
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

Y. Yamaguchi, F. Kimura, P.J.W. ten Hagen

Interaction management in CAD systems with a history mechanism

Computer Science/Department of Interactive Systems

Bibliotheek
C~voorWiskunde en lnfom\atic&

_ AmstenJatlff

Report CS-R8756 November

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum. which was founded on February 11 . 1946, as a nonprofit institution aim­
ing at the promotion of mathematics. computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyright., © Stichting Mathematisch Centrum, Amsterdam

Interaction Management in CAD Systems

with a History Mechanism

Yasushi Yamaguchi, Fumihiko Kimura
Department of Information Engineering,

University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

Paul J.W. ten Hagen
Department of Interactive Systems,

Centre tor Mathematics and Computer Science,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

User friendliness is one of the unresolved problems in CAD sys­
tems. There are many possible directions for improving user
friendliness. Understanding of the modeling process is one of
the most important directions. It is natural for a user to
describe the model in terms of its evolution. We call this con­
cept model derivation. To construct and use model derivation,
we propose a history mechanism which keeps and manipulates
the history of the modeling process. The history mechanism
manages high level interactions by introducing powerful sym­
bolic computation to manipulate the history. Since the history
representation is based on the operation's syntax and separated
from the internal model representation, it is easy to apply the
history mechanism to any modeling system which uses esta­
blished techniques. Thus the system designer can easily intro­
duce model derivation without reducing efficiency of the imple­
mentation.
1982 CR Categories: H.1.2, 1.3.5, 1.3.6, J.6, D.4.8.
Note: This report has been published in the proceedings of the Eurographics '87 Conference.

1. INTRODUCTION

In recent years a lot of mechanical CAD systems have been developed. At this
moment, however, they are not useful tools for product designers to create the
CAD data that CAM systems use. A desirable CAD system provides helpful func­
tionality for the designers to construct product models during the modeling pro­
cess. There are many difficulties to obtain such CAD systems. For instance,
relevant data model for the product models is necessary, and many studies have
been achieved.[1, 2, 3] However, on the contrary, little study has been done on user
friendliness. The user friendliness of CAD systems still remains a difficult problem.
Many people have ambiguously said CAD systems must be more interactive and
intelligent in this sense.

There are several ways to develop user friendliness. One of them is to maintain the
history of modeling processes. It is natural for a user to describe a model in terms
of its evolution or derivation, however this is not possible in a conventional model­
ing system. Let us explain with an example. See figure 1. The top figure is usually
represented by one arc, two segments, and two points in a conventional modeling
system. We have no idea how the figure has been defined by the user. The round
corner could have been created by either rounding a sharp corner or drawing two
tangent lines to a circle. No sooner has the modeling system constructed an inter­
nal model,~ than the user's idea is lost. Understanding of the modeling process is
important to improve user friendliness of modeling systems.
Report CS-R8756
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

Rounding
a sharp corner

Drawing
two tangent lines

Figure 1. Two Ways to Create a Round Corner

We think it is important to provide a mechanism to keep model derivation by
focusing attention on the modeling process. Modeling process is carried out in an
exploratory way involving experimentation and backtracking. The process steps
have to be captured into the model derivation that users can use to have a per­
spective view over all the modeling process. The model derivation must be
managed in such a way that users will still feel unhindered while building models.
Model modification is easily realized by means of obtaining a new model derivation.
A mechanism of this sort will have to be developed if users are to create new
derivations by analogy with existing ones. The concept, model derivation, reflects
the interpretations of the internal models from the user's point of view, while con­
ventional modeling systems provide no knowledge of the user's intention. There­
fore, the mechanism managing the derivations must deal with the semantics of
modeling as well as its syntax. It is essential that powerful semantically based
modeling tools change the way to create and modify the models. .. . -

In order to satisfy these required conditions for the model derivation manage­
ment, we propose a history mechanism which maintains the model derivation by
keeping the history of the modeling process and manipulating the history symboli­
cally. This symbolic-computation capability is the heart of the history mechanism.
Our premise is that it is possible to construct model derivation from a sequence of
modeling steps, i.e., operations. The history representation is based on the syntax
of procedural operations. This syntax base rei:iresentation is useful in introducing
the axiomatic method of formal semantics.[4, 5] The history mechanism also
guarantees the independence of model derivation from model representation. It is
easy to apply the history mechanism to conventional. modeling systems by the
separation between model interpretations and representations. Thus system
designers of modeling systems need not worry about maintaining an interpretation
and ensuring an efficient implementation.

