
On Distances between Phylogenetic Trees
(Extended Abstract)

B. DasGupta* X. Het T. Jiangt

Abstract

Different phylogenetic trees for the same group of
species are often produced either by procedures that
use diverse optimality criteria [18] or from different
genes [12] in the study of molecular evolution. Com
paring these trees to find their similarities (e.g. agree
ment or consensus) and dissimilarities, i.e. distance,
is thus an important issue in computational molecu
lar biology. ·The nearest neighbor interchange (nni) dis
tance [25, 24, 32, 4, 5, 3, 16, 17, 19, 29, 20, 21, 23)'and
the subtree-transfer distance [12, 13, 15] are two major
distance metrics that have been proposed and exten
sively studied for different reasons. Despite their many
.appealing aspects such as simplicity and sensitivity to
tree topologies, computing these distances has remained
very challenging. This article studies the complexity
and efficient approximation algorithms for computing
the nni distance and a natural extension of the subtree
transfer distance, callec:l. the linear-cost subtree-transfer
distance. The linear-cost subtree-transfer model is more

*Department of Computer Science, Rutgers University, Cam
den, NJ 08102. E:rnail: bhaskar@crab.rutgers.edu. Work done
while the author was at University of Waterloo and was sup
ported by a.n MRC/NSERC CGAT (Canadian Genome Axialysis
and Technology) gra.nt.

tsupported in part by CGAT and NSF gra.nt 9205982. Com
puter Science Department, SUNY-Buffalo, NY 14260. Email:
xinhe@cs.bu:ffalo.edu

!Supported in part by NSERC Operating Grant OGP0046613
&nd CGAT. Department of Computer Science, McMaster Univ&
sity, Hamilton, Ont. LBS 4K1. Email: jiang@me.ccs.Dlatl8.8t.er.ca.
Work done while visiting at University of Washington

1Supported by an MRC/NSERC CGAT grant. Depart
ment of Computer Science, Department of Computer Science,
City University of Hong Kong, Kowloon, Hong Kong. Email:
mli®cs.cityu.edu.hk. On sabbatical leave from Department of
Computer Science, University of Waterloo, Waterloo, Ont. N2L
3Gl.

'II Supported by an NSERC International Fellowship and
CGAT. CWI, P.O. Box 94079, 1090 GB Amsterdam.. Email:
tromp@cwi.nl

llBiolnformatics Center, Institute of Systems Science, Heng
Mui Keng Terrace, Singapore 119597. Email: lxzhang@iss.nus.sg.
Work done while the author was at University of Waterloo.

J. Trompf L. Zhangll

logical than the (unit-cost) subtree-transfer model and
in fa.et coincides with the nni model under certain con
ditions. The following results have been obtained as
part of our project of building a comprehensive software
package for computing distances between phylogenies.

1. Computing the nni distance is NP-complete. This
solves a 25 year old open question a.ppea.ring a.gain
and again in, for example, [25, 32, 4, 5, 3, 16, 17,
19, 20, 21, 23] under the complexity-theoretic as
sumption of P :/= NP. We also answer an open
question (4) regarding the nni distance between un
labeled trees for which an erroneous proof appeared
in [19]. We give an algorithm to compute the op
timal nni sequence in time O(n2 logn + n. 20(d)),

where the nni distance is at most d. The algorithm
allows us to implement practical programs when d
is small. All above results also hold for linear-cost
su btree-transfer.

2. Biological applications require us to extend the nni
and linear-cost subtree-transfer models to weighted
phylogenies, where edge weights indicate the length
of evolution along each edge. We present a loga
rithmic ratio approximation algorithm for nni and
a ratio 2 approximation algorithm for linear-cost
subtree-tra.nsfer, on weighted trees.

1 Introduction

The evolution history of organisms is often conveniently
represented as trees, called phylogenetic trees or simply
phylogenies. Such a tree has uniquely labeled leaves and
unlabeled interior nodes, can be unrooted or rooted if the
evolutionary origin is known, and usually has internal
nodes of degree 3. Over the past few decades, many dif
ferent objective criteria and algorithms for reconstruct
ing phylogenies have been developed, including (not ex
haustively) parsimony [6, 9, 27], compatibility [22), dis
tance [10, 26], and maximum likelihood [6, 7, 2). The
outcomes of these methods usually depend on the data.
and the amount of computational resources applied. As
a result, in practice they often lead to different trees

427

428

on the same set of species [18). It is thus of interest to
compare phylogenies produced by different methods, or
by the same method on different data, for similarity and
discrepancy. Several metrics for measuring the distance
between phylogenies have been proposed in the litera
ture. Among these metrics, the best known is perhaps
the nearest neighbor interchange (nni) distance intro
duced independently in (25) and [24J.

An nni operation swaps two subtrees that are sep
arated by an internal edge (u, v), as shown in Figure 1.
The nni operation is said to operate or perform on this
internal edge. The nni distance, Dnni(Ti, T2}, between
two trees T1 and T2 is defined as the minimum number
of nni operations required to transform one tree into the
other, as illustrated in Figure 2.

