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This paper consists of two parts. An easy proof is given for the weak 
consistency of Pickands' estimate for the main parameter of an extreme-value 
distribution. Moreover, further natural conditions are given for strong consis­
tency and for asymptotic normality of the estimate. Next a large quantile of 
a distribution is estimated by a combination of extreme or intermediate order 
statistics. This leads to an asymptotic confidence interval. 

1. Introduction. 

1.1. Estimating the extreme-value index of a probability distribution. Sup­
pose one is given a sequence X1, X2, ••• of i.i.d. observations from some distribu­
tion function F. Suppose for some constants an> 0 and bn and some y E IR, 

(1.1) 

for all x where G/x) is one of the extreme-value distributions 

(1.2) Gy(x) =exp - (1 + yx)- 11Y. 

Here y is a real parameter [interpret (1 + yx)- 1/r as e-:x: for y = O] and x such 
that 1 + yx > 0. The question is how to estimate y from a finite sample 
X1, X2, ... ' Xn. 

A traditional method uses "yearly maxima," i.e., breaks the sample into 
blocks of equal size and uses maximum likelihood estimation under the assump­
tion that the maximum in each block follows exactly distribution Gy- Consis­
tency has been proved here under certain conditions [Cohen (1988)]. By using 
this method some information from the sample seems to be lost. 

A less traditional method consists of restricting attention to those observa­
tions from Xv X2 , • •• , Xn that exceed a certain level M( n) and using the 
method of maximum likelihood under the assumption that these observations 
follow exactly one of the asymptotic residual lifetime distributions. Asymptotic 
results for this procedure have been obtained by Smith (1987). 

An attractive alternative estimate has been proposed by Pickands (1975): Let 
m = m(n) be a sequence of integers tending to infinity and let m(n)/n ~ 0 
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( n ~ oo ). The estimate is 
x<n) - x<n) 

A ·- (l 2)-1 l (n-m+l) (n-2m+l) 
Yn ·- og . og x<nl - x<nl ' (1.3) 

(n-2m+ 1) (n-4m+ 1) 

where X8)l s Xg)l .::;; · · · .::;; Xl::J are the ascending order statistics of 
X 1, X 2 , ••• , Xn. Pickands proved that this estimate is weakly consistent. We 
shall give a short proof of this result and show that if the sequence m( n) 
increases suitably rapidly, then there is strong consistency. Also we give quite 
natural and general conditions under which the estimate is asymptotically 
normal (Section 2). The analytical work involved in the translation of the 
conditions for the inverse of F into conditions for F is given in the Appendix, 
which should be useful in other contexts as well. In the Appendix we assume that 
the reader is familiar with the theory of II-variation and f-variation [see, e.g., 
Geluk and de Haan (1987)]. 

Knowing the asymptotic distribution of Yn is particularly important: Since 
there is a discontinuity in the shape of the distribution GY at y = 0, one often 
wants to test hypotheses of the type y = 0, y ~ 0 or y .::;; 0. 

1.2. Large quantile estimate under extreme-value conditions. After the 1953 
flood the Dutch government set the following standard for the sea dikes in the 
Netherlands: The probability that at any time in a given year the sea level 
exceeds the level of the dikes is 1 : 10,000. The question of how to give an 
estimate for such a level from past observations involves estimation of large 
quantiles of an unknown distribution function. 

We consider the following idealized model: n i.i.d. observations Xv X2 , ••• , Xn 
are available from an unknown distribution function F. In a future year k i.i.d. 
observations Y1, Y2, •.. , Yk will be taken from F. We want to find a level xk, Po 

(where p 0 is a given number much less than 1) such that P{max(Y1, •.• , Yk) .::;; 
x k, Po} = 1 - Po, i.e., 

(1.4) Fk(xk P ) = 1 - p0 • 
' 0 

Define the function U by 

(1.5) 

(the arrow means inverse function), p •= 1 - (1 - p 0 )11k and xP •= xk,Po" Note 
that (loosely speaking) 

We want to estimate xP on the basis of the order statistics X8)l.::;; XS,jl s 
.::;; X«;:{ of the observations X1, X2, ••• , Xn. Let Fn be the empirical distribution 
function and 

(1.6) 
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Note that Fn(X/::,,~) = m/n, m = 1,2, ... , n, so that 

(1.7) x«;:~m+l) = un(:) form = 1, 2 ... , n. 

In case p < l/n nothing can be done without imposing extra conditions on F. 
We choose for an asymptotic theory and for imposing the extra condition that F 
is in the domain of attraction of some extreme value distribution. 

We shall give asymptotic results for n ~ oo and p = Pn - 0 (the latter 
assumption is reasonable at least for the specific problem mentioned above, since 
there p < l/n). For the unknown function U we write the identity, m = 1, 2, ... , 

(l.B) ( 1) U(l/p) - U(n/m) { ( n) ( n )} ( n) 
xP = U p = U(n/m) - U(n/(2m)) U m - U 2m + U m · 

Upon replacing U by its empirical counterpart Un in appropriate places and 
using Lemma 2.2 we arrive at the following proposed estimate for x P: 

(1 9) ~ ·- (m/(pnn))Yn - 1 {x<n) x<n) } X(n) . xp,n ·- 1 - 2-rn (n-m+l) - (n-2m+l) + (n-m+l)> 

where Yn is given by (1.3). Intuitively this means that in the absence of more 
observations (that would have allowed us to simply use the inverse empirical 
distribution function), one uses observed spacing to make up (modulo a multi­
plicative constant) for the missing spacings, like a surgeon who uses a piece of 
skin from elsewhere to cover a wound. 

Note that we do not use the largest observation explicitly. One can argue that 
this makes sense because the largest observation may add too much uncertainty 
(larger variance if applicable). 

In order to deal with the asymptotics we need to require that m/(pn) has a 
positive limit (n - oo). We shall consider two cases: 

m - oo, m(n)/n - 0, hence Pn - c · m(n)/n ~ 0 and n · Pn - c · m(n) - oo, 
and m fixed, hence Pn - c/n, 0 < c < 1. 

In either case we give an asymptotic confidence interval for xP (Section 3). Since 
in the first case n · Pn ~ oo, an estimate of a simpler form than (1.9) can be used: 
extrapolation outside the sample is not necessary. 

Somewhat related papers are Weissman (1978) and Boos (1984). 
Using the same methods we find a confidence interval for the endpoint of the 

distribution in case y < 0. 

1.3. Simulation results and an application. In Section 4 we present some 
simulation results and an application of our results to the high tide water levels 
at the Dutch island Terschelling. 

2. Consistency and asymptotic normality. We shall need the following 
simple result. 
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LEMMA 2.1. If F(x) = 1 - e-x (standard exponential distribution), m::;; n 
and m = m(n)--+ oo (n--+ oo), then 

i/2m(Xl:~m+l) - Xi:~2m+l) - log2) 

has asymptotically a standard normal distribution. 

PROOF. We use the representation for exponential order statistics usually 
referred to as Renyi's representation: For each n there exist i.i.d. ran­
dom variables Z1, Z2,... with standard exponential distribution such that 
{x (n) x<n) }n - {Z I }n h x<n) - 0 Th' cri (n-m+l) - (n-m) m=l -d m m m=l, w ere (0) - • lS o.ves 
x«:~m+ii - xg~2m+i) =d Et::;,lz;/i. The rest of the proof is easy [use, e.g., 
Gnedenko and Kolmogorov (1954), Chapter 5]. D 

COROLLARY 2.1. Xi:~m+l) - xg:~2m+l)--+ log2 in probability (n--+ oo). 

Further we list a well-known result [see, e.g., de Haan (1984)]. 

LEMMA 2.2. Define U == (1/(1 - F)) ... (the inverse function). Relation (1.1) 
holds if and only if for x, y > 0, y * 1, 

i:_ U(tx)-U(t) x 1 -l ( logx ) 
t~~ U(ty) _ U(t) = yY _ 1 locally uniformly == log y for y = O . 

THEOREM 2.1 (Weak consistency). If (1.1) holds, m(n) --+ oo and 
m(n )/n --+ 0 ( n --+ oo ), then Yn --+ -y in probability ( n --+ oo ). 

