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Abstract 

Different phylogenetic trees for the same group of 
species are often produced either by procedures that 
use diverse optimality criteria [18] or from different 
genes [12] in the study of molecular evolution. Com
paring these trees to find their similarities (e.g. agree
ment or consensus) and dissimilarities, i.e. distance, 
is thus an important issue in computational molecu
lar biology. ·The nearest neighbor interchange (nni) dis
tance [25, 24, 32, 4, 5, 3, 16, 17, 19, 29, 20, 21, 23)'and 
the subtree-transfer distance [12, 13, 15] are two major 
distance metrics that have been proposed and exten
sively studied for different reasons. Despite their many 
.appealing aspects such as simplicity and sensitivity to 
tree topologies, computing these distances has remained 
very challenging. This article studies the complexity 
and efficient approximation algorithms for computing 
the nni distance and a natural extension of the subtree
transfer distance, callec:l. the linear-cost subtree-transfer 
distance. The linear-cost subtree-transfer model is more 
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logical than the (unit-cost) subtree-transfer model and 
in fa.et coincides with the nni model under certain con
ditions. The following results have been obtained as 
part of our project of building a comprehensive software 
package for computing distances between phylogenies. 

1. Computing the nni distance is NP-complete. This 
solves a 25 year old open question a.ppea.ring a.gain 
and again in, for example, [25, 32, 4, 5, 3, 16, 17, 
19, 20, 21, 23] under the complexity-theoretic as
sumption of P :/= NP. We also answer an open 
question (4) regarding the nni distance between un
labeled trees for which an erroneous proof appeared 
in [19]. We give an algorithm to compute the op
timal nni sequence in time O(n2 logn + n. 20(d)), 

where the nni distance is at most d. The algorithm 
allows us to implement practical programs when d 
is small. All above results also hold for linear-cost 
su btree-transfer. 

2. Biological applications require us to extend the nni 
and linear-cost subtree-transfer models to weighted 
phylogenies, where edge weights indicate the length 
of evolution along each edge. We present a loga
rithmic ratio approximation algorithm for nni and 
a ratio 2 approximation algorithm for linear-cost 
subtree-tra.nsfer, on weighted trees. 

1 Introduction 

The evolution history of organisms is often conveniently 
represented as trees, called phylogenetic trees or simply 
phylogenies. Such a tree has uniquely labeled leaves and 
unlabeled interior nodes, can be unrooted or rooted if the 
evolutionary origin is known, and usually has internal 
nodes of degree 3. Over the past few decades, many dif
ferent objective criteria and algorithms for reconstruct
ing phylogenies have been developed, including (not ex
haustively) parsimony [6, 9, 27], compatibility [22), dis
tance [10, 26], and maximum likelihood [6, 7, 2). The 
outcomes of these methods usually depend on the data. 
and the amount of computational resources applied. As 
a result, in practice they often lead to different trees 
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on the same set of species [18). It is thus of interest to 
compare phylogenies produced by different methods, or 
by the same method on different data, for similarity and 
discrepancy. Several metrics for measuring the distance 
between phylogenies have been proposed in the litera
ture. Among these metrics, the best known is perhaps 
the nearest neighbor interchange (nni) distance intro
duced independently in (25) and [24J. 

An nni operation swaps two subtrees that are sep
arated by an internal edge ( u, v), as shown in Figure 1. 
The nni operation is said to operate or perform on this 
internal edge. The nni distance, Dnni(Ti, T2}, between 
two trees T1 and T2 is defined as the minimum number 
of nni operations required to transform one tree into the 
other, as illustrated in Figure 2. 

The complexity of computing the nni distance has 
been open for 25 years (since [25]). The problem 
is surprisingly subtle given the history of many erro
neous results, disproved conjectures, and a faulty NP
completeness proof [32, 3, 16, 17, 19, 20, 23]. The ques
tion is open even for the simpler case where the trees 
are unlabeled. An erroneous NP-completeness proof for 
this case was published in [19). 

