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Orbiting dust under radiation pressure
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In this paper we consider a perturbed Keplerian system describing orbiting dust under radiation pressure.
We derive an integrable second order normal form for this Hamiltonian system. Finally we analyze this
integrable system by succesive reduction to a one degree of freedom system.

1. INTRODUCTION

In his paper [3] Deprit considers a perturbation of bounded Keplerian motion which models the effect
of radiation pressure on orbiting dust. The perturbation term can also be seen as the classical analo-
gue of a combined Stark and Zeeman effect ( see [1] ). In the Fropcr rotating co-ordinate system the
model is given by the Hamiltonian on (R* - {0})X(R%)" =T,R

Kn =%|n|’—~|'£‘T —on(Em—&m) et =Ko@En)+eK i) .1

where m is the constant angular vcfocity of rotation of the co-ordinate frame, a is the acceleration,
and ¢ is a small parameter. Deprit derives and analyzes a first order normal form for K. In this paper
we will derive and analyze a second order normal form for (1.1) using the constrained normalization
algorithm described in [5).

The first step of this procedure is to write the Hamiltonian system (TyR?,w,K) as a perturbation of
the geodesic  Hamiltonian  Ko(gp)=|p| on the punctured cotangent . bundle
T*S’={(g.,p)eR® |F,(q,p)= Ig12—1=0, Fy(g,p)=<g,p>=0, p5~0}. This is done by: (1) res-
tricting K to the negative level set X _'(—-‘;-kz), (2) changing the time scale, and (3) applying Moser’s
regularization map. The resulting Hamiltonian system (T'* §%,2,X) is given by

K(g.p)=Ko(g.,p) +eK1(g,p) 12)

where
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Ki(gp)= —%(l—qmp l(qupz—qzm)-f,—(l—qolp Py

‘f;(l-m(qxprwl) : (13)

Here Q is the restriction of the standard symplectic form « on R® 10 7% $*. Another way of describ-
ing the system (T* $>0,K) is the following: on R® consider the Hamiltonian H =H+elf, where

Holgp)=(lg*IpI'~<gp>" )

and H, is given by the right hand side of (1.3). On R®—Cj, where Cs={(g,p)eR? | Ho(g,p)=0}, H
is a smooth function. Constraining the system (R*— Cs,w,H) to T* S, gives the system (T~ $3,2,K).

Note that the level set K5 ' (—3k?) corresponds 10 the level set Hy ' (1) where I = £

2. COMPUTATION OF THE SECOND ORDER CONSTRAINED NORMAL FORM

In this section we carry out the constrained normalization algorithm to find the second order normal
form of H. The first step is to compute

=L [TH et 2.1
Hy=— [ He$la , @1
which is the average of H, over the flow ¢,* of X}, . Since
— SR> G 4 cosas el oo
g | Holap T Moo Giggm™2e
T AL (STLZ G031 + coss
" Holgpy 24 Holgp) Ma
we find that

24=70.9 799 -
= - 70740 @2
P#;=3PiPj+3pp; , and
g'p*=0 if |1]+|k| is odd (using multi index notation) .
Here,

Q,-(qm)=—l;;zl;;5(<q,p >g—q %) »

1
Plgp)=———(<¢p>pi— p |’q
@P)= g "eP PP Ia)
for 1<i<4; furthermore we write
Sy=qp; — qPi
for 1<<i <j<<4. Substituting the expression for ¢,* into H; and using (2.2) gives
— 1 1
Higp)=—31p|Su+-5 1P |(-7QP 1+ 790~ 5 1P 151 - @3

To simplify the above formula, we introduce the following notation: if F,GeC*®(R®—Cy), then we
say F =~ G if and only if F—G lies in the ideal of smooth functions on R®—Cj generated by the
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functions F; and F,. In other words, F =~ G if and only if F|T*$>=G|T*5>. Consequently

-»
Ho = |p| 'Q'zTP_I v Pi=—|plg ,
4 - 4
reit e Pay =IZ‘ISES:; 20p Paq = D88y,
= =1

— 4 —

2|p I’ppy = lz:‘slislj 4P =78y (2.4)
Substituting (2.4) into (2.3) gives

= m 3a

Hy= =27 1P1Su=551p |54 @5)
which on Hy'! ohnr* S? agrees with the first order normal form for H found by Deprit.