The complexity of computing the nni distance has
been open for 25 years (since [25]). The problem
is surprisingly subtle given the history of many erro
neous results, disproved conjectures, and a faulty NP
completeness proof [32, 3, 16, 17, 19, 20, 23]. The ques
tion is open even for the simpler case where the trees
are unlabeled. An erroneous NP-completeness proof for
this case was published in [19).

The problem of computing distance between phy
logenetic trees also a.rises in a different context. When
the data is in the form of some molecular sequences of
the organisms and the sequences have been subject to
events such as recombination or gene conversion during
the course of evolution, the evolutionary history of the
sequences cannot be adequately described by a single
tree. In an attempt to solve this problem, more gen
eral evolutionary models have been proposed includ
ing the network model [30] and a model using a list
of phylogenetic trees [12, 131. In the latter, every tree
corresponds to a specific region of the sequences, and
each tree can be obtained from the preceding tree on
the list by transferring some subtrees from one place
to another. Figure 3 shows a sub tree-transfer operation
a.nd its corresponding recombination event. The parsi
mony model in [12, 13J requires the computation of the
subtree-transfer distance between two trees, i.e. the
minimum number of subtrees we need to move to trans
form one tree into the other. (15] shows that computing
the subtree-transfer distance is NP-complete and gives
a simple approximation algorithm with ratio 3.

It is relevant in practice to discriminate among
subtree-transfer operations as they occur with different
frequencies. For example, it is reasonable to assume
that sequences that have only diverged recently give rise
to more recombinations than sequences that diverged

many generations ago [13, 14]. In this case, we can
charge each subtree-transfer operation a cost equal to
the distance (number of nodes passed) that the subtree
has moved in the current tree. The linear-cost subtree
transfer distance, D6 t(T1, T2), between two trees Ti and
T2 is then the minimum total cost required to transform
T1 into T2 by subtree-transfers.

Surprisingly, although they are studied in parallel
for very different reasons, we demonstrate here that the
linear-cost subtree-transfer and nni are closely related.
Observe that a.n nni move is just a restricted subtree
transfer where a subtree is only moved across a single
edge. (In Figure 1, the first exchange can alternatively
be seen as moving node v together with subtree C past
node u towards subtree A, or vice-versa.) On the other
hand, a subtree-transfer over a distanced can always be
simulated by a series of d nni moves. Hence the linear
cost suhtree transfer-distance is in fact identical to the
nni distance.

A phylogeny may also have weights on its edges,
where an edge weight {more popularly known as branch
length in genetics) could represent the evolutionary dis
tance along the edge. Many phylogeny reconstruction
methods; including the distance and maximum likeli
hood methods, actually produce weighted phylogenies.
Comparison of weighted phylogenies has recently been
studied in [18). The distance measure adopted is based
on the difference in the partitions of the leaves induced
by the edges in both trees, and has the drawback of
being somewhat insensitive to the tree topologies (8).
Both the linear-cost subtree-transfer and nni models
can be naturally extended to weighted phylogenies. An
nni is simply charged a cost equal to the weight of the
edge it operates on, while a. moving subtree is charged
for the weighted distance it travels. Intuitively these
measures, especially the nni distance, are more sensi
tive to the tree topologies than the one in [18]. Note
that for weighted phylogenies, the linear-cost subtree
transfer model is more genetal than the nni model in
the sense that we can slide a subt:ree along an edge with
subtree-transfers. Such an operation is not realizable
with nni moves.

In this paper, we study the computational complex
ity and efficient approximation algorithms concerning
the nni distance and linear-cost subtree-transfer dis
tance on both unweighted and weighted phylogenies.
We finally settle almost all questions regarding the nni
distance. We show that computing the nni distance is
NP-complete. The proof is quite nontrivial and it uses
the lower and upper bounds [4, 29, 23] for sorting on a

tree by nni operations in an essential wa.y. The problem
is also shown to be NP-complete for u.nlabeled trees, an
swering another open question in [4). We will give an
efficient O(logn) approximation algorithm for comput
ing the nni distance on weighted phylogenies, where n
is the number of leaves. A special case of the result for
unweighted phylogenies was recently reported in (23].
We then give an exact algorithm that runs efficiently
when the nni distance is sufficiently small. Such an al
gorithm is useful in practice as most trees compared
are quite similar. The complexity of computing linear
cost subtree-transfer distance on weighted phylogenies is
presently open, but here we present an efficient approxi
mation algorithm with ratio 2 and show that computing
linear-cost subtree-transfer distance is NP-complete for
labeled trees provided. the la.bels are not required to be
unique.

Unless otherwise menti<med, all the trees in this
paper a.re degree-3 trees with 1niique labels on leaves.
An edge of a tree is external if it is incident on a. leaf,
otherwise it is internal. Finally, two weighted trees
are equal iff there is an isomorphism between them
preserving topology, edge weights (and leaf labels for
labeled trees). Due to space limitations, many proofs
are omitted from this extended abstract.

2 Computing the Nni Distance Is NP-complete

THEOREM 2.1. Computing the nni distance (be
tween two labeled trees) is NP-complete.