The problem of computing distance between phy
logenetic trees also a.rises in a different context. When 
the data is in the form of some molecular sequences of 
the organisms and the sequences have been subject to 
events such as recombination or gene conversion during 
the course of evolution, the evolutionary history of the 
sequences cannot be adequately described by a single 
tree. In an attempt to solve this problem, more gen
eral evolutionary models have been proposed includ
ing the network model [30] and a model using a list 
of phylogenetic trees [12, 131. In the latter, every tree 
corresponds to a specific region of the sequences, and 
each tree can be obtained from the preceding tree on 
the list by transferring some subtrees from one place 
to another. Figure 3 shows a sub tree-transfer operation 
a.nd its corresponding recombination event. The parsi
mony model in [12, 13J requires the computation of the 
subtree-transfer distance between two trees, i.e. the 
minimum number of subtrees we need to move to trans
form one tree into the other. (15] shows that computing 
the subtree-transfer distance is NP-complete and gives 
a simple approximation algorithm with ratio 3. 

It is relevant in practice to discriminate among 
subtree-transfer operations as they occur with different 
frequencies. For example, it is reasonable to assume 
that sequences that have only diverged recently give rise 
to more recombinations than sequences that diverged 

many generations ago [13, 14]. In this case, we can 
charge each subtree-transfer operation a cost equal to 
the distance (number of nodes passed) that the subtree 
has moved in the current tree. The linear-cost subtree
transfer distance, D6 t(T1, T2), between two trees Ti and 
T2 is then the minimum total cost required to transform 
T1 into T2 by subtree-transfers. 

Surprisingly, although they are studied in parallel 
for very different reasons, we demonstrate here that the 
linear-cost subtree-transfer and nni are closely related. 
Observe that a.n nni move is just a restricted subtree
transfer where a subtree is only moved across a single 
edge. (In Figure 1, the first exchange can alternatively 
be seen as moving node v together with subtree C past 
node u towards subtree A, or vice-versa.) On the other 
hand, a subtree-transfer over a distanced can always be 
simulated by a series of d nni moves. Hence the linear
cost suhtree transfer-distance is in fact identical to the 
nni distance. 

A phylogeny may also have weights on its edges, 
where an edge weight {more popularly known as branch 
length in genetics) could represent the evolutionary dis
tance along the edge. Many phylogeny reconstruction 
methods; including the distance and maximum likeli
hood methods, actually produce weighted phylogenies. 
Comparison of weighted phylogenies has recently been 
studied in [18). The distance measure adopted is based 
on the difference in the partitions of the leaves induced 
by the edges in both trees, and has the drawback of 
being somewhat insensitive to the tree topologies (8). 
Both the linear-cost subtree-transfer and nni models 
can be naturally extended to weighted phylogenies. An 
nni is simply charged a cost equal to the weight of the 
edge it operates on, while a. moving subtree is charged 
for the weighted distance it travels. Intuitively these 
measures, especially the nni distance, are more sensi
tive to the tree topologies than the one in [18]. Note 
that for weighted phylogenies, the linear-cost subtree
transfer model is more genetal than the nni model in 
the sense that we can slide a subt:ree along an edge with 
subtree-transfers. Such an operation is not realizable 
with nni moves. 

In this paper, we study the computational complex
ity and efficient approximation algorithms concerning 
the nni distance and linear-cost subtree-transfer dis
tance on both unweighted and weighted phylogenies. 
We finally settle almost all questions regarding the nni 
distance. We show that computing the nni distance is 
NP-complete. The proof is quite nontrivial and it uses 
the lower and upper bounds [4, 29, 23] for sorting on a 



tree by nni operations in an essential wa.y. The problem 
is also shown to be NP-complete for u.nlabeled trees, an
swering another open question in [4). We will give an 
efficient O(logn) approximation algorithm for comput
ing the nni distance on weighted phylogenies, where n 
is the number of leaves. A special case of the result for 
unweighted phylogenies was recently reported in (23]. 
We then give an exact algorithm that runs efficiently 
when the nni distance is sufficiently small. Such an al
gorithm is useful in practice as most trees compared 
are quite similar. The complexity of computing linear
cost subtree-transfer distance on weighted phylogenies is 
presently open, but here we present an efficient approxi
mation algorithm with ratio 2 and show that computing 
linear-cost subtree-transfer distance is NP-complete for 
labeled trees provided. the la.bels are not required to be 
unique. 

Unless otherwise menti<med, all the trees in this 
paper a.re degree-3 trees with 1niique labels on leaves. 
An edge of a tree is external if it is incident on a. leaf, 
otherwise it is internal. Finally, two weighted trees 
are equal iff there is an isomorphism between them 
preserving topology, edge weights (and leaf labels for 
labeled trees). Due to space limitations, many proofs 
are omitted from this extended abstract. 