The pext step is to compute the generating function R of the symplectic transformation expL &,
which normalizes H to first order. According to [2]
1 T e He

R= ,[o t(H,—H\p¢adr .

A straightforward calculation gives

m a
R=;k_i‘|1’ fSuQa"‘i'k",‘SuQr‘i;IPIPl

‘“;:‘S‘ll’ | ["%(QJ’I —94?!)+%(Q01_qu4)]

2

3
lp1°1q] 1
W m [*%(Qx}u-q|p¢)+'8-(QuJ4—q1P4) +F8

m a a a z
= ST Swam 3 lp lqu"'a;‘(l}’ I’q19a—pp) =R . (26)
According to the constrained normalization algorithm, R has to be modified to
. 1 1
R*=R=5{RF:)(|q|*-D+7(RF}<gp> @7

becausc then the symplectic transformation expLx'_leaves the constraint 7+ S invariant. Without
changing the constrained normal form we may use R” instead of R". Therefore to second order the
transformed Hamiltonian is

(expeli)H = Ho+ell, +E Ly (3(H, +H ) +0@) @8)
To simplify (2.8) we may use
T=T5 1P 1SuG 9= D+ 5 1P ISu(3ea—+ 535 1P 1Pr(ge—D) @9

instead of ;-(H. +H,), because ‘;-(H, +H,) = Tand T*5? is an invariant manifold of Xz-. There-
fore the second order term in the normal form of H is

Ly T=—(R".T)
= 1 —= 1=
= —(RT)+ 7 (RF:H|q 1% T) -2 (RFIH{<gp>T} .
A straightforward calculation, making use of
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{R Fi)= “‘31274 5u‘14+ 3(911’4“'?4}’1) ,

(RF,) = ST Sapat 5, L Supat k,PlPA"'qu‘;lPIZQI»

2k2
{lg1’.T) = ;,-Ipl(qu)qx ,
m 5a a 1

{<gp>T}=—3lPISu=7IPISut 5 lPIGa—Dpr .
and the fact that F = G implies F = G ( which follows because F, and F, are integrals of Hg )
gives

| B e— am R aZ- —
—27(REN|gATy =5 lp !szqnm+-4;'g|p [S14q1P4

Y 1 K P |Tgps -

l“.—-_-—"-"_
T{RF 1} <gp>T} = ——IP lSuwwg;;lp IS1gwpe

m‘ lPISuWn m‘ |2 151491P4

,w L lp e pct—% 16,‘5 lplgpt

and

2
27a
(RT) = U’I3 o IPIS zlp |5}, +222 s 1P 15128
m 32% 8k

"Tll’lz‘lz‘h‘ 3 lPlsuq_:PT""TlP [P2ps
16k 8k

15 2 —_
o P IA+ "6 lp g+ 1P 1P

gkz*lp P2+ )w lp |43t - 16,(6 ~— 1P 19194 P4 -

Therefore the second order term in the normal form of H is

= l7a m laz 2
T.R'} =~ — S S
{ } 321(6 lp | 4k 8k5 )|P| 2/(6 |p|S14
13am am .
32](6 IPI px) + 8’(5 IP ISlZSN 5 IP lsnsu ’ (210)

where we have used (24), |[p|* =~ 3 S, and the identity
1<ic)j<4

‘I_zP—%_ql‘h}’lh:—qwlSu .
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3. FURTHER NORMALIZATION
We can write the second order normal form of H obtained in the previous section as

K=Hy+e3G +E9%, , @an

where 3G and ¥, are smooth functions in |p | and S;; which are given by (2.5) and (2.10). Hence we
have two commuting integrals H, and % of 3. In this section we perform a further constrained nor-
malization of 3 This further normalization introduces a third integral for the resulting normal form
up to second order. More precisely, the resulting normal form

6(:=Ho +(3AC| +¢2fi(9

is Liouville integrable with integrals {H,,3}, which Poisson commute,

To be able to perform a further constrained normalization of % we need a suitable Poisson algebra.
The quadratic polynomials S;; , 1<i <j<4, under Poisson bracket span a Lie algebra § which is iso-
morphic to so(4); moreover |p | lies in the center of . Thus the smooth functions on $ form a Pois-
son algebra (C*(8), - ,({, })}) with multiplication - given by pointwise multiplication of functions
and Poisson bracket {{ , }} defined by