The proof is by a reduction from Exact Cover by
3-Sets (X3C), which is known to be NP-complete [11),
to our problem. Recall that, given an instance S =
{s1 1 ••• ,sm}, where m = 3q, and C1, ... 1 Cn, where
ci = {sip S\21 s;3}, the X3C problem is to find disjoint
sets C;j, ... ,c.q such that uJ= 1C;1 = S. We will
construct two trees Ti and T2 with unique leaf labels,
such that transforming from Ti into T2 requires at most
N (to be specified later) nni moves iff an exact cover of
Sexists.

Here is an outline of our reduction. We can
perform sorting with nni moves and thus view nni as
a special sorting problem. A sequence x1 •.• x1c can
be represented as a linear tree as in Figure 4. For
convenience, such a linear tree will be simply called a
sequence of length k. Sorting such a sequence means
to transform it by nni operations to a linear tree whose
leaves are in ascending order.

To construct the first tree Ti, for each Si E S,
we create a sequence Si of leaves that takes a "large"
number of nni moves to sort. We will make sure that S;

429

a.nd S; a.re "very different" permutations for each pair
i -:fo j, in the sense that we cannot hope to have the
sequence S; sorted for free while sorting the sequence
S; by nni moves and vice versa. Then for each set
C; :::: { 8;,, s;,., s; 4 }, we create three sequences with
the same permutations a.s the sequences S; 1 , S;~, S;.,
respectively, but with distinct labels. Such n groups
of sequences for Ci, ... , Cn, each consisting of three
sequences, will be placed "far away" from each other
and from the m sequences S1 1 ••• , Sm in tree Ti. Tree
T2 has the same structure as Ti except that all sequences
are sorted.

Here is the connection between exactly covering S
and transforming T1 into T2 by nni moves. To transform
T1 into T2 , all we need is to sort the sequences defined
above. If there is an exact cover C;1 , ••• , C;,. of S, we
can partition the m sequences S1 , ... , Sm into '; :::: q
groups, according to the cover. For each Ci (j =
·it, ... , ig) in the cover, we send the corresponding group
of sequences Sit, 812, S;/J to their counterparts, merge
the three pairs of sequences with identical permutations,
sort the three permutations, and then split the pairs
and transport the three sorted versions of Sj 1 , Sh, Si~
back to their original locations in the tree. Thus,
instead of sorting six sequences separately1 we do three
merges, three sortings, three splits1 and a round trip
transportation of three sequences. Our construction
will guarantee that the latter is significantly cheaper. If
there is no exact cover of S, then either some sequence
S; will be sorted separately or we will have to send
at least q + 1 groups of sequences back and forth.
The construction guarantees that both cases will cost
significantly more than the previous case.

We now give more details. Apparently many diffi
cult question.s have to be answered: How can we find
these m sequences S1, ... , Sm that are hard to sort by
nni moves? How do we make sure that sorting one such
sequence will never help to sort others? How can we
ensure that it is most beneficial to bring the sequences
Sit> Si:.• Sj,. to their counterparts defined for C1 to get
sorted, and not the other way?

We begin with the construction of the sequences
Si, ... , Sm. Recall that each such sequence is actually
a linear tree, as in Figure 4. Intuitively, it would be a.
good idea. to take a long and difficult-to-sort sequence
and break it into m pieces of equal length. But this
simple idea does not work for two reasons. First, such a.
sequence probably cannot be found in polynomial time.
Second, even we find such a sequence, because the upper
bound in [4, 23] and the lower bound in [29] (see [23))

430

do not match, these pieces may still help each other in
sorting possibly by merging, sorting together, and then
splitting. The following lemma states that there exists
two sequences of constant size that are hard to sort and
do not help each other in sorting. We will build our m
sequences using these two sequences.

LEMMA 2.1. For any positive constant f > O, there
ezists infinitely many k for which there is a constant c
and two sequences ~ and y of length k such that (i) each
of them takes at least (c - E)k log k nni moves to sort,
(ii) each of them takes at most ck log k nni moves fo
sort, and (iii) it takes at least (1- t:)c(2k}log(2k) nni
moves to sort both of them together, i.e. the sequence
xy.

PrlJof. Note that for any c, k, x, y, statements (ii)
and (iii) imply statement (i). So it suffices to prove the
existence of a constant c and an infinite number of k's
that satisfy conditions (ii) and (iii).

From the results in (4, 23, 29), we know that for each
k, there exists a sequence of k leaves such that sorting
the sequence takes at most k log k + 0(k) nni moves
and at least tk logk - O(k) nni moves. Let us define
CJ:, for any k, M the maximum number of nni steps to
sort any sequence of length k, divided by k log k. Since
~ -o{l) ::; CJ: S 1 +o(l) there must be infinitely many k

satisfy c2i.: 2: c1: - ~. Taking x and y to be the two halves
of a hardest sequence oflength 2k, for large enough such
k, and taking c = c1c, one can see that conditions (ii)
and (iii) are satisfied. •

Let f = 1/2, k a sufficiently large integer satisfying
Lemma 2.1 and c, x, y the corresponding constant and
sequences. Next we use x and y, each of length k,
to construct m long sequences S1 , •.• , Sm. Choose m
distinct binary sequences in { 0, 1} flogm 1. Replace each
letter 0 with the sequence xm3 and each letter 1 with the
sequence yma. Give each occurrence of x and y unique
labels. Insert in front of every x and y block a delimiter
sequence oflength k2 with unique labels. This results in
sequences S 1 , .•• , Sm, all with distinct labels. We can
show that these sequences have the desired properties
concerning sorting. The m sequences will have specific
orientations in the tree; let's refer to one end as head
and the other end as tail.