PROOF. Let A 1, A 2 , •. • be i.i.d. exponential random variables and let {A)~>} 
be the ascending order statistics of A1'A2, •• .,An. Then {Xl:-~m+i)};:.= 1 =d 
{U(eAf:;>_m+l))};:,_1. Note that m(n)/n--+ 0 implies eA\:;>_m+ti--+ oo a.s. (n--+ oo). 
Now 

U( eA\:;l_m+l)) - U( eAf:;l_2m+l)) 

U( eA~::>_2m+l)) - U( eA\~l_4m+I)) 

U( eA\::>-2m+l) . eA\:;>_m+l)-A(:;>_2m+l)) - U( eAf::>-2m+I)) 

U( eA~::)_2m+l)) - U( eAl::l_2m+l). eAl:;>_,m+l)-A(::>_2m+l)) 

2Y - 1 
--+ = 2Y 

1 - 2-r 

in probability by Corollary 2.1 and Lemma 2.2. The result follows. o 

THEOREM 2.2 (Strong consistency). If (1.1) holds, m(n)/n --+ 0 and 
m( n) /log log n --+ oo ( n --+ oo ). Then 

Yn --+ y a.s., n--+ oo. 
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PROOF. The conditions on the sequence m(n) imply A~~~m+l) + 
log([m(n)]/n) -+ 0 a.s. [Wellner (1978), Corollary 4]. Hence A~~l-m+l) -

A~~~ 2m+l) -+ log2 (n-+ oo) a.s. The rest of the proof is as before. We thank 
R. Helmers for making us aware of the Wellner reference. D 

THEOREM 2.3 (Asymptotic normality). Suppose U has a positive derivative 
and suppose there exists a positive function a such that for x > 0 and y E R 
(with either choice of sign), 

. (tx) 1-yU'(tx) - t1 -YU'(t) 
(2.1) hm ( ) = ±logx 

t-+oo a t 

[IT-variation, notation ±t1 -rU'(t) E II(a)]. Then 

vm( Yn - y) 
has asymptotically a normal distribution with mean zero and variance 
y 2(22Y+l + 1)/{2(21' - 1) log 2}2 for sequences m = m(n) -+ oo satisfying 
m(n) = o(n/g<-(n)), where g(t) == t3 - 2Y{U'(t)/a(t)}2 (n-+ oo). 

REMARK. Note that (2.1) implies tY- 1a(t)/U'(t) -+ 0, hence g(t)/t-+ oo 
(t-+ oo). 

Before we prove this theorem we first formulate the conditions on U in terms 
of the distribution function F and its density. 

THEOREM 2.4. Suppose U has a positive derivative U'. Equivalent are (with 
either choice of sign): 

(a) ±t1-YU'(t) E II(a). 
(b) For y > 0: ±t1+ 1hF1(t) E II(b). For y < 0: U(oo) == limt .... 00 U(t) < oo 

and +r1 - 1hF'(U(oo) - r 1) E II(b). 

For y = 0: Let fo = (1 - F)/F' and x* == sup{xjF(x) < 1}. There exists a 
positive function a with a( t) -+ 0 ( t t x*) such that for x > 0 locally uniformly, 

lim [( 1 - F(t + xfo(t)) - e-")/a(t)] = ± x2 e-". 
t r x• 1 - F( t) 2 

REMARK. In case y = 0 the following condition is sufficient for (b): Suppose 
F is three times differentiable, ±fo' > 0, limt .... 00 f0"(t)f0(t)/f0'(t) = 0 and 
limt .... 00 f0'( t) = 0. Then (b) holds with y = 0, the plus sign at the right-hand side 
and a = f 0' (Theorem A.8). 

REMARK. If F satisfies Theorem 2.4(b), then U satisfies (2.1) with 

{

y 3t 1-y{ U(t)} 1- 1hb(U(t)), Y > 0, 

a(t) = a(U(t))f0(U(t)) = tU'(t)a(U(t)), Y = 0, 

-y 3t1 -Y{U(oo) - U(t)} 1 - 1hb(l/{U(oo) - U(t)}), y < 0. 

== 
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The proof of this theorem will be given in the Appendix (Theorems A.1, A.3, 
A.8 and A.10). The normal distribution satisfies the conditions of Theorem 2.4 
and we then have asymptotic normality of Yn for sequences m(n) ---+ oo satisfy­
ing m(n) = o(log2 n). See the end of this section. For distributions like the 
Cauchy distribution we have the following theorem. 

THEOREM 2.5. Suppose that one of the following conditions lwUls: 

(a) For some y > 0, p > 0 and c > 0 the function tI+ 1iYF'(t) - c is of 
constant sign and 

. (xt) 1+ 1IYF'(tx) - c _ 
hm = x P 
t-oo t1+ 1IYF'(t) - c 

[regular variation with exponent - p, notation ± {t1+ 1IYF'(t) - c} E RV_P]. 
(b) For some y < 0, p > 0 and c > 0 the function 

± {t- 1 - 1IYF'(U(oo) - t- 1) - c} E RV_P. 

Then 

has asymptotically a normal distribution with mean zero and variance 
y 2(2 2Y+ 1 + l)/{2(2Y - 1) log2}2 for sequences m = m(n)---+ oo satisfying m(n) = 
o( n / g ..... ( n)) ( n ---+ oo ), where g..... is the inverse function of g( t) := 

t3-2r{U'(t)/(t1-yU'(t) - crlyl1+y)}2. 

PROOF OF THEOREM 2.3. Assume for the moment that +t1-YU'(t) E Il(a). 
Then a E RV0 and lim 1 _ 00 a(t)/{t1-YU'(t)} = 0 [see, e.g., Geluk and de Haan 
(1987)]. This also implies FE D(G). Write V(t) := U(e 1). We have 

V'(t) - e-y.xV'(t + x) 
(2.2) /3( t) ~ -x locally uniformly 

for some positive function /3 satisfying /3( t + x) - e rx13( t) locally uniformly and 
/3(t)/V'(t)---+ 0 (t---+ oo). Now 

V( t + x) - V( t) - e y.xv( t) + er.xv( t - x) 

= 1x{V'(t + s) - eY.xV'(t + s - x)} ds 
() 

_ 1.x V' ( t + s ) - e r.xy' ( t + s - x) . /3 ( t + s ) 
-f3(t) o /3(t+s) f3(t) ds, 

hence locally uniformly 

V( t + x) - V( t) - e y.xv( t) + e yxv( t - x) e yx - 1 
lim = x · 

t-+oo /3(t) Y 
(2.3) 
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We write as in the proof of Theorem 2.1, 
x<n) - x<nl (n-m+l) (n-2m+l) _ 2y 

x<n> - x<n) (n-2m+ 1) (n-4m+ 1) 

v( { A~:i__m+1) - A~:i__2m+1)} + A~:i__2m+1>) - V( A~:i__2m+1i) 
-fo------:-----:--:----'------'---------.,..-2Y 
V( A~:i__2m+1i) - v( { A\~l-4m+1i - A\~l__2m+1i} + A(~l__2m+1i) 

(2.4) 
v( { A~:i__m+1i - A~:i__2m+1>} + A~:i__2m+1>) - V(Ai~l__2m+1)) 

v( A~:i__2m+1J - v( Ai~l__4m+1i) 
_ 2Y v( A~:i__2m+1>) - v( { A~:i__4m+1> - A~:i__2m+1>} + A~:i__2m+1>) 

V( A~:i__2m+1)) - v( A(:l__4m+1,) 

In view of the result of Lemma 2.1 we introduce 

Qn == V2m ( Ai:l__m+l) - A~~l__2m+ll - log2), 

Rn== J4m(A\:l__2m+l) -Ai:l__ 4m+l) - log2). 

Note that Qn and Rn are independent and asymptotically standard normal. 
We start by evaluating the denominator of (2.4) asymptotically. Note that 

t1-YU'(t) E II implies V'(t + x) - eYxV'(t) locally uniformly (t ~ oo). Hence 

V(Ai:i__2m+1J - V(A~:>-4m+1J = V'(Ai:i__2m+1i) 

j° V'( Ai:i__2rn+1> + s) 
X -log2-Rn/../4"L V'( A\~l__2m+lJ ds 

- V'(A~~l__2m+l)} · y- 1(1 - 2-r) 

in probability (n ~ oo), with the usual convention log2 == (1 - rr)/y when 
y = 0. 

For the numerator of (2.4) we proceed as follows: 

Vm V(Ai:l__ 2m+i> + log2 + Qn//2m) - V(Ai:i__ 2m+l)) 

V'( Ai:i__2m+1J 

-/m2Y V(Ai~l__2m+1i) - V(Ai:i__2m+tl - log2 - Rn//4m,) 
V'( Ai:i__2m+ 1i) 

= Vm 1Qnl~ V'( Ai~l__ 2m+Il + log2 + s) ds 

o V'(Ai:i__2m+1J) 

c: Jo V'( A~~l__ 2m+I) - log2 + s) 
-vm2Y ds 

-Rn/~ V'( Ai~)__2m+IJ 
+/m[V(Ai:>_2m+i> + log2) - V(Ai:i__2m+1>) 

-2rv(A\:l__2m+l)) + 2rv(A\~>_ 2m+I) - log2)]/[v'(A\:l__2m+1i)]. 

{>, •t~··~ ·ft 1t-:'~!C 

C•ti~'n.!rn n:::.u '>'.< . .:I.~•! "c~· ~Ink><~ 
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Now V'(t + x) - eYxV'(t) locally uniformly (t - oo), hence the sum of the first 
two terms converges in distribution to 2-r- 112Q - 2 - 1R where Q and R are 
independent and standard normal. Our aim is to make the last term negligible by 
choosing the sequence m(n) appropriately. 

Using (2.3) we get that the last term converges to ( 12 "Y )- 1(21' - 1) log 2 for any 
sequence m( n) with 

(2.5) ,fin V'( A~~~2m+1)) 
m - /2,B(A~~)-2m+l))' n - oo. 