= f g o

{U’g)} |<1J_2[¢,I<4 F) Slj 3 SH {Slj!su) »

where f,g€C®(8). Note that smooth functions in |p | lie in the center of (C®(8),{{ , }})-
Now consider the constraint N defined by
§ = 2 S?/_F:O and §,=5383~ 513524 +514S=0 .
1<ij<4

Note that N is diffeomorphic to the first reduced phase space P, of section 4. Since §; and §, are
Casimir elements of (C*(&), -,{{, }}) which span the center of this Poisson algebra, N is a symplec-
tic submanifold of (8,Q), where @ is the Kostant-Kirillov symplectic form. Since Lg%, =0 for every
S€$, N is invariant under the flow 1—exprLg for every S &$. Therefore when doing normalization of
9C constrained to N no adjustment of the symplectic transformation needs to be made as in (2.7).
Hence we need only perform an ordinary normalization of ¥ on 8.

To explain this note that for any FeC*(5), expLy maps a normal form of % into a normal form.
Explicitly,

%= (expLs)K
=Hy+e(3 + (Ho, F)+E06 + (%, F) + 3 (Ho, (Ho, F}))+ 0@)

=Hy+¢G + (3 +{3G,F})+0E) , 32

since every element of C*(8) is an integral of H,. This result suggests that we try to choose F so
that

=% + (9, F) ekerLsy, .
This is possible provided that Ly, is a smooth vector field on § with only periodic orbits, for then we
have the splitting C*(§)=kerLy, ®imLy, [2].
To show that Ly has the required property we apply the linear map expALs, on % to bring 3G
into a simpler form. Because {S24,512} =S4 and {S3,514) =S we obtain

3, = (exp(iLs, )%
. .3
=—|p |(_l:_"z_cog-i”—,m)s,,+ lp ](%smk+ -iki’,—cosx)su .
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2 942 .
m —
Choosing A so that aosin)\=—-23f; and 006087\=7c?. where %'[k +4k6 gves

‘3Q=—ao|p | $12. Therefore with respect to the ordered basis {$12,513,523,5 34, ~Su,S14} of S, the
vector field Ly, is linear and has matrix

0 00 O
0010 00
0-100 0O
~=l1”l 1o 0 00 0 0 G
0 0 00 0 1!
0 0 00-10
Hence Ly, has only periodic orbits on &.
Applying the lincar map exp(ALs, ) on 3G with A chosen as above gives
56:=cxP0\Ls.)%
=a; +05h +0;538 14 + @Sk +as5h +aeSh + @SS - (34)

Therefore we need to find FeC®(S) so that 5(¢+{5c,,i) ekerLy,. Since the subalgebra kerLs, of
(C*(8),") is generated by
Siz . Su ,Sh+Sh L Sh+Sh SuSu—SuSn . SuSutSnSu . @3.5)
and
Ls (S1283)=85u5u , L5, (SuSu)=Sh—Sh ,
L5, (S1353)=5h —S} , Ls,(S1252)=512814 »
the splitting of 3 and S}, into a sum of terms in kerL, and imLy, is given by
Sie ="(324 +Su)"“(su -5t ,
sh =5(sh +5h)- 365k -5h) -

Thcrclorelhenomx!formofﬂ(g withmpecttoflq is
36 =a) +aySh +3a(Sh +53)+Tas(Sh +5h)+agSh (.6)

Consequently our final second order normal form for H =Ho+eH, is 5c=yo +6G+é3, where
¥ =—a|p|S)2 and %, is given by (3.6). Since Hg and I are integrals of 3 which Poisson com-
mute, ¥ is Liouville integrable.

4. REDUCTION TO ONE DEGREE OF FREEDOM

Since % has two commuting integrals H, and ‘JC. both of which generate an S'-action, we can per-
form reduction twice to obtain a reduced system which has only one degree of freedom. We now
carry out this twofold reduction.