We are now ready to do the reduction. From sets
S = { s1~ ... , Sm}, and Ci, C2, ... , C,,,, we construct the
two trees T 1 and T2 as follows. For each element s;, T1
has a sequence S; as defined above. For each set C; =
{s;,, s;,, s;.}, we create three sequences S;,;,, S;,;2 , S;,; 3 ,

with the same permutations as S; 11 S;~, S;3 , respectively,
but with different and unique labels (we are not allowed

to repeat labels).
Figure 5 outlines the structure of tree T1 . Here a

thick solid line represents a. sequence S; or S;,; with
the circled end as head; a dotted line represents a toll
sequence of mz uniquely labeled leaves; a small black
rectangle represents a one-way circuit as illustrated
in Figure 6(i). The heads of m sequences at the left
of Figure 5 are connected by two full binary trees
connected root-to-root of depth log m + log n to the n
toll sequences, each leading to the entrance of a one
way circuit. The exit of each such one-way circuit is
connected to the entrances of three one-way circuits
leading finally to the three sequences corresponding to
some set cj.

A one-way circuit is designed for the purpose of
giving free rides to subtrees moving first from 'a' to 'b'
and then later from 'b' to 'a', while impo$ing a large
extra cost for subtrees first moving from 'b' to 'a' and
then from 'a' to 'b'. We will choose r so large (i.e.
r :;:: m 4) that it is not worthwhile to move any sequence
S;,;, corresponding to some C;, to the left through the
one-way circuits to sort and then move it back to its
original location in T1 . This can be seen as follows. The
counterpart of the one-way circuit in T2 is as shown in
Figure 6(ii).

In any optimal transformation of circuit (i) to (ii),
the u's are paired up with the z's first and then the v's
are paired with the u-z pairs. This requires Ur and v1

to move up and out of the way. The pairing of the u's
essentially provides a shortcut for Ur to reach Zr in half
as many steps, and similarly for v1 .

In the following sorting a sequence S; or S;,j means
to have each of its x/y blocks sorted and then the whole
sequence flipped. The tree T2 has the same structure as
T1 except that

• all sequences S; and S;,j are sorted.
• ea.eh circuit in Figure 6(i) is changed to (ii).
Let M be the cost for sorting a sequence Si,i

optimally (M can be computed e;;i.sily). The following
lemma completes the reduction and thus the proof of
Theorem 2 .1.

LEMMA 2.2. (Proof omitted) The set S has no
exact cover i!J D,.11 ;{T1, T2) ~ N + m 2 /2, where N =
q(logm + logn) + qm2 + 28nm4 - 28n + O(q) + 3nM +
(k 2 + 6k)m3 logm + 0(1).

Next, we consider the hardness of computing the
nni distance when both the trees have unlabeled leaves,
solving an open problem mentioned in [4]. A flawed
proof of Theorem 2.2 was published in (19). 1 Theo-

1In [19], the author reduced the Partition problem to nn.i by

rem 2.2 ca.n be proved either using Theorem 2.1 or in
dependently using a direct and much simpler reduction
from the X3C problem.

THEOREM 2.2. (Proof omitted) Computing the nni
between two unlabeled trees is NP-complete.

3 An Efficient Exact Algorithm for Small Nni
Distance

In practice, the trees to be compared usually have small
nni distances between them and it is of interest to
devise efficient algorithms for computing the optimal
nni sequence when the nni distance is small, say d.
An nO(d) algorithm for this problem is trivial. With
careful inspection, one can derive a.n algorithm that runs
in O(n°<1) . dO(d")) time, which can asymptotically be
improved to O(n2 logn+ n·d2d+q(cl)). It turns out that
by using the results in [29, 23), we could further improve

. the time to O(n2 logn + n · 2114).

THEOREM 3.1. (Proof omitted) Suppose that
Dnni(Ti, Ta) $ d. The optimal sequence of nni op
erations tTansforming Ti into T2 can be compu.ted in
0(n2 log n + n · 2114) time.

4 Approximation of Nni on Weighted
Phylogenies

In this section we generalize the nni distance
Dnni(T1, T2) to the case when both Ti and T2 are
weighted, the cost of an nni operation being the weight
of the edge across which two subtrees are swapped.
As mentioned in the introduction, many phylogeny re
construction methods produce weighted phylogenies.
Hence the weighted nni distance problem is also very
important in computational molecular biology. NP
completeness of the (unweighted) nni distance prob
lem (in Section 2) implies the NP-completeness of the
weighted nni distance problem also.

