRRR

FX

13



The full subcategory of BialgTF containing all �-bialgebras is denoted by �-Bialg.

Note that indeed the de�nition of hX; �; �i being a �-bialgebra is equivalent to saying that �
is an F-coalgebra homomorphism from T� hX;�i to hX;�i as wanted above:

TX
T���

� //

lift��

  

�
�
6

X

�

��

TFX
�X��

FTX
F�

// FX

With this remark, for a �nal F-coalgebra h
F; !Fi there is exactly one choice for a T-algebra
operation �F : T
F ! 
F such that h
F; �F; !Fi is a �-bialgebra, namely the coiterative morphism
from T� h
F; !Fi to h
F; !Fi.

Bialgebras for a distributive law play an important role in the paper by Turi and Plotkin
[TP97] as well. There the functors T and F are taken from a monad and a comonad respectively.
As already mentioned, this leads to extra assumptions on �. Similarly, the algebras and coalgebras
they consider are those for the monad and comonad. This carries over to the algebra and coalgebra
operations allowed in their notion of a �-bialgebra.

For the examples form Sections 3.1 and 3.2 the T-algebra operations considered in Section 3.3
are such that they turn the �nal coalgebra into a �-bialgebra for the distributive laws considered
above:

� It turns out that hIR!;�; hhead; tailii is a �-bialgebra for � as in (1) on page 13, since for
all � = h�0 : �

0i; � = h�0 : �
0i 2 IR! we have:

((S�) Æ �IR! Æ Thhead; taili)(�; �) = ((S�) Æ �IR!)(h�0; �
0i; h�0; �

0i)

= (S�)(�0 + �0; h�
0; � 0i)

= h�0 + �0; �
0 � � 0i

= hhead(� � �); tail(� � �)i

= (hhead; taili Æ �)(�; �)

� In the case of primitive corecursion we get as well that h
F; [Id; Id]; !Fi is a �-bialgebra for
� as in (2) on page 13. Since T� hX;�i = hX;�i + h
F; !Fi, the coiterative arrow from it
to h
F; !Fi is given by [hX ; Id] where hX is the coiterative arrows from hX;�i to h
F; !Fi,
which is the identity as well in case hX;�i = h
F; !Fi.

3.5 The �-Coiteration De�nition Schema

We are now ready to de�ne our new schema called �-coiteration for a distributive law � of a
functor T over F. It is a generalisation of the standard coiteration schema capturing other known
extensions, like the corecursion schema from Theorem 3.1.

De�nition 3.8 (�-Coiterative Arrow) Assume we are given a functor F with a �nal coalgebra
h
F; !Fi and a distributive law � of another functor T over F. For an FT-coalgebra hX;�i we
will call an arrow f : X ! 
F a �-coiterative arrow induced by � if it is a homomorphisms
up-to-�F from hX;�i to h
F; !Fi for the unique arrow �F such that h
F; �F; !Fi is a �-bialgebra
(c.f. remark following De�nition 3.7):

T
F

�F��
X

f //

�

��


F

!F

��
FTX

Ff j�F
// F
F
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The aim now is to prove the unique existence of a �-coiterative arrow for any given FT-
coalgebra hX;�i. We have not found a way to do so without additional assumptions that allow us
to construct an intermediate F-coalgebra and to establish a correspondence between the coiterative
arrow from this coalgebra to h
F; !Fi and a �-coiterative arrow induced by �.

In a �rst approach, the carrier of this intermediate coalgebra is a countable coproduct. For this
to exist, we need the additional assumption that the category C we are working in has countable
coproducts, as it is the case for C = Set:

Theorem 3.9 (�-Coiteration (1)) Assume the category C has countable coproducts and we are
given a functor F : C ! C with a �nal coalgebra h
F; !Fi and another functor T : C ! C that
distributes over F via �. Then, for every FT-coalgebra hX;�i there exists a unique �-coiterative
arrow induced by �.

In a second version, the carrier of the intermediate F-coalgebra is TX . To construct the
operation on it, we need a natural transformation � : T2 ) T. To relate coiterative and �-
coiterative arrows we furthermore use a natural transformation � : Id) T. The construction can
be shown to work in case some assumptions on the interaction of the three natural transformations
�, �, and � hold, which say that hT; �; �i is a monad and � is a distributive law of this monad
over F:

Theorem 3.10 (�-Coiteration (2)) Assume we are given a functor F : C ! C with a �nal
coalgebra h
F; !Fi, a monad hT; �; �i in C and a distributive law � of this monad over F, i.e. a
distributive law of T over F such that the following diagrams commute:

F

�F

~� ��
��

��
��

��

��
��

��
��

��
F�

� 
99

99
99

99
99

99
99

99
99

99

TF
�

+3 FT

TF
� +3 FT

T2F

�F

CK
�������

�������

T� "*NNNNN
NNNNN FT2

F�

S[0000000

0000000

TFT
�T

4<ppppp
ppppp

Then, for every FT-coalgebra hX;�i there exists a unique �-coiterative arrow induced by �.

An interesting property of the instances of the �-coiteration schema �tting in the latter theorem
is that they individually generalise the coiteration schema because one can show that a coiterative
arrow induced by some F-coalgebra operation � on X is a �-coiterative arrow induced by F�X Æ �.

Another trivial observation in this direction is that the coiteration schema itself arises as the
�-coiteration schema for the identity functor distributing over F via the natural transformation
FId : IdF) FId.

3.6 Proof of the �-Coiteration Theorem (1)

Since a proof of the second version of the theorem requires some more technical overhead, we will
leave it out and only give a proof for the �rst one, namely Theorem 3.9, in this section. For now, we
consider its assumptions to hold, including the existence of countable coproducts in the category
C. We will denote such a coproduct of the objects Xi for i 2 IN by

P1
i=0Xi with the canonical

injections inj : Xj !
P1

i=0Xi for j 2 IN . Given another object Y and arrows fi : Xi ! Y for
i 2 IN , we will write [fi]

1
i=0 :

P1
i=0Xi ! Y to denote the countable case analysis, i.e. the unique

arrow satisfying [fi]
1
i=0 Æ inj = fj as given by the universal property of the countable coproduct.

That is, we get the following picture:
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X0

in0

uu

f0

yy

X1

in1

qq

f1

uu

X2

in2

pp

f2

ss

: : :

P1
i=0Xi

[fi]
1
i=0

���
�
�

Y

To construct an F-coalgebra from � : X ! FTX , imagine we start with X as the carrier
and � as the operation. But this operation would not be of the right type, since after making an
F-step we end up in TX rather than in X again. As a remedy, we just add TX to the carrier and
consider X + TX . But now we need to extend the operation as well and assign observations to
TX . A suitable candidate for this is 1

lift�� := �TX Æ T� : TX ! FT2X:

Then the procedure needs to be repeated for T2X , and so on. The idea can be put to work if we
jump to the limit of this process and take the F-coalgebra hLX ; ��i with

LX :=

1X
i=0

TiX

�� := [Fini+1 Æ �i]
1
i=0

where the �i : T
iX ! FTi+1X are set inductively as �0 := � and �i+1 := lift��i :

LX =

��

��

X +

�0

��

TX +

�1

��

T2X +

�2

��

: : :

FTX

Fin1 $$I
IIII

IIIII
FT2X

Fin2 $$JJ
JJJ

JJJ
JJ

FT3X

Fin2 ##G
GG

GGG
GG

G
: : :

FLX = F(X + TX + T2X + : : :)

Since we will need the following statement about this F-coalgebra several times, we make it
into a lemma. It directly follows from the de�nition:

Lemma 3.11 Let hX;�i be an FT-coalgebra and hY; �i an F-coalgebra. With the de�nition of
LX and �� from above we have that h : LX ! Y is a homomorphisms from hLX ; ��i to hY; �i if
and only if for each i 2 IN the following diagram commutes, where we set hj := h Æ inj (note that
this gives h = [hj ]

1
j=0):

TiX
hi //

�i

��

Y

�

��
FTi+1X

Fhi+1

// F
F

Let h : hLX ; ��i ! h
F; !Fi be the coiterative morphism induced by ��. In the following we
will show that h0 : X ! 
F as in Lemma 3.11 �ts as a unique �-coiterative morphism induced
by �. From Lemma 3.11 and i = 0 we get that h0 �ts as a �-coiterative morphism in case we can
show that h1 = h0j

�F :

1Note that this in not precisely the same as in De�nition 3.5, because � is of a di�erent shape.

16



T
F

�F��
X

h0 //

�0=�

��


F

!F

��
FTX

Fh1
!
=Fh0j

�F

// F
F

This follows from the next lemma:

Lemma 3.12 Let h = [hi]
1
i=0 be the coiterative morphism from the F-coalgebra hLX ; ��i (con-

structed as above from the FT-coalgebra hX;�i) to the �nal F-coalgebra h
F; !Fi, then we have

hi+1 = hij
�F (:= �F Æ Thi)

for all i 2 IN .

Proof: The statement follows from the fact that the following diagram commutes for every
i 2 IN :

LTX
[Thj ]

1
j=0

//

[inj+1]
1
j=0

��

T
F

�F

��

Ti+1X

Thi

((



�

�
|

w
q

h ` \ Y U R

ini

::uuuuuuuuu

ini+1

$$I
IIIIIIII

hi+1

77

4
7

<
B

G
M

V ^ b e i l oLX
h=[hj ]

1
j=0

// 
F

The triangle commutes by the characterisation of the countable case analysis. The rectangle
commutes because it is the image under the forgetful functor UF of the following diagram in
CoalgF, commuting by the �nality of h
F; !Fi:

hLTX ; �
0
�i

[Thj ]
1
j=0 //

[inj+1]
1
j=0

��

�nality

T� h
F; !Fi

�F

��
hLX ; ��i

h
// h
F; !Fi

where hLTX ; �
0
�i is just hLX ; ��i with the summand X missing, i.e. �0� := [Finj+1 Æ �j+1]

1
j=0. All

arrows in the above diagram are homomorphisms between the corresponding F-coalgebras indeed:
h and �F are so by assumption. For [inj+1]

1
j=0 we easily compute that the two outer paths in the

following diagram equal the diagonal arrow:

LTX

�0�

��

[inj+1]
1
j=0 //

[Finj+2 Æ�j+1]
1
j=0

M
M

M

&&M
M

M

LX

��

��
FLTX

F[inj+1]
1
j=0

// FLX
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For [Thj ]
1
j=0 we need to show that the following diagram commutes:

LTX

�0�

��

[Thj ]
1
j=0 // T
F

lift�!F

��
FLTX

F[Thj ]
1
j=0

// FT
F

By case analysis on LTX and simpli�cation this boils down to showing that for each j 2 IN the
outer part of the diagram below commutes, where we abbreviated TjX to Y :

TY

�j+1

��

T�j

��

Thj //

T(ass.h)

T
F

lift�!F

��

T!F

��
TFTY

�TY

��

TFhj+1 //

nat. �

TF
F

�
F

��
FT2Y

FThj+1

// FT
F

The lower one of the two rectangles inscribed commutes by the naturality of �, the upper one is
the T-image of one following from the assumption on h by Lemma 3.11. 2

This concludes the �rst part of the argument, namely the construction of the �-coiterative
morphism h0 from the coiterative one h. It remains to be shown that h0 is the unique arrow with
this property. We do so by showing that if f : X ! 
F �ts as a �-coiterative morphisms induced
by �, then we can extend it to a homomorphism h0 : hLX ; ��i ! h
F; !Fi (with f = h0 Æ in0).
By �nality we then get h0 = h and thus f = h0 = h Æ in0.