2 Computing the Nni Distance Is NP-complete 

THEOREM 2.1. Computing the nni distance (be
tween two labeled trees) is NP-complete. 

The proof is by a reduction from Exact Cover by 
3-Sets (X3C), which is known to be NP-complete [11), 
to our problem. Recall that, given an instance S = 
{s1 1 ••• ,sm}, where m = 3q, and C1, ... 1 Cn, where 
ci = {sip S\21 s;3}, the X3C problem is to find disjoint 
sets C;j, ... ,c.q such that uJ= 1C;1 = S. We will 
construct two trees Ti and T2 with unique leaf labels, 
such that transforming from Ti into T2 requires at most 
N (to be specified later) nni moves iff an exact cover of 
Sexists. 

Here is an outline of our reduction. We can 
perform sorting with nni moves and thus view nni as 
a special sorting problem. A sequence x1 •.• x1c can 
be represented as a linear tree as in Figure 4. For 
convenience, such a linear tree will be simply called a 
sequence of length k. Sorting such a sequence means 
to transform it by nni operations to a linear tree whose 
leaves are in ascending order. 

To construct the first tree Ti, for each Si E S, 
we create a sequence Si of leaves that takes a "large" 
number of nni moves to sort. We will make sure that S; 
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a.nd S; a.re "very different" permutations for each pair 
i -:fo j, in the sense that we cannot hope to have the 
sequence S; sorted for free while sorting the sequence 
S; by nni moves and vice versa. Then for each set 
C; :::: { 8;,, s;,., s; 4 }, we create three sequences with 
the same permutations a.s the sequences S; 1 , S;~, S;., 
respectively, but with distinct labels. Such n groups 
of sequences for Ci, ... , Cn, each consisting of three 
sequences, will be placed "far away" from each other 
and from the m sequences S1 1 ••• , Sm in tree Ti. Tree 
T2 has the same structure as Ti except that all sequences 
are sorted. 

Here is the connection between exactly covering S 
and transforming T1 into T2 by nni moves. To transform 
T1 into T2 , all we need is to sort the sequences defined 
above. If there is an exact cover C;1 , ••• , C;,. of S, we 
can partition the m sequences S1 , ... , Sm into '; :::: q 
groups, according to the cover. For each Ci (j = 
·it, ... , ig) in the cover, we send the corresponding group 
of sequences Sit, 812, S;/J to their counterparts, merge 
the three pairs of sequences with identical permutations, 
sort the three permutations, and then split the pairs 
and transport the three sorted versions of Sj 1 , Sh, Si~ 
back to their original locations in the tree. Thus, 
instead of sorting six sequences separately1 we do three 
merges, three sortings, three splits1 and a round trip 
transportation of three sequences. Our construction 
will guarantee that the latter is significantly cheaper. If 
there is no exact cover of S, then either some sequence 
S; will be sorted separately or we will have to send 
at least q + 1 groups of sequences back and forth. 
The construction guarantees that both cases will cost 
significantly more than the previous case. 

We now give more details. Apparently many diffi
cult question.s have to be answered: How can we find 
these m sequences S1, ... , Sm that are hard to sort by 
nni moves? How do we make sure that sorting one such 
sequence will never help to sort others? How can we 
ensure that it is most beneficial to bring the sequences 
Sit> Si:.• Sj,. to their counterparts defined for C1 to get 
sorted, and not the other way? 

We begin with the construction of the sequences 
Si, ... , Sm. Recall that each such sequence is actually 
a linear tree, as in Figure 4. Intuitively, it would be a. 
good idea. to take a long and difficult-to-sort sequence 
and break it into m pieces of equal length. But this 
simple idea does not work for two reasons. First, such a. 
sequence probably cannot be found in polynomial time. 
Second, even we find such a sequence, because the upper 
bound in [4, 23] and the lower bound in [29] (see [23)) 
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do not match, these pieces may still help each other in 
sorting possibly by merging, sorting together, and then 
splitting. The following lemma states that there exists 
two sequences of constant size that are hard to sort and 
do not help each other in sorting. We will build our m 
sequences using these two sequences. 