We present a polynomial time algorithm with ap
proximation ratio O(logn) for nni on weighted phyloge
nies, generalizing the logarithmic ratio approximation
algorithm in [23]. The approximation for the weighted
case is considerably more complicated. Note that nni
operations can be performed only across internal edges.
For feasibility of weighted nni transformation between
two given weighted trees T1 and T2, we require in this
section that the following conditions are satisfied: (1)
for each leaf label a, the weight of the edge in Ti inci
dent on a is the same as the weight of the edge in Tz
incident on a,"' (2) the multisets of weights of internal

constructing a tree of i nodes for a number i.

431

edges of Ti and T2 are the same.
THEOREM 4.1. (Proof omitted) Let T1 and T2 be

two weighted phylogenies, ea.eh. with n leaves. Then,
Dnni(T1, T2) can be approzimated to within a factor of
6 + 6 logn in O(n2 logn) time.

Note that the approximation ratio does not depend
on the weights. Intuitively, the idea of the algorithm
is as follows. We first identify "bad" components in
the tree that need a lot of nni moves in transformation
process. Then, for each bad component, we put things
in correct order by first converting them into balanced
shapes. But notice that we cannot afford t.o perform nni
operations many times on heavy edges. Furthermore,
not only the leaf nodes need to be moved to the right
places, so do the weighted edges. The main difficulty
of our algorithm is the careful coordination of the
transformations so that at most O(log n) nni operations
are performed on each heavy edge.

5 Linear-cost Subtree-Transfer Distance

In this section we investigate the linear-cost subtree
transfer model on weighted phylogenies. Recall that
the linear-cost subtree-transfer distance is identical to
the nni distance on unweighted phylogenies. Below we
formalize the linear-cost subtree-transfer model.

Consider binary unrooted trees in which each edge
e has a weight w(e) 2: O. To ensure feasibility of
transforming a tree into another, we require the total
weight of all edges to equal one. A subtree-transfer is
defi:ned as follows. Select a suhtree S of T a.t a given
node u and select an edge e f/. S. Split the edge e
into two edges e1 and e2 with weights w(ei) and w(e2)
(w(ei), w(e2) 2: 0, w(e1) + w(e2) = w(e)), and move S
to the common end-point of e1 a.nd e2. Finally, merge
the two remaining edges e' and e11 adjacent to v. into
one edge with weight w(e') + w(e"). The cost of this
subtree-transfer is the total weight of all the edges over
which S is moved. Figure 7 gives an example. The
subtree S is transferred to split the edge e4 to e6 and e7

such that w(ea), w(e7) 2: 0 and w(e6) + w(e7) = w(e4);
fin~ly~ the two edges ei and e2 are merged to e5 such
that w(es) = w(ei) + w(e2). The cost of transferring S
is w(e2) + w(e3) + w(e6)·

THEOREM 5.1. (Proof omitted) Let T1 and T2 be
two weighted trees with (not necessarily uniquely) labeled
leaves. Then, comp11.ting D1t(T1, T2) is NP-complete.

THEOREM 5.2. For any two weighted phylogenies
T1 and T2, Dat(Ti. T2) can be approximated to within
a factor of 2 in. O(n2 logn) time.

In the rest of this section, we prove Theorem 5.2.

432

We first define the notion of good edge pa.irs. Next, we
devise an approximation algorithm for the case when Ti
and Tz share no good edge pairs. Finally, we show how
to apply the algorithm to the general case.

First, we introduce some notation. For any tree T,
let E(T) (resp. V(T)) denote the edge set (reap. node
set) ofT and L(T) denote the set of leaf nodes of T. An
external edge of T incident on a leaf node a is denoted
by eT(a). Let E;nt(T) and Ee:ct(T) denote the set of
internal and external edges of T, respectively. For a
subset E' s; E(T), define w(E') = EeeE' w(e). Define
W;nt(T) = w(Eint(T)) and We:ct(T) = w(Eezt(T)).
Next, we define the notion of good edge pairs:

DEFINITION 1. Let ei E E;,.,(Ti) and e2 E
E1nt(T2). Let Tf and Tf' be the two subtrees of Ti
partitioned by ei. Let T~ and T~1 be the two subtrees
of Tz partitioned by ez. ei and e2 are called a good pair
of Ti and T2 iff the following two conditions hold:

1. L(T{) = L(~) and L(Tf1) = L(~').

2. Either w(E(Tf)) ~ w(E(T~)) < w(E(Ti))+w(e1),
or w(E(TD) :5 w(E('.I'f)) < w(E(T~)) + w(e2).
We say that nodes connected by 0-weight edges

are equivalent and call the resui.ting equivalence classes
.super-nodes. Let ei, ... , e1; be all positive weight edges
incident to a super-node o. With 0 cost, we can re-
connect the edges ei, ..• , ek by any subtree, consisting
of only 0 weight edges. In particular, the following
observation will be useful in the description of our
algorithm.