The main part of the argument is stated in the following lemma in a slightly more general
setting, because we will need it in this format later:

Lemma 3.13 Let hX;�i be an FT-coalgebra and hZ; �; �i be a �-bialgebra. If f : X ! Z is
a homomorphism up-to-� from hX;�i to hZ; �i, then [fi]

1
i=0 : LX ! Z with fi : T

iX ! Z set

inductively as f0 := f and fi+1 := fij
�
is a homomorphism from hLX ; ��i to hZ; �i.

Proof: According to Lemma 3.11 what we need to check is that for all i 2 IN the diagram below
commutes, which is in this case equivalent to saying that fi is a homomorphism up-to-� from
hTiX;�ii to hZ; �i for all i 2 IN (abbreviating again TiX to Y ):

TZ
���

Y
fi //

�i

��

Z

�

��
FTY

Ffi+1=Ffij
�F

// FZ

This can be obtained by induction on i: For i = 0 we encounter the assumption on f = f0. For
i+ 1 we have the diagram below:
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TZ

�

��
TY

Tfi
//

T�i

��

fi+1=fij
�

**h e b _ \ Y V

�i+1

��

�
�

�
�
'
/

6

T(ind. hyp.)

TZ
�

//

T�

��

Z

�

��

�-bialg

TFTY
TFfij

�

=TFfi+1

//

�TY

��

nat.�

TFZ

�Z

��
FT2Y

FTfi+1 //

Ffi+1j
�

66R
V [ _ c h

l
FTZ

F� // FZ

2

4 Proof by �-Coinduction

In this Section we show how the setting from above can be used to derive generalised proof
principles for behavioural equivalence. First we recall the proof technique based on the categorical
de�nition of a bisimulation. Next we give examples of proof goals for which the method is diÆcult
to apply because relations covering them become unpleasantly complex while trying to make
them satisfy the full de�nition of a bisimulation. This observation motivates us to look for weaker
suÆcient conditions for a relation to only contain bisimilar states. We introduce the notion of
a �-bisimulation for a distributive law � and demonstrate that the corresponding proof principle
helps to overcome the problems indicated by the given examples.

4.1 Bisimulation Proofs

Accepting the carrier of the �nal F-coalgebra h
F; !Fi as a domain for behaviours of the appro-
priate type, for two F-coalgebras hX;�Xi and hY; �Y i, to show that two states hx; yi 2 X � Y

behave the same way, we need to show that x and y are mapped onto the same element of 
F by
the respective coiterative morphisms hX : hX;�Xi ! h
F; !Fi and hY : hY; �Y i ! h
F; !Fi, i.e.
hX(x) = hY (y).

One technique to prove these equations is to come up with a relation R � X � Y containing
hx; yi { or rather hxi; yii for i 2 I since one is often interested in proving equivalence of behaviour
for more pairs in one go { and on which there exists an F-coalgebra operation  : R ! FR
embodying the common behaviour of the states related. Technically one requires the two projec-
tions �1 : R ! X and �2 : R ! Y to form homomorphisms from hR; i to hX;�Xi and hY; �Y i
respectively. This principle works, because it gives us the arrows shown in the following diagram
in CoalgF, commuting by �nality:

hR; i
�2

��?
??

??�1

����
��

�

hY; �Y i

hY����
��

�
hX;�X i

hX ��?
??

??

h
F; !Fi

Hence we get hX(xi) = hX(�1(hxi; yii)) = hY (�2(hxi; yii)) = hY (yi) for all i 2 I as wanted.
A relation R with the above property that there is an F-operation  : R! FR turning the two

projections into homomorphisms to the given coalgebras is called an F-bisimulation. This notion
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was introduced by Aczel and Mendler [AM89] as a generalisation of notions of bisimulation in use
for concrete systems, like strong bisimulation in process algebra. It became a central ingredient
of the theory of coalgebra (see again e.g. Jacobs and Rutten [JR96, Rut00b]).

Working in an abstract category C instead of Set, it turns out that it is easier to deal with a
slightly more general de�nition where one considers spans instead of relations:

De�nition 4.1 (span) In a category C, a span R = hR; r1; r2i between two C objects X and Y

consists of an object R and two arrows r1 : R! X and r2 : R! Y . A span between X and itself
is called a span on X.
There is a preorder � of spans between the objects X and Y de�ned as hR; r1; r2i � hS; s1; s2i if
and only if there is an arrow f : R! S such that the following diagram commutes:

Rr1

wwoooooo r2

''OOOOOO

9f

���
�
�

X Y

S
s1

ggOOOOOO s2

77oooooo

Example 4.2 In Set, we can view every relation R � X � Y as the span hR; �1; �2i. On the
other hand, for every span R = hR; r1; r2i between X and Y we consider its image hr1; r2i[R] =
fhr1(z); r2(z)i j z 2 Rg � X � Y . We get hR; r1; r2i � hS; s1; s2i if and only if hr1; r2i[R] �
hs1; s2i[S].

De�nition 4.3 (Bisimulation) For a functor F : C ! C, an F-bisimulation between two F-
coalgebras hX;�Xi and hY; �Y i is a span B = hB; b1; b2i between the carriers X and Y , such that
there is an F-operation  : B ! FB turning b1 and b2 into homomorphisms:

X

�X

��

B

9

���
�
�

b1oo b2 // Y

�Y

��
FX FB

Fb1
oo

Fb2
// FY

A bisimulation between a coalgebra hX;�i and itself is called a bisimulation on hX;�i.

With other words, a bisimulation is a span hB; b1; b2i between the carriers of two coalgebras
such that there is an operation  that turns it into the span hhB; i; b1; b2i in CoalgF between
the coalgebras themselves. We will use the latter notation if we want to specify the operation 

involved.
In Set we call two states x and y of two coalgebras bisimilar if there is a bisimulation hB; b1; b2i

relating the two, i.e. if there is a z 2 B such that x = b1(z) and y = b2(z).
Note that this de�nition of a bisimulation, which also appears e.g. in the work of Turi and

Plotkin [TP97] and Lenisa [Len99b], generalises the one by Aczel and Mendler [AM89] for relations
in Set in the following way: A relation is a bisimulation if and only if the span it gives rise to
according to Example 4.2 is a bisimulation in our sense. On the other hand, if a span is a
bisimulation, then its image is a relational bisimulation:

Lemma 4.4 (c.f. [Rut00b, Lemma 5.3]) Let F : Set! Set be a functor and B = hB; b1; b2i be
a bisimulation between the given F-coalgebras hX;�Xi and hY; �Y i. Then the image hb1; b2i[B] :=
fhb1(z); b2(z)i j z 2 Bg � X � Y is a (relational) bisimulation as well.

Example 4.5 (bisimulations on streams) In the case of the stream systems from example 2.2,
the condition for a bisimulation relation can be spelled out like this: A relation B � X � Y gives
rise to a bisimulation hB; �1; �2i between the stream coalgebras hX; hoX ; sXii and hY; hoY ; sY ii, if
and only if there are oB : B ! IR and sB : B ! B making the diagram below commute, which is
equivalent to saying that for all hx; yi 2 B we have oX(x) = oY (y) and hsX(x); sY (y)i 2 B:
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X

hoX ;sXi

��

B

9hoB;sBi

���
�
�

�1oo �2 // Y

hoY ;sY i

��
IR �X IR �B

Id��1
oo

Id��2
// IR � Y

The abovementioned proof principle can now be formulated as follows:

Theorem 4.6 Given a functor F with a �nal coalgebra h
F; !Fi. If hB; b1; b2i is a bisimulation
between the F-coalgebras hX;�Xi and hY; �Y i, then we have the following order of spans on 
F:

hB; hX Æ b1; hY Æ b2i � h
F; Id; Idi;

where hX : hX;�Xi ! h
F; !Fi and hY : hY; �Y i ! h
F; !Fi are the coiterative morphisms.

Proof: Let  be an F-operation on B witnessing the bisimulation property. Then the coiterative
morphism hB : hB; i ! h
F; !Fi is a witness for the order of spans on 
F claimed. The equations
from the de�nition of the ordering (De�nition 4.1) to be shown easily follow by applying the
forgetful functor UF to the diagram below. Both parts of it commute by �nality:

hX;�Xi

hX

��

hB; i

hB

��

b1oo b2 // hY; �Y i

hY

��
h
F; !Fi h
F; !Fi

Id
oo

Id
// h
F; !Fi

2

Example 4.7 Via the translation between spans and relations in Set from Example 4.2, we have
that h
F; Id; Idi represents the diagonal relation 4
F := fh�; �i j � 2 
Fg and thus Theorem 4.6
says that for a bisimulation B � X � Y between the F-coalgebras hX;�Xi and hY; �Y i we have
that hx; yi 2 B implies hX(x) = hY (y) for the coiterative morphisms hX and hY .

In the case of a bisimulation B on the �nal coalgebra h
F; !Fi we have that the coiterative
morphism is the identity on 
F, and we get that hx; yi 2 B implies x = y.

Example 4.8 We want to show that the operation � from Example 2.8 is commutative, i.e. that
for all �; � 2 IR! we have � � � = � � �. According to Example 4.7, it is suÆcient to show that
the relation

B = fh� � � ; � � �i j �; � 2 IR!g

is a bisimulation on hIR!; hhead; tailii. This follows by Example 4.5, since for � = h�0 : �
0i; � =

h�0 : �
0i 2 IR! we have

head(� � �) = �0 + �0 = �0 + �0 = head(� � �)

and
htail(� � �); tail(� � �)i = h�0 � � 0; � 0 � �0i 2 B:

We now give two examples where a technique that requires (standard) bisimulations does not
seem to be ideal.

