Centrum voor Wiskunde en Informatica Centre for Mathematics and Computer Science
A.M. Cohen, E.E. Shult

Affine polar spaces

The Centre for Mathematics and Computer Science is a research institute of the Stichting Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, computer science, and their applications. It is sponsored by the Dutch Government through the Netherlands Organization for the Advancement of Research (N.W.O.).

Affine Polar Spaces

Arjeh M. Cohen
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands \&
Ernest E. Shult ${ }^{\dagger}$
Mathematics Department
Cardwell Hall
Kansas State University
Manhattan, KA 66502
USA.

Abstract

Affine polar spaces are polar spaces from which a hyperplane (that is a proper subspace meeting every line of the space) has been removed. These spaces are of interest as they constitute quite natural examples of 'locally polar spaces'. A characterization of affine polar spaces (rank at least 4) is given as locally polar spaces whose planes are affine. Moreover, the affine polar spaces are fully classified in the sense that all hyperplanes of the fully classified polar spaces (rank at least 3) are determined.

Key Words \& Phrases: polar spaces, buildings, incidence systems. 1980 Mathematics Subject Classification: 51B25, 22E20, 05B25.

Introduction.

In 1959, VeldKamp [9] initiated the synthetic study of geometries induced on the set of absolute points, lines, planes, etc. with respect to a polarity, and named the subject polar geometry. After subsequent work of Tits [7], Buekenhout \& Shult [2] and Buekenhout \& Sprague [3] a somewhat larger class of point, line geometries emerged which could be characterized by the beautiful axiom

If p is a point and L a line, then the set of points incident with L and collinear with p is either a singleton or the set of all points incident with L,
which we shall quote as the 'one or all' axiom. An incidence system (P, \mathbb{L}) [i.e., a pair consisting of a set P (of points) and set L (of lines) together with a relation between them, called incidence, such that each line is incident with at least 2 points] is called a polar space if the 'one or all' axiom is satisfied. An incidence system is called nondegenerate if no point is collinear with all others, and it is called singular if any two of its points are collinear. If X is a subset of the point set P of the incidence system (P, \mathbb{L}) and $L \in \mathbb{L}$, we denote by $X(L)$ the set of points in X incident to L, and by $\mathbb{L}(X)$ the set of all lines in L incident to at least two points of X. Thus, $\mathbb{L}(X)=\{L \in \mathbb{L}| | X(L) \mid>1\}$. Restricting incidence of (P, \mathbb{L}), we can regard $(X, L(X))$ as an incidence system. If each point incident to a line in $\mathbb{L}(X)$ belongs to X, we say that X is a subspace of (P, \mathbb{L}). A subspace of a polar space is again a polar space. The singular rank of an incidence system (P, L) is the maximal number n (possibly ∞) for which there exists a chain of distinct subspaces $\varnothing \neq X_{0} \subset X_{1} \subset \cdots \subset X_{n}$ such that $\left(X_{i}, \mathbb{L}\left(X_{i}\right)\right)$ is singular for each $i(0 \leq i \leq n)$, with the understanding that $n=-1$ if $X=\varnothing$. The rank of a polar space $(P, \mathrm{~L})$ is the number $n+1$ where n is its singular rank. By definition, this number is 0 if $P=\varnothing$, and 1 if $P \neq \varnothing$ but $\mathrm{L}=\varnothing$. The main characterization