We now investigate what sequences m(n) satisfy (2.5). 
Note that [see, e.g., Smirnov (1949)] 

2m(n) 
A (n) 1 0 · b b•lit (n- 2m+ll + og - m pro a 1 y, n - oo, 

n 

so that (2.5) reads 

[ ( 2m(n) )]/[ ( 2m(n) )] l2m, - V' - log n ,8 - log n 

= [(2:r-yu'(2:)]/[a(2:)]. 

where a is the auxiliary function for t1-YU'(t) E II or 

with g E RV1• The function g has an asymptotic inverse g .... E RV1• So (2.5) is 
equivalent to 

(2.6) 
n 

m(n) - 2g .... (n)' n - oo 

and the latter sequence is RYo. Thus the sequences m( n) for which the condition 
holds tend to infinity rather slowly. 

Let m 0( n) be the sequence of integers defined by 

(2.7) m0(n) := [n/2g .... (n)]. 

We claim that the statement of the theorem holds for any sequence of integers 
m( n) - oo satisfying 

(2.8) m(n) = o(m0(n)), n - oo. 

To see this recall that 

~ [v(log _.::_ + log 2) - v(1og _!!:__) 
2m0 2m0 

- 2YV( log 2:J + vv( log 2: 0 - log 2) ]/[ V'( log 2:J] 
2Y- 1 

- --log2, n-+ oo. 
y 
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Since (2.8) makes Vm of smaller order than ~ and log(n/m) of no smaller 
order than log(n/m0 ), we must have 

rm(v(1og 2: + log2) - v(1og 2:)- 2rv(1og 2:) + vv(1og 2: - log2)) 

~ ( V'( log 2: )1 ~ 0, n ~ oo 

and t~e statement of the theorem holds for the sequence m( n ). For later use we 
ment10n that also [start from (2.2) instead of (2.3)] 

( 2 _9) }~~ Vm ( V' (log : + s) - e rsv' (log : ) ]/ [ V' (log : ) ] = o 
for all s, locally uniformly. 

The proof in case - t1-YU'(t) En is similar. 0 

. ~ROOF OF THEOREM 2.5. Note that ±{ti+ 11YF'(t) - c} E RV_P if and only 
if + {t1 -YU'(t) - cYyr+ 1} E RV_PY' hence (t ~ oo) 

1 V'(t) - e-yxV'(t + x) e-pyx - 1 (2.10) - · ~ - locally uniformly. yp V'(t) - ertcryl+y PY 

The rest of the proof is similar to that of Theorem 2.3 and is omitted. 0 

REMARK 2.1. Note that g(t) E RV1 +2py so that t/g .... (t) E RV2pr/(l+ 2pyl" 
So here the asymptotic normality holds for sequences m( n) increasing more 
rapidly than in the situation of Theorem 2.3. 

REMARK 2.2. It is possible to state the conditions of Theorems 2.3 and 2.5 in 
a unified way. The conditions (2.1) and (2.10) can be replaced with: U' E RVy-I 
and 

(tx) 1 -rU'(tx) - t 1-rU'(t) x-rp - 1 
lim = ±---

t-+oo a(t) -yp 

for some p ~ O and some positive function a. Note that for y = 0 the limit 
does not depend on p; this is the reason why the case y = 0 is not present in 
Theorem 2.5. 

REMARK 2.3. It is obvious that the proof of Theorem 2.3 goes through under 
the following somewhat weaker conditions: U' E RYy_ 1 and moreover: 

(a) For y > 0: ±t-YU(t) En. 
(b) For y < 0: ±t-Y{U(oo) - U(t)} En. 
(c) For y = 0: There exist positive functions a 1 and a 2 such that for all x > 0 

[cf. Omey and Willekens (1987)], 

U(tx)- U(t) - a1(t)logx = +:log2 x. 
~ () -2 t-+oo a 2 t 
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REMARK 2.4. A third possibility is (2.1) with the limit function replaced by 
x-p - 1 

-p 

with p > 0. Then, provided U' E RVr_ 1, necessarily (1.1) is true with 1' = 0 and 
an= c0 > 0 for all n. The corresponding condition for F' is 

et+xF'(t + x) - c 
lim = e-p:x 

t--+oo etF'(t) - c 

for some positive constant c and all x. Set F0(t) := F(log t). Then F0 satisfies the 
conditions of Theorem 2.5(a) with y = 1. Hence we can simply translate the 
result of Theorem 2.5 for this case and we get a polynomial rate for m(n) like in 
Theorem 2.5 [cf. Cohen (1982), page 839]. 

REMARK 2.5. It is clear from the proof of Theorem 2.3 that if the right-hand 
side of (2.1) is +log x and if m( n) - c · n / g +- ( n) for some positive constant c 
(n-+ oo), then Vm(y - y) has asymptotically a normal distribution with the 
same variance but with mean ( c/2)112• The sign of the bias is the same as the 
sign in the right-hand side of (2.1). This may be of some help in finding an 
optimal choice for the sequence m( n ). 

EXAMPLE 1. The distribution functions F(x) := 1 - exp( -xa) satisfy the 
criterion of Theorem A.8 (Appendix) for all a > 0, a * 1. 

EXAMPLE 2 (Normal distribution). Using the previous example for a = 2 and 
Lemma A.2 we find that the normal distribution satisfies (A.25) with f(t) = t- 1 

and a(t) = r 2• By Lemma A.1 the same relation also holds with f(t) = fo(t) = 
et2 12;rie-•212 ds since ft''e-• 212 ds = e-t212{t- 1 - t- 3 + o(r 3)}, t-+ oo [see 
Abramowitz and Stegun (1965), 26.2.12, page 932]. Hence (Theorem A.10) U 
satisfies (A.15) with a minus sign where tU'(t) - {U(t)}- 1 and a(t) - {U(t)}- 3 

(t-+ oo). It follows that here the function g from Theorem 2.3 satisfies g(t) -
2t log 2 t so that the theorem holds for sequences m = m(n) -+ oo satisfying 
m(n) = o(log 2 n). 

EXAMPLE 3 (Gamma distribution). The conditions of Theorem A.10 are 
easily checked using the expansion (r-=!= 1) 

j 00sr- 1e-•ds = e-t{r- 1 + (r- l)tr- 2 + o(r- 2 )}. 
t 

EXAMPLE 4 (Cauchy distribution). The conditions of Theorem 2.5 are satis­
fied with p = 2 and c = 7T- 1. Then g(t) - ct5 so that the theorem holds for 
sequences m = m(n) ~ oo satisfying m(n) = o(n415 ). 

EXAMPLE 5. The distribution of exp(Z1 + Z2 ) with Z1, Z2 i.i.d. exponential 
satisfies Theorem 2.3 with y = 1 and a(t) = 1. 
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EXAMPLE 6. For the exponential and uniform distributions we have 
t1 - 1U'(t) = 1 so that the left-hand side of (2.3) is identically zero. It follows 
that the conclusion of Theorem 2.3 holds for all sequences m = m(n) ~ oo, 
m(n)/n ~ 0 (n __,.. oo). The same is true for the generalized Pareto distribution 
Fy(x) = 1 - (1 + yx)- 1h, y E IR and 1 + yx ;c:: 0. 

EXAMPLE 7 (Extreme-value distribution: Gy(x) =exp - (1 + yx)- 1h, y E IR). 
For y > 0, condition (a) of Theorem 2.5 is satisfied with c = y- 1 - 11Y and 
p = min(l, l/y) and for y < 0, condition (b) is satisfied with c = (-y)- 1 - 11r 

and p = -1/y. The theorem holds for sequences m = m(n) ~ oo satisfying, 
respectively, m(n) = o(n1 - 11r1i+min(l,rll) and m(n) = o(n213). Note that for 
y = 0 the tail of Go(x) = exp(-exp - x):::::: 1 - exp(-x) is of the exponential 
type and so the conclusion of Theorem 2.3 holds for all sequences m = m( n) ~ 
oo, m(n)/n ~ 0, (n ~ oo). The same is true for the logistic distribution. 

3. High quantile and endpoint estimation. The following theorem en­
ables one to construct a confidence interval for a quantile x P when p = Pn __,.. 0, 
npn ~ oo (n ~ oo). 

THEOREM 3.1. Suppose F has a positive density F' so that U' exists. 
If U' E R~-1 (i.e., F' E RV_l-1/y for y > 0, l/F' Er for y = 0 and 
F'(x* - 1/x) E RV1 + 1/r for y < 0), then 

(3.1) & X/;~m+l) - U(l/Pn) 
m x<n) - x<n) 

(n-m+l) (n-2m+l) 

is asymptotically normal with mean zero and variance, 22r+ 1y2/(21 - 1)2 pro­
videdpn ~ 0, npn ~ oo (n __,.. oo) and m = m(n) == [npn]. 

The proof of Theorem 3.1 follows later in this section. 