Recall that the quadratic polynomials S+, 1<i <j<4, generate the algebra of smooth functions
which are invariant under the flow of Xy, . Since this flow is periodic, the corresponding S! orbit map
is

PR® —Cy—5 =R:(g,)>(512,513,523, 534, = S20.514) “n
If on & we apply the linear change of co-ordinates



A1=81u+83% , A2=S3-Sy yA3=Syu+Sy, ,
J1=812~83 ,J2=83+5,4 »J3=Sy—-8,, ,

( which is just an isomorphism of the Lie al
orbit map

@2
gabras s0(4) and s0(3)Xs0(3) ), we obtain another §'

PR —Cy—s =R4:(g,p)(4 1, 43,4301 2,T3) .

The image of Hg ' ()NT*S* under p is P, which is defined by A2 +43 +Ai=2 | A+RB A=
moreover the reduced phase space of the S'-action generated by the fiow of Xy | TS is P, which

is diffeomorphic to $? X S2. Identifying R® with (s0(3)Xs0(3))" shows that Py is an SO(3)XS0(3)
co-adjoint orbit.

Now consider the S'-action on § generated by the flow of Ly . Since 9 is an integral of H,, the
flow of Ly, leaves P, invariant. In fact this §'-action is given by the 1-parameter group t—exptLy, of
SO (3)XS0(3), which induces rotations on $2 X {0} and {0} XS? that are in 1:1 resonance ( see [3]).
Thus the algebra of smooth functions which are invariant under the flow of Ly, is generated by

m=Ay ,m=A) Ay, m=A30,-4yJ,

n=Jy ,ms=A}+4} ,wg=si+J} . @3
Hence the orbit map for this §*-action is

e =R6~>R6:(A,J)—i(m,vz,ﬂ;,v‘,ﬂs,ﬂg)
The image of P13 (?) under s the second reduced phase space P, which is defined by

o}ty =12 , mitu=1

v} +ol=nsmg , 75>0 and 7>0 7 +a= :ol’lc =2 . (44)
From (4.4) we find that P, is a surface of revolution in (7),1;,m3) space defined by
m o} =(P—al)P—Q2c—m)) , ~I<m <l and —I+2e<m <i+2 . 4.5)

Consequently P, is a point if =k, a smooth two sphere if 0<|c | </, or a topological two sphere
with cone-like singularities at the poles ==(/,0,0) when ¢ =0. This completes the twofold reduction
pr OCESS.

On the second reduced phase space P, we now compute the reduced Hamiltonian Hj, induced by
the second order normalized Hamiltonian 3. From (4.2) and (4.3) it follows that

su:%('”l +m) Suz’;l{(”l )

S1Su—SuSn="me~15) , SuSu+SuSu=7m , @6)

Sty + 5% = (s g +2m) Sk +Sh =5 (ms +7—2my)
Substituting §; =c and (4.6) into %, (3.6) yields

HR =B, +Biml +Bom +Bimy CN)}
using (4.4) and =, + 74 =2c. Here '

Bo=ay +agc? + 4oy +asht— Fay +as)? +age?

Bi=—tata)tas . B=7(a+a)—2ac=—2h , 48)

By=(as—a) -
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Sinoc_ﬁz=—2¢-i3| we may write Hf2=gy+8(m —c)*+pym, where Bo=Bo—Bic?, B,=Bi, and
B2=B;. Because H{Y =Hy=1and H{? =% =¢ on P, the second order normalized reduced Hamil-
tonian on P, is

Hi =éBi(m—c) +pm) , (4.9)
after dropping inessential constants.
5. QUALITATIVE ANALYSIS OF H; . ON P, .
In this section we discuss the qualitative properties of the level sets of H,, on P, (see fig.1 ). These
level sets correspond to trajectories of the reduced Hamiltonian vector field Xy on Py..

Let 0 =7, —c , 0=, , and 03 =w;. In these variables the second reduced phase space P is
defined by

d+ol= [(1—1c|)2 u,] [(1+|c|)2 o,] =Vio) , .1

where |0, | </—|c| and 0<|c|<l After introducing a new time scale s =€’t, the second order
normalized reduced Hamiltonian on P, is

H,.=ac}+Bo; , (5:2)
where
1
a =B =—F(astas)tag

al

=m(ﬂal +9amk +42m2k?) | (5.3)
1
B =B =g(as—ay)
_ 3aim 1
—mﬁa ~4mk) . (5.4)