\dagger The work was partially supported by the National Science Foundation, U.S.A.
Report AM-R8909
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
results hinted to above imply that if (P, \mathbb{L}) is a nondegenerate polar space of finite (singular) rank ≥ 3, then it is one of a known list of examples (cf. Buekenhout \& Sprague [3]). In this paper we shall limit ourselves to the situation in which all lines are thick (i.e., are incident to at least three points); the list of "thick" examples can be found in Trrs [7]. (See also section 5 below.)
One of the main tools in Veldkamp's original approach is the notion of a hyperplane, a proper subspace with the property that every line is incident to (at least) one of its points; it did not reoccur in the subsequent papers quoted above. It is the goal of this paper to study the hyperplanes B of nondegenerate polar spaces (P, L) of finite rank $n \geq 3$ whose lines are thick, as well as to synthetically describe the incidence systems ($A, \mathrm{~L}(A)$) induced on their complements $A=P \backslash B$.
Section 2 gives some properties of these hyperplane complements. The interest in these 'affine polar spaces' $(A, L(A))$ arose from the abundance of properties analogous to those of the usual affine spaces, i.e., the geometries induced on the complements of hyperplanes in projective spaces. Notably, the fact that (classical) affine spaces Q are locally projective spaces (in the sense that, for each point $a \in Q$, the incidence system whose points are the lines of Q on a and whose lines are the planes on a is a projective space), corresponds to the property of $(A, L(A))$ being a locally polar space. This draws attention to the question whether all spaces that are locally polar can be classified. The analogous question for projective spaces has given rise to various characterizations (see, e.g., Terrlinck [6]). Adopting a stronger notion of locally polar spaces (P, \mathbb{L}), namely that x^{\perp} rather than $\mathbb{L}_{x}:=\{L \in \mathbb{L} \mid x \in L\}$ carry the structure of a polar space for each $x \in P$, Johnson \& Shult [5] have obtained a satisfactory characterization without any assumptions on rank, thickness of lines, or degeneracy. (For a review of other results in this direction, see [loc. cit.].) In Section 3, we characterize affine polar spaces by an axiom system in which the locally polar space axiom is prominent (cf. 3.1.iii). Some of the proofs involved are based on ideas of J.I. Hall as displayed in the characterization of 'locally cotriangular graphs' of Hall \& Shult [4]. In the remainder of that Section 3, properties are derived from this axiom system, which alleviate the proof, to be found in Section 4 , that the system of Section 3 is indeed a characterizing axiom system.
In view of the classification of nondegenerate polar spaces of rank at least 3 , the classification of affine polar spaces comes down to the determination of all hyperplanes in well-known polar spaces. This determination is carried out in the last section (§5).