THEOREM 3.2. Suppose the conditions of Theorems 2.3 or 2.5 hold with 
y < 0. Then x* < oo where x* = x*(F) == sup{xiF(x) < 1}. Define 

x<n) - x<n) 
(n-m+l) (n-2m+l) + x<n> 

x:; == 2-.Yn - 1 (n-m+l)' (3.2) 

Then 

(3.3) 
.X* - x* 

!2m x<n) n - x<n) 
(n-m+l) (n-2m+l) 

is asymptotically normal ( n ~ oo) with mean zero and variance 

3y222y-1 

(2Y-1)6' 

The following auxiliary result is needed. 
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LEMMA 3.1. Under the conditions of Theorems 2.3 or 2.5 the random vector 

(3.4) 

12m( V(E«:~ 2m+i)) - V(log(n/(2m))) 
2m V'(log(n/(2m))) ' 

V(E<<:~m+i>) - V(El:;~ 2m+i>) _ 1 -y2-yl 
2YV'( E«::~2m+1)) 

is asymptotically standard normal. Moreover 

,/2m ( V'( Ec<:~2m+1i) - 1 
V'(log( n/(2m )) ) 

(3.5) 
V( E«:~ 2m+i>) - V(log(n/(2m)))) 

-y · V'(log( n /(2m))) --+ O, 

in probability. 

PROOF. 

(3.6) 

/2ffl, V( E<<:~ 2m+ii) - V(log(n/(2m))) 
m V'(log(n/(2m))) 

12ffl,1N/,/2m V'(log(n/(2m)) + s) 
= o n V'(log(n/(2m))) ds 

with 

(3.7) 

Also 

(3.8) 

n--+ oo 

-y ~1Q,./,/2m V'{E(<:~ 2m+l) + log2 + s) 
+ 2 v2m { < ) ) ds, 

o V' E<:-2m+1i 
with 

(3.9) Qn == ,/2in { E(<:~m+l) - El:;~2m+l) - log2}. 

By (2.9), which is true also under the conditions of Theorem 2.5, the first term at 
the right-hand side of (3.11) tends to zero in probability. Clearly Nn and Qn are 
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independent and asymptotically standard normal. Both the right-hand side of 
(3.9) and the second term at the right-hand side of (3.11) converge to a standard 
normal distribution since (from the conditions of Theorems 2.3 or 2.5) 

lim V'(t + s) 
(3 10) = ers for alls. 

• t->oo V'(t) 

Furthermore 

J2m ( V'( E«::~2m+1)) - i) 
V'(log(n/2m)) 

= J2m [V'(log(n/(2m))) + (E/;:~ 2m+l) - log(n/(2m))) 

- er<Ef~>_2m+1)-log(n/(2m))ly'(log( n/(2m))) ]j[V'(log( n/(2m)))] 

+/2m {er<E«J:>_2m+ii-log(n/(2m))) _ l}. 

The first term tends to zero by (2.9) and the second term is asymptotically yNn. 
0 

REMARK. Since in (1.1) we can take bn == V(log n) and an•= V'(log n), we 
.d bA ·- x<n) t• t f b d A ·- {X(n) -can cons1 er n/m ·- (n-2m) as an es rma e 0 n/m an an/m ·- (n-m) 

x«;:~2m)h /(2Y - 1) as an estimate of an;m· Lemma 3.1 establishes joint asymp­
totic normality of 

COROLLARY 3.1. 

. V( E«::~m+1)) - V( E«::~2m+i)) 2Y - 1 
hm = -- in probability 

n->oo V'(log(n/2m)) y 

and 

lim V'(E<n) )/v'(log !:___) = 1 in probability. 
n-+ oo (n-2m+ 1) 2m 

PROOF OF THEOREM 3.1. 

..f2m x«::~m+1) - U(l/Pn) 
m x<n) - x<n) (n-m+l) (n-2m+l) 

_ 12m{ X/;:~m+i) - V(log(n/m)) + _V_(lo_g_(n_/_m_)_) _-_V_(~--lo_gp_n_)} 
- V'(log(n/m)) V'(log(n/m)) 

V'(log(n/m)) 
x x<n) - x<n) . (n-m+l) (n-2m+l) 

&& 
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Now we can use Lemma 3.1 and Corollary 3.1; further, since V'(t + x) -
e"'x · V'(t) locally uniformly (t-+ oo), 

,/2m V(log{n/m)) - V{-log p,.) 
V' (log( n / m)) 

rn:::Jo V'(s + log{n/m)) rn:::{ m } = yL.m ds - - v2m 1 - - -+ 0 
log(m/(npn)) V'(log(n/m)) np,. ' 

PROOF OF THEOREM 3.2. 

rn:::( 1 V{E<C:~m+i>)-x* ) 
V L.m -.Y + (n) (n) 2 n - 1 v( E<n-m+iJ - v( E<n-2m+1>) 

=nm{ 1 . __ 1_} 
1 - 21'• 1 - 2r 

[ 
rn::: V( E<C:~m+i>) - V(log(n/(2m))) + v2m-'---....,-'-'---,---,....,----

V'(log( n/{2m ))) 

-12m{ V(oo) - V(log(n/(2m))) + _:} 
V'(log(n/(2m))) y 

+./2m( V{E«:~m+1>) - V{E«:~2m+ 1i) 
21'V'(E«:~2m+1J 

21' V'( E«:~2m+l)) x--------
1 - 2"I V'(log(n/(2m))) 

12m( V'(EcC:~2m+i)) ) 1] 
- 2m V'(log(n/{2m))) - 1 . y 

V'(log(n/(2m))) 

n-+oo. D 

Let Q, R and S denote the limit random variables of the independent r.v.'s 

Q,. •= /2Tn { E/:~m+l) - E«:~2m+l) - log2}, 

R,. •= ./4m{E/:~2m+l) - E(C:~4m+l) - log2}, 

S,. •= Affl { El:~4m+ 1) - log( 4:)} ,' 

respectively, Q, Rand S being i.i.d. with standard normal distribution. Then we 
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obtain ( cf. proof of Theorem 2.3) 

/2m{ 1 " - _1_} 
1 - 2Yn 1 - 2Y 

/2m " 
------{2Yn - 2Y} 
(1 - 2Yn )(1 - 2Y) 

12 Vm ( v( E/;:~m+i)) - V( E/;:~2m+i)) ) 

(1 - 2Yn )(1 - 2Y) . m v( E/;:~2m+l)) - v( E/;:~4m+l)) - 2Y 

12 Y { 2r-l/2Qn - 2-1Rn} 

- (1 - 2Yn) 1 - 2Y 1 - rr . 

1809 

Now we can use Lemma 3.2 with Nn = 2- 112(Rn +Sn) and Corollary 3.1; 
further 

. rn-=-{ V(oo) - V(log(n/(2m))) 1} 
hm v2m + - = 0 

n--> oo V'(log( n /(2m))) y 

by (2.9) and the proof of (a)= (b) of Theorem A.3 (Appendix). D 

Finally we consider (1.9) with m fixed. 

THEOREM 3.3. Suppose the extreme-value condition (1.1) ho!J1s, p = Pn and 
limn_ 00 npn = c E (0, oo ). Define [ cf. (1.9)] 

~ ·- (m/(npn))y" - 1 {x<nJ - x<nl } x<nl 
XPn,n ·- l _ 2-r. (n-m+l) (n-2m+l) + (n-m+l)' 

Then for fixed m > c, 

(3.11) 
x -x 

Pn' n Pn 

x<n) - x<n) 
(n-m+l) (n-2m+l) 

converges in distribution to the distribution of the random variable 

(3.12) 

where Hm and Qm are independent, Qm has a standard gamma (2m + 1)­

distribution and Hm the distribution of E]'::m+iZ/} with Z1, Z2, ••• i.i.d. stan­
dard exponential. 

REMARK 3.1. It can be shown by induction that Hm has the (beta-type) 
density function 

x;::::: 0. 
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Furthermore, let f2 be the density function of Qm and Gm the distribution 
function of {1 - (Qm/c)Y}/{eYHm - 1} (in 3.12). Then 

rub(x· y)f,00 

Gm(x) = J~ ' '2(z) dzf1(y) dy, 
0 lb(x,y;y) 

where 

oo, 

ub(x; y) == 
.:_ log(l + . / ) ) , y mm-1,x 

~log( 1 + maxto, x) ) , 

and 

( 
c · e-xy, 

lb x . ·-
( 'y, y) ·- c · [1 + x(l - erY)] 1l'Y, 

X E Ill, 

y = 0, 

y < 0, 

y>O 

y = 0, 

y * 0. 

THEOREM 3.4. Suppose the extreme-value condition (1.1) Jwlds with y < 0. 
Then x* < oo, where x* = x*(F) •= sup{xlF(x) < 1}. Define x: as in (3.2). 
Then 

x: -x* 
x<n) - x<n) 

(n-m+l) (n-2m+l) 

converges in distribution to the distribution of the random variable (1 - 2Y) - i + 
{ e rHm - 1} - 1 with Hm as in Theorem 3.3. 

The proofs are based on the following lemma and manipulations like those in 
the proof of Theorem 3.2. We omit the details. 

LEMMA 3.2. Let ES)l ~ EM)> ~ · · · ~ E/;:] be standard exponential order 
statistics. Then for n -+ oo and m fixed the random vector 

( El::~m+l) - E~~2m+l)' E/;:~2m+l) - log n) 
converges in distribution to the distribution of (Hm., - logQm) where Hm and 
Q m are independent and have the probability distributions mentioned in 
Theorem 3.3. 

REMARK 3.2. Note that, although m remains constant, the number of order 
statistics involved in the definition of Yn [appearing in (3.2)] should go to infinity 
in order to guarantee consistency. 