4.2 Example 1: Distributivity of � over 


We would like to prove that the addition of streams of real numbers de�ned in the Example 2.8
distributes over the multiplication speci�ed in Section 3.1:

8�; �; � 2 IR! : � 
 (� � �) = (� 
 �) � (� 
 �)
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To obtain a bisimulation, the starting point would be to consider all the pairs needed for the
statement:

B := fh� 
 (� � �); (� 
 �)� (� 
 �)i j �; �; � 2 IR!g � IR! � IR! (3)

For this relation to be contained in a bisimulation, we �rst need to check that all streams related
have equal heads. This is the case, since for all �; �; � 2 IR! we have (writing again � = h�0 : �

0i
and similar for � and �)

head(� 
 (� � �)) = �0 � head(� � �)

= �0 � (�0 + �0)

= �0 � �0 + �0 � �0

= head(� 
 �) + head(� 
 �)

= head((� 
 �) � (� 
 �)):

Furthermore, the bisimulation to be found has to relate the tails of every two streams related by
B:

tail(� 
 (� � �))

= fdef. 
g

([�0]
 tail(� � �))� (�0 
 (� � �))

= fdef. �g

([�0]
 (� 0 � �0))| {z }
=:x1

� (�0 
 (� � �))| {z }
=:x2

and

tail((� 
 �)� (� 
 �))

= fdef. �g

tail(� 
 �)� tail(� 
 �)

= fdef. 
g

(([�0]
 � 0)� (�0 
 �))� (([�0]
 �0)� (�0 
 �))

= fassociativity and commutativity of �g

(([�0]
 � 0)� ([�0]
 �0))| {z }
=:y1

� ((�0 
 �) � (�0 
 �))| {z }
=:y2

We observe that we obtain sums of streams related by B, namely hx1; y1i; hx2; y2i 2 B. Thus, the
bisimulation should also contain T (B) where T acts on relations R � IR! � IR! as

T (R) := fhx1 � x2; y1 � y2i j hx1; y1i; hx2; y2i 2 Rg � IR! � IR!:

But if this is the case, we need to check on the pairs contained in T (B) as well. The continuation
of this procedure would lead to the relation

~B :=

1[
i=0

T i(B):

To show that it is a bisimulation one could prove by induction on i 2 IN that for hx; yi 2 T i(B)
one �nds

head(x) = head(y) and htail(x); tail(y)i 2 T i+1(B):

The base case is given by the calculation from above, the induction step is easy and independent
of B.2 It proves the following principle: Given a relation B � IR! � IR! such that for hx; yi 2 B

one has
head(x) = head(y) and htail(x); tail(y)i 2 T (B)

2The induction step basically states that T is a respectful function in the terminology of Sangiorgi [San98] (with
a translation of this notion from labeled transition systems to stream systems).
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then ~B :=
S1
i=0 T

i(B) is a bisimulation extending B.
With this principle, one can work directly with the relation B as in

4.3 Example 2: Sorted Insertion

In the context of Section 3.2 consider another function insertl : IR
� � IR! ! IR! that inserts

several real numbers given as a list l 2 IR� into a stream � = h�0 : �
0i 2 IR! in one go, speci�ed

by the following coiterative de�nition:

hhead; taili(insertl(l; �)) =

�
hml; insertl(l �ml; �)i if l 6= hi and ml � �0,
h�0; insertl(l; �

0)i otherwise,

where ml 2 IR is the least element of a nonempty list l and l�ml denotes the list l with the �rst
occurrence of ml deleted.

Now we want to prove that we can use this function to implement multiple applications of the
previous insertion function that inserted one number only, i.e.

insertl(hi; �) = �;

insertl(hr : li; �) = insert(r; insertl(l; �)):

The �rst equation is easily proved using the bisimulation

fhinsertl(hi; �); �i j � 2 IR!g;

for the second one the relation

B = fhinsertl(hr : li; �); insert(r; insertl(l; �))i j r 2 IR; l 2 IR�; � 2 IR!g

alone does not do the job, because in the case r � ml ^ r � �0 we have

tail(insertl(hr : li; �)) = insertl(l; �)

= tail(insert(r; insertl(l; �)));

but the pair hinsertl(l; �); insertl(l; �)i may not be in B. As a remedy, one would take ~B =
B [4IR! . The pairs added via 4IR! do not impose new proof obligations, since for h�; �i 2 4IR!

one trivially has

head(�) = head(�) and htail(�); tail(�)i 2 4IR! � ~B:

The underlying principle can be stated more generally using the following notion:

De�nition 4.9 (Bisimulation up-to-equality) Let F : Set ! Set be a functor with a �nal
coalgebra h
F; !Fi. A relation B � 
F�
F is called a bisimulation up-to-equality, if there exists
an operation � : B ! F(B [ 4
F) making the following diagram commute (note that the upper
arrows use the projections �i : B ! 
F whereas the lower ones are �i : B [4
F ! 
F):


F

!F

��

B

9�

���
�
�

�1oo �2 // 
F

!F

��
F
F F(B [4
F)F�1

oo
F�2

// F
F

For every bisimulation up-to-equality B one can easily �nd a larger bisimulation ~B (namely B [
4
F , using the argument from above). By Example 4.7 this means that it suÆces to show that
B is a bisimulation up-to-equality in order to prove that all elements related are bisimilar.
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4.4 �-Coinduction

The aim of this section is to give a framework that generalises the proof principle based on standard
bisimulations such that the two cases mentioned above arise as instances of it. We are going to
use the same setting as for the �-coiteration schema.

Given a functor T that distributes over F via �, the idea is to ask for an FT-coalgebra operation
� on the relation B � X � Y instead of an F-coalgebra operation. But then we need to �nd a
suitable notion of a behaviour preserving arrow to be imposed on the projections �1 : B ! X and
�2 : B ! Y , replacing the assumption of being homomorphisms in the de�nition of a bisimulation.

For a general consideration, assume we are given an FT-coalgebra hX;�i, an F-coalgebra
hY; �i, and the �nal F-coalgebra h
F; !Fi. The �-coiterative morphism hX : X ! 
F induced by
� assigns F-behaviours to the states in X , those of the states in Y are given by the coiterative
morphism hY : Y ! 
F. The function f preserves these behaviours if we have hX = hY Æ f . To
establish this equation, we could look for conditions guaranteeing that hY Æ f �ts as a �-coiterative
morphism induced by �. Then the statement would follow by its uniqueness, stated in Theorem
3.9.

The following two lemmata show that hY Æ f �ts as a �-coiterative arrow in case f is a
homomorphism up-to-� as introduced in De�nition 3.3 from hX;�i to hY; �i for a T-algebra
operation � on Y such that hY; �; �i is a �-bialgebra.

Lemma 4.10 Let two functors F;T : C ! C, an FT-coalgebra hX;�i, and two T,F-bialgebras
hY; �Y ; �Y i and hZ; �Z ; �Zi be given. If f : X ! Y is a homomorphism up-to-�Y from hX;�i
to hY; �Y i and h : Y ! Z is a bialgebra homomorphism from hY; �Y ; �Y i to hZ; �Z ; �Zi, then
h Æ f : X ! Z is a homomorphism up-to-�Z from hX;�i to hZ; �Zi.

Proof: From the assumptions we have that both inner rectangles in the diagram below commute:

TY

�Y

���
�
� TZ

�Z

���
�
�

X
f //

�

��
ass. f

Y
h //

�Y

��
ass. h

Z

�Z

��
FTX

Ff j�Y //

F(hÆf)j�Z

F(�)
77Q

U Z _ d i
m

FY
Fh // FZ

It remains to be shown that the dashed arrow at the bottom can be taken for the composition of
the two above. It follows from the equation

h Æ f j
�Y (�)

= (h Æ f)j
�Z ;

which holds since h was assumed to be an algebra homomorphism as well:

TX
Tf //

f j�Y ""F
F

F
F

T(hÆf)

%%r
k e _ Y S L

TY
Th //

�Y

��
ass. h

TZ

�Z

��
Y

h
// Z

2

Let �F denote again the unique T-algebra operation such that h
F; �F; !Fi is a �-bialgebra.
By de�nition, a homomorphism up-to-�F from hX;�i to h
F; !Fi is a �-coiterative morphism
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induced by �. Thus, to use the above lemma, we need to guarantee that the coiterative morphism
hY induced by � is a bialgebra homomorphism from hY; �; �i to h
F; �F; !Fi. One suÆcient
condition is that the �rst bialgebra is a �-bialgebra as well:

Lemma 4.11 Assume a functor F : C ! C with a �nal coalgebra h
F; !Fi and another functor
T : C ! C that distributes over F via � to be given. Let �F : T
F ! 
F denote the unique
arrow such that h
F; �F; !Fi is a �-bialgebra (i.e. the coiterative morphism from T� h
F; !Fi to
h
F; !Fi). For every �-bialgebra hY; �; �i the coiterative morphism hY : hY; �i ! h
F; !Fi is at
the same time a bialgebra homomorphism from hY; �; �i to h
F; �F; !Fi.

Note that this statement is the heart of the proof that �F extends the �nal F-coalgebra to a
�nal object in �-Bialg.

Proof: We need to show that hY is a T-algebra homomorphism from hY; �i to h
F; �Fi. We can
see this by applying the forgetful functor to this diagram in CoalgF, which commutes by �nality:

T� hY; �i
T� hY//

�

��

T� h
F; !Fi

�F

��
hY; �i

hY

//

�nality

h
F; !Fi

The arrows exist in CoalgF, i.e. they are homomorphisms for the corresponding coalgebras: � and
�F are since they extend hY; �i and h
F; !Fi respectively to �-bialgebras (c.f. remark following
De�nition 3.7), hY is so by assumption, which further implies that T�hY exists in CoalgF, since
T� is a functor in it (c.f. Lemma 3.6). 2

Taken together, we get the following corollary:

Corollary 4.12 Assume a functor F : C! C with a �nal coalgebra h
F; !Fi and another functor
T : C! C that distributes over F via � to be given. If hY; �; �i is a �-bialgebra and f : X ! Y is a
homomorphism up-to-� from the FT-coalgebra hX;�i to hY; �i, then for the coiterative morphism
hY induced by � the composition hY Æ f is a �-coiterative morphism induced by �.

This corollary forms the basis of our new �-coinduction proof principle for bisimilarity, in which
the notion of bisimulation is replaced by the following one:

De�nition 4.13 (�-bisimulation) Let F;T : C ! C be functors. A span B = hB; b1; b2i is a
�-bisimulation between the F-coalgebras hX;�X i and hY; �Y i, if there exist an FT-operation � on
B and T-algebra operations �X and �Y on X and Y , such that hX; �X ; �Xi and hY; �Y ; �Y i are
�-bialgebras and b1 and b2 are homomorphisms up-to-�X and -�Y respectively:

TX
9�X ���

� TY
9�Y���

�

X

�X

��

B

9�

���
�
�
�

b1oo b2 // Y

�Y

��
FX FTB

Fb1j
�X

oo
Fb2j

�Y

// FY

A �-bisimulation between hX;�i and itself will be called a �-bisimulation on hX;�i.

As in the case of bisimulation from De�nition 4.3, we sometimes want to �x the operation �

involved. We will then again use the notation hhB;�i; b1; b2i, but note that this time we do not
get a span in a category of coalgebras. If we want to make the T-algebra operations �X and �Y
explicit, we talk about a �-bisimulation with respect to �X and �Y .