LEMMA 2.1. For any positive constant f > O, there 
ezists infinitely many k for which there is a constant c 
and two sequences ~ and y of length k such that (i) each 
of them takes at least (c - E)k log k nni moves to sort, 
(ii) each of them takes at most ck log k nni moves fo 
sort, and (iii) it takes at least (1- t:)c(2k}log(2k) nni 
moves to sort both of them together, i.e. the sequence 
xy. 

PrlJof. Note that for any c, k, x, y, statements (ii) 
and (iii) imply statement (i). So it suffices to prove the 
existence of a constant c and an infinite number of k's 
that satisfy conditions (ii) and (iii). 

From the results in (4, 23, 29), we know that for each 
k, there exists a sequence of k leaves such that sorting 
the sequence takes at most k log k + 0( k) nni moves 
and at least tk logk - O(k) nni moves. Let us define 
CJ:, for any k, M the maximum number of nni steps to 
sort any sequence of length k, divided by k log k. Since 
~ -o{l) ::; CJ: S 1 +o(l) there must be infinitely many k 

satisfy c2i.: 2: c1: - ~. Taking x and y to be the two halves 
of a hardest sequence oflength 2k, for large enough such 
k, and taking c = c1c, one can see that conditions (ii) 
and (iii) are satisfied. • 

Let f = 1/2, k a sufficiently large integer satisfying 
Lemma 2.1 and c, x, y the corresponding constant and 
sequences. Next we use x and y, each of length k, 
to construct m long sequences S1 , •.• , Sm. Choose m 
distinct binary sequences in { 0, 1} flogm 1. Replace each 
letter 0 with the sequence xm3 and each letter 1 with the 
sequence yma. Give each occurrence of x and y unique 
labels. Insert in front of every x and y block a delimiter 
sequence oflength k2 with unique labels. This results in 
sequences S 1 , .•• , Sm, all with distinct labels. We can 
show that these sequences have the desired properties 
concerning sorting. The m sequences will have specific 
orientations in the tree; let's refer to one end as head 
and the other end as tail. 

We are now ready to do the reduction. From sets 
S = { s1~ ... , Sm}, and Ci, C2, ... , C,,,, we construct the 
two trees T 1 and T2 as follows. For each element s;, T1 
has a sequence S; as defined above. For each set C; = 
{s;,, s;,, s;.}, we create three sequences S;,;,, S;,;2 , S;,; 3 , 

with the same permutations as S; 11 S;~, S;3 , respectively, 
but with different and unique labels (we are not allowed 

to repeat labels). 
Figure 5 outlines the structure of tree T1 . Here a 

thick solid line represents a. sequence S; or S;,; with 
the circled end as head; a dotted line represents a toll 
sequence of mz uniquely labeled leaves; a small black 
rectangle represents a one-way circuit as illustrated 
in Figure 6(i). The heads of m sequences at the left 
of Figure 5 are connected by two full binary trees 
connected root-to-root of depth log m + log n to the n 
toll sequences, each leading to the entrance of a one
way circuit. The exit of each such one-way circuit is 
connected to the entrances of three one-way circuits 
leading finally to the three sequences corresponding to 
some set cj. 

A one-way circuit is designed for the purpose of 
giving free rides to subtrees moving first from 'a' to 'b' 
and then later from 'b' to 'a', while impo$ing a large 
extra cost for subtrees first moving from 'b' to 'a' and 
then from 'a' to 'b'. We will choose r so large (i.e. 
r :;:: m 4 ) that it is not worthwhile to move any sequence 
S;,;, corresponding to some C;, to the left through the 
one-way circuits to sort and then move it back to its 
original location in T1 . This can be seen as follows. The 
counterpart of the one-way circuit in T2 is as shown in 
Figure 6(ii). 

In any optimal transformation of circuit (i) to (ii), 
the u's are paired up with the z's first and then the v's 
are paired with the u-z pairs. This requires Ur and v1 

to move up and out of the way. The pairing of the u's 
essentially provides a shortcut for Ur to reach Zr in half 
as many steps, and similarly for v1 . 

In the following sorting a sequence S; or S;,j means 
to have each of its x/y blocks sorted and then the whole 
sequence flipped. The tree T2 has the same structure as 
T1 except that 

• all sequences S; and S;,j are sorted. 
• ea.eh circuit in Figure 6(i) is changed to (ii). 
Let M be the cost for sorting a sequence Si,i 

optimally (M can be computed e;;i.sily). The following 
lemma completes the reduction and thus the proof of 
Theorem 2 .1. 