Observation. Let o be a super-node of T. Let
e1 , ••• , e1: be all positive weight edges incident on o. Pick
any ei and e;. We can assemble { ei, .. ., ek} - { e;, e;}
into a single subtree S with 0 cost; and then transfer
S along e1 by a distanced :5 w(ei)· The effect of this
operation is that the edges e1, ..• , e1: are still incident
on a super-node, and a portion of ea oflength dis moved

into e;. The total cost of this operation is d. We denote
this operation by move(e;, d, e;). This operation can
be implemented in O(k) time using the adjacency-list
representation of the tree (where the weight of the edge
is also stored in the adjacency list).

Figure 8 shows an example of this operation. In the
figure, the thin lines denote 0 weight edges and heavy
lines denote positive weight edges.

A tree T is called a super-star if all of its internal
edges have 0 weight. In other words, all external edges
of a super-star T are incident to a single super-node.

We are now ready to describe our algorithm. First,
we consider the special case when Ti and T2 do not

have any good edge pairs. Algorithm DST, as described
below, approximates D,e(T1 , T2) to within a factor of 2.
The algorithm transforms Ti into a. super-star Ti (by
moving the weight of internal edges into external edges).
Similarly, the algorithm transforms T2 into a super-star
T~. The transformations are chosen to make T{ coincide
with T~. To transform T1 to T2, we first transform Ti
to TH== T~) and then transform this to T2. Let T{
(resp. T~) denote the tree during the transformation of
T1 (resp. T2)·

Algorithm DST:
Step 0. Initialize 11 = Ti and T~ == T2.

Step 1. While Ti is not a super-star yet and
there is an external edge eT; (a) = (a, u) in Tf
such that w(eT:(a)) < w(eT~(a)), do:

• Let ei be any positive weight internal edge
of T{ incident on the super-node contain
ing u. Let d = min{w(e1), {w(eT~(a)) -
w(eTf(a))]}.

• Perform the operation move(e1, d, eT:(a))
in Ti. (Note: after this move operation,
either the entire length of ei is moved into
eT:(a) or w(eT:(a)) = w(eT~(a))) .

(Note: after the loop terminates, either T{ is a
super-stax or w(eTt(a)) ~ w(eT~(a)) for all leaf
nodes a. Also we perform subtree-transfer only
on internal edges of Ti).

Step 2. Similar to Step 19 with the roles of T:l
and T~ swapped.

Step 3. We transform T~ and T~ into two super
stars such that w(ex: (a)) == w (eT~ (a)) for all
leaf nodes a. There are two possible cases as
follows.

Case 3.1. w(eT:(a)) = w(eT~(a)) for all leaf
nodes a. Perform the following loop to trans
form both Tf and T~ into super-stars. During
the execution of the loop, we maintain the con
dition w(eTt (a)) = w(eT~ (a)) for all leaf nodes
a (this condition implies tha.t Ti is a super-star
iff T2 is a super-star).

R.epea.t

Pi<::k any edge eT~(a) = (a, u1) in T{.
Suppose that the corresponding edge
eT~(a) in T~ is (a,uz). Let ei be a.ny pos
itive weight internal edge of Tf incident
on the super-node containing u1. Let e2

be any positive weight internal edge of
~ incident on the super-node contain
ing 1.1.2. Let d = min{w(e1),w(e2)}. In
Tf, perform the opera
tion move(e1, d, ext(a)). In 7;, perform
the operation move(e2, d, ex~(a)). {After
this, we have moved the entire length of
either ei or ez into external edges.)

Until both Tf and T~ are super-stars.

(Note: during this step, we perform subtree
transfer only on internal edges ofT1 a.nd T2)·

Ca.se 3.2. There exists a. leaf node a such that
w(eT;(a)) ;;j:. w(eT~(a)). This can happen only
if both Ti and T~ are super-stars already. We
need to make w(eT:(a)) = w(eT~(a)) for all leaf
nodes a. This is done a.s follows. Partition
L(Tf) into three subsets A, B, and C as follows:
A (resp. B, C) is the set of leaf nodes a (resp.
b,c) such that w(ex;(a)) = w(e::r;(a)) (resp.
w(eT;(b)) < w(e::r;(b)), w(eT;(c)) > w(eT;(c))).

Repeat

Pick any edge eT1(b) with b E B and
1

eT1(c)
l

with c E C. Let d = min{[w(eTt(c)) -
w(eT;(c))], {w(e::r;(b))-w(eT;(b))J. In Tf,
perform Tl'Wlle(eT{ (c), d, eTi(b)). Then:

• If d = w(eT~(b))- w(e::r:(b)), remove
b from B and put b into A.

• If d = w(eTi(c))- w(eT~(c)), remove
c from C and put c into A.

• If d = w(ex•(c)) - w(eT•(c)) =
1 2

w(eT;(b))-w(eT:(b)), remove b from
B; remove c from C; put both b and
c into A.

Until B = C = 0.

Step 4. Now both T{ and T~ are super-stars and
w(eT•(a)) = w(eri(a)) for all leaf nodes a. We

1 1

adjust the topology of the super-nodes of T;
and T~ so that T{ and ~ are identical.

The following lemma shows an upper bound on the
performance ratio of algorithm DST.

