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User friendliness is one of the unresolved problems in CAD sys­
tems. There are many possible directions for improving user 
friendliness. Understanding of the modeling process is one of 
the most important directions. It is natural for a user to 
describe the model in terms of its evolution. We call this con­
cept model derivation. To construct and use model derivation, 
we propose a history mechanism which keeps and manipulates 
the history of the modeling process. The history mechanism 
manages high level interactions by introducing powerful sym­
bolic computation to manipulate the history. Since the history 
representation is based on the operation's syntax and separated 
from the internal model representation, it is easy to apply the 
history mechanism to any modeling system which uses esta­
blished techniques. Thus the system designer can easily intro­
duce model derivation without reducing efficiency of the imple­
mentation. 
1982 CR Categories: H.1.2, 1.3.5, 1.3.6, J.6, D.4.8. 
Note: This report has been published in the proceedings of the Eurographics '87 Conference. 

1. INTRODUCTION 

In recent years a lot of mechanical CAD systems have been developed. At this 
moment, however, they are not useful tools for product designers to create the 
CAD data that CAM systems use. A desirable CAD system provides helpful func­
tionality for the designers to construct product models during the modeling pro­
cess. There are many difficulties to obtain such CAD systems. For instance, 
relevant data model for the product models is necessary, and many studies have 
been achieved.[1, 2, 3] However, on the contrary, little study has been done on user 
friendliness. The user friendliness of CAD systems still remains a difficult problem. 
Many people have ambiguously said CAD systems must be more interactive and 
intelligent in this sense. 

There are several ways to develop user friendliness. One of them is to maintain the 
history of modeling processes. It is natural for a user to describe a model in terms 
of its evolution or derivation, however this is not possible in a conventional model­
ing system. Let us explain with an example. See figure 1. The top figure is usually 
represented by one arc, two segments, and two points in a conventional modeling 
system. We have no idea how the figure has been defined by the user. The round 
corner could have been created by either rounding a sharp corner or drawing two 
tangent lines to a circle. No sooner has the modeling system constructed an inter­
nal model,~ than the user's idea is lost. Understanding of the modeling process is 
important to improve user friendliness of modeling systems. 
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Rounding 
a sharp corner 

Drawing 
two tangent lines 

Figure 1. Two Ways to Create a Round Corner 

We think it is important to provide a mechanism to keep model derivation by 
focusing attention on the modeling process. Modeling process is carried out in an 
exploratory way involving experimentation and backtracking. The process steps 
have to be captured into the model derivation that users can use to have a per­
spective view over all the modeling process. The model derivation must be 
managed in such a way that users will still feel unhindered while building models. 
Model modification is easily realized by means of obtaining a new model derivation. 
A mechanism of this sort will have to be developed if users are to create new 
derivations by analogy with existing ones. The concept, model derivation, reflects 
the interpretations of the internal models from the user's point of view, while con­
ventional modeling systems provide no knowledge of the user's intention. There­
fore, the mechanism managing the derivations must deal with the semantics of 
modeling as well as its syntax. It is essential that powerful semantically based 
modeling tools change the way to create and modify the models. .. . -

In order to satisfy these required conditions for the model derivation manage­
ment, we propose a history mechanism which maintains the model derivation by 
keeping the history of the modeling process and manipulating the history symboli­
cally. This symbolic-computation capability is the heart of the history mechanism. 
Our premise is that it is possible to construct model derivation from a sequence of 
modeling steps, i.e., operations. The history representation is based on the syntax 
of procedural operations. This syntax base rei:iresentation is useful in introducing 
the axiomatic method of formal semantics.[ 4, 5] The history mechanism also 
guarantees the independence of model derivation from model representation. It is 
easy to apply the history mechanism to conventional. modeling systems by the 
separation between model interpretations and representations. Thus system 
designers of modeling systems need not worry about maintaining an interpretation 
and ensuring an efficient implementation. 