REMARK 3.3. We do not enter here into the question of how to choose m in 
an optimal way. 



TABLE 1 

Survey of the experiments and some results. m1 is the number of upper order statistics involved in the estimation of y, n is the sample size, y 

is the extreme value index of the distribution, ~n is the average of 5000 estimates of y for given m1, a is the theoretical standard error for 

~ven y and m1 (cf. Theorem 2.3), a(yn) is the standa_!d error of the 5000 estimates of y for given m1, nl is the number of estimates below 

Yn - 2a(yn) and nr is the number of estimates above Yn + 2a(?n). 

m 1 =40 m 1 =80 m 1 =120 

Distribution n 'Y 'Yn a a( Yn) nl nr 'Yn (J a( y) nl nr Yn CJ a( Yn) nl 

1. Exp(l) 1000 0 0.006 0.570 0.579 149 104 -0.004 0.403 0.408 127 101 -0.005 0.329 0.328 115 

2. Uniform(O, 1) 1000 -1 -1.028 0.559 0.560 124 85 -1.023 0.395 0.392 119 104 -1.023 0.323 0.328 127 

3. Normal(O, 1) 1000 0 -0.164 0.570 0.574 133 100 -0.190 0.403 0.397 128 95 -0.220 0.329 0.320 124 

4. Normal(O, l)a 1,000,000 0 -0.065 0.403 0.404 144 96 -0.056 0.285 0.281 113 120 -0.066 0.233 0.229 128 

5. GPD(l, 1) 1000 1 1.025 0.684 0.703 116 123 1.006 0.484 0.481 124 112 0.998 0.395 0.399 120 

6. GPD(-0.19,40) 1000 -0.19 -0.215 0.559 0.575 132 96 -0.196 0.396 0.402 135 91 -0.199 0.323 0.333 115 

7. GPD( - 0.19, 40) 216 -0.19 -0.216 0.559 0.581 135 100 -0.200 0.396 0.404 124 110 -0.196 0.323 0.327 108 

a Note that for experiment 4, m1 is, respectively, 80, 160 and 240. 

~ 
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REMARK 3.4. Theorem 2.1 only implies consistency of the estimate x Pn• n for 
xPn in the trivial case y < 0. It is doubtful if in general a consistent estimate is 
possible within the present setup. By exploiting the fact that ../2m(Hm - log2) 
and (Qm - (2m + 1)}/ ../2m + 1 are asymptotically standard normal for m-+ 
oo, one can show, however, that for y < i the expression (3.12) converges to zero, 
but for y = t it converges to a normal distribution and for y > i it diverges 
(m-+ oo). 

CONCLUDING REMARKS. The main difference between the present approach 
to estimating y and previous ones is that we avoid applying maximum likelihood 
methods in an approximate model. Such methods, employed by Cohen (1982) 
and Smith (1987) lead to not explicitly known estimators, the need to estimate 
an extra (scale) parameter and specific problems with the solution of the 
equations for y ;::;;; - t. It is not clear whether the maximum likelihood estima­
tors are consistent under the single condition (1.1). 

-0.95 

-1.00 ...................................................................... . ...................... . 

-1.05 

-1.10 

-1.IS 

-1.20 

0 100 200 300 400 500 

FIG. 1. Uniform(O, 1), y against ml' 
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-0.15 

-0.20 

-0.25 

-0.30 

-0.35 

-0.40 

-0.45 

-0.50 

0 100 200 300 400 500 

FIG. 2. Normal(O, 1), -y against m 1• 

Our second order conditions are comparable with those of Smith in the case 

y > 0 and - t < y < 0, but much more general in other cases. Apart from 

avoiding the maximum likelihood procedure we also do not use explicitly the 

so-called generalized Pareto approximation. Our approach is basically nonpara­

metric. We hope to have shown that the remark on the top of page 1176 of Smith 

(1987) is somewhat premature. 

l.08 r---------------, 

J.06 

1.04 

1.02 

l.00 

0.98 '----~--~-~--~-____.., 

0 JOO 200 300 500 

FIG. 3. GPD(l, 1), -y against m 1• 
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Some of the remarks above also apply to the difference between our approach 
to the estimation of the endpoint of the distribution in the case y < 0 and the 
approach based on maximum likelihood methods in an approximate model given 
by Hall (1982). 

4. Simulation results and an application. The simulation experiments of 
this section illustrate how the theoretical results of Sections 2 and 3 work out in 
practice. We also apply our methods to the sequence of observed high tide water 
levels at the Dutch island Terschelling. 

For several distributions, samples of order statistics are generated using the 
sequential method. Let U1, U2 , ••• , Un be independent U(O, 1). Then a sample 
of uniform order statistics is generated by l1<_~n/ == Ulln and l1<_~n2k+ l) == 
u.<nl . {U )ll<n-k + l) k = 2 3 n Taking x<nl == F- 1(U.(n)) where F- 1 

( n - k + 2) k ' ' ' • • • ' • ( i) ( i) ' 
denotes the inverse distribution function, then gives a sample of order statistics 
from a distribution function F. This method is particularly useful in our 
situation where only a small subset of the upper order statistics is needed. 

800 

-
-

600 - -

"-"--
~ 

400 -
>----

200 - -
~ -

0 A lh 
I r I I I l l 

-4 -3 -2 -1 0 2 
(a) 

FIG. 4. (a) Uniform(O, 1), m1 = 40. 
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The following distributions are considered: standard exponential, uniform(O, 1), 
normal(O, 1) and the generalized Pareto distribution, GPD(y, a), for several 
values of y and a. Recall that the distribution function of the generalized Pareto 
distributions (related to the extreme-value distributions) is defined by F(x) = 
1 - (1 + yx/a)- 11Y, y E IR, a> 0 and 1 + yx/a :<::: 0. A survey of the experi­
ments is given in Table 1. 

The construction of order statistics described above was repeated 5000 times 
for each probability distribution. For most distributions (Except 4 and 7) we 
chose the sample size n to be 1000 and constructed a total of k = 500 upper 
order statistics using the random number generator GGUBFS of the IMSL 
package. 

4.1. Consistency of Yn· Let m1 be the number of upper order statistics used 
for estimating y (hence m1/ 4 is the number m from Theorem 2.3). In Figures 1, 2 
and 3 the average of the 5000 estimates of y is plotted against m1, m1 = 

600 
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-
~ 

-
400 -

-
300 -

-
-

200 ~ -
-

-
100 - -

0 rrrf 1-h-. 
I I I I I I I 

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 

(b) 

FIG. 4. (b) Uniform(O, 1), m1 = 80. 
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FIG. 5. (a) Normal(O, 1), m1 = 40. 

h-, 
2 3 

4, 8, ... , 500, for the uniform, normal and GPD(l, 1) distributions. The dotted 
line indicates the true value of y. 

One would expect that if m1 is too small, the variance of the estimates is large 
because of the large variation of the few upper order statistics involved in the 
estimation of y. With respect to the disappointing results for the normal 
distribution (Figure 2) we remark that the convergence to the limiting distribu­
tion is known to be slow [Hall (1979)]. 

4.2. Asymptotic nonnality of Yn· In Figures 4a, 5a and 6a histograms of 5000 
estimates of y are given for m1 = 40, and in Figures 4b, 5b, and 6b for m1 = 80. 
The dotted vertical lines again indicate the true value of y. 

The distributions of Yn for uniform (0, 1) and GPD(l, 1) seem to be more or 
less symmetric about y, but the estimates in Figure 5 are too low. This is 
illustrated numerically in Table 1, where for m1 = 40, 80 and 120 the average of 
the 5000 estimates of y are given, indicated by 1n· Also given are the theoretical 
standard error, indicated by a (cf. Theorem 2.3 with the true value for y and m1 
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FIG. 5. (b) Normal(O, 1), m1 = 80. 
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FIG. 6. (a) GPD(l, 1), m1 = 40. ( b) GPD(l, 1), m1 = 80. 
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FIG. 7. Uniform(O, 1), quantile against m2 • 

11 ...-------------, 
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500 
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FIG. 8. Normal(O, 1), quantile against m 2 • 

for m substituted), and the standard error of the 5000 estimates of y, which is 
indicated by O'( Yn)- To give an ~pression about the skewness of the estimates, 
the nll!_llber of estimates below Yn - 2o( Yn) (nl) and the number of estimates 
above Yn + 20'(Yn) (nr) are given. 

Note that for asymptotic normality in the case of the normal distribution we 
need to have m( n) = o(log2 n) ( n ~ oo ), therefore in experiment 4 the sample 
size n was taken as 106• The improvement of the estimates is remarkable 
(Table 1). 

4.3. Large quantUe estimation. Let m2 be the number of upper order 
statistics used in formula (1.9) (hence m 2/2 is the number m from Theorem 3.3). 

102000 

lOlSOO 

101000 

IOOSOO 

100000 

99SOO 
99000 ......_ _ _._ __ ~-~--~--

0 100 200 300 400 500 

FIG. 9. GPD(l, 1), quantil,e against m2 • 
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A large quantile of the distributions is estimated with p0 = 10 - 4 and k = 10 [ cf. 
(1.4)]. In order to make the computational work tractable, we have substituted y 
for Yn in (1.9). 