LEMMA 5.1. (Proof omitted) Assume that Ti and
T2 do not share any good eJ.ge pairs. Then, algorithm
DST approzimates Dat(T1, T2) to with.in a factor of'l. in
O(n2) time.

433

Next, we consider the general case. It is easy to
find the set of all good edge pairs in O(n2 logn) time
using a.n algoi::ithm similar to described in the proof
of Lemma 3.1. Let K be the number of good edge
pairs in Ti and T2 • Our algorithm is by induction on
K. If K = 0, algorithm DST works by Lemma 5.1.
Suppose K > O. Let ei = (-u1 , 1'1) E E(T1) and
e2 = (u2, 112) E E(T2) be a good pair. Let T{ and T~'
be the two subtrees ofT1 partitioned by e1 • Let~ and
Tj,' be the two subtrees of T2 partitioned by e2, where
L(T{) = L(T~) and L(1i') = L(T~') .

Assume w(E(Ti)):::; w(E(~)) < w(E(Ti))+w(e1)·
(The other case can be handled in a similar way).
Add a new edge (u11 :z:) to T{ and assign w((u1,z)) =
w(E(T2)) - w(E(T{)). Add a new edge (:z:, t11) to Tf'
and assign w((:z:, v1)) = to{e1) - w((u1, :z:)). Add a new
edge (u2, x) to 72 and assign w((u2, :z:)) = O. Add a new
edge (:c, v2) to 7i' and assign w((x, v2)) = w(ez). (See
Figure 9). Note that the weights of all new edges are
non-negative.

Clearly, L(Tf) = L(T2) and w(T{) = w(T2). We
can normalize the weights of T{ and T2 such that their
sum is 1. By induction hypothesis, we can transform
T~ to 12 with cost at most 2D.t(T{, T2). Similarly, we
can transform T{' to T2' with cost at most 2Dat(Tf', T2').
Combining the two transfer sequences, we can transform
T1 to T2 with cost at most 2D,t(T1, T2). The complete
algorithm takes O(n2 logn) time. This completes the
proof of Theorem 5.2.

6 Conclusion

These results have been obtained a.s a. pa.rt of our larger
project of building a comprehensive software pa.cka.ge for
comparing phylogenetic trees. It will include programs
for computing nni, subtree-transf'er, linear-coet subtree
transfer, edit, rotation, and contraction-decontraction
distances. Part of these have already been implemented.
Several open questions remain:

1. Can we approximate nni with a better ratio (on
weighted or unweighted phylogenies)? It seems
that to obtain a ratio better than log n, we have
to be able to prove superlinear lower bounds for
sorting sequences on trees with nni moves.

2. Nni is similar to and slightly more powerful than
rotation dista.nce [4, 28). Is rotation distance
NP-complete? Ca.n we approximate the rotation
distance better than {the trivial ra.tio) 2? This
question turns out to be subtler than it appears
to be.

434

7 Acknowledgments

We thank J. Felsenstein and J. Hein for explaining to us
the biological motivations for comparing weighted phy
logenies and studying the linear-cost subtree-transfer
distance, respectively, S. Yu for implementing the user
interface, V. King and M. Waterman for explaining to
us the nni problem, its history and relevant literatures
and K. Zhang and T. Yokomori for useful discussions.

References

[l] M.A. Armstrong, Groups and Symmetry, Springer
Verlag, New York Inc., 1988.

(2] D. Barry and J.A. Hartigan, Statistical analysis of
hominoid molecular evolution, Stat. Sci., 2{1987}, 191-
210.

{3] R. P. Boland, E. K. Brown and W. H. E. Day,
Approximating minimum-length-sequence metrics: a
cautionary note, Math. Soc. Sci., 4{1983), 261-270.

(4] K. Culik II a.nd D. Wood, A note on some tree
s:imila.rity measures, Inform. Proc. Let., 15(1982), 39-
42.

[5) W. H. E. Day, Properties of the nearest neighbor
interchange metric for trees of small size, Journal of
Theoretical Biology, 101(1983), 275-288.

[6) A.W.F. Edwards and L.L. Ca.va.lli-Sforza., The recon
struction of evolution, Ann. Hum. Genet., 27(1964),
105. (Also in Heredity 18, 553.)

(7) J. Felsenstein, Evolutiona.ry trees for DNA sequences:
a maximum likelihood approach. J. Mol. Evol.,
17(1981), 368-376.

[8] J. Felsenst.ein, petsonal communication, 1996.
[9] W .M. Fitch, Towa:rd defining t~e course of evolution:

minimum change for a specified tree topology, Syst.
Zool., 20(1971), 406-416.

(10] W.M. Fitch and E. Ma.rgoliash, Construction of phylo
genetic trees, Science, 155{1967), 279-284.

[11] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP.
Completeness, W. H. Freeman, 1979.

[12] J. Hein, Reconstructing evolution of sequences sub
ject to recombination using pa.:rsimony, Math. Biosci.,
98(1990), 185-200.

[13] J. Hein, A heuristic method to reconstruct the history
of sequences subject to recombination, J. Mol. Evol.,
36(1993), 396--405.