The input history of user's coinm.ands has been utilized during the interaction pro­
cess.[6, 7] It is, however, impossible to maintain the model derivation only with the 
input history in the form of text composed of character strings (i.e., a log file). An 
approach to keeping the user's idea of a model has been to provide such a flexible 
data reyresentation that the resUlting model contains an interpretation of 
itself.[BJ In other words, it has tended to allow several representations of the 
identical object to exist according to the user's intentions. However, this kind of 
method leads the modeling system to less efficiency in calculation. Furthermore, 
the data representations are so unsuitable for applications that judging the 
equivalence of models is quite difficult. 
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Section 2 describes the representation of the history which is required to 
represent the model derivation. Section 3 shows how the history manager traces 
the dependency network of the history in order to utilize the model derivation and 
points out some other characteristics of the history mechanism. Section 4 con­
tains the examples that were applied to a simple drafting system. By applying the 
history mechanism, the drafting system has been improved to handle variational 
geometry.[9] Section 5 summarizes this study and indicates future plans. 

2. IDSTORY REPRESENTATION 

The history mechanism is realized by the history manager module situated 
between the user interface and the kernel of the modeling system. The history 
manager supervises the modeling process in terms of monitoring the interactive 
process. Figure 2 shows the system configuration. The history manager stores the 
history of a user's interaction in its own database. This is the characteristic point 
of this study. Studies on data models such as geometric reasoning have tended to 
store model derivation in the database of the modeling system itself. The data­
base of the history manager also keeps several general rules concerning the 
interaction. The history manager is able to complete the interaction at a high 
level by applying those rules to the history. 

User 

Interlace 

History 

Manager 

History 
Database 

M:odeling 

System 

Figure 2. History Manager in History Mechanism 

2.1. History Item 

Our premise is that an operation (i.e., a command) corresponds to a step in the 
modeling process. This means that the history of the interaction can be expressed 
in records of the operations executed by the user. The history manager adds a 
history item to the history database every time an operation is executed. The his­
tory item is a framework to represent the history corresponding to each opera­
tion. 

A history item consists of the two predicates of the input and output relations. 
Both predicates assert the relations between operations and data objects related 
to the operations (i.e., entities in the modeling system). An input relation shows 
the list of the entities and numerical values that the operation took as its argu­
ments. An output relation tells the list of entities generated by the results of the 
operation .• The history manager treats each operation as an instance object. Let 
us consider an operation X which takes N arguments and generates M results. The 
history item of this operation would be: 

input {operationX. argJ, arg2, ... , argN) 
output{operationX", res 1. res2, ... , resM) 
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2.2. Rules in the Operation Class 

Each operation is treated as an instance object within a history representation. 
We can categorize the same kind of operations as a class and represent their 
characteristics using rules about their syntax and semantics. Syntactic rules 
specify the syntax of both input and output. The input syntax means the number 
of input arguments with their data type and range. In the case of the output syn­
tax, the number might be variable but the maximum number is fixed. By intro­
ducing axiomatic methods of formal semantics, the operation's semantics can be 
represented in predicates based on the syntactic rules. Semantic rules show the 
logical relations between the arguments and the resulting outputs of the opera­
tions. 

Let us explain a simple example for a drafting system. Consider an operation 
called 'Intersect~urues '. used to determine the intersection points between 
curves. The operation takes two curves, and calculates the intersect points of 
these curves and creates their data. Assuming that the curve types handled in the 
system are only a straight line and a circle, the number of resulting points should 
be less than three. Figure. 3 shows an example of this operation for a circle and a 
line. 

curve2 {circle) 
curve 1 {line) 

Figure 3. Intersect-curves 

The history item for a certain operation of this kind looks like this: 

input {operationX, curve1, curueZ) 
autput{operationX, pointl, pointZ) 

This history item implies some syntactic specifications of the operation. The 
operation requires two input arguments and produces two output results. There 
are some other syntactic rules about arguments and results such as data type and 
range. In this example, we restrict the type of curves to lines and circles. The 
results must be points. We can also represent the semantics of the operation as 
rules. The intersection points are the points which both input curves pass 
through. The syntactic and semantic characteristics of this operation can be 
represented in the following rules: · 

OPERAl'ION....CLASS 
class_Df {Opera.lion, 'Intersect~urves ') 

SYNTAX 
• irz,put {Operation, Argl, ArgZ) 

& output(Operation, Res 1. ResZ) 
& {type_Df(Arg1, 'line') I f:ype_Df{Argl, 
& (type_Df{Arg2, 'line') f:ype_Df {ArgZ, 
& type_Df{Res 1, 'point') 
& type_Df(ResZ, 'point') 

'circle')) 
'circle')) 



SEMANTICS 
coincide{Resl, Argl} 

& coincide {Res 1, Arg2} 
& coincide {Res2, Arg 1) 
& coincide{Res2, Arg2} 
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The operator 'I' means OR, while '&' means AND. The predicate class..JJj(i, c) 
defines the class of the operation, with i being an instance of the operation class 
c. The predicate type..JJj{d, t) specifies the type of the data object d as t. 
Coincide{p, c} asserts the geometric relation that the curve c passes through the 
pointp. 