1. Hyperplanes.

Throughout this section, (P, L) is a nondegenerate polar space, all of whose lines are thick. Since there is at most one line incident with any two points (cf. Buekenhout \& Shult [2]), a line is uniquely determined by the set of all points incident to it. We shall thus frequently view members of L as subsets of P. Also, if x, y are collinear and distinct, we shall write $x y$ to denote the line containing them. We recall that a hyperplane B of (P, \mathbb{L}) is a proper subspace such that $B(L) \neq \varnothing$ for each line $L \in \mathbb{L}$.

If $X \subseteq P$, we write X^{\perp} for the subset P of points collinear to each point of X, and $x^{\perp}=\{x\}^{\perp}$ if $x \in P$. Furthermore, $\langle X\rangle$ denotes the subspace of $(P, \mathrm{~L})$ generated by X. (It exists since the intersection of an arbitrary collection of subspaces is again a subspace.)

1.1. Lemma. Let B be a hyperplane of (P, L).

(i) If (P, \mathbb{L}) has rank at least 2 , then B is a maximal proper subspace and the collinearity graph induced on $P \backslash B$ is connected of diameter at most 3 .
(ii) If X is a subspace not contained in B, then $X \cap B$ is a hyperplane of $(X, L(X))$.

Proof. (i). Take $x, y \in P \backslash B$. We show that $y \in\langle B, x\rangle$, the subspace generated by B and X. If x and y are collinear, then $y \in x y=\langle x,(x y) \cap B\rangle$ and we are done.
Assume that x and y are noncollinear. If $t \in\{x, y\}^{\perp} \backslash B$, then applying the above argument to x and t, and once more to t and y (instead of x and y), we are done, again.
Thus we remain with the case where $\{x, y\}^{\perp} \subseteq B$. By nondegeneracy of (P, \mathcal{L}), there are noncollinear $v, w \in\{x, y\}^{\perp}$ (cf. Buekenhout \& Shult [2]). Since lines are thick, there is $u \in x v \backslash\{x, v\}$. By the 'one or all' axiom, there must be a point $z \in\left(y w \cap u^{\perp}\right) \backslash\{y, w\}$. Now x, u, z, y is a path in $P \backslash B$ and we can finish by applying the first paragraph three times. The conclusion is that $y \in\langle B, x\rangle$ for each $y \in P \backslash B$, whence
$\langle B, x\rangle=P$. $\langle B, x\rangle=P$.
(ii) is obvious from the definition.
1.2. Remark. In (i) it is necessary to assume nondegeneracy, the subspace $B=L_{1}$ being a counterexample in the polar space ($\left.Q,\left(L_{1}, L_{2}, L_{3}\right\}\right)$ where L_{1}, L_{2}, L_{3} are lines meeting in a fixed point of $Q=$ $L_{1} \cup L_{2} \cup L_{3}$. Also thickness is readily seen to be crucial.

The lemma implies that B can have at most one deep point, i.e., a point incident with no line of $\mathbf{L}(P \backslash B)$, as we shall see from the corollary below. A subspace X is called nondegenerate if $(X, \mathrm{~L}(X))$ is nondegenerate i.e., $\operatorname{rad}(X):=X \cap X^{\perp}=\varnothing$, and degenerate otherwise.
1.3. Corollary. Let B be a hyperplane of (P, L).
(i) If B is degenerate, then $B=b^{\perp}$ and $\operatorname{rad}(B)=\{b\}$ for a unique point $b \in P$.
(ii) Any deep point of B is in $\mathrm{rad}(B)$; in particular, there is at most one deep point in B.

Proof. (i). Suppose $b \in \operatorname{rad}(B)$. Then $B \subseteq b^{\perp}$. But b^{\perp} is a hyperplane, so by (i) of the above lemma, $B=b^{\perp}$. Nondegeneracy of $(P, \mathrm{~L})$ yields $b^{\perp \perp}=\{b\}$, whence $\operatorname{rad}(B)=B \cap b^{\perp \perp}=\{b\}$.
(ii). Suppose $d \in B$ is incident with no line of $\mathrm{L}(P \backslash B)$. Then by thickness every line on d must have another point in B. Thus $d^{\perp} \subseteq B$. Using $B \neq P$ and the above lemma again, we get $B=d^{\perp}$, and we can finish as before.

The above corollary brings to light that, for each point $x \in P$, the subspace x^{\perp} is a hyperplane. We now recall the construction of a linear space - i.e., a space in which every pair of points lie on a unique line - on the set H of all hyperplanes of $(P, \mathrm{~L})$ in which $(P, \mathrm{~L})$ can be embedded. The basic idea is caught in the following lemma.
1.4. Lemma. Suppose ($P, \mathrm{~L}$) has rank ≥ 3, and let B_{1}, B_{2} be distinct hyperplanes.
(i) If $x \in B_{1} \backslash B_{2}$, then $B_{1}=\left\langle x, B_{1} \cap B_{2}\right\rangle$.
(ii) If $p \in P \backslash\left(B_{1} \cap B_{2}\right)$, then there is at most one hyperplane containing p and $B_{1} \cap B_{2}$.