We consider the case that m 2 is fixed (cf. Theorem 3.3 and Remark 3.2). 
Nevertheless we give estimates for the quantile for several values of m2 in order 
to get an impression of the stability of the estimation when m2 varies. 

Figures 7, 8 and 9 show that the estimation in case of the uniform(O, 1) and 
GPD distributions seems to be reasonable for m 2 not too small. Again one can 
see that in the case of the normal distribution, convergence seems to be slow. 

4.4. An application to high tide water l,eve/,s. Terschelling is one of the 
islands at the Dutch coast. High tide water levels are available from 1932 until 
1985. The data before 1932 cannot be used since in that year the situation 
around Terschelling was changed dramatically by the closure of the Zuider Zee. 

In order to transform the original sequence of high tide water levels into an 
(approximate) i.i.d. sequence, only observations were used that are above a 
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FIG. 10. y against m1• 
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FIG.11. y against m1• 

0 20 40 60 80 100 

FIG. 12. Quantile against m2 , y = - 0.16933. 

certain threshold, sufficiently apart from each other in time and that fall within 
the winter season. After this selection procedure, 588 observations remain. 

In Figure 10 the estimates of y are plotted against m 1, m 1 = 4, 8, ... , 588. It 
seems that for m 1 neither too small nor too high, the estimates of y are more or 
less constant. In Figure 11 the same estimates are plotted but now only for 
m1 = 100, 104, ... , 400. One can see that there are some remarkable fluctuations, 
but for most values of m1 the estimates seem to be negative. This implies 
x* < oo, i.e., the distribution has a finite right endpoint. 

Figure 12 shows the estimation of a large quantile for several m 2 , with 
Po= 10- 3, k = 10, c = 0.1727, Yn = -0.16933 and m1 = 268 [cf. (1.4), (1.9) and 
Theorem 3.3]. The dotted curve indicates for each m 2 a 5% one-sided confidence 
interval (cf. Theorem 3.3 and Remark 3.1). In spite of the fact that the estimates 
seem to be reasonably constant when m 2 changes, provided m 2 is not too small, 
it turns out that a small change in Yn causes a big change in the estimation of a 
large quantile. 

APPENDIX 

Analytical results. The conditions in Theorem 2.3 are phrased in terms of 
U, the inverse function of 1/(1 - F). The aim of this section is to formulate 
these conditions in terms of the distribution function F itself and its density. 
The main result here is actually in terms of F alone but this result is not 
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immediately applicable for Theorem 2.3. It is given for completeness and since it 
will be useful in other contexts. 

The relation to be studied is ± t1-rU1(t) E IT. In order to avoid duplication, 
we only consider this relation with the + sign in the proofs. First we consider 
the case y > 0. Without loss of generality we suppose that F(O) = 0. 

THEOREM A.1. Suppose U has a positive derivative U' and y > 0. Equiva-
knt are: 
(A.l) ± t 1-YU'(t) E II. 

(A.2) ± {-U(t) + y- 1tU'(t)} ER~. 

(A.3) ± (rrU(t))' E RV_ 1• 

(A.4) ± t 1+ 1IYF1(t) E II. 

PROOF [see de Haan (1977)]. (A.l) <=> (A.2): 

i i (ts) 1-rU'(ts) - t 1-rU'(t) U(t) - y- 1tU'(t) 1 sr- 1 log sds ~ 1 sr- 1 ds = ------
o o a(t) tYa(t) 

(A.2) <=> (A.3): Obvious. 
(A.2) <=> (A.4): Replacing t by 1/(1 - F( s )) E RV1!Y in (A.2) yields 

1 - F(s) 
y- 1 F'(s) - s E RV1 i.e., y- 1(1 - F(s)) - sF'(s) E RV_ 11y-

This is a relation like (A.2) for U. The equivalence of this relation and (A.4) and 
also the converse implication are proved as in the first part of the proof. 0 

Relation (A.3) of Theorem A.I implies ± r YU( t) E IT. The latter relation can 
also be translated for F even when there is no derivative. That is the content of 
the next theorem. 

THEOREM A.2. 

(A.5) 
(A.6) 

Equival,ent are, for y > 0: 

± t-ru(t) E II. 

+ t11Y{I - F(t)} E IT. 

PROOF. This is a slight generalization of de Haan and Resnick (1979), 
Theorem 1. D 

Next we consider the case y < 0. 

THEOREM A.3. Let y < 0 and suppose U has a positive derivative U'. 
Equivalent are, with U( oo) == lim t- 00 U( t ): 

(A.7) ± t 1 -rU'(t) E II. 

(A.8) U(oo)<oo and ±{U(oo)-U(t)+y-1tU'(t)}ERVr. 

(A.9) U(oo)<oo and ±(t-r{U(oo)-U(t)})'ERV_ 1• 

(A.10) U(oo) < oo and +t- 1 - 1IYF1(U(oo) - r 1) E IT. 
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PROOF. (A.7) ~ (A.8): 

oo oo (ts) 1 - 1U'(ts) - t1 - 1U'(t) f s 1 - 1 log sds +- j s 1 - 1 ds 
i i a( t) 

(A.8) ~ (A.9): Obvious. 

U(oo) - U(t) + y- 1tU'(t) 

t 1a( t) 

(A.8) => (A.10): Write U(oo) - U(t) = s with U(oo) - U(t) E RV,. Then t = 
U .... (U(oo) - s) and U .... (U(oo)- s- 1) = 1/{1- F(U(oo) - s- 1)} E RV_ 1h' 
Replacing t by U .... (U( oo) - s- 1) in (A.8) yields 

_ 1 _ 1 U ... (U(oo) - s- 1) _ _ 1 _ 1 1 - F(U(oo) - s- 1) 

-s - 'Y (U ... )'(U(oo) - s- 1) - -s - y F'(U(oo) - s- 1) E RV_ 1 

F' 
using cu-)' = ( )2. 

1-F 

Since 

we finally obtain 

-{s- 1F'(U(oo) - s- 1) + y- 1 £00F'(U(oo) - u- 1)u- 2 du} 

= -s-1F'(U(oo) - s- 1) - y- 1{1- F(U(oo) - s- 1)} E RV11r· 

Now use de Haan (1977). The implication (A.10) => (A.8) is proved in an analo­
gous way. D 

Here again there is a result that does not involve derivatives. We omit the 
proof. 

THEOREM A.4. Equiva/,ent are, for y < 0: 

(A.11) ± r 1{U(oo) - U(t)} Err. 

(A.12) U(oo) < oo and =t=r 11Y{1 - F(U(oo) - t- 1)} E IT. 

The case y = 0 is considerably more complicated. We start with a theorem 
on U. 
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THEOREM A.5. Suppose U has a positive derivative U'. Equivalent are: 

(A.13) ± tU'(t) E II(a). 

(A.l4) ±{tU'(t) - U(t) + ~ fu(s)ds}- a(t), 

t ~ oo where a is slowly varying. 

U(tx) - U(t) - tU'(t) log x 1 

(A.15) a(t) --> ±2log2x, 

t ~ oo, for x > 0, where a is a positive function. 

PROOF. (A.13) = (A.14): 

U(t) - (l/t)JJU(s)ds- tU'(t) = 11txU'(tx)- tU'(t) dx 

a(t) o a(t) 

--> fo1 logxdx = -1, t---) oo. 

(A.13) = (A.15): For x > 0 and t -) oo, 

U( tx) - U( t) - tU'( t) log x = ix tyU'(ty) - tU'( t) dy 

a(t) i a(t) y 

ix log y 
--> --dy, t-) 00. 

1 y 

(A.15) = (A.13): [cf. Orney and Willekens (1987)]. For x, y > 0, 

U(txy) - U(ty) - U(tx) + U(t) U(txy) - U(t) - tU'(t)log(xy) 

a(t) a(t) 

U(ty)- U(t)- tU'(t)logy 

a(t) 

U( tx) - U( t) - tU'( t) log x 

a(t) 
--> log x · log y. 
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It follows that for all x > 1 the function U( tx) - U( t) is in II( a( t) log x) for 

t ~ oo. Hence a E RVo. Now fort--> oo, 

(log xy )2 

---~ 

2 

U(txy) - U(t) - tlog(xy)U'(t) 

a( t) 

U( txy) - U( ty) - ty log xU'( ty) . a( ty) 

a(ty) a(t) 

U(ty) - U(t) - tlog yU'(t) tyU'(ty) - tU'(t) 
+ +log x ( ) . 

a( t) a t 
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Since everything else converges, the last term must also converge, hence 
tU'(t) E II(a). D 

After these preliminary statements on U we show what the translation to the 
inverse function is going to be in the nice case when one can work with 
derivatives. This serves as an introduction to the general results given after­
wards. 