3. IDSI'ORY USAGE 

Modeling activity is processed in an accumulative way. A model is constructed 
incrementally such that a user generates an entity with an operation and he can 
use the entity in future operations. The former operation affects later operations 
by the entity. In other words, later operations depend on the entity and the opera­
tion. The history of the modeling process expresses dependencies that are closely 
related to the model derivation. The history manager uses the history by tracing 
these dependencies. 

The dependencies in the history mechanism are expressed in the following 
manner. Suppose there are two consequent operations X and Y. The latter opera­
tion Y uses the entity H that has been generated by the former operation X 
According to the definition of the history item, both the output relation of X and 
the input relation of Y contain the entity H : 

output{operationX, .. ., entityH, ··J 
input {operationY. ... , entityH, .... 

These two relations point out the dependency between the operation X and Y 
mediated by the entity H. 

e e ., 
• .. • . • .. . .. • 

operationX 

operationY 

• ... e 
• .. 
• • 

operationW 

operationZ 

Figure 4. Dependency Network of History 
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Since many operations are executed and many data objects are related to those 
operations during the modeling process, there are a great number of dependen­
cies generated. The dependencies among operations and data objects form a com­
plex network propagating throughout the whole history, figure 4. Solid line arrows 
stand for output relations, dotted line arrows stand for input relations. The his­
tory manager traces this dependency network in two directions, in the direction of 
the arrows and in the opposite direction. Since each node is connected to multiple 
arrows, the tracing in either direction might be propagative. We named these 
characteristics of tracing history as the downward and upward propagation of the 
history. Roughly speaking, a downward propagation implies that an operation 
affects later operations and resulting entities. An upward propagation implies that 
an entity is derived from former operations and related entities. 

3.1. Downward Propagation of History 

One goal of this history mechanism is to build an experimental environment for 
modeling activity. The history mechanism allows modification of models by replay­
ing the modeling process according to the modified history. Let us explain the 
replay mechanism without any modification before discussing history modification. 
To replay the whole modeling process is easy, if the history keeps the contents of 
past operations in sequence. The history items are stored in the same order as 
the operation sequence. The history manager takes the input relation one by one 
from its database and reinvokes respective operations. It can be said that replay 
is accomplished by sequential tracing which has a downward tendency. This how­
ever is linear rather than propagative. 

The problem in the replay process is that the history items are represented with 
only entities valid in the original modeling process. Whenever the input relation 
includes some entities, the new operation must be invoked with the new entities 
having been generated in the replay process. The original input relation cannot be 
used alone. The history manager has to adjust it to the context of the replay pro­
cess. The correspondence between the original entities in the history and the new 
entities is necessary for the adjustment. To make this correspondence, the his­
tory manager matches the results of a new operation with those of the original 
operation each time. In this sense, the history can be seen as a scenario in the 
replay process. 

The history mechanism provides the capability of model modification by means of 
modifying the history. The history is treated as a scenario including some parame­
ters in the modification process. By featuring arguments in operation rules, the 
history manager knows which arguments are changeable. For instance, consider 
8.n operation to make a circle with its center point and radius. The class rules will 
be like this: 

OPERATION...CLASS 
class_of {Operation, 'MakeJJircle ') 

SYNTAX 
input (Operation, Arg 1, Arg2) 

& output (Operation, Res 1) 
& type_of(Arg1, 'point') 
& type_of(Arg2, 'floaiina_poinf:...:n.umber') 
& type_of(Res 1, 'circle') 

smANTICS 
center_of(Arg1, Resl) 

& radius(Res 1, Arg2) 

MODIFICATION 
changeable(Arg2) 

The point is that the new predicate changeable is introduced in the new section 
named modification. The predicate changeable {a} specifies that the argument a 
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can be changed in the modification process. 