LEMMA 2.2. (Proof omitted) The set S has no 
exact cover i!J D,.11 ;{T1, T2) ~ N + m 2 /2, where N = 
q(logm + logn) + qm2 + 28nm4 - 28n + O(q) + 3nM + 
(k 2 + 6k)m3 logm + 0(1). 

Next, we consider the hardness of computing the 
nni distance when both the trees have unlabeled leaves, 
solving an open problem mentioned in [4]. A flawed 
proof of Theorem 2.2 was published in (19). 1 Theo-

1In [19], the author reduced the Partition problem to nn.i by 



rem 2.2 ca.n be proved either using Theorem 2.1 or in
dependently using a direct and much simpler reduction 
from the X3C problem. 

THEOREM 2.2. (Proof omitted) Computing the nni 
between two unlabeled trees is NP-complete. 

3 An Efficient Exact Algorithm for Small Nni 
Distance 

In practice, the trees to be compared usually have small 
nni distances between them and it is of interest to 
devise efficient algorithms for computing the optimal 
nni sequence when the nni distance is small, say d. 
An nO(d) algorithm for this problem is trivial. With 
careful inspection, one can derive a.n algorithm that runs 
in O(n°<1) . dO(d")) time, which can asymptotically be 
improved to O(n2 logn+ n·d2d+q(cl)). It turns out that 
by using the results in [29, 23), we could further improve 

. the time to O(n2 logn + n · 2114). 

THEOREM 3.1. (Proof omitted) Suppose that 
Dnni(Ti, Ta) $ d. The optimal sequence of nni op
erations tTansforming Ti into T2 can be compu.ted in 
0( n2 log n + n · 2114) time. 

4 Approximation of Nni on Weighted 
Phylogenies 

In this section we generalize the nni distance 
Dnni(T1, T2) to the case when both Ti and T2 are 
weighted, the cost of an nni operation being the weight 
of the edge across which two subtrees are swapped. 
As mentioned in the introduction, many phylogeny re
construction methods produce weighted phylogenies. 
Hence the weighted nni distance problem is also very 
important in computational molecular biology. NP
completeness of the (unweighted) nni distance prob
lem (in Section 2) implies the NP-completeness of the 
weighted nni distance problem also. 

We present a polynomial time algorithm with ap
proximation ratio O(logn) for nni on weighted phyloge
nies, generalizing the logarithmic ratio approximation 
algorithm in [23]. The approximation for the weighted 
case is considerably more complicated. Note that nni 
operations can be performed only across internal edges. 
For feasibility of weighted nni transformation between 
two given weighted trees T1 and T2, we require in this 
section that the following conditions are satisfied: (1) 
for each leaf label a, the weight of the edge in Ti inci
dent on a is the same as the weight of the edge in Tz 
incident on a,"' (2) the multisets of weights of internal 

constructing a tree of i nodes for a number i. 

431 

edges of Ti and T2 are the same. 
THEOREM 4.1. (Proof omitted) Let T1 and T2 be 

two weighted phylogenies, ea.eh. with n leaves. Then, 
Dnni(T1, T2) can be approzimated to within a factor of 
6 + 6 logn in O(n2 logn) time. 

Note that the approximation ratio does not depend 
on the weights. Intuitively, the idea of the algorithm 
is as follows. We first identify "bad" components in 
the tree that need a lot of nni moves in transformation 
process. Then, for each bad component, we put things 
in correct order by first converting them into balanced 
shapes. But notice that we cannot afford t.o perform nni 
operations many times on heavy edges. Furthermore, 
not only the leaf nodes need to be moved to the right 
places, so do the weighted edges. The main difficulty 
of our algorithm is the careful coordination of the 
transformations so that at most O(log n) nni operations 
are performed on each heavy edge. 

5 Linear-cost Subtree-Transfer Distance 

In this section we investigate the linear-cost subtree
transfer model on weighted phylogenies. Recall that 
the linear-cost subtree-transfer distance is identical to 
the nni distance on unweighted phylogenies. Below we 
formalize the linear-cost subtree-transfer model. 