From Corollary 4.12 we can easily derive a correspondent of Theorem 4.6 for �-bisimulation:
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Theorem 4.14 (�-coinduction) Let the category C have countable coproducts. Given a functor
F : C ! C with a �nal coalgebra h
F; !Fi and another functor T : C ! C that distributes over F
via �.

If B = hB; b1; b2i is a �-bisimulation between the F-coalgebras hX;�X i and hY; �Y i, then we
have hB; hX Æ b1; hY Æ b2i � h
F; Id; Idi, where hX : hX;�Xi ! h
F; !Fi and hY : hY; �Y i !
h
F; !Fi are the coiterative morphisms.

Again, in the world of sets (C = Set) this means that for B � X � Y such that hB; �1; �2i is a
�-bisimulation we have that hX(x) = hY (y) for all hx; yi 2 B.

Proof: Let � : B ! FTB, �X : TX ! X and �Y : TY ! Y witness the �-bisimulation property
for B. Then the by Theorem 3.9 existing �-coiterative morphism hB : B ! 
F induced by � is a
witness for the order of spans on 
F claimed:

X

hX

��

B

hB

��

b1oo b2 // Y

hY

��

F 
F

Id
oo

Id
// 
F

Applying Corollary 4.12 to both �-bialgebras { hX; �X ; �Xi and hY; �Y ; �Y i { yields that hX Æ b1
and hY Æ b2 are �-coiterative morphisms induced by � as well, and thus all three are equal by the
uniqueness part of Theorem 3.9. 2

One immediately gets a version of the above theorem with the condition from Theorem 3.9
replaced by the one from 3.10 by also replacing the one Theorem by the other inside the proof.

Instead of applying Theorem 4.14 directly to prove that the states related by a �-bisimulation
show equivalent behaviours, we could try to reduce the new concept to the standard one and still
use Theorem 4.6. This requires a construction that enlarges a �-bisimulation such that a standard
bisimulation is encountered, similar to what we have done in the examples. The advantage would
be that with this construction we could use �-bisimulations instead of bisimulations in other
contexts as well. These include methods that construct larger bisimulations from smaller ones or
notions of system equivalence in a setting where no �nal coalgebra is known to exist.

Theorem 4.15 Assume the category C has countable coproducts and we are given two functors
T;F : C! C, such that T distributes over F via �, and two F-coalgebras hX;�Xi and hY; �Y i. If
B is a �-bisimulation between hX;�Xi and hY; �Y i then there exists a (standard) bisimulation ~B
between them with B � ~B.

Proof: Let � be an FT-operation on B and �X , �Y be T-algebra operations on X , Y witnessing
the �-bisimulation property on B =: hB; b1; b2i. For ~B we will then take hhLB ; ��i; ~b1; ~b2i where

LB and �� are set as in Section 3.5 and for i 2 f1; 2g we set ~bi := [(bi)j ]
1
j=0 as in Lemma 3.13,

i.e. (bi)0 = bi, (b1)j+1 = (b1)j j
�X and (b2)j+1 = (b2)j j

�Y .

By applying Lemma 3.13 on both sides, we get that ~b1 and ~b2 are homomorphisms from hLB ; ��i
to hX;�Xi and hY; �Y i respectively. The order of spans is witnessed by in0 : B ! LB , which
immediately follows from the property of the countable case analysis and the de�nition of the
(bi)0:

B
b1=(b1)0

vvmmmmmmmmmmmmmmmm
b2=(b2)0

((QQQQQQQQQQQQQQQQ

in0

��
X

�X

��

LB
~b1=[(b1)j ]

1
j=0

oo
~b2=[(b2)j ]

1
j=0

//

��

��

Y

�Y

��
FX FLB

F ~b1

oo
F ~b2

// FY
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Note that with the help of Lemma 4.4 this result still applies in a setting where a de�nition of
bisimulation based on relations is used.

As above, a version of the Theorem using the condition from Theorem 3.10 can be given as well.
This time it takes more e�ort to change the proof, because a di�erent intermediate F-coalgebra
has to be considered.

4.5 Example 1 revisited

Consider again the example from Section 4.2 where we had TX := X � X and � as given in
Equation (1) on page 13. In this setting the de�nition of a �-bisimulation can be spelled out as
folllows:

Let hX; hoX ; sXii and hY; hoY ; sY ii be two stream systems, both coming with T-algebra oper-
ations �X and �Y turning them into �-bialgebras. Literally, we get that a relation B � X � Y

gives rise to a �-bisimulation between hX; hoX ; sXii and hY; hoY ; sY ii with respect to �X and �Y ,
if there exist o : B ! IR and ~s1; ~s2 : B ! B such that the diagram below commutes:

X �X
�X ��

Y � Y
�Y��

X

hoX ;sXi

��

B

9ho;h~s1;~s2ii

���
�
�
�

�1oo �2 // Y

hoY ;sY i

��
IR �X IR � (B �B)

IdIR��1j
�X

oo
IdIR��2j

�Y

// IR � Y

This is equivalent to saying that for all hx; yi 2 B we have that oX(x) = oY (y) and hsX (x); sY (y)i 2
T (B) for

T (B) := fhx1 
X x2; y1 
Y y2i j hxi; yii 2 B; i = 1; 2g 2 X � Y:

By taking hX; hoX ; sXii = hY; hoY ; sY ii = hIR!; hhead; tailii and 
X = 
Y = 
 3 we �nd
that the assumption on the relation B in the principle given in Section 4.2 is just to be a �-
bisimulation on the �nal stream system.

Theorem 4.15 together with Lemma 4.4 tell us that this is enough to conclude that there is a
bisimulation ~B � IR!� IR! with B � ~B. Looking into the proof of Theorem 4.15, we see that the
concrete relation constructed is the same as ~B from Section 4.2, since the span hTB; �1j

�
; �2j

�
i

represents the relation T (B).

4.6 Example 2 revisited

While proving a statement about the interaction of the two insert functions in Section 4.3 we came
across the notion of a bisimulation up-to-equality for coalgebras of a functor F in a category with
binary coproducts. We are going to show that it arises as a �-bisimulation on a �nal coalgebra
h
F; !Fi with the setting from Section 3.2, i.e. TX := X + 
F and � as in equation (2) on page
13.

The only choice for the T-algebra operation on 
F to yield a �-bialgebra is hId; Idi, as shown

earlier. For bi : B ! 
F we have bij
hId;Idi

= [bi; Id]. Thus, a span hB; b1; b2i on 
F is a �-
bisimulation if there exists an operation � : B ! F(B + 
F) making the following diagram
commute:

3The latter setting is possible as shown in subsection 3.4. Moreover, it is the only one by �nality of
hIR!; hhead; tailii.
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F

!F

��

B

9�

���
�
�

b1oo b2 // 
F

!F

��
F
F F(B +
F)

F[b1;Id]
oo

F[b2;Id]
// F
F

This can easily be seen to correspond to De�nition 4.9 in case the span arises from a relation
B � 
F �
F as hB; �1; �2i.

With this correspondence, Theorem 4.15 says that every bisimulation up-to-equality is con-
tained in some larger (standard) bisimulation, as claimed in Section 4.3. This time the span
constructed in the proof of the theorem looks more complicated, but nevertheless is corresponds
to the relation B [4
F that one would use in a \hand-made" proof. 4

5 A more general Type of Distributive Law

In the previous sections we presented a de�nition schema and a proof principle which incorporated
operations �F : T
F ! 
F arising from a distributive law � : TF) FT. As an example for such
an operation we introduced the addition of two streams �; � 2 IR!, speci�ed by

head(� � �) = head(�) + head(�)

tail(� � �) = tail(�) � tail(�):

On the right hand side of these de�nitions, � and � are not mentioned themselves, but only their
heads and tails.

Up to now we can only treat operations �F of this kind, since they are assumed to form
homomorphisms from T� h
F; !Fi := hT
F; lift

�
!F
i to h
F; !Fi, where in lift�!F := �
F Æ T!F all

arguments from 
F in the elements of T
F are �rst replaced by the F-step they can do according
to the �nal operation !F.

Not all operations one is interested in are of that kind. One often meets speci�cations where
both are used, the original arguments as well as the F-steps they can do. We will �rst present
an example where this is the case. Then we show how to generalise our framework to this more
powerful type of speci�cation.

5.1 Example: Coding of in�nite binary Trees into Streams

Consider in�nite binary trees with the nodes labeled by real numbers. These do arise as the �nal
coalgebra of the functor BX := IR � X � X denoted by hBtree; hlabel; left; rightii. Let us
name the labels of such a tree as follows:

a

wwww
wwww

www

GGGGGG
GGGGG

al

{{
{{ DD

DD
ar

yy
yy EE

EE

all alr arl arr

The function encode : Btree! IR! should map such a tree onto the stream

ha; al; ar; all; arl; alr; arr; : : :i:

4Actually in this case the manual proof is more closely mimicked if one follows the approach based on monads
as mentioned after Theorem 4.15.
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To explain the procedure formally, we introduce the function that interleaves two streams � =
h�0; �1; : : :i and � = h�0; �1; : : :i yielding

interleave(�; �) := h�0; �0; �1; �1; : : :i;

de�ned by coiteration from the equations

head(interleave(�; �)) = head(�);

tail(interleave(�; �)) = interleave(�; tail(�)):

Now for t 2 Btree the function encode satis�es

head(encode(t)) = label(t)

tail(encode(t)) = interleave(encode(left(t)); encode(right(t))):

The equations are of the same shape as those for the multiplication of formal power series in
Section 3.1. So we could again use the functor TX := X �X and try to �nd a distributive law
� : TS ) ST such that the resulting T-algebra operation �S on the �nal S-coalgebra happens to
be interleave.

But unlike the situation with the addition, here one of the arguments of interleave (� in the
above formulation) appears by itself on the right hand side of the equation for the tail. Given only
head(�) and tail(�) we do not know how to express tail(interleave(�; �)). Of course, in the
�nal coalgebra one could use hhead; taili�1(head(�); tail(�)) = � , since the �nal operation is an
isomorphism, but we have to de�ne � for arbitrary carrier sets where we do not have an operation
that gives us the original state when we provide its head and tail.

5.2 Extended Distributive Laws

We want to capture T-algebra operations �F on the carrier of a �nal F-coalgebra h
F; !Fi that
use in their de�nition the original arguments from 
F appearing in an element of T
F and their
F-steps, like interleave from above. To do so, one could switch to a distributive law of the shape

� : T(Id� F)) FT:5 (4)

This would change the de�nition of lift�� for an F-coalgebra operation � : X ! FX such that
instead of just applying � to all the arguments from X inside an element of TX one takes hId; �i
to turn the arguments into pairs where the �rst component keeps the original:

lift�� := �X Æ ThId; �i:

Changing De�nition 3.5 accordingly, we again obtain a functor T� : CoalgF ! CoalgF (in partic-
ular, Lemma 3.6 would still hold).