It is easy to imagine that the history manager might fail to match the new entities 
with those of the original operations owing to the history changes. For instance, 
remember the operation 'intersecLcurues' between a line and a circle. A user 
might change the circle radius so small that they never intersect each other. In 
this case, the new operation outputs no points and the history manager fails to 
match the results for the history as scenario. When the history manager finds this 
situation, it warns the user of the mismatching. The history manager ensures 
topological equivalence of the models by checking number and type of the result 
entities for each operation. The history manager can investigate the causes of the 
mismatching by upward tracing which will be mentioned in the next section. 

3.2. Upward Propagation of History 

The history mechanism performs model modification by means of modifying the 
history as shown before. A user must select the relevant operations to modify the 
result model. However the relationship between the model and the executed 
operations is not evident to hin1 even if he has built the model. In order to support 
the exploratory modeling, the capability of pointing out the causes from the his­
tory is also necessary. These causes are simply the model derivation we presented 
as the goal of our study in the previous section. The history mechanism provides 
the model derivation in terms of the mapping from the result model to the causing 
operation. This mapping can be obtained by tracing the history in an upward 
direction. The predicate changeable also takes part in this investigation process, 
because a user is specially interested in those points of the history where he has 
several alternatives. The predicate specifies all of those points. The history 
manager traces back the history, distinguishes the operations that have some 
changeable arguments, and enumerates these operations to the user. 

The history can be trimmed by upward propagation. The modeling process 
involves experimentation and backtracking. This means that the history should 
include many operations which have had no effect on the final result model. These 
operations are unnecessary to keep in the history. By tracing the history from the 
result model in an upward direction, the history manager can select all operations 
affecting the result. The trimmed history is enough to reconstruct the result. 
Because of the capability of history modification, this trimmed history is 
equivalent to the variational representation of the result model. 

3.3. Characteristics of the History Mechanism 

Past research on the data model has tended to focus on methods for reasoning to 
mairitain the interpretations of individual models. To obtain the reasoning 
mechanism, it forces modeling systems to introduce the logic base data represen­
tation that makes the systems less efficient and forces the system designer to con­
struct model derivation mechanisms by himself in the modeling system. The logic 
base data representation is also disadvantageous for the applications that use the 
result model. 

On the contrary, the history mechanism tends to separate the model derivation 
from the internal model representation. The history representation is completely 
independent from the internal model representation. The only thing that a system 
designer has to do is to specify the characteristics of operations, as we have shown 
in previous sections. The designer need not be concerned with the internal data 
representation or the processing mechanism. The history mechanism maintains 
model derivation and supports exploratory modeling by itself. The operation 
specifications expressed in predicates are based on the syntax of the procedural 
operation. Therefore, it is easy to apply the history mechariism to a modelirtg sys­
tem using established techniques. 

The representation of the operation's specifications in predicates is useful in intro­
ducing the axiomatic method of formal semantics. The history mechanism makes 
it possible to represent the semantics of each operation. By means of additional 
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semantic rules, it becomes possible to handle complex relations which are caused 
by plural operations. For instance, it can deduce the relation concentric(c 1, c2} 
from the fact center...Df(p, c} which is asserted by the operation '.Make_i;ircle '. The 
inference rule should be: 

concentric(Cl, C2) +­
center_Df(P, Cl) 

& center...Df(P, C2) 
& not(equal(Cl, C2)) 

The semantics can be used in the modification process. Suppose there are two 
concentric circles. Since those circles stand for a boss, a bearing, etc. in a 
mechanical drawing, the size difference between them is elementary. The larger 
circle should be modified such that the resulting circle is larger than the other 
modified circle, in spite of the modification. The relation concentric is useful in 
this context. 

4. EXAMPLES 

We have implemented a prototype of the history manager using Lisp (Kyoto Com­
mon Lisp)[lO, 11] on a VAX/UNIXt system. History items and rules are represented 
in symbolic expressions. The prototype has been applied to a simple draft:ing sys­
tem which is written in the C program language. This drafting system itself pro­
vides only simple drawing utilities such as pick...Dbject~h....znouse, 
draw..paralleUine, draw-1angenLLine, draw_i;otangenLLine, intersect_i;urves; 
make_i;ircle, etc. The internal data representations of the drafting system are so 
simple that each entity contains only numerical values. For instance, a circle 
entity has only three floating point numbers specifying the coordinates of its 
center and its radius. 