Consider binary unrooted trees in which each edge 
e has a weight w( e) 2: O. To ensure feasibility of 
transforming a tree into another, we require the total 
weight of all edges to equal one. A subtree-transfer is 
defi:ned as follows. Select a suhtree S of T a.t a given 
node u and select an edge e f/. S. Split the edge e 
into two edges e1 and e2 with weights w(ei) and w(e2) 
(w(ei), w(e2) 2: 0, w(e1) + w(e2) = w(e)), and move S 
to the common end-point of e1 a.nd e2. Finally, merge 
the two remaining edges e' and e11 adjacent to v. into 
one edge with weight w(e') + w(e"). The cost of this 
subtree-transfer is the total weight of all the edges over 
which S is moved. Figure 7 gives an example. The 
subtree S is transferred to split the edge e4 to e6 and e7 

such that w(ea), w(e7) 2: 0 and w(e6) + w(e7) = w(e4); 
fin~ly~ the two edges ei and e2 are merged to e5 such 
that w(es) = w(ei) + w(e2). The cost of transferring S 
is w(e2) + w(e3) + w(e6)· 

THEOREM 5.1. (Proof omitted) Let T1 and T2 be 
two weighted trees with (not necessarily uniquely) labeled 
leaves. Then, comp11.ting D1t(T1, T2) is NP-complete. 

THEOREM 5.2. For any two weighted phylogenies 
T1 and T2, Dat(Ti. T2 ) can be approximated to within 
a factor of 2 in. O(n2 logn) time. 

In the rest of this section, we prove Theorem 5.2. 
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We first define the notion of good edge pa.irs. Next, we 
devise an approximation algorithm for the case when Ti 
and Tz share no good edge pairs. Finally, we show how 
to apply the algorithm to the general case. 

First, we introduce some notation. For any tree T, 
let E(T) (resp. V(T)) denote the edge set (reap. node 
set) ofT and L(T) denote the set of leaf nodes of T. An 
external edge of T incident on a leaf node a is denoted 
by eT(a). Let E;nt(T) and Ee:ct(T) denote the set of 
internal and external edges of T, respectively. For a 
subset E' s; E(T), define w(E') = EeeE' w(e). Define 
W;nt(T) = w(Eint(T)) and We:ct(T) = w(Eezt(T)). 
Next, we define the notion of good edge pairs: 

DEFINITION 1. Let ei E E;,.,(Ti) and e2 E 
E1nt(T2). Let Tf and Tf' be the two subtrees of Ti 
partitioned by ei. Let T~ and T~1 be the two subtrees 
of Tz partitioned by ez. ei and e2 are called a good pair 
of Ti and T2 iff the following two conditions hold: 

1. L(T{) = L(~) and L(Tf1 ) = L(~'). 

2. Either w(E(Tf)) ~ w(E(T~)) < w(E(Ti))+w(e1), 
or w(E(TD) :5 w(E('.I'f)) < w(E(T~)) + w(e2). 
We say that nodes connected by 0-weight edges 

are equivalent and call the resui.ting equivalence classes 
.super-nodes. Let ei, ... , e1; be all positive weight edges 
incident to a super-node o. With 0 cost, we can re-
connect the edges ei, ..• , ek by any subtree, consisting 
of only 0 weight edges. In particular, the following 
observation will be useful in the description of our 
algorithm. 

Observation. Let o be a super-node of T. Let 
e1 , ••• , e1: be all positive weight edges incident on o. Pick 
any ei and e;. We can assemble { ei, .. ., ek} - { e;, e;} 
into a single subtree S with 0 cost; and then transfer 
S along e1 by a distanced :5 w(ei)· The effect of this 
operation is that the edges e1, ..• , e1: are still incident 
on a super-node, and a portion of ea oflength dis moved 

into e;. The total cost of this operation is d. We denote 
this operation by move( e;, d, e; ). This operation can 
be implemented in O(k) time using the adjacency-list 
representation of the tree (where the weight of the edge 
is also stored in the adjacency list). 

Figure 8 shows an example of this operation. In the 
figure, the thin lines denote 0 weight edges and heavy 
lines denote positive weight edges. 

A tree T is called a super-star if all of its internal 
edges have 0 weight. In other words, all external edges 
of a super-star T are incident to a single super-node. 