In this extended framework it is now possible to capture e.g. interleave from above: For
TX := X�X , the interleaving of streams arises as the coiterative arrow from T� hIR

!; hhead; tailii
to hIR!; hhead; tailii for the natural transformation

� : T(Id� S)) ST;

i.e. �X : (X � (IR �X))� (X � (IR �X))! IR � (X �X)

given by
�X(hx; hx0; x

0ii; hy; hy0; y
0ii) := hx0; hy; x

0ii: (5)

5Note that when talking about such a natural transformation, we implicitly assume that the category C has
binary products.
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5.3 Adapting the �-Coiteration De�nition Schema

Our aim now is to show that when working with a distributive law � of the extended type in-
troduced above we still have the results about �-coiterative morphisms (with the straightforward
adaptation of this notion) as shown in Section 3.5. The arguments basically stay the same, there-
fore we will just mention the small changes needed in the de�nitions and statements given there.

First, now that � is of the shape T(Id� F) ) FT, the notion of a �-bialgebra would be a
T,F-bialgebra hX;�; �i such that the following diagram commutes:

TXThIdX ;�i
uujjjjjj

�

��
T(X � FX)

�X

��
X

�

��

�-bialg.

FTX

F� **UUUUUUU

FX

Given a �nal F-coalgebra, we can use this notion of a �-bialgebra as before to obtain a de�nition
of a �-coiterative arrow induced by an operation � : X ! FTX .

Adapting Theorem 3.9 to the new setting is slightly more complicated, because the proof does
not only use lift�� for a F-coalgebra operation �, but lift�� for the FT-coalgebra �. The problem is
that for the second type of lifting we cannot simply use a pairing with the identity as before to keep
the arguments themselves, since by using � we \change the carrier" from X to TX : the application
of ThIdX ; �i would get us from TX to T(X � FTX), but we cannot apply � to the latter. As a
remedy, we will ask for an embeding of X into TX , i.e. a natural transformation � : Id) T. Note
that a pair hT; �i of a functor with such a transformation is known in the literature as a pointed
endofunctor. With this additional structure we can now construct an FT-coalgebra operation on
TX :

lift
�;�
� := �TX Æ Th�X ; �i:

Not surprisingly, this construction only makes sense if we can show that the embedding �X
preserves behaviours in a certain sense. For this we will make an assumption on the interplay
of � and �, namely that they make the diagram below in the category of functors and natural
transformations commute. Since � is usually called the unit of the pointed functor, we will refer
to this condition later as the unit law for �:

Id� F
�2 +3

�Id�F

��
unit �

F

F�

��
T(Id� F)

�
+3 FT

We can now state the adapted version of Theorem 3.9:

Theorem 5.1 Let the category C have countable coproducts. Assume we are given a C-functor
F with the �nal coalgebra h
F; !Fi, a pointed functor hT; �i in C and a natural transformation
� : T(Id�F)) FT satisfying the unit law from above. Then for every FT-coalgebra hX;�i there
exists a unique �-coiterative morphism induced by �.

In the following we will sum up the changes needed to adapt the proof of Theorem 3.9 to this
new setting.

The F-coalgebra constructed from hX;�i is again hLX ; ��i as given in subsection 3.6 with the
inductive case in the de�nition of the �i changed to

�i+1 := �Ti+1X Æ Th�TiX ; �ii:

Note that this adaptation does not inuence the validity of Lemma 3.11.
In order to prove a correspondent of Lemma 3.12 we need a new statement justifying the use

of �X as an embedding:
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Lemma 5.2 In the setting of Theorem 5.1 let h = [hi]
1
i=0 denote the coiterative morphism from

hLX ; ��i as above to h
F; !Fi. Then for all i 2 IN we have

hi+1 Æ �TiX = hi:

Proof: We claim that the arrow [inj+1 Æ �TjX ]
1
j=0 is a homomorphism from the F-coalgebra

hLX ; ��i to itself. By �nality we then get h = h Æ [inj+1 Æ �TjX ]
1
j=0, which contains the statement.

To prove the claim, we need to show that the following diagram commutes:

LX

��

��

[inj+1 Æ�TjX ]1j=0 // LX

��

��
FLX

F[inj+1 Æ�TjX ]1j=0

// FLX

By case analysis, this boils down to the commutativity of the outer part of the picture below for
all j 2 IN (abbreviating TjX to Y ). The inner rectangles commute by the naturality of � and the
unit law for �:

Y

h�Y ;�ji

��

�Y //

�j

%%

nat. �

TY

Th�Y ;�ji

��
�j+1

zz

TY � FTY �TY�FTY

//

�2

��
unit �

T(TY � FTY )

�TY

��
FTY

F�TY
// FT2Y

2

Lemma 5.3 (Lemma 3.12 (updated)) In the setting of Theorem 5.1, let h = [hi]
1
i=0 be the

coiterative morphism from the F-coalgebra hLX ; ��i as above to the �nal F-coalgebra h
F; !Fi.
Then we have

hi+1 = hij
�F (:= �F Æ Thi)

for all i 2 IN , where �F is again the coiterative morphism from T� h
F; !Fi to h
F; !Fi.

Proof: The proof runs along the same line as the one for Lemma 3.12. Only one change has to
be made when it comes to showing the homomorphism property of [Thj ]

1
j=0. The diagram that

does the main job changes to the following one (for j 2 IN and Y := TjX):

TY

�j+1

""

Th�Y ;�ji

��

Thj //

T((*))

T
F

lift�!F

||

ThId;!Fi

��
T(TY � FTY )

�TY

��

T(hj+1�Fhj+1) //

nat. �

T(
F � F
F)

�
F

��
FT2Y

FThj+1

// FT
F

Now the upper rectangle is the T-image of a diagram (*) that consists of the two parts shown below.
The left one is Lemma 5.2, the right one follows from the assumption on h being a homomorphism
by (the adapted version of) Lemma 3.11:
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Y
hj //

�Y

��


F

Id

��

Y
hj //

�j

��


F

!F

��
TY

hj+1

// 
F FTY
Fhj+1

// F
F

2

As a consequence of moving from a simple functor T to the pointed functor hT; �i, we set up
an additional assumption on the distributive laws, namely that they should satisfy the unit law.
It turns out that it is appropriate to impose a new law on the algebras under consideration as
well. We will be working with algebras for the pointed functor hT; �i, these are T-algebras hZ; �i
satisfying the following unit law:

Z
�Z //

Id -5

unit �

TZ

�

��
Z

Accordingly, when talking about a �-bialgebra in this context, we will assume that the T-algebra
operation involved is an algebra for the pointed functor hT; �i.

With this new reading of a �-bialgebra, we can take over Lemma 3.13 as it is. Again the proof
is very similar to the original one, except that the diagram that handles the inductive case of the
induction proof contained gets slightly more complicated (for i 2 IN and Y := TiX):

TZ

�

��
TY

Tfi
//

Th�Y ;�ii

��

fi+1=fij
�

++f d c b a ` _ ^ ] \ [ Z X W

�i+1

""

}

�

�
�
*

6

A

T((*))

TZ
�

//

ThId;�i

��

Z

�

��

�-bialg

T(TY � FTY )
T(fij

��Ffij
�)

//

�TY

��

nat. �

T(Z � FZ)

�Z

��
FT2Y

FTfij
�

=FTfi+1

//

Ffi+1j
�

55U W X Z \ ] _ a b d f g i jFTZ
F� // FZ

Now the upper left rectangle is the T-image of a diagram that combines the two below. For the
left one we need the additional assumption on � satisfying the unit law, with the right one we
recover the induction hypothesis:

Y
fi //

�Y

��

nat. �

Z

�Z

��

Id

�

unit �

Y
fi //

�i

��

ind. Hyp.

Z

!F

��
TY

Tfi //

fij
�

55TZ
� // Z FTY

Ffij
�

// FZ

To be able to apply the new reading of Lemma 3.13 inside the proof of Theorem 5.1, we have
to check that the bialgebra h
F; �F; !Fi that we have to instantiate it with is indeed a �-bialgebra
in the new sense:
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Lemma 5.4 Using the setting of Theorem 5.1 we have that the coiterative morphism �F from
T� h
F; !Fi to h
F; !Fi is a hT; �i-algebra operation, i.e. it satis�es the appropriate unit law.

Proof: We can easily show that in case � satis�es the unit law, we have that �X is an F-
coalgebra homomorphism from any given F-coalgebra hX;�i to T� hX;�i. This yields that the
diagram below exists in CoalgF. It commutes by �nality. The image of it under the forgetful
functor is the unit law for �F.

h
F; !Fi
�
F //

Id *2

�nality

T� h
F; !Fi

�F

��
h
F; !Fi

2

With these adaptations of the statements used in the proof of Theorem 3.9 we can prove
Theorem 5.1 along the same line.

The initial goal was to show that we can allow distributive laws of the more general type form
above in Theorem 3.9. But Theorem 5.1 introduces the additional need for a unit � interacting
nicely with � { which we may not have as in the case of the interleaving function that we started
out with. But in case the category has binary coproducts as well, we can move from the setting
for the functor T to one for a modi�ed functor having a unit. Then we can apply Theorem 5.1 in
the second setting and transform the result back. This leads to the following corollary:

Corollary 5.5 Let the category C have binary and countable coproducts. Assume we are given
the C-functors F and T with the �nal F-coalgebra h
F; !Fi and a natural transformation � :
T(Id� F)) FT.

Then for every FT-coalgebra hX;�i there exists a unique �-coiterative morphism induced by �.

Proof: Consider the following transformation:

~T := Id + T

� := inl : Id) ~T

� := inr : T) ~T
~� := [F� Æ �2;F� Æ �] : ~T(Id� F)) F ~T
~� := [IdZ ; �] : ~TZ ! Z (for � : TZ ! Z)
~� := F�X Æ � : X ! F ~TX (for � : X ! FTX)

This gives us:

� a pointed functor h~T; �i,

� a natural transformation ~� satisfying the unit law,

� for a T-algebra hZ; �i we get a ~T-algebra operation ~� satisfying the unit law,

� moreover, for a �-bialgebra hZ; �; �i we get a ~�-bialgebra hZ; ~�; �i,

� an arrow h : X ! Z is a homomorphism up-to-� from the FT-coalgebra hX;�i to the F-
coalgebra hZ; �i if and only if it is a homomorphism up-to- ~� from the F ~T-coalgebra hX; ~�i
to hZ; �i.