The input history of user's coinm.ands has been utilized during the interaction pro­
cess.[6, 7] It is, however, impossible to maintain the model derivation only with the
input history in the form of text composed of character strings (i.e., a log file). An
approach to keeping the user's idea of a model has been to provide such a flexible
data reyresentation that the resUlting model contains an interpretation of
itself.[BJ In other words, it has tended to allow several representations of the
identical object to exist according to the user's intentions. However, this kind of
method leads the modeling system to less efficiency in calculation. Furthermore,
the data representations are so unsuitable for applications that judging the
equivalence of models is quite difficult.

~

Section 2 describes the representation of the history which is required to
represent the model derivation. Section 3 shows how the history manager traces
the dependency network of the history in order to utilize the model derivation and
points out some other characteristics of the history mechanism. Section 4 con­
tains the examples that were applied to a simple drafting system. By applying the
history mechanism, the drafting system has been improved to handle variational
geometry.[9] Section 5 summarizes this study and indicates future plans.

2. IDSTORY REPRESENTATION

The history mechanism is realized by the history manager module situated
between the user interface and the kernel of the modeling system. The history
manager supervises the modeling process in terms of monitoring the interactive
process. Figure 2 shows the system configuration. The history manager stores the
history of a user's interaction in its own database. This is the characteristic point
of this study. Studies on data models such as geometric reasoning have tended to
store model derivation in the database of the modeling system itself. The data­
base of the history manager also keeps several general rules concerning the
interaction. The history manager is able to complete the interaction at a high
level by applying those rules to the history.

User

Interlace

History

Manager

History
Database

M:odeling

System

Figure 2. History Manager in History Mechanism

2.1. History Item

Our premise is that an operation (i.e., a command) corresponds to a step in the
modeling process. This means that the history of the interaction can be expressed
in records of the operations executed by the user. The history manager adds a
history item to the history database every time an operation is executed. The his­
tory item is a framework to represent the history corresponding to each opera­
tion.

A history item consists of the two predicates of the input and output relations.
Both predicates assert the relations between operations and data objects related
to the operations (i.e., entities in the modeling system). An input relation shows
the list of the entities and numerical values that the operation took as its argu­
ments. An output relation tells the list of entities generated by the results of the
operation .• The history manager treats each operation as an instance object. Let
us consider an operation X which takes N arguments and generates M results. The
history item of this operation would be:

input {operationX. argJ, arg2, ... , argN)
output{operationX", res 1. res2, ... , resM)

4

2.2. Rules in the Operation Class

Each operation is treated as an instance object within a history representation.
We can categorize the same kind of operations as a class and represent their
characteristics using rules about their syntax and semantics. Syntactic rules
specify the syntax of both input and output. The input syntax means the number
of input arguments with their data type and range. In the case of the output syn­
tax, the number might be variable but the maximum number is fixed. By intro­
ducing axiomatic methods of formal semantics, the operation's semantics can be
represented in predicates based on the syntactic rules. Semantic rules show the
logical relations between the arguments and the resulting outputs of the opera­
tions.