Let Q be a three times differentiable functiqn. Then 

x2 x3 

Q(t + x) - Q(t) = xQ'(t) + 2Q"(t) + 6Q'"(t) + · · · · 

If Q'(t) > 0 and Q"(t)/Q'(t) ~ 0, then all terms except the first one are 
asymptotically negligible: Q"(t)/Q'(t) -+ 0 implies Q'(t + x)/Q'(t) -+ 1 
(t-+ oo) for all x and hence {Q(t + x) - Q(t)}/Q'(t)-+ x (t-+ oo) locally 
uniformly for all x Gust integrate). This is basically II-variation. Suppose 
next that Q"(t) > 0 and Q"'(t)/Q"(t)-+ 0 (t-+ oo). Then all terms except 
the first two ones are asymptotically negligible: Q "' ( t)/Q"( t) -+ 0 implies 
Q"(t + x)/Q"(t) -+ 1 (t-+ oo) for all x and hence 

(*) (Q(t+x)-Q(t)-xQ'(t)}/Q"(t)~x2/2, t-+oo 

(use the just mentioned result for Q' instead of Q and integrate). 
Now let P be the inverse function of Q. Let x* == sup{x!P(x) < oo }. We 

expand P as follows (we still suppose Q' > 0, hence P' > 0), 

( 
x ) x 2 P"(t) x 3 P"'(t) 

p t + P'(t) - P(t) = x + 2 {P'(t)} 2 + S {P'(t)} 3 + .... 

If P"(t)/{P'(t)}2 -+ 0, then P'(t + x/P'(t))/P'(t)-+ 1 (t ix*) locally uni­
formly, hence P(t + x/P'(t)) - P(t) -+ x (t ix*) locally uniformly. This is 
basically f-variation. Suppose next P"(t) > 0, P"(t)/{P'(t)}2 -+ 0 and 
P"'(t)/{P"(t) · P'(t)} -+ 0 (t ix*). Then 

( 
x ) x P"'(t + xO/P'(t)) 

log P" t + P'(t) - log P"(t) = P'(t) P"(t + xO/P'(t)) 

xP"'(t + xO/P'(t)) 
------------ -+ 0, 
P'(t + xO/P'(t))P"(t + xO/P'(t)) 

t ix*, locally uniformly, 

where 8 = O(t, x) E [O, 1] and we can prove (see Theorem A.8 below) 

P(t + x/P'(t)) - P(t) - x x 2 

(* *) -P"(t)/{P'(t)} 2 -+ 2' t ix*, locally uniformly. 

Note that the joint statements Q"( t)/Q'( t) -+ 0 and Q "' ( t)/Q"( t) -+ 0 ( t -+ oo) 
are equivalent to the statements P"(t)/{P'(t)}2 -+ 0 and P"'(t)/{P"(t) · 
P'(t)}-+ 0 (ti x*). 



STATISTICS OF EXTREME VALUES 1825 

To relate this to our problem, let P := - log(! - F) hence Q = U o exp. 
Relation ( *) is the same as relation (A.15) from Theorem A.5. Note that 
P(t + x/P'(t)) - P(t)--+ x (t ix*) means {1 - F(t + xf0(t))}/{1 - F(t)} --+ 

e-.x (tix*) with fo(t)={l-F(t)}/F'(t). Hence(**) can be translated as 
follows [note f0'(t)--+ 0 (t ix*)], 

[1 - F(t + xf0(t))]/[1 - F(t)] - e-.x 

fo'( t) 

e-.x log{[l - F( t + xf0(t) )] ex/(1 - F(t))} 

fo' ( t) 

-P(t + x/P'(t)) + P(t) + x x 2 
. e-x --+ -e-x 

fo'(t) 2 ' 

t ix*, locally uniformly. 

We shall see that this is basically the relation we get in the general case. 
We now work in an order different from what we did for y =F 0 and start with 

deriving the result with no differentiability assumption. The differentiable case 
will then be quite obvious. 

THEOREM A.6. Suppose Q is nondecreasing and P = Q ~ . Equivalent are: 

(A.16) 
Q(t + x) - Q(t) - xa1(t) x 2 

--------- --+ + -
a 2 ( t) - 2 ' 

t--+ oo, for all x, 

where a 1 and a 2 are positive functions. 

(A.17) 
P(t + xf(t)) - P(t) - x _ x 2 • 

a( t) --+ + 2, t --+ 00' for all x wcally uniformly' 

where f and a are positive functions and a(t) --+ 0 (t ix*). 

REMARK. If (A.16) holds, then (A.17) is true with f(t) := a1(P(t)) and 
a( t) := alP(t))/a1(P(t)). If (A.17) holds, then (A.16) is true with a 1( t) := f(Q(t)) 
and a 2(t) := a(Q(t)) · f(Q(t)). 

PROOF. (A.16) = (A.17): For e > 0 and all x, 

Q(P(t) + x) - t ~ {Q(P(t) + x) - Q(P(t))} 

{ ( a 2(P(t))) } 
- Q P(t) + £ a1(P(t)) - Q(P(t)) . 

A similar upper inequality is obtained, hence by the local unifonnity in (A.16) 
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and because a 2(P(t))/ai(P(t)) ~ 0 (t ~ oo), 

. Q(P(t) + x) - t - xa1(P(t)) x2 

(A.l8) t~ a 2(P(t)) 2 

locally uniformly and in particular 

(A.19) Q(P(t)) - t = o(a2(P(t))), t ~ 00. 

Also, with a(t) = a 2(P(t))/a1(P(t)), 

Q(P(t) + x - ~2 
a(t))- t-{x - ~2 

a(t)}a1(P(t)) - ~2 
a 2(P(t)), 

hence locally uniformly for e > 0 and t sufficiently large, 

{ Q( P(t) + x - x: a(t)) - t - xa1(P(t))} /a2(P(t)) s s. 

Then also P(t) + x - (x 2/2)a(t) s P(t + xa1(P(t)) + w 2(P(t))) or [by substi­
tuting y = x + ea( t )], 

(y+ea(t)) 2 

P(t + ya1(P(t))) - P(t) - y ~ -rn(t) - 2 a(t). 

A similar lower inequality is readily derived. Relation (A.17) follows. 
(A.17) = (A.16): The proof follows the same line. We omit the details. D 

COROLLARY A.1. If condition (A.17) of Theorem A.6 hokls, then 
a(t + xf(t)) - a(t) locally uniformly (ti x*). 

PROOF. Since a(t) ~ 0, P(t + xf(t)) - P(t) ~ x locally uniformly (t j x*). 
We must prove (cf. the first part of the proof of Theorem A.2) that ai(P(t) + 
xf(t)) - ai(P(t)) locally uniformly for i = 1,2. Now a;(t + x) - aJt) locally 
uniformly, hence ai(P(t + xf(t)) - P(t) + P(t)) - a;(x + P(t)) - a;(P(t)) [cf. 
Omey and Willekens (1987)]. D 

COROLLARY A.2. If condition (A.17) of Theorem A.6 hokls, then 
{ f (t + xf(t)) - f ( t) }/ {a( t) f( t)} ~ ±x locally uniformly ( t ix*). 

PROOF. Replace tin (A.17) by t + yf(t) ~ oo for some real y. Then (t ix*) 

- ~' ~ Ht+ (y+xf(t;c1i('))) ·/(1)) 

-P(t) - ( y + x j(t ;(1i(t))) l/[a(t)] 
a(t) P(t + yf(t)) - P(t) - y x - ~~~~~~~~ 

a(t + yf(t)) a(t) 

a( t) 

a(t+yf(t)) 

+ xa(t) { f(t + yf(t)) _ 1}/a t . 
a(t + yf(t)) f(t) ( ) 
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Since every other term converges, the last term must also converge, thus giving 
the statement of the corollary. D 

LEMMA A.1. Let P := - log(l - F). The function P satisfies (A.17) of Theo­
rem A.6 if and only if 

[
l - F(t + xf(t)) -x]/[ x 2 -x 

(A.20) 1 - F(t) - e a(t)] -7 ± 2e ' 
t ix*, locally uniformly. 

Moreover (A.20) hol,ds with f replaced by g and (x 2/2)e-x replaced by 
(±x 2/2 - cx)e-x if and only if {g(t) - f(t)}/{a(t)f(t)} -7 c (ti x*}. 

PROOF. Suppose (A.17) holds. Since a(t) -7 0, P(t + xf(t)) - P(t) -7 x 
(t ix*) locally uniformly, i.e., {l - F(t + xf(t))}/{1 - F(t)} -7 e-x (t t x*) 
locally uniformly. Hence 

1 - F( t + xf ( t)) { 1 - F( t + xf ( t)) } 
------ex - 1 - log ex 

1 - F( t) 1 - F( t) 

= - P( t + xf ( t)) + P( t) + x. 

The converse is proved similarly. Now suppose (A.20) holds: 

P(t + xg(t)) - P(t) - x 

a{ t) 

~ H t + ( x~;'n . I( t)) -P( t) - x ~i: ;]/ [a( t) l 

+ x · [ ;~;~ - 1 ]/[a(t)]. 
Since the first term on the right converges, the convergence of the other terms 
implies each other. O 

REMARK. f can be called the scale function and a the reference function for 
1 - F. 

THEOREM A.7. If p := -log(l - F) satisfies (A.17), then 

[ l - F(t + xf1(t)) - e-x]/[a(t)] -7 ±(x2 - x)e-x, 
1 - F(t) 2 

t i x*, locally uniformly, 

with f1(t) := [ft'l - F(s) ds]/[1 - F(t)]. 