From these statements we can conclude that for an FT-coalgebra hX;�i a �-coiterative arrow
induced by � �ts as a ~�-coiterative arrow induced by the F ~T-operation ~� and vice versa. Thus,
Theorem 5.1 proves the statement instantiated with h~T; �i and ~�. 2
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Coming back to our guiding example from Section 5.1, the above corollary tells us that the
equations given for encode uniquely de�ne the function. Technically, for TX := X �X and � as
in equation (5) on page 29, it is the �-coiterative arrow induced by

hlabel; left; righti : Btree! IR �Btree�Btree| {z }
=ST(Btree)

:

5.4 Adapting the �-Coinduction Proof Technique

In a similar procedure one can extend the notion of a �-bisimulation to distributive laws � as in (4)
on page 29 and prove an adapted version of Theorem 4.15. In a �rst step one would state it analog
to Theorem 5.1 for a pointed functor hT; �i and � as assumed there. Here the �-bisimulation has
to be taken with respect to T-algebra operations satisfying the unit law as in 5.3. This time the
transformation from the proof of Corollary 5.5 yields the following:

Corollary 5.6 Assume the category C has binary and countable coproducts and we are given two
functors T;F : C ! C, such that T distributes over F via a distributive law � as in (4), and two
F-coalgebras hX;�Xi and hY; �Y i. If B is a �-bisimulation (de�ned using the adapted notion of
a �-bialgebra) between hX;�Xi and hY; �Y i then there exists a (standard) bisimulation ~B between
them with B � ~B.

5.5 Extended Distributive Laws and Theorem 3.10

As of yet we have only talked about distributive laws of the more expressive type in the context
of the �rst version of the �-coiteration Theorem 3.9. Of course one can treat the second version
(Theorem 3.10) as well. As it turns out, it even allows for a more structured approach. Again, we
will not give the details of the construction here, but we will mention the outline for the interested
reader. The idea is to �rst prove a version of Theorem 3.10 where the functor F is replaced by
a copointed functor h~F; �i. (The �nal coalgebra is replaced by a �nal coalgebra for the copointed
functor, for the distributive law there is an additional counit law, and � : X ! ~FTX has to satisfy
a unit/counit law �TX Æ � = �X .) Then one transforms the initial problem to one �tting into the
latter framework by setting h~F; �i = hId� F; �1i. The resulting theorem would be the following:

Theorem 5.7 Assume we are given a functor F : C! C with a �nal coalgebra h
F; !Fi, a monad
hT; �; �i in C and a distributive law � of the functor T over F of the type (4) on page 4 such that
the following diagrams commute:

Id� F
�2 +3

�Id�F

��

F

F�

��
T(Id� F)

�
+3 FT

T(Id� F)
� +3 FT

T2 (Id� F)

�(Id�F)
;C������

������

ThT�1;�i #+OOOOOOOOO

OOOOOOOOO FT2

F�
[c??????

??????

T(T� FT)

�T

3;oooooooooo

oooooooooo

Then, for every FT-coalgebra hX;�i there exists a unique �-coiterative arrow induced by �.

6 Example: The Dual of Course-of-Value Iteration

In this section we are going to present yet another example for the theory explained above. The
basic coiteration schema has the property that exactly one stage of a behaviour gets de�ned by
unfolding the speci�cation once. Here we will develop a format that weakens this close relationship.
It seems reasonable to demand that the speci�cation should determine at least one stage at a time
to make sure that the de�nition is what is sometimes called productive, i.e. that eventually all
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information about the behaviour can be derived. But it would not hurt if more than one stage
would be revealed by unfolding the behavioural speci�cation once.

As a simple example consider in�nite streams of elements from a set A, i.e. A!, the �nal
coalgebra of the Set-functor SAX := A�X . A function into those streams could be speci�ed such
that for each state in the domain a nonempty pre�x of the resulting stream and the argument for
the construction of the rest is given. It is not surprising that this still uniquely assigns a stream
to each element, as one could prove by giving a construction that would split one such transition
s

w
! s0 with a whole pre�x w = a1 : : : an 2 A+ into several one element transitions via fresh

intermediate states s1; : : : ; sn�1:

s
a1! s1

a2! � � �
an�1
! sn�1

an! s0:

The schema that de�nes streams in A! not via coalgebras of the functor SAX := A �X but
via (A+ ��)-coalgebras arises as a �-coiteration schema for a certain functor T and an extended
distributive law � : T(Id� SA) ) SAT. The functor would be TX := A� �X , the distributive
law is set as

�Xhw; hx; hx0 ; x
0iii :=

�
ha; hw0; xii if w = aw0,
hx0; h�; x

0ii if w = �.

for w;w0 2 A�; a; x0 2 A; x; x0 2 X where � 2 A� denotes the empty word.
To see what the corresponding �-coiteration schema would be like, we need to check what the

T-algebra operation on the �nal SA-coalgebra hA
!; hhead; tailii would be. It turns out to be the

pre�xing prefix : A� �A! ! A! of an in�nite stream � 2 A! with the �nite word w 2 A�, that
we can either describe by corecursion on the resulting stream or by iteration on w:

prefix(�; �) := �

prefix(aw; �) := hhead; taili�1(a; prefix(w; �)):

With the observation that SAT-coalgebras can equivalently be expressed as (A
+��)-coalgebras

and some rearrangement of the resulting diagram we get that the �-coiterative arrow h : X ! A!

induced by an operation � : X ! A+ �X is the unique arrow �tting in the diagram below:

X

�

��

h //______ A!

A+ �X
Id�h

//___ A+ �A!

prefix

OO

One function that could be speci�ed nicely using this schema is the function substt : A
! ! B!

that, for a given mapping t : A ! B+, outputs for every stream ha0a1 : : :i 2 A! the stream
ht(a0)t(a1) : : :i 2 B! that results after replacing every element ai by the word t(ai). It arises as
the �-coiterative arrow (for � as above) induced by

(t� Id) Æ hhead; taili : A! ! B+ �A!:

Turning to the corresponding proof technique, we have that a relation R is a �-bisimulation on
the �nal SA-coalgebra hA

!; hhead; tailii if for every pair h�; �i 2 R there is a common nonempty
pre�x w 2 A+ such that � = prefix(w; �0) and � = prefix(w; � 0) for h�0; � 0i 2 R.

As an example one could use this notion to prove that for two functions t1 : A ! B+ and
t2 : B ! C+ we have that

substt2 Æ substt1 = subst ~t2 Æt1

for the element-wise extension ~t2 : B
+ ! C+ of t2 to nonempty words. This follows from the fact

that the relation
R := fhsubstt2(substt1(�)); subst ~t2 Æt1(�)i j � 2 A!g
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is a �-bisimulation. (To show this, one would use the lemma

substt(prefix(w; �)) = prefix(~t(w); substt(�));

which is easily proved by induction on w 2 A�.)
Under certain assumptions the above situation can be generalised from stream systems to F-

coalgebras for functors F : C ! C with a �nal coalgebra h
F; !Fi. For the interested reader we
briey outline the construction.

The assumptions are that C has binary coproducts and that for every object Z in C the
functor FZX := Z + FX has an initial algebra { say h�Z ; ÆZi. Then the mapping Z 7! �Z can
be extended to a functor �, using initiality for its action on arrows. To generalise the distributive
law from above to this setting, we need a natural transformation � : �(Id � F) ) F�. It can
be set as �X := [F�X Æ �2;F��1] Æ Æ

�1
X�FX where �X := ÆX Æ inl : X ! �X . Let �F denote

again the coiterative arrow from �� h
F; !Fi to h
F; !Fi. Theorem 5.1 says that in case C has
countable coproducts6 a speci�cation � : X ! F�X uniquely characterises an arrow f : X ! 
F

by requiring it to satisfy !F Æ f = Ff j�F Æ �.
The above �-coiteration schema turns out to be the same as Vene and Uustalu's [UV99] char-

acterisation of \futurmorphisms". They state that there is a unique arrow satisfying the equation
from above with f j�F replaced by the iterative arrow from h�X ; ÆXi to h
F; [f; !

�1
F ]i. But the

two are equal, which easily follows from the observation that �F can be seen to coincide with the
iterative arrow from h�
F ; Æ
Fi to h
F; [Id
F ; !

�1
F ]i.

Vene and Uustalu derive this result by dualising their categorical description of course-of-value
iteration. The duality can intuitively be understood as follows: Course-of-value iteration allows
one to de�ne a function's value on a given term using its value on sub-terms of arbitrary depth
instead of accessing immediate sub-terms only. In this dual schema we are allowed to specify
arguments for the construction of remaining parts of a behaviour at stages arbitrarily further out
in the future instead of being forced to give them for the following stage already.

At the same time we get a corresponding notion of a �-bisimulation. Intuitively, a relation B

is a �-bisimulation for � as above, if for every pair of related states their behaviour can be split
into a common initial part, which has to be nonempty and �nite, and continuations generated by
successors which are related by B again. We call such a relation a multi-step bisimulation because
it may take several equivalent steps from two related states until one encounters successors which
are related again. Although this seems to be a natural generalisation of the conventional notion
of a bisimulation, we have could not �nd it in the literature yet.

7 Example: �-Coiteration and Terms

In this section we will again consider speci�cations involving operators in the de�nition of the
dynamics of a state. We have already encountered such an example in Section 3.1 when we de�ned
the multiplication of power series using sums and in Section 5.1 where the encoding of in�nite
binary trees into streams was speci�ed using an interleaving operation. The simple treatment
employing TX := X �X was possible in both cases because of the very regular occurrence of the
operator inside the speci�cation. The tail of � 
 � for instance could always be characterised as
the sum of two products of streams. Here we will give a schema that allows an arbitrary use of
possibly several operators. As always, we start with a concrete example.

7.1 The Stream of Hamming Numbers

Taking up an example from Dijkstra's [Dij81] (also treated by Sijtsma [Sij89]), we consider the
sorted stream ham 2 IN! of all Hamming Numbers in a simpli�ed version, namely as the natural
numbers whose only prime factors are 2 and 3. Streams of natural numbers will again be regarded
as given by the �nal SIN -coalgebra for SINX := IN � X . We will concentrate on the following

6We can again get rid of this assumption using a variant of Theorem 3.10, since � can be shown to be a monad.
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speci�cation using the auxiliary operators merge : IN! � IN! ! IN! and mapg : IN
! ! IN! for

g : IN ! IN :

hhead; taili(ham) = h1; merge(map�2(ham); map�3(ham))i

hhead; taili(merge(�; �)) =

8<
:
h�0; merge(�

0; �)i if �0 < �0
h�0; merge(�

0; � 0)i if �0 = �0
h�0; merge(�; �

0)i if �0 > �0

hhead; taili(mapg(�)) = hg(�0); mapg(�
0)i

for � = h�0 : �
0i; � = h�0 : �

0i 2 IN! and the functions �2 and �3 that double and triple their
arguments.

The idea is to view the stream ham as a function ham : 1 ! IN! and to de�ne it as the �-
coiterative arrow induced by some � : 1! SINT1. Here TX is the set of terms freely generated by
merge and mapg over X . We will develop this schema in a more general setting in the remainder
of this section.