Let us explain a simple example for a drafting system. Consider an operation
called 'Intersect~urues '. used to determine the intersection points between
curves. The operation takes two curves, and calculates the intersect points of
these curves and creates their data. Assuming that the curve types handled in the
system are only a straight line and a circle, the number of resulting points should
be less than three. Figure. 3 shows an example of this operation for a circle and a
line.

curve2 {circle)
curve 1 {line)

Figure 3. Intersect-curves

The history item for a certain operation of this kind looks like this:

input {operationX, curve1, curueZ)
autput{operationX, pointl, pointZ)

This history item implies some syntactic specifications of the operation. The
operation requires two input arguments and produces two output results. There
are some other syntactic rules about arguments and results such as data type and
range. In this example, we restrict the type of curves to lines and circles. The
results must be points. We can also represent the semantics of the operation as
rules. The intersection points are the points which both input curves pass
through. The syntactic and semantic characteristics of this operation can be
represented in the following rules: ·

OPERAl'ION....CLASS
class_Df {Opera.lion, 'Intersect~urves ')

SYNTAX
• irz,put {Operation, Argl, ArgZ)

& output(Operation, Res 1. ResZ)
& {type_Df(Arg1, 'line') I f:ype_Df{Argl,
& (type_Df{Arg2, 'line') f:ype_Df {ArgZ,
& type_Df{Res 1, 'point')
& type_Df(ResZ, 'point')

'circle'))
'circle'))

SEMANTICS
coincide{Resl, Argl}

& coincide {Res 1, Arg2}
& coincide {Res2, Arg 1)
& coincide{Res2, Arg2}

5

The operator 'I' means OR, while '&' means AND. The predicate class..JJj(i, c)
defines the class of the operation, with i being an instance of the operation class
c. The predicate type..JJj{d, t) specifies the type of the data object d as t.
Coincide{p, c} asserts the geometric relation that the curve c passes through the
pointp.

3. IDSI'ORY USAGE

Modeling activity is processed in an accumulative way. A model is constructed
incrementally such that a user generates an entity with an operation and he can
use the entity in future operations. The former operation affects later operations
by the entity. In other words, later operations depend on the entity and the opera­
tion. The history of the modeling process expresses dependencies that are closely
related to the model derivation. The history manager uses the history by tracing
these dependencies.

The dependencies in the history mechanism are expressed in the following
manner. Suppose there are two consequent operations X and Y. The latter opera­
tion Y uses the entity H that has been generated by the former operation X
According to the definition of the history item, both the output relation of X and
the input relation of Y contain the entity H :

output{operationX, .. ., entityH, ··J
input {operationY. ... , entityH,

These two relations point out the dependency between the operation X and Y
mediated by the entity H.

e e .,
• .. • . • •

operationX

operationY

• ... e
• ..
• •

operationW

operationZ

Figure 4. Dependency Network of History

6

Since many operations are executed and many data objects are related to those
operations during the modeling process, there are a great number of dependen­
cies generated. The dependencies among operations and data objects form a com­
plex network propagating throughout the whole history, figure 4. Solid line arrows
stand for output relations, dotted line arrows stand for input relations. The his­
tory manager traces this dependency network in two directions, in the direction of
the arrows and in the opposite direction. Since each node is connected to multiple
arrows, the tracing in either direction might be propagative. We named these
characteristics of tracing history as the downward and upward propagation of the
history. Roughly speaking, a downward propagation implies that an operation
affects later operations and resulting entities. An upward propagation implies that
an entity is derived from former operations and related entities.

3.1. Downward Propagation of History

One goal of this history mechanism is to build an experimental environment for
modeling activity. The history mechanism allows modification of models by replay­
ing the modeling process according to the modified history. Let us explain the
replay mechanism without any modification before discussing history modification.
To replay the whole modeling process is easy, if the history keeps the contents of
past operations in sequence. The history items are stored in the same order as
the operation sequence. The history manager takes the input relation one by one
from its database and reinvokes respective operations. It can be said that replay
is accomplished by sequential tracing which has a downward tendency. This how­
ever is linear rather than propagative.

The problem in the replay process is that the history items are represented with
only entities valid in the original modeling process. Whenever the input relation
includes some entities, the new operation must be invoked with the new entities
having been generated in the replay process. The original input relation cannot be
used alone. The history manager has to adjust it to the context of the replay pro­
cess. The correspondence between the original entities in the history and the new
entities is necessary for the adjustment. To make this correspondence, the his­
tory manager matches the results of a new operation with those of the original
operation each time. In this sense, the history can be seen as a scenario in the
replay process.