We are now ready to describe our algorithm. First, 
we consider the special case when Ti and T2 do not 

have any good edge pairs. Algorithm DST, as described 
below, approximates D,e(T1 , T2) to within a factor of 2. 
The algorithm transforms Ti into a. super-star Ti (by 
moving the weight of internal edges into external edges). 
Similarly, the algorithm transforms T2 into a super-star 
T~. The transformations are chosen to make T{ coincide 
with T~. To transform T1 to T2, we first transform Ti 
to TH== T~) and then transform this to T2. Let T{ 
(resp. T~) denote the tree during the transformation of 
T1 (resp. T2)· 

Algorithm DST: 
Step 0. Initialize 11 = Ti and T~ == T2. 

Step 1. While Ti is not a super-star yet and 
there is an external edge eT; (a) = (a, u) in Tf 
such that w(eT:(a)) < w(eT~(a)), do: 

• Let ei be any positive weight internal edge 
of T{ incident on the super-node contain
ing u. Let d = min{w(e1), {w(eT~(a)) -
w(eTf(a))]}. 

• Perform the operation move(e1, d, eT:(a)) 
in Ti. (Note: after this move operation, 
either the entire length of ei is moved into 
eT:(a) or w(eT:(a)) = w(eT~(a))) . 

(Note: after the loop terminates, either T{ is a 
super-stax or w(eTt(a)) ~ w(eT~(a)) for all leaf 
nodes a. Also we perform subtree-transfer only 
on internal edges of Ti). 

Step 2. Similar to Step 19 with the roles of T:l 
and T~ swapped. 

Step 3. We transform T~ and T~ into two super
stars such that w( ex: (a)) == w ( eT~ (a)) for all 
leaf nodes a. There are two possible cases as 
follows. 

Case 3.1. w(eT:(a)) = w(eT~(a)) for all leaf 
nodes a. Perform the following loop to trans
form both Tf and T~ into super-stars. During 
the execution of the loop, we maintain the con
dition w( eTt (a)) = w( eT~ (a)) for all leaf nodes 
a (this condition implies tha.t Ti is a super-star 
iff T2 is a super-star). 

R.epea.t 

Pi<::k any edge eT~(a) = (a, u1) in T{. 
Suppose that the corresponding edge 
eT~(a) in T~ is (a,uz). Let ei be a.ny pos
itive weight internal edge of Tf incident 
on the super-node containing u1. Let e2 



be any positive weight internal edge of 
~ incident on the super-node contain
ing 1.1.2. Let d = min{w(e1),w(e2)}. In 
Tf, perform the opera
tion move(e1, d, ext(a)). In 7;, perform 
the operation move(e2, d, ex~(a)). {After 
this, we have moved the entire length of 
either ei or ez into external edges.) 

Until both Tf and T~ are super-stars. 

(Note: during this step, we perform subtree
transfer only on internal edges ofT1 a.nd T2)· 

Ca.se 3.2. There exists a. leaf node a such that 
w(eT;(a)) ;;j:. w(eT~(a)). This can happen only 
if both Ti and T~ are super-stars already. We 
need to make w(eT:(a)) = w(eT~(a)) for all leaf 
nodes a. This is done a.s follows. Partition 
L(Tf) into three subsets A, B, and C as follows: 
A (resp. B, C) is the set of leaf nodes a (resp. 
b,c) such that w(ex;(a)) = w(e::r;(a)) (resp. 
w(eT;(b)) < w(e::r;(b)), w(eT;(c)) > w(eT;(c))). 

Repeat 

Pick any edge eT1(b) with b E B and 
1 

eT1(c) 
l 

with c E C. Let d = min{[w(eTt(c)) -
w(eT;(c))], {w(e::r;(b))-w(eT;(b))J. In Tf, 
perform Tl'Wlle(eT{ (c), d, eTi(b)). Then: 

• If d = w(eT~(b))- w(e::r:(b)), remove 
b from B and put b into A. 

• If d = w(eTi(c))- w(eT~(c)), remove 
c from C and put c into A. 

• If d = w(ex•(c)) - w(eT•(c)) = 
1 2 

w(eT;(b))-w(eT:(b)), remove b from 
B; remove c from C; put both b and 
c into A. 

Until B = C = 0. 

Step 4. Now both T{ and T~ are super-stars and 
w(eT•(a)) = w(eri(a)) for all leaf nodes a. We 

1 1 

adjust the topology of the super-nodes of T; 
and T~ so that T{ and ~ are identical. 