7.2 The �-Coiteration Schema on Terms

Assume we are given a signature h�; ari, i.e. a set � of operator symbols coming with an arity
assignment ar : � ! IN . Let TX denote the set of terms freely generated by this signature over
X . We will sometimes call the set X a set of variables in this context.

A term just consisting of the variable x 2 X will be written as x 2 TX , and the injection
function x 7! x will be denoted by �X : X ! TX . A term that has again terms as variables can
be attened by the operation �X : T2X ! TX , inductively de�ned as

�X(t) := t

�X(op(tt1; : : : ; ttar(op))) := op(�X (tt1); : : : ; �X(ttar(op)))

for t 2 TX , op 2 �, and tti 2 T2X .
We can extend the mapping X 7! TX to a functor by declaring its operation on a function

f : X ! Y to be the application of f to all its variables, i.e.

(Tf)(x) := f(x);

(Tf)(op(t1; : : : ; tar(op))) := op((Tf)(t1); : : : ; (Tf)(tar(op)))

for each op 2 �. Note that this de�nition makes both { the injection of variables and the attening
{ natural transformations: 7 � : Id) T and � : T2 ) T.

To use the functor T within �-coiteration, we need to specify its interaction with F, i.e. a
distributive law � : TF ) FT or, as in Section 5, � : T(Id � F) ) FT. We will concentrate on
the latter type, since many examples in this context require the extended expressibility it o�ers.

Assume we are given such a distributive law �. Let h
F; !Fi be a �nal F-coalgebra and let
[[:]] denote the coiterative morphism from T� h
F; !Fi to h
F; !Fi. By applying Theorem 3.9 we
get that for every operation � : X ! FTX there is a unique arrow f : X ! 
F �tting into the
diagram below

T
F

[[:]]��
X

9!f //____

8�

��


F

!F

��
FTX

Ff j[[:]]
//___ F
F

7Taken together this de�nes the familiar term monad hT; �; �i.
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The above statement is not fully satisfactory, since it is stated referring to an evaluation of terms
[[:]] of which we do not know much yet. The property we would like it to have is compositionality.
Because if this is the case, then every syntactical operation op 2 �, ar(op) = n represents an
operation op� : 
n

F ! 
F such that

[[op(t1; : : : ; tn)]] = op�([[t1]]; : : : ; [[tn]])

and the characterisation of f from above is turned into one based on these \real" operators.
Following Turi and Plotkin [TP97], this holds in case the distributive law is compositional

itself (i.e. it satis�es the assumption made in Theorem 3.10). The latter condition is equivalent
to saying that � is constructed from a semantics of the single operator symbols in the shape of a
natural transformation

�op : (Id� F)n ) FT (6)

for each op 2 � with ar(op) = n.
Formally, the distributive law � is derived from these operator speci�cations as follows:

�X (hx; fxi) := (F�X )(fx)

�X (op(s1; : : : ; sn)) := %
op
X (hT�1; �X i(s1); : : : ; hT�1; �X i(sn))

for x 2 X , fx 2 FX , op 2 � with ar(op) = n, and si 2 T(X � FX), using the abbreviation

%op : (T� FT)n ) FT

%
op
X := F�X Æ �opTX :

A speci�cation of the format in (6) determines one F-step for any term op(x1; : : : ; xn) of
depth one with xi 2 X as �opX (hx1; d1i; : : : ; hxn; dni) 2 FTX given that di 2 FX is the F-step
of the variable xi from the i-th argument. The role of the assumption on �op to be a natural
transformation is actually to restrict the access to the xi and their direct successors possibly
occurring inside the di. They can just be used as references, no further checks can be made on
them.

To determine the F-steps of a term op(t1; : : : ; tn) 2 TX of greater depth, one recursively
computes those of the sub-terms ti and then applies �opTX , i.e. the semantics of op treating the ti
as variables. This results in an element from FT2X , but by attening the terms we end up in the
desired set.

Without proof we state that for a compositional distributive law we obtain a compositional
evaluation of terms on the �nal F-coalgebra.

Theorem 7.1 Let a functor F : Set! Set with a �nal coalgebra h
F; !Fi and a signature h�; ari
with a natural transformation �op as in (6) for every op 2 � be given. Then the coiterative
morphism

[[:]] : T� h
F; !Fi ! h
F; !Fi

for � as above is compositional, i.e. we can derive from it a set of operators

op� : 

ar(op)
F ! 
F for op 2 �

such that [[:]] = [[:]]� where

[[�]]� := �

[[op(t1; : : : ; tar(op))]]
� := op�([[t1]]

�; : : : ; [[tar(op)]]
�)

where � 2 
F and ti 2 T
F. Furthermore, the operators are the unique ones �tting for every
op 2 � with ar(op) = n into the following diagram:
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n
FhId;!Fi

n

uukkkkkk

op�

��
(
F � F
F)

n

�
op


F

��

F

!F

��
FT
F

F[[:]]� ))TTTTTT

F
F

Turi and Plotkin [TP97] show that speci�cations of operators by means of natural transfor-
mations �op as in (6) are closely related to those by means of structural transition rules in GSOS
format [BIM95]. We will show below how merge and mapg from above can be captured. Many
important operators are de�nable this way. The operators on formal power series Rutten con-
siders for his stream calculus [Rut00a], of which we have seen the sum and convolution product
already, all �t into this framework. Other examples are regular operators on automata [Rut98a]
and many operators used in Process Algebra, like parallel composition (see e.g. [BW90, Fok00] for
introductions).

Again we take a look at the proof principle that we get for this setting of T and �. For
simplicity we will concentrate on �-bisimulations on the �nal F-coalgebra h
F; !Fi. Let again op

�

for op 2 � denote the decomposition of [[:]] : T� h
F; !Fi ! h
F; !Fi from above. For a relation
B � 
F �
F we set B� to be the congruence closure of B under op� for op 2 �, i.e. the smallest
relation B� containing B such that for all op 2 �, ar(op) = n and h�i; �ii 2 B�, 1 � i � n also

hop�(�1; : : : ; �n); op
�(�1; : : : ; �n)i 2 B�. The relation B� represents the span hTB; �1j

[[:]]
; �2j

[[:]]
i

according to Lemma 4.2, because by applying the closure condition several times one gets that the
relation B� contains a pair if it can be obtained by evaluating the same �-context (with multiple
holes) where states are plugged into corresponding holes that are related by B.

We get that B is a �-bisimulation on h
F; !Fi if and only if there is an operation � : B ! FB�

making the diagram below commute (note again that we use di�erent projections �i in the upper
and lower part of the diagram)


F

!F

��

B

9�

���
�
�

�1oo �2 // 
F

!F

��
F
F FB�

F�1
oo

F�2
// F
F

The above characterisation of B� explains that a relation satisfying this condition is sometimes
called a bisimulation up-to-context [San98].

From Theorem 4.15 we get that a bisimulation up-to-context on the �nal F-coalgebra only
relates identical states in case the contexts are built from a set of operators de�nable by a speci-
�cation of the type (6) on page 38.

7.3 The Hamming Numbers Example revisited

Turning back to the example from Section 7.1, we will consider the signature h�; ari with � =
fmergeg[fmap

g
j g : IN ! INg and ar(merge) = 2, ar(map

g
) = 1. The de�nitions of the functions

merge and mapg given there can be transformed into a semantics of the syntactic operators as
follows

�
merge

X (hx; hx0; x
0ii; hy; hy0; y

0ii) =

8<
:
hx0; merge(x

0; y)i if x0 < y0
hx0; merge(x

0; y0)i if x0 = y0
hy0; merge(x; y

0)i if x0 > y0

�
map

g

X (hx; hx0; x
0ii) = hg(x0); map

g
(x0)i:

The naturality of these de�nitions is easily veri�ed. Note that x0 and y0, on which the case
distinction is made and to which the function g is applied, are natural numbers taken from the
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direct observations. Thus, this does not violate the above argument that the elements from X

may only be used as a reference.
From Theorem 7.1 we get that the term evaluation [[:]] on the �nal coalgebra hIN!; hhead; tailii

replaces the term constructors merge and map
g
by the operations merge� and map

g

�. The charac-

terisation of these functions at the end of the theorem can easily be seen to be equivalent to the
de�nitions of merge and mapg in Section 7.1.

Now we can de�ne the arrow ham : 1 ! IN! as the �-coiterative arrow induced by � : 1 !
IN � T1 with (recall that 1 = f�g)

�(�) := h1; merge(map
�2
(�); map

�3
(�))i:

This yields a unique arrow satisfying

hhead; taili(ham(�)) = (Id � hamj
[[:]]
)(�(�))

= h1; [[merge(map
�2
(ham(�)); map

�3
(ham(�)))]]i

= h1; merge([[map
�2
(ham(�))]]; [[map

�3
(ham(�))]])i

= h1; merge(map�2([[ham(�)]]); map�3([[ham(�)]]))i

= h1; merge(map�2(ham(�)); map�3(ham(�)))i

as wanted.
We want to conclude the treatment of this example with two side remarks.

� The above argument establishes a unique solution of the speci�cation of ham. It does not
formally show that the resulting stream indeed contains all Hamming Numbers in sorted
order { although this may be clear by inspection. To formally do so, one could consider
another more intuitive but less e�ective way to specify this stream, namely as the ordering
of the set of Hamming Numbers, i.e. sort(H) where H := f2m � 3n j m;n 2 INg and
sort is the function mapping an in�nite set of natural numbers to the ordered stream of
all its elements, easily de�nable by coiteration. One can show that the singleton relation
fhH; ham(�)ig is a �-bisimulation (or bisimulation up-to-context) between the stream system
de�ning sort and hIN!; hhead; tailii, provided one includes only operators mapg for strictly
monotonic g.

� A standard means to formalise properties of coalgebra states are invariants. The question
arises how to prove invariant properties of the image of �-coiterative morphisms. In the
concrete example, one might want to prove that the stream ham(�) is strictly increasing
(independent of the approach taken in the previous point). The set of all such streams can
be speci�ed as the greatest invariant P contained in the set P � IN!, where P consists of all
streams of which the �rst element is smaller than the second. That ham(�) is contained in
P could be proved by showing that indeed it is in P and that P is closed under merge and
mapg , again for strictly monotonic g. One direction for future work would be to formulate
general principles embodying this type of reasoning.

8 Related Work

Two known generalisations of the basic coiteration schema that we are aware of are the schemata
that arise as the duals of primitive recursion and course-of-value iteration, as derived on a cat-
egorical level e.g. by Vene and Uustalu [VU97, UV99]. We have already treated these schemata
in Sections 3.2 and 6. In both cases the universal characterisation Vene and Uustalu give can be
derived from the one the corresponding instance of our theory yields.