The history mechanism provides the capability of model modification by means of
modifying the history. The history is treated as a scenario including some parame­
ters in the modification process. By featuring arguments in operation rules, the
history manager knows which arguments are changeable. For instance, consider
8.n operation to make a circle with its center point and radius. The class rules will
be like this:

OPERATION...CLASS
class_of {Operation, 'MakeJJircle ')

SYNTAX
input (Operation, Arg 1, Arg2)

& output (Operation, Res 1)
& type_of(Arg1, 'point')
& type_of(Arg2, 'floaiina_poinf:...:n.umber')
& type_of(Res 1, 'circle')

smANTICS
center_of(Arg1, Resl)

& radius(Res 1, Arg2)

MODIFICATION
changeable(Arg2)

The point is that the new predicate changeable is introduced in the new section
named modification. The predicate changeable {a} specifies that the argument a

7

can be changed in the modification process.

It is easy to imagine that the history manager might fail to match the new entities
with those of the original operations owing to the history changes. For instance,
remember the operation 'intersecLcurues' between a line and a circle. A user
might change the circle radius so small that they never intersect each other. In
this case, the new operation outputs no points and the history manager fails to
match the results for the history as scenario. When the history manager finds this
situation, it warns the user of the mismatching. The history manager ensures
topological equivalence of the models by checking number and type of the result
entities for each operation. The history manager can investigate the causes of the
mismatching by upward tracing which will be mentioned in the next section.

3.2. Upward Propagation of History

The history mechanism performs model modification by means of modifying the
history as shown before. A user must select the relevant operations to modify the
result model. However the relationship between the model and the executed
operations is not evident to hin1 even if he has built the model. In order to support
the exploratory modeling, the capability of pointing out the causes from the his­
tory is also necessary. These causes are simply the model derivation we presented
as the goal of our study in the previous section. The history mechanism provides
the model derivation in terms of the mapping from the result model to the causing
operation. This mapping can be obtained by tracing the history in an upward
direction. The predicate changeable also takes part in this investigation process,
because a user is specially interested in those points of the history where he has
several alternatives. The predicate specifies all of those points. The history
manager traces back the history, distinguishes the operations that have some
changeable arguments, and enumerates these operations to the user.

The history can be trimmed by upward propagation. The modeling process
involves experimentation and backtracking. This means that the history should
include many operations which have had no effect on the final result model. These
operations are unnecessary to keep in the history. By tracing the history from the
result model in an upward direction, the history manager can select all operations
affecting the result. The trimmed history is enough to reconstruct the result.
Because of the capability of history modification, this trimmed history is
equivalent to the variational representation of the result model.

3.3. Characteristics of the History Mechanism

Past research on the data model has tended to focus on methods for reasoning to
mairitain the interpretations of individual models. To obtain the reasoning
mechanism, it forces modeling systems to introduce the logic base data represen­
tation that makes the systems less efficient and forces the system designer to con­
struct model derivation mechanisms by himself in the modeling system. The logic
base data representation is also disadvantageous for the applications that use the
result model.

On the contrary, the history mechanism tends to separate the model derivation
from the internal model representation. The history representation is completely
independent from the internal model representation. The only thing that a system
designer has to do is to specify the characteristics of operations, as we have shown
in previous sections. The designer need not be concerned with the internal data
representation or the processing mechanism. The history mechanism maintains
model derivation and supports exploratory modeling by itself. The operation
specifications expressed in predicates are based on the syntax of the procedural
operation. Therefore, it is easy to apply the history mechariism to a modelirtg sys­
tem using established techniques.

The representation of the operation's specifications in predicates is useful in intro­
ducing the axiomatic method of formal semantics. The history mechanism makes
it possible to represent the semantics of each operation. By means of additional

8

semantic rules, it becomes possible to handle complex relations which are caused
by plural operations. For instance, it can deduce the relation concentric(c 1, c2}
from the fact center...Df(p, c} which is asserted by the operation '.Make_i;ircle '. The
inference rule should be:

concentric(Cl, C2) +­
center_Df(P, Cl)

& center...Df(P, C2)
& not(equal(Cl, C2))

The semantics can be used in the modification process. Suppose there are two
concentric circles. Since those circles stand for a boss, a bearing, etc. in a
mechanical drawing, the size difference between them is elementary. The larger
circle should be modified such that the resulting circle is larger than the other
modified circle, in spite of the modification. The relation concentric is useful in
this context.