Proof. Observe that B_{1} and B_{2} are polar spaces. (i). If B_{1} is nondegenerate then, as B_{1} contains a line, lemma 1.1 applies, yielding that $B_{1} \cap B_{2}$ is a maximal subspace of B_{1}, and the assertion holds.
If B_{1} is degenerate, then, by the corollary, $B_{1}=d^{\perp}$ for some $d \in x^{\perp}$.
Suppose $d \notin B_{2}$. Since every line on d has a point in B_{2}, whence in $B_{1} \cap B_{2}$, we have $B_{1}=\left\langle B_{1} \cap B_{2}, d\right\rangle$. Thus, we are done if $\left\langle B_{1} \cap B_{2}, x\right\rangle$ contains d. But this is the case as either $x=d$ or $x d$ is a line in B_{1} containing x and a point of $B_{1} \cap B_{2}$.
It remains to consider $d \in B_{2}$. Then every plane π on $x d$ is in $\left\langle B_{1} \cap B_{2}, x\right\rangle$ as it is spanned by x and $\pi \cap B_{2}$. If $y \in B_{1} \backslash B_{2}$, then there is $t \in\{x, y, d\}{ }^{\perp} \backslash B_{2}$. Applying the previous argument to the plane $\langle x, t, d\rangle$ and subsequently to $\langle t, y, d\rangle$, we find $y \in\left\langle B_{1} \cap B_{2}, x\right\rangle$. Hence (i).
(ii). Suppose $p \in P \backslash\left(B_{1} \cap B_{2}\right)$ and B is a hyperplane containing $B_{1} \cap B_{2}$ and p. Then $B_{1} \supset B_{1} \cap B \supseteq B_{1} \cap B_{2}$, and so, by (i), we must have $B_{1} \cap B=B_{1} \cap B_{2}$. Also, (i) applied to B_{1} and B gives $B=\left\langle B_{1} \cap B, p\right\rangle$. We conclude that $B=\left\langle B_{1} \cap B_{2}, p\right\rangle$, whence B is the unique hyperplane containing $B_{1} \cap B_{2}$ and p.

This lemma implies that the pair (H, S) where S is the collection of all intersections $B_{1} \cap B_{2}$ with $B_{1}, B_{2} \in \mathrm{H}, B_{1} \neq B_{2}$, becomes a linear incidence system if incidence of $B \in \mathrm{H}$ and $S \in \mathrm{~S}$ is defined by $S \subseteq B$. This incidence system will be called the Veldkamp space of ($P, \mathrm{~L}$).
1.5. Lemma. The map $x \mapsto x^{\perp}$ from P to H is an injective morphism from ($P, \mathrm{~L}$) to (H, S) mapping lines onto lines.
Proof. In view of corollary 1.3 the map is injective. Now, let $L \in \mathbb{L}$, take two points $x, y \in L$, and let B be a subspace containing $x^{\perp} \cap y^{\perp}=L^{\perp}$. We have to show $B=z{ }^{\perp}$ for some $z \in L$. By lemma 1.1 there exists $b \in B \backslash L^{\perp}$. Then, by the 'one or all' axiom, there is a unique point $z \in b^{\perp} \cap L$. According to the previous lemma there is at most one hyperplane containing b and L^{\perp}. But z^{\perp} and B are such hyperplanes. Therefore $B=z{ }^{\perp}$ as required.

2. Hyperplane complements.

Throughout this section, (P, L) is a non-degenerate polar space all of whose lines are thick, B is a hyperplane of it, and $A=P \backslash B$. We may define a derived incidence system $(A, L(A))$ where incidence is that of (P, \mathbb{L}). We wish to examine some of the properties of $(A, L(A))$ - enough to show that $(A, L(A))$ carries with it sufficient information to recover (P, \mathbb{L}). More precisely we shall show that if $(A, L(A))$ is embedded in a second polar space so that its complement there is also a hyperplane, then the embedding extends to an isomorphism of (P, \mathbb{L}) onto the second polar space.