The following lemma shows an upper bound on the 
performance ratio of algorithm DST. 

LEMMA 5.1. (Proof omitted) Assume that Ti and 
T2 do not share any good eJ.ge pairs. Then, algorithm 
DST approzimates Dat(T1, T2 ) to with.in a factor of'l. in 
O(n2 ) time. 
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Next, we consider the general case. It is easy to 
find the set of all good edge pairs in O(n2 logn) time 
using a.n algoi::ithm similar to described in the proof 
of Lemma 3.1. Let K be the number of good edge 
pairs in Ti and T2 • Our algorithm is by induction on 
K. If K = 0, algorithm DST works by Lemma 5.1. 
Suppose K > O. Let ei = (-u1 , 1'1) E E(T1) and 
e2 = (u2, 112) E E(T2) be a good pair. Let T{ and T~' 
be the two subtrees ofT1 partitioned by e1 • Let~ and 
Tj,' be the two subtrees of T2 partitioned by e2, where 
L(T{) = L(T~) and L(1i') = L(T~') . 

Assume w(E(Ti)):::; w(E(~)) < w(E(Ti))+w(e1)· 
(The other case can be handled in a similar way). 
Add a new edge (u11 :z:) to T{ and assign w((u1,z)) = 
w(E(T2)) - w(E(T{)). Add a new edge (:z:, t11) to Tf' 
and assign w((:z:, v1)) = to{e1) - w((u1, :z:)). Add a new 
edge (u2, x) to 72 and assign w((u2, :z:)) = O. Add a new 
edge (:c, v2) to 7i' and assign w((x, v2)) = w(ez). (See 
Figure 9). Note that the weights of all new edges are 
non-negative. 

Clearly, L(Tf) = L(T2) and w(T{) = w(T2). We 
can normalize the weights of T{ and T2 such that their 
sum is 1. By induction hypothesis, we can transform 
T~ to 12 with cost at most 2D.t(T{, T2). Similarly, we 
can transform T{' to T2' with cost at most 2Dat(Tf', T2'). 
Combining the two transfer sequences, we can transform 
T1 to T2 with cost at most 2D,t(T1, T2). The complete 
algorithm takes O(n2 logn) time. This completes the 
proof of Theorem 5.2. 

6 Conclusion 

These results have been obtained a.s a. pa.rt of our larger 
project of building a comprehensive software pa.cka.ge for 
comparing phylogenetic trees. It will include programs 
for computing nni, subtree-transf'er, linear-coet subtree
transfer, edit, rotation, and contraction-decontraction 
distances. Part of these have already been implemented. 
Several open questions remain: 

1. Can we approximate nni with a better ratio (on 
weighted or unweighted phylogenies)? It seems 
that to obtain a ratio better than log n, we have 
to be able to prove superlinear lower bounds for 
sorting sequences on trees with nni moves. 

2. Nni is similar to and slightly more powerful than 
rotation dista.nce [4, 28). Is rotation distance 
NP-complete? Ca.n we approximate the rotation 
distance better than {the trivial ra.tio) 2? This 
question turns out to be subtler than it appears 
to be. 
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Figure 1: The two possible nni operations on an internal edge ( u, v): exchange B +-+ C or B +-+ D 
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Figure 2: The nni distance between (i) and (ii) is 2. 
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Figure 3: Recombination event a.t point rp in (a) corresponds to transferring subt:ree s2 in (b). The genetic material (thick 
lines), tha.t is in one sequence after recombination, wa.s in two sequences jast before the recombination.. The two sets o{ 
numbers (on the thick lines} correspond to the two evolutionary histories (as shown in (b)) of two parts of the sequences. 
For example; in the evolutionary tree for the second parts of the sequences (rightmost tree in (b)), a common ancestor of 
,2, s3, s4 is found going back in time; hence the second number of the thick line in second row is 3. 
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Figure 4: A linear tree with k leaves . 
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Figure 6: One-way circuit 
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Figure 7: Subtree-transfer on weighted trees. Tree (b) is obtained from (a) with 1 subtree-transfer 
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Figure 8: The operation move( ei, 0.2, e3). (1) e2, e4, es are assembled into a. tree S; (2) S is moved a.long e1 by a 
length of 0.2. 

Figure 9: Cut each of T1 and Tz into two smaller trees. 