4. EXAMPLES

We have implemented a prototype of the history manager using Lisp (Kyoto Com­
mon Lisp)[lO, 11] on a VAX/UNIXt system. History items and rules are represented
in symbolic expressions. The prototype has been applied to a simple draft:ing sys­
tem which is written in the C program language. This drafting system itself pro­
vides only simple drawing utilities such as pick...Dbject~h....znouse,
draw..paralleUine, draw-1angenLLine, draw_i;otangenLLine, intersect_i;urves;
make_i;ircle, etc. The internal data representations of the drafting system are so
simple that each entity contains only numerical values. For instance, a circle
entity has only three floating point numbers specifying the coordinates of its
center and its radius.

In this drafting system, every drawing process begins with a origin and two axes
(X-axis and Y-axis), which are used as reference geometry. Figure 5 shows an
example of the early stage of a drafting process just after the first five operations:

-·--· ·------------·-·1--------
2

Figure 5. An Example of Early Stage of Drafting Process

t UNIX is a trademark of Bell Laboratories.

9

1. The user has made a circle whose center was the origin,
2. drawn a line which is parallel to the X-axis,
3. made a intersect point between the circle and the line,
4. drawn a line which was passed through the intersect point and is parallel to the

Y-axis,
5. made a circle whose center is at the intersect point.

The result shape was generated by 122 operations which had actually affected the
result (Figure 6). By using the inference rule mentioned in the last section, the
system can define concentric circles in the drawing. Figure 7 displays all concen­
tric circles defined by this mechanism. This relation can be used in the
modification process so that a circle is automatically modified according to the
changing of the concentric circle.

0 0 i 0

Figure 6. The Result Figure

Figure 7. The Display of Concentric Circles

10

\
'

··. ·.

--------------·-····

-~---.j. ___ _

Figure 8. The Display of Causing Operations

i
i

~-(~;··················~·····t·····c.i·1

i
!
I

54.98

r ... i
~() 0 i (::~

i
i
i
j

,··

i ... ··
.. ·.::;k;:··. .·

ll3.Ga

·-~-~-%t?Jfo-
'·.. i \. . i .

··· .. '.' ··... I
·-·-!···················

I
i

118.111

·.

........... ' .
'.

.. :.::.y---;·r-~---
,~._:.:' f

,

..· .·

Figure 9. Typical Cycle of the Model Modification

11

Figure 10. The Modified Figures

The system can show the causing operations and relating entities by means of the
upward propagation of the history. In the case of figure 8, the system traced the
history from the little circle which was picked by the user with a mouse. Accord­
ing to the predicate changeable, the system pointed out the geometric values that
the user can change in the modification process. Figure 9 shows the typical cycle
of the model modification with the history mechanism. The user requested the
causing operations for the location of the point at the upper right corner. The sys­
tem replied that the point was defined by intersecting lines which are parallel to
X-axis and Y-axis respectively. As the user modified the distances between the line
and the axis, the system modified the figure only in those parts which have been
changed· by the downward propagation of the history. Again the user requested
the causing operations. By the repetition of the modification cycles, the user
easily changed the shape (Figure 10). The modification of a figure is so easy done
~hat the drafting system looks as if it su~ports variational figures by itself.

5. CONCLUSIONS

In this paper we proposed a history mechanism to improve the user interaction of
CAD systems. This was achieved by keeping a history of the modeling process com­
posed of the user's interaction in order to maintain the model derivation. The his­
tory mechanism has the following characteristics:

1. The history representation of the history mechanism is completely indepen­
dent from the internal data representation of the modeling system.

2. The history representation is based on the syntax of procedural operations.
3. Users still have creative freedom while constructing models with the history

mechanism.
4. Based on the symbolic manipulation capability, models can be modified by

creating new derivations by analogy with original ones.
5. By introducing the axiomatic method of formal semantics, the history mechan-

ism can also handle semantics of operations.