[14] J. Hein, personal email communication, 1996.
(15] J. Hein, T. Jiang, L. Wang, and K. Zhang, On the

complexity of comparing evolutionary trees, Proc. 6th
Combinatorial Pattern Matching Conf., Helsinki, 1995.

[16) J. P. Jarvis, J. K. Luedeman and D. R. Shier, Coun-
terexamples in measuring the distance between binary
trees, Mathematical Social Sciences, 4(1983), 271-274.

(17] J. P. Jarvis, J. K. Luedeman and D.R. Shier, Com
ments on computing the similarity of binary trees,

Journal of Theoretical Biology 100(1983), 427--433.
(18) M. Kuhner and J. Felsenstein, A simulation compari

son of phylogeny algorithms under equal and unequal
evolutionary rates. Mol. Biol. Evol. 11(3), 1994, 459-
468.

[19] M. Krivanek, Computing the nearest neighbor in
terchange metric for unla.beled binary trees is NP
complete, Journal of Classification 3(1986), 55-60.

[20] V. King a.nd T. Warnow, On Measuring the nni dis
tance between two evolutionary trees, DIMACS mini
tJJorkshop on combinatorial structures in molecular bi
ology, Rutgers University, Nov 4, 1994.

[21) S. Khuller, Open Problems: 10, SIGACT News,
24:4(Dec., 1994), p.46.

[22] W .J. Le Quesne, The uniquely evolved character con
cept and its cla.distic application, Syst. Zool., 23(1974),
513-517.

[23) M. Li, J. Tromp, and L.X. Zhang, Some notes on the
nearest neighbor interchange distance, 2nd COCOON,
Hong Kong, June 17-19, 1996.

[24] G. W. Moore, M. Goodman and J. Ba.ma.bas, An it
erative approach from the standpoint of the additive
hypothesis to the dendrogra.m problem posed by molec
ular da.ta sets, Journal of Theof"etical Biology 38(1973),
423--457.·

[25) D. F. Robinson, Comparison of la.beled trees with
valency three, Journal of Combinatorial Theory, Series
B, 11(1971), 105-119.

[26] N. Saitou a.nd M. Nei, The neighbor-joining method: a
new metliod for reconstructing phylogenetic trees, Mol.
Biol. EvoC., 4(1987), 406-425.

[27] D. Sankoff, Minimal mutation trees of sequences, SIAM
J. Appl. Math., 28(1975) 35-42.

[28] D. Sleator, R. Tarjan, W. Thurston, Rotation distance,
triangulations, a.nd hyperbolic geometry, J. Amer.
Math. Soc., 1(1988), 647-681.

[29) D. Sleator, R. Ta.:rja.n, W. Thurston, Short encodings
of evolving structures, SIAM J. Discr. Math., 5(1992),
428-450.

(30] A. von Ha.seler and G.A. Churchill, Network models for
sequence evolution, J. Mol. Evol., 37(1993), 77-85.

(31) M. S. Waterman, Introduction to computational biol
ogy: maps, sequences and genomes, Chapman &; Hall,
1995.

(32] M. S. Waterman and T. F. Smith, On the similarity of
dendrogra.ms, Journal of Theoretical Biology, 73(1978),
789-800.

Figure 1: The two possible nni operations on an internal edge (u, v): exchange B +-+ C or B +-+ D

sl s2

R.eptiUan Ancestor

(i)

Goose

Ostrich

Cat

Reptilian Ancestor

(ii)

Figure 2: The nni distance between (i) and (ii) is 2.

4 4 -
2 3 one subtree transfer -

s3 s4 sl s2 s3 s4 sl

(a) (b)

s2 s3

435

s4

Figure 3: Recombination event a.t point rp in (a) corresponds to transferring subt:ree s2 in (b). The genetic material (thick
lines), tha.t is in one sequence after recombination, wa.s in two sequences jast before the recombination.. The two sets o{
numbers (on the thick lines} correspond to the two evolutionary histories (as shown in (b)) of two parts of the sequences.
For example; in the evolutionary tree for the second parts of the sequences (rightmost tree in (b)), a common ancestor of
,2, s3, s4 is found going back in time; hence the second number of the thick line in second row is 3.

s

Figure 4: A linear tree with k leaves .

.. -// = g::==========
[XJ -r== .,,_ __
doubly tree

connect.ion

-~a-----

Figure 5: Structure of tree Ti

C1

436

"r-1
u r-2.

"
(i)

el ~ ~

\,);,I
I \

I \
I \

I s \

~-------~

(a)

a

b
(ii)

Figure 6: One-way circuit

e4 e5 '3 e6 e7

I 111
s

(b)

Figure 7: Subtree-transfer on weighted trees. Tree (b) is obtained from (a) with 1 subtree-transfer

=>
(1)

~

(2)

h

Figure 8: The operation move(ei, 0.2, e3). (1) e2, e4, es are assembled into a. tree S; (2) S is moved a.long e1 by a
length of 0.2.

Figure 9: Cut each of T1 and Tz into two smaller trees.