In this drafting system, every drawing process begins with a origin and two axes 
(X-axis and Y-axis), which are used as reference geometry. Figure 5 shows an 
example of the early stage of a drafting process just after the first five operations: 

-·--· ·------------·-·1--------
2 

Figure 5. An Example of Early Stage of Drafting Process 

t UNIX is a trademark of Bell Laboratories. 
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1. The user has made a circle whose center was the origin, 
2. drawn a line which is parallel to the X-axis, 
3. made a intersect point between the circle and the line, 
4. drawn a line which was passed through the intersect point and is parallel to the 

Y-axis, 
5. made a circle whose center is at the intersect point. 

The result shape was generated by 122 operations which had actually affected the 
result (Figure 6). By using the inference rule mentioned in the last section, the 
system can define concentric circles in the drawing. Figure 7 displays all concen­
tric circles defined by this mechanism. This relation can be used in the 
modification process so that a circle is automatically modified according to the 
changing of the concentric circle. 

0 0 i 0 

Figure 6. The Result Figure 

Figure 7. The Display of Concentric Circles 
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Figure 10. The Modified Figures 

The system can show the causing operations and relating entities by means of the 
upward propagation of the history. In the case of figure 8, the system traced the 
history from the little circle which was picked by the user with a mouse. Accord­
ing to the predicate changeable, the system pointed out the geometric values that 
the user can change in the modification process. Figure 9 shows the typical cycle 
of the model modification with the history mechanism. The user requested the 
causing operations for the location of the point at the upper right corner. The sys­
tem replied that the point was defined by intersecting lines which are parallel to 
X-axis and Y-axis respectively. As the user modified the distances between the line 
and the axis, the system modified the figure only in those parts which have been 
changed· by the downward propagation of the history. Again the user requested 
the causing operations. By the repetition of the modification cycles, the user 
easily changed the shape (Figure 10). The modification of a figure is so easy done 
~hat the drafting system looks as if it su~ports variational figures by itself. 

5. CONCLUSIONS 

In this paper we proposed a history mechanism to improve the user interaction of 
CAD systems. This was achieved by keeping a history of the modeling process com­
posed of the user's interaction in order to maintain the model derivation. The his­
tory mechanism has the following characteristics: 

1. The history representation of the history mechanism is completely indepen­
dent from the internal data representation of the modeling system. 

2. The history representation is based on the syntax of procedural operations. 
3. Users still have creative freedom while constructing models with the history 

mechanism. 
4. Based on the symbolic manipulation capability, models can be modified by 

creating new derivations by analogy with original ones. 
5. By introducing the axiomatic method of formal semantics, the history mechan-

ism can also handle semantics of operations. 

By means of these characteristics, the history mechanism obtains the following 
advantages: 

1. The history mechanism can be easily applied to the established techniques for 
CAD systems. The system designers of modeling systems need not worry about 
simultaneously managing high level interactions and ensuring an efficient 
implementation. 
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2. The history mechanism provides sufficient utilities to support a trial and error 
method of modeling, which is the upward and downward propagation of history. 

3. The history mechanism will clarify the user's intention by applying a deductive 
inference on the model derivation. 

Much study remains to be done concerning the history mechanism. One primary 
subject is history modification. At the current stage of our research, the history 
can be modified only with the special arguments of operations. A history editor 
that will allow a user to modify the history much more flexibly shall be introduced 
to the history mechanism. The environments of the history mechanism should be 
extended. One aspect of the environment is a sophisticated user interface. Since 
our prototype system is just a trial history mechanism, the user interface is still 
poor. A tiser interface that processes a powerful graphics capability is desired. 
The interaction technique library for general purpose can be supplied by carefully 
analyzing the connection between the history manager and the user interface. The 
other aspect of the environment is a modeling system. Since our final goal is the 
realization of high level interaction management for a product modeling system, 
we would like to apply a history mechanism to a currently existing prototype pro­
duct modeling system. [2, 12] 
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