PROOF. Write U := (1/(1 - F) ... as before and Q == U 0 exp. Then Q satis­
fies (A.16). As in Omey and Willekens (1987) one sees that 

U( tx) - U( t) - DU( t) log x 1 2 
---------- -7 - log x - log x 

ait) 2 
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locally uniformly (t--+ oo), with DU(t) •= tft"U(s) ds/s 2 - U(t) = f{"{U(ty) -
U(t)} dy/y 2. It follows that locally uniformly (t t x*) 

---------- - ex a(t)]--+ - - x ex. [ l-F(t+xDU(l/(1-F(t)))) -]/[ (x 2 )-

1 - F(t) 2 

Now 

nu( i ) = i Joo u( s) ds - u( i ) 
1 - F(t) 1 - F(t) i/[1-F(tl] s 2 1 - F(t) 

= 1 - ~(t) ~ooydF(y) - u( 1 - ~(t)) 
1 1"° = 1 _ F(t) t ydF(y) - t + o(a(t)f(t)), 

using (A.19) in the last equality. The result now follows from Lemma A.I. D 

COROLLARY A.3. Under the conditions of Theorem A.7, 

fi(t + Xf1(t)) - f1(t) 
---------+ ±x locally uniformly, tj x*. 

a( t) f1( t) 

PROOF. Corollary A.2. D 

LEMMA A.2. If (A.20) holds for F, then the same relation holds with 1 - F 
replaced by 1 - F 1(x) := max(O, /;*{l - F(u)} du) and f replaced by fi(t) := 

[f{l - F( s) ds ]/[l - F( t)]. 

PROOF. 

Use Corollary A.3. D 

Next we proceed to give sufficient conditions in terms of derivative8. 

THEOREM A.8. Suppose F is three times differentiable and F' > 0. Set 
f0 •= (1 - F)/F'. Suppose fo' is of constant sign and f0'(t)--+ 0 (ti x*). If 

(A.21) f0"(t)f0(t)/f0'(t)--+ 0, t ix*, 



then 

(A.22) 
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f 0'( t + xfo( t)) //0'( t) --+ l l,ocally uniformly, t ix*. 

If (A.22), then 

(A.23) 
fo(t + xfo(t)) - f0(t) 

fo'(t)fo(t) 
--+ x locally uniformly, t i x *. 

If (A.23), then 

(A.24) 
[ l-F(t+xf0(t)) -e-x]/[f'(t)] ~ X

2 e-x 
l - F(t) 0 2 
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locally uniformly, t ix*. 

PROOF. / 0'(t) ~ 0 implies fo(t)/t--+ 0 if x* = oo and fo(t)/(x* - t) ~ 0 if 
x* < oo, hence 

fo(t+xf0(t)) (x 
fo(t) - l = 10 f'(t + uf0(t)) du~ 0 locally uniformly. 

Using this we find 

fo"(t + xBf0(t)) 
log f0'(t + xf0(t)) - log f'(t) = xfo(t) fo'(t + xOfo(t)) 

fo(t + x0f0(t))f0"(t + x8f0(t)) 
-x 

f0'( t + x8f0( t)) 

for some (} = O(t, x) E [O, l]. Hence (A.21) implies (A.22). Further (A.23) follows 
from (A.22) by integrating both sides of (A.22) over x E [O, y] and (A.24) follows 
from (A.23) by integrating both sides of the relation {l - fo(t)/f0(t + 
xf0(t))}/f0'(t) ~ x over x E [O, y] and using Lemma A.l. D 

Necessary and sufficient conditions are contained in the next theorem. 

THEOREM A.9. Set F0 == F and l - Fi(t) == max{O, J{(l - Fi_ 1(u)) du} for 
i = 1,2, .... A"lsosetfi(t) == {1 - F;(t)}/{1- Fi_ 1(t)} fori = 1,2, .... Equiva­
lent are: 

Forsomepositivefunctionsf and a, a(t)~o {tix*), 

(A.25) [ l - F(t + xf(t)) - e-x]/[a(t)] --+ + x2 e-x 
l - F(t) - 2 

locally uniformly, t ix*. 

(A.26) 

(A.27) 

f2' is of positive (negative) sign, //(t) - f2'(t) andf3(t) - fz(t), tjx*. 

f 1 ( t + xf 1 ( t)) - f 1 ( t) 
~~~~~~~~ +x 

a(t)f1(t) - ' 
locally uniformly ( t ix*) for some positive function a( t) --+ 0, t ix*. 
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ds 
1 - F( t) = c · g 1 ( t) exp - f-( -) with c a positive constant, 

qg2 s 

(A.28) q •= min(O, x*(F) - 1), g 1, g 2 positive, g 2 satisfying (A.27) 

and 1 - g 1(t)/g2(t) = o(a(t)) (t-+ oo). 

REMARK. The derivatives are to be taken in the Radon-Nikodym sense, if 
necessary. 

PROOF. (A.25) => (A.26): Note that a(t)-+ 0 (t ix*) implies 
[de Haan (1970), Theorem 2.5.2]. Now 

fa(t) - '2(t) 

[ 1 - F1(t + xli(t)) -x]/ ] x 2 -x 
1 - F1(t) - e [a(t) -+ 2e ' t ix*, locally uniformly 

by Theorem A.7 and Lemma A.2. But then according to Theorem A.7 also 

[ 1 - ~·~ ;,::;( t)) - .-. ]/[ •(t)] ~ ( ~· -+-.. 
Hence [ '2(t) - f1(t)]/[a(t)f1(t)]-+ 1 (t ix*) by Lemma A.l. 

Repeating this reasoning with 1 - F replaced by 1 - F1 and 1 - F1 replaced 
by 1 - F2 , we also get 

fa(t) - '2(t) -+ 1, 
a( t) '2( t) 

tf x*. 

Now note that f/(t) = -1 + fi(t)/fi-i(t) for i 2. 2. 
(A.26) = (A.27): 

tj x* . 

. 
Hence f3'(t + xfa(t)) - f3'(t) locally uniformly (ti x*) by Theorem A.8. Using 
fa' = -1 + falf2 gives 

fa( t + xfa( t)) - '2( t + xfa( t)) 
fa'(t)fa(t) -+ 1 locally uniformly, tjx*, 

and hence (using Theorem A.8 again) 

'2(t + xf3(t)) - '2(t) '2(t + xf3(t)} - fa(t + xfa(t)) 

f3'(t)ta(t) f3'(t)fa(t) 

fa(t + xf3(t)} - fa(t) fa(t) - '2(t) 
+ + -+x 

fa'(t)fa(t) f3'(t)ta{t) 

locally uniformly, t i x*. 
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In exactly the same way one then obtains 

f1( t + Xf1(t)) - fi(t) 

f2'(t)f1(t) 

Ii( t + x'3( t)) - Ii( t) 

f3'( t) '3( t) 

(A.27) = (A.28): Take cg1 = g 2 = f 1. 
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--+x, t ix*. 

(A.28) = (A.25): Define P(t) := J:(ds)/[g2(s)]. Straightforward calculation 
gives 

P(t + xgit)) - P(t) - x l 
--------- --+ -x 2 locally uniformly, t ix*, 

-a(t) 2 

i.e., with 

l - F*(t) :=exp - (exp(- ttg
2
%)) ). 

[ l-F*(t+xg2(t)) ]/ l 
( ) - e-x [a(t)]--+ -x2e-x locally uniformly, tix*. 

I-F*t 2 

Next use a decomposition like the one in the proof of Lemma A.2 to obtain 

1 - F( t + xg2 ( t)) ( x 2 ) 
- e-x - a(t) -2 - X e-x. 

l - F(t) 

Finally apply Lemma A.I. O 

COROLLARY A.4. If (A.25) lwlds, then (A.25) also lwlds with a replaced by 
lf2/f1 - 11 = lf2'1 (see the first part of the proof of Theorem A.9) and f replaced 
by {f1}2/f2 (see Theorem A.7 and Lemma A.I). 

Finally we turn back to the question of how to translate the condition 
tU'(t) E II into a condition for the distribution function F and its derivative F'. 

THEOREM A.10. Set F0 := F l - Fi(t) := rnax{O, f{(l - F;_i(u)) du}, fo = 
{l - F}IF' andfi == {1 - F';(t)}/{l - F;_ 1(t)} fori = 1,2, .... Equivalent are: 

(A.29) ± tU'(t) E II. 

[ l - F(t + xfo(t)) _ e-x]/[J3(t)]--+ ± x 2 e-x l,ocallyuniformly, 
(A.30) l - F(t) 2 

ti x*, for some positive function [3( t) --+ 0, ti x*. 

(A.31) f 1'( t) is of constant sign and f2'( t) - f i'( t) ~ 0, t ix*. 

f0(t + xf0(t)) - fo(t) . 
( ) ( ) ~ ±x wcally uniformly, 

a t f0 t (A.32) 

ti x*, for some positive function a( t) --+ 0, t ix*. 
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The proof of this theorem will not be given since it follows exactly the same 
lines as the proof in the general case, but uses Theorem A.5 relation (A.15) to get 
fo in relation (A.30). The proof here is actually easier since inversion is very 
simple. 

Acknowledgm.ent. The remarks of an anonymous referee led to an im. 
provement of the presentation. 
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