We now determine the critical points 0=(0,,0,,03) of H;. on P,.. From (5.3) and (5.4) it follows
that a0 but that 8 can be zero. Let us first consider the special case a0 and 8=0. Then by the
Lagrange multiplier method we find that o must satisfy

wdol —4(c? +1*)0))=2a0; ,
2v0, =0 ,
2v0;=0 , (55)
a+ol=V(a) , |a|<l-|c]| ,

There are two cases to consider. (1) When »=0 the first equation in (5.5) gives o, =0 since a=0.
Hence we find that the circle o +03 = ¥ (0)=(/* —c?)? in P;, lies in the critical set of H,. (2) When
»540, the second and third equations in (5.5) imply that 0, =03 =0 and hence ¥(0,)=0. Therefore
o;=x(/—|c|) or ==(I+|c|). But the second possibility must be disregarded since |0, |=</—|c]|.
Consequently H;, has two critical points (!~ | ¢ |,0,0) on P, which are easily to be seen to be a
maximum and a minimum. Thus when 70 but =0 the level sets of H,. on P, are given in
figure 1.

After this special case we turn to the general case when a0 and B70. The Lagrange multiplier
equations read
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=

N

figure 1. Level sets of H|, on P, when a£0 , f=0.
The critcal set is given by the heavy curves.

4ot —4(% +cNoy)= 200, ,
o =8,
o3 =0 , (5:6)
ad+ad=V(a) , oy|<I~|c| ,1>0 .

If »=0, then the second equation in (5.6) gives 8=0 which contradicts the hypothesis. Therefore »540,
which by the third equation gives o3 =0. Thus every critical point of H, lies on the topological circle
Sl.=Py.N{o;=0).

Instead of solving (5.6) with »0, we follow a different more algebraic approach. Consider the
equations describing an h-level set of H,, on §],.

h=aﬂ%+ﬁﬂ2 ’
ad=(—|c|P =Xt +]|c|P~ad) , Joy|<I=]|c| ,1>0. .7
% A %
] 3 %
\
ca0,sba%o ce0, ath gt a0, 4450
e,
% @,
&y e, wy
cho,a-4o cpo,d%at cpo, a-A'>0

figure 2. Critical set of H;. on S}‘, when B0 and (a / 8)=>0.

Using the fact that B5£0, we may eliminate o, from (5.7) to obtain
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(@ =)ot +2A—ah + (2 + o} + (b2 - F (2 —c?)P)=0 (5:8)
together with
loy|<si—|c| , |e}=<t ,I>0 . 59

Then (a,,-l—(h —ao}),0) is a critical point of H, on S|, if and only if ¢, is a double root of (5.8)
which satisfies (5.9) (see figure 2). Equation (5.8) has double roots precisely when its discriminant 4 is
zero. We now recall some facts about discriminants. Let A denote the discriminant of the biquadratic
polynomial

x*+ax?+b . (5.10)

Then the discriminant locus {A=0} is just the {¢ =0} slice of the discriminant locus of the general
quartic x* +ax?+cx +b which in (a,b,c) space is a swallowtail surface ( see [6]). We find that {A=0}
in the (a,b) plane is given by the line {6 =0} and the half parabola {a?=4b , a<0).

We now begin the analysis of the discriminant locus {9=0} of (5.8). Our analysis is divided into
three parts: (1) @ =82, (2) & — 2 <0, and (3) * — §2>0. Casc (1) splits into two subcases.
la. If

—ak+ 82 (2 +c¥)=0 , ¢.11)
then (5.8) becomes

BR=p@-c . (5.12)
Suppose that 8>-0. Then taking the square root of (5.12) and climinating 4 from (5.11) gives

B-a)?+(a+p)c?=0 . (5.13)

If a+8=0, then (5.13) becomes 282 =0; which implies that 7 =0. But this is a contradiction. There-
fore a+B0. But &*=p by hypothesis. Hence a=§ and (5.13) implies ¢ =0. Hence h =fi*. A
similar argument when <0 shows that ¢ =0 and h =—g/%.

1b. When —ah+ B2 + c*)540, (5.8) has double roots if and only if

B -2 —c*P=0 . (5.14)
Taking the above results together we see that in case (1), (5.8) has double roots if and only if
K= . (5.15)

Note that the ¢ =0 slice of (5.15) is special in the sense that it corresponds to the case where H; . =h
and SJ. coincide along part of a parabola ( see fig.2 ). This is the only case where H,, has a critical
set which does not consist of isolated points.