Furthermore, Vene and Uustalu prove some laws to calculate with the arrows obtained. All of
them easily follow from our treatment as well. As an example, they provide a fusion law for both
schemata. In our setting it reads as follows: Given a functor T that distributes over F via � and two
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FT-coalgebras hX;�Xi and hY; �Y i, the �-coiterative arrow fX : X ! 
F induced by �X can be
written as fY Æ h if h : X ! Y is an FT-homomorphism from hX;�X i to hY; �Y i and fY : Y ! 
F

is the �-coiterative arrow induced by �Y . It easily follows from fY j
�F Æ FTh = (fY Æ h)j

�F and
the unique existence of �-coiterative arrows.

The research presented here was inuenced by the work of Lenisa [Len99a], who made a �rst
step towards a generalised categorical description of extended coinduction schemata known in set
theory. A central ingredient is her schema of coiteration up-to-T for a pointed functor T = hT; �i {
i.e. a functor T : C! C with a natural transformation � : Id) T. Given an F-coalgebra hTX;�i,
it de�nes the arrow f := h Æ �X from the set X into the carrier of a �nal F-coalgebra h
F; !Fi as
the composition of the unit at X and the coiterative morphism h : hTX;�i ! h
F; !Fi. For most
of the examples that we presented here one can equip the functor T with a unit � such that the
functions under consideration are T -coiterative for a certain �. But the schema as such does not
give a characterisation. Her theory only provides further information in case the pointed functor
is taken from a monad T = hT; �; �i and distributes over the functor F via a distributive law �.
Then a proof principle applies which is based on her notion of a bisimulation up-to-T .

In our approach the distributive law is already a part of the de�nition principle. It enables us
to replace the operation � : TX ! FTX by the { to our impression { more natural � : X ! FTX
leading to a characterisation of the arrow f : X ! 
F as a unique one �tting into the �-coiteration
diagram. As a side e�ect, the need for additional structure built upon T can be dropped.

Lenisa's bisimulations up-to-T relate the states of two F-coalgebras of the shape hTX;�Xi
and hTY ; �Y i as they appear within coiteration up-to-T . It turns out to be a special case of our
notion of �-bisimulation where the bialgebras are hTX;�X ; �X i and hTY ; �Y ; �Y i. (Note that her
de�nition does not assume these bialgebras to be �-bialgebras. But an almost equivalent, though
more technical assumption is made later in her main theorem [Len99a, Theorem 8 ii) assumption
3)] justifying the use of these relations.8)

Our result is wider in scope in that it neither requires the functor T to be taken from a monad
nor does it only apply to coalgebras where the carrier is of the shape TX . In particular, it can
directly be used to reason about equivalences on the �nal coalgebra, as it was done in the example
from Section 4.2. Actually we even consider this to be its most important application.

Another paper that our work on bisimilarity proofs is related to is Sangiorgi's bisimulation
proof method [San98]. It is about relational bisimulations for labeled transition systems in Set,
but a reformulation in terms of spans between arbitrary F-coalgebras in an abstract category C

should be possible (certainly requiring extra assumptions to be made for particular aspects of the
theory to carry over). We will make our comparison with respect to this envisaged generalisation.

An important notion in his work is that of a progression: Given two F-coalgebras hX;�Xi and
hY; �Y i and two spans R = hR; r1; r2i and R

0 = hR0; r01; r
0
2i on X and Y , we say that R progresses

to R0 and write R� R0, if there exists a  : R! FR0 making the diagram below commute:

X

�X

��

R



���
�
�

r1oo r2 // Y

�Y

��
FX FR0

Fr01

oo
Fr02

// FY

With this terminology, a span is a bisimulation between the given coalgebras if and only if it
progresses to itself.

Sangiorgi considers what he calls sound functions. These are functions G on spans between
the carriers of hX;�Xi and hY; �Y i, such that for every span R it suÆces to show R � G(R)
in order to conclude R � B for some bisimulation B between hX;�Xi and hY; �Y i. He de�nes
a class of respectful functions on spans and shows that it contains interesting examples and has
desirable closure properties (for the latter to carry over to our more general case one needs to
make assumptions on C and F). His main theorem states that every respectful function is sound.

8Take a look at [LPW00] for a clari�ed version of its proof.
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To apply Sangiorgi's terminology in our setting of a functor T that distributes over F via �,
we could consider the following function G on spans between X and Y : Given two T-algebra
operations �X and �Y on X and Y respectively, we de�ne

G(hR; r1; r2i) := hTR; r1j
�X ; r2j

�Y i:

In case hX; �X ; �Xi and hY; �Y ; �Y i are �-bialgebras, a span B is a �-bisimulation between hX;�Xi
and hY; �Y i with regard to �X and �Y if and only if B� G(B). It turns out that under the same
assumption we can prove that G is respectful. Thus, an alternative way to obtain Theorem 4.15
would be to �rst generalise Sangiorgi's theorem and then get our result via the instantiation from
above. Seen that way we proved a class of functions respectful, including some of those already
considered by Sangiorgi, like the contextual closure operator.

Our use of a distributive law � and �-bialgebras follows that of Turi and Plotkin [TP97].
Starting from a signature functor � and a behavioural functor F, they describe program syntax
using the term monad hT; �; �i generated by � and global program behaviour by means of the
behavioural comonad hD; "; Æi generated by F. The speci�cation of the semantics takes the shape
of a distributive law � of the monad over the comonad and its models are the �-bialgebras. As
in our treatment, the �nal F-coalgebra gives rise to a �nal �-bialgebra and, dually, the initial
�-algebra can be turned into an initial �-bialgebra. These are taken as the canonical denotational
and operational model of the speci�cation.

In the example of corecursive de�nitions using operators from Section 7 our theory gets related
to their setting, in that the functor T is taken from the term monad as well and that the class
of well behaved operators here coincides with the main class considered by Turi and Plotkin. We
add to their approach a separate treatment of speci�cations of the type � : X ! FTX , which
are similar to what is sometimes called guarded recursive de�nitions in this context. Alternatively
those could be dealt with by adding the setX as a set of constants to the signature � and extending
� according to �. To de�ne e.g. the stream of Hamming Numbers from Section 7.1, one would
include ham as a constant in the signature and extend the construction of � by

�hamX := � 7! h1; merge(map
�2
(ham); map

�3
(ham))i : 1! FTX:

One of the advantages of treating the operators and solutions of the recursive speci�cations sep-
arately is that we obtain a notion of bisimulation up-to-context to reason about these solutions,
which is not available in the setting of Turi and Plotkin.

The setting of Turi and Plotkin is more general in the sense that they consider distributive
laws of the term monad over the behavioural comonad hD; "; Æi generated by F instead of F alone.
This allows them to show that a second class of operators is well-behaved, namely those de�nable
by natural transformations of the type below, which is dual to those of type (6) on page 38:

�op : Dn ) FT�1 (7)

for op 2 �, ar(op) = n, and T�1 mapping a set of variables to the set of �-terms over those
variables of depth at most 1. That this dual class may be considered in Turi and Plotkin's
approach as well is not surprising since algebras and coalgebras play symmetric roles there. This
is not true for our setting. Here the construction does not work for the second class of operators,
which is in agreement with the fact that those may not safely be used for bisimulation up-to-
context. (Note that the alternative approach indicated above would not work either, since the
speci�cation of constants X allowed by (7) does not correspond to � : X ! FTX .) The classes
of operators �tting in Turi and Plotkin's approach are related to those for which bisimulation is
a congruence. Here it is rather the question whether the operators may be used for bisimulation
up-to-context. Sangiorgi has already pointed out that the former condition is not suÆcient for the
latter (see the example at the end of Section 2 in [San98]), which nicely explains the di�erence
encountered here.
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9 Conclusion

In this paper we presented a new general categorical framework for extended coinduction de�nition
and proof principles.

For two functors F;T : C! C such that F has a �nal coalgebra h
F; !Fi and T distributes over
F via a natural transformation � we de�ned the notion of a �-coiterative morphism f : X ! 
F

induced by an operation � : X ! FTX . The occurrence of TX in the description of the codomain
of � replaces the use of X in the basic coiteration schema and serves as a more expressive set to
point to for the next stage of the behaviour to be de�ned. The role of the distributive law � is to
lift the speci�cation from X to this set.

We gave suÆcient conditions for the unique existence of �-coiterative arrows for every FT-
operation �. One approach assumes the existence of countable coproducts in the category C, for
the other the functor T has to be taken from a monad and � should be a distributive law of that
monad over F.

Schemata arising as instances of this framework yield characterisations of many interesting
functions into the carrier of a �nal coalgebra that cannot be captured directly by its �nality.

As examples for already known principles that can be stated as �-coiteration schemata (besides
coiteration itself) we have treated primitive corecursion and the categorical dual of course-of-
value iteration. We briey mentioned that one can obtain a justi�cation for unique solutions of
behavioural di�erential equations as treated by Rutten [Rut00a] using operators like addition and
multiplication of formal power series or sequential and parallel composition of transition systems.

Furthermore we investigated the usability of the above speci�cation technique for proof pur-
poses. This lead to the introduction of the notion of a �-bisimulation. The same conditions
as above are suÆcient to show that all states related by a �-bisimulation between certain F-
coalgebras are bisimilar. We have shown that these relations can often be far simpler than the
standard bisimulations needed otherwise.

In our examples we demonstrated that the notion of a �-bisimulation specialises to bisimulation
up-to-equality, a notion that one might call a multi-step bisimulation, and bisimulation up-to-
context (see e.g. [San98]).

We view our presentation as an advancement of Lenisa's framework based on coiteration- and
coinduction up-to-T [Len99a] which we consider as a �rst step towards a categorical description
of generalised coinduction principles. Compared to her work we have emphasised the role of the
distributive law appearing there as well, which allowed us to give a characterisation of the functions
de�ned instead of a construction. Furthermore we provided a simpler and more widely applicable
proof principle and added detailed examples.

We have shown that from the point of view of Sangiorgi's Bisimulation Proof Method [San98],
every instance of our schema yields at a categorical level what he calls a respectful function in the
set-theoretic context of labeled transition systems.

We left for future work the quest for further interesting instances of our framework. Since we
found suÆcient conditions for our schema to work that do not assume the functor T to come as
a pointed functor or monad, it would be particularly nice to come up with examples exploiting
this generality over alternative approaches in the literature. In all the examples we have so far
this structure can be added immediately or at least after a straightforward reformulation of the
problem.

As another interesting point we would like to study the relation between �-coiterative arrows
and invariant properties.

Furthermore, one could �gure out the details of the categorical reformulation of Sangiorgi's
technique envisaged in the previous section and state the relation to our work indicated there
precisely. The possible gain of this e�ort would be that one could combine our technique with
others from this setting { provided this class of respectful functions can be shown to have the
closure properties required for this combination given the particular choice of C and F. This may
lead to even more powerful coinduction principles, like a combination of bisimulation up-to-context
and bisimulation up-to-bisimilarity [Mil89] that one often needs when one does not work on a �nal
coalgebra. The latter cannot be covered by our schema.
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