By means of these characteristics, the history mechanism obtains the following
advantages:

1. The history mechanism can be easily applied to the established techniques for
CAD systems. The system designers of modeling systems need not worry about
simultaneously managing high level interactions and ensuring an efficient
implementation.

12

2. The history mechanism provides sufficient utilities to support a trial and error
method of modeling, which is the upward and downward propagation of history.

3. The history mechanism will clarify the user's intention by applying a deductive
inference on the model derivation.

Much study remains to be done concerning the history mechanism. One primary
subject is history modification. At the current stage of our research, the history
can be modified only with the special arguments of operations. A history editor
that will allow a user to modify the history much more flexibly shall be introduced
to the history mechanism. The environments of the history mechanism should be
extended. One aspect of the environment is a sophisticated user interface. Since
our prototype system is just a trial history mechanism, the user interface is still
poor. A tiser interface that processes a powerful graphics capability is desired.
The interaction technique library for general purpose can be supplied by carefully
analyzing the connection between the history manager and the user interface. The
other aspect of the environment is a modeling system. Since our final goal is the
realization of high level interaction management for a product modeling system,
we would like to apply a history mechanism to a currently existing prototype pro­
duct modeling system. [2, 12]

ACKNOWLEDGEMENTS

This work has been partly supported by the Product Modeling System's Develop­
ment Project of Japan Society of Precision Engineering and by RICOH Co.,Ltd.

REFERENCES

[1] Fumihiko Kimura, Shinji Kawabe, and Toshia Sala, "A Study on Product Model­
ling for Integration of CAD/CAM," Proceedings of the IFIP WG.5.2/WG.5.3
Working Conference on Jntegralion of CAD/CAM, pp. 227-252, North-Holland,
1984.

[2] T. Sata, F. Kimura, H. Suzuki, and T. Fujita, "Designing Machine Assembly
Structure Using Geometric Constraints in Product Modelling," Annals of the
CIRP, vol. 34, pp. 169-172, 1985.

[3] F. -L. Krause, P. Armbrust, and M. Bienert, "Methods Banks and Product
Models as Basis for Integrated Design and Manufacturing," Proceedings of the
2nd International Conference on the Manufacturing Science and Technolo­
gie of the Future, Slovenian Academy of Science and Art Ljubljana, Sept. 1985.

[4
5

] Z. Manna, Mathemalical Theory of Computation, McGraw-Hill, 1974.
[] T. M. V. Janssen, Foundations and applications of Montague grammar Part 1:

Philosophy, framework, computer science, Centre for Mathematics and Com­
puter Science, Amsterdam, 1986. (CWI Tract 19)

[6] William Joy, "An introduction to the C shell," in UNIX Programmer's Manual,
Berkeley, November 1980.

[7] Tapio Takala, "User Interface Management System with Geometric Modeling
Capability: A CAD System's Framework," IEEE Computer Graphics and Appli­
cations, vol. 5, no. 4, pp. 42-50, IEEE Computer Society, April 1985.

[8] Farhad Arbab and Jeannette M. Wing, "Geometric Reasoning: A New Paradigm
for Processing Geometric Information," Proceedings of the IFIP WG.5.2 Work­
ing Conference on Design Theory for CAD, pp. 145-165, North Holland, 1987.

[9] Robert Light and David Gossard, "Modification of geometric models through
variational geometry," CAD, vol. 14, no. 4, pp. 209-214, Butterworth &
Co.,(Publishers) Ltd., July 1982.

[10] Guy L. Steele, Jr., Common LISP: The Language, Digital Press, Burlington,
198"4.

[11] Taiichi Yuasa and Masami Hagiya, Kyoto Common Lisp Reference Manual for
VAX11 Unix 4.2bsd, Research Institute for Mathematical Science, 1984.

[12] Fumihiko Kimura, Hiromasa Suzuki, and Lars Wingard, "A Uniform Approach
to Dimensioning and Tolerancing in Product Modelling," Preprints of CAPE'86,
pp. 165-178, 1986.