In case (2) when o? —B2<0 we find that the part of {9=0) corresponding to {b =0} piece of
{A=0} is also given by (5.15). From (5.8) and (5.10) we sec that

a=2{ —ah+ (1 +c?) g2 —c?

. _h
2—F and b = ey

Therefore the part of {9=0}, which corresponds to the {a*>=4b , a<0} picce of {A=0}, is given by
0= [ —-ah+ﬁ2(lz+cz)]2_ [h’~p2(11-c2)2]

2-p & —p

— 2 2
——-ﬂ—-l"":l_;z“ <0 . (5.16)

Alfter some simplification the equation in (5.16) reads
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(h —a(l* + )P — 4 — PN =0 , 5.17)
Because o — %<0, (5.17) bolds if and only if ¢ =0 and h=a?. Consequently in each / slice of
{®D=0) we get just one extra point lying in the interior of the part given by (5.15) ( see fig.4).
In case (3) when o —f >0 we find that a part of {9=0} is given by (5.15). Also we obtain equa-
tions (5.16), (5.17) which describe the remaining part. In this case we may solve (5.17) to obtain
h=al®+cN)22|c| Vad-p . (5-18)

For /=constant we find that the two parabolas in the (c,h) planc given by (5.18 tangent t
h?=p1(1* —c?) at the four points P ¥ .18 are tngent to

= ltﬁ _.ZL 2 —_ a— 2,

Q|'4 [i’ \/ a—ﬁ'a-—ﬂl .Qz.g—- +/ :“;‘%'—d—%p .

ﬁBecausse of the inequality in (5.16) we have to consider only the part of these curves sketched in
gure 3.

a
/\_ _/ \\*.,m.e)

figure 3. The picves of b =af/?+c?)+2l |c | Va*— B which belong to {9=0).

It remains to investigate which points of {9=0} are critical points of Hj, on S],. Hereto we have
to study the effect of the inequality (5.9). First consider the part of {9=0) corresponding to {b =0).
Along this branch we find that 0, =0 is the only double root of (5.8), that is, the first inequality in
(5.9) is satisfied. Thus we only have the restriction |c | </ , I>0. Next consider the part of {9=0)
corresponding to {a?=4b , a<0}. When a? — f2<0, we find that the double roots of (5.8) are given
‘13' oy ==! when ¢ =0. Again (5.9) is satisfied if we restrict to |c | </ Finally consider the case

—B2>0. We find the double roots

% %
o] = [ah-;xz-l;:c’ = [,zﬂz:_l‘z\/%] . (5.19)

since h is given by (5.18). When >0, it is easy to check that the condition |0, | </— |c | is satisfied
only if we take the - sign in (5.18) and (5.19). Furthermore we have to restrict to |c | </ This finally
gives us the set of critical values of H;, on S], in parameter space (c,h,/), which is depicted in
fi 4.

g;jefact the curves in figure 4 describe the critical values of the energy-momentum map T S —R?;
(.p)—(Ho 9,9G). The total image is given by the curves and their interior. The fibers of the energy-
momentum map correspond to invariant surfaces of the integrable vector field X5. By factorization of
the energy-momentum map through the orbit maps p and 7 the nature of the fibers can be determined
in a straightforward way. We will end this section with a short description of the fibers.

Regular values correspond to one or two 3-tori. Elliptic critical values 10 2-tori ( (2) indicating two

of these ). Hyperbolic critical values have a fibre which includes the stable and unstable manifold, the
fiber consists of two 3-tori intersecting along a hyperbolic 2-torus. An exception are those critical
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h t3
h « ¢
e(z) & (2)
G ¢
-¢ (R - ¢ <
t
3
o 3% 48>0

figure 4. />0 slice of the set of critical points of H,, on S|,
(2) indicates two double roots, )
e(lliptic),h(yperbolic),(ransitional) indicate the stability type of the critical point.

values which correspond 1o the critical points on the first reduced phase space. They are given by
(c,h,)=(0,al®,I) and (=1,0,/). For the elliptic points the fibre is just a circle. For the hyperbolic
points we obtain complicated fibres containing a hyperbolic invariant circle.
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