First observe that, for each line $L \in \mathbb{L}(A)$, the set $P(L) \backslash A(L)$ is a singleton. If (P, L) has rank at least three, each line of $(A, L(A))$ lies on at least two affine planes. Any three pairwise collinear points of $(A, L(A))$ lie on an affine plane. This implies $(A, L(A))$ is a gamma space - i.e., a space in which, for every point p and line L, none, one or all points of L are collinear with p.
For each $L \in \mathbb{L}(A)$, set $\Delta(L)=\left\{a \in A \mid a^{\perp} \cap A(L)=\varnothing\right.$ or $\left.L\right\}$, where $A(L)$ denotes the set of all points in A incident to L. We define an equivalence relation on $L(A)$ as follows: L_{1} is parallel to L_{2} if and only if $\Delta\left(L_{1}\right)=\Delta\left(L_{2}\right)$. We denote this relation by $L_{1} / / L_{2}$. The symbol [L] will denote the equivalence class of all lines in $L(A)$ parallel to L.
2.1. Lemma. Two lines of $\mathbb{L}(A)$ are parallel if and only if their intersections with B coincide. Moreover, if $L \in \mathbb{L}(A)$, each point of $\Delta(L)$ lies on a unique member of $[L]$. Thus $\Delta(L)$ is the disjoint union of the lines of [L], regarded as point sets of A.
Proof. The first assertion is a direct consequence of the 'one or all' property of polar spaces.
Suppose $x \in \Delta(L)$. Then x is collinear with the unique point b of B incident with L. Set $M=x b$. Then $M \in \mathbb{L}(A)$, as $x \in A$. Now, $\Delta(L)=\{y \in A \mid y \perp b\}=\Delta(M)$. Thus $M \in[L]$.
If $N \in \mathbb{L}(A)$ is a line on x distinct from M, it meets B in a point $c \neq b$ so the choice of a point $y \in b^{\perp} \cap A \backslash\left(x^{\perp} \cup c^{\perp}\right)$ (possible since lines are thick and (P, L) is nondegenerate!) leads to $y \in \Delta(M) \backslash \Delta(N)$. Hence M is the unique member of $[L]$ on x.

Let $L(A) / / /$ denote the collection of parallel classes $[L]$ on $L(A)$. A direct consequence of the previous lemma is
2.2. Corollary. There is a $1-1$ correspondence $f: B \backslash \operatorname{rad} B \rightarrow \mathbb{L}(A) / / /$, which takes each point $b \in B \backslash \operatorname{rad} B$ to the parallel class $f(b):=\{L \in \mathbb{L}(A) \mid b \in B(L)\}$.
Proof. From the previous lemma, we have that $L, M \in f(b)$ implies $\Delta(L)=\Delta(M)$. Assume, in addition, that $\Delta(L)=\Delta(N)$ for some line $N \in \mathbb{L}(A)$. Let a be the unique point of B lying in N. Then, for $y \in b^{\perp} \cap A$, we have $y \in \Delta(N)$ so $y \in a^{\perp} \cap A$. As this argument is reversible, $b^{\perp} \cap A=a^{\perp} \cap A$. Now each point of $A(N)$ lies in b^{\perp} and since N is thick, a itself lies in b^{\perp}. If $a^{\perp} \cap A=\varnothing$, then both a and b are deep points of B, whence, by corollary $1.3, a=b$. Assume $a^{\perp} \cap A \neq \varnothing$. Then the set of lines and planes on b form a non-degenerate polar space. Yet, if $b \neq a$, then $a b$ lies in the radical of this residue space, an absurdity. Thus $b=a$. This means that the set $f(b)$ is a full parallel class of $(A, \mathrm{~L}(A))$.
2.3. Lemma. Assume (P, L) has rank three or more. If b_{1} and b_{2} are two points of B which lie on a line L not containing a point of $\operatorname{rad} B$, then there exists an affine plane π in A such that the restriction $\left.f\right|_{L}: L \rightarrow\{[L] \mid L \in \mathbb{L}(\pi)\}$ of f as given in the previous corollary is a 1-1 correspondence.
Conversely, for each affine plane π in A, the elements $f^{-1}([L])$ for $L \in \mathbb{L}(\pi)$ comprise a line of B not containing a point of $\operatorname{rad} B$.
Proof. First assume $L \in \mathbb{L}(B)$ and $B(L) \cap \operatorname{rad} B=\varnothing$. Since (P, L) has rank three or more, there exists a projective plane T on L, and ($T \backslash B, L(T \backslash B)$) is an affine plane whose parallel classes are (via f) in 1-1 correspondence with the points of the line $\pi \cap B \in \mathbb{L}(B)$, the so-called 'line at infinity'. Thus if $L \in \mathbb{L}(\pi)$ and b is the 'point at infinity' in $B(L)$, then $f(b)=[L]$ by the previous corollary.
Conversely if π is an affine plane then, letting $\{b\}=B(L)$, we see that the union T of $P(L)$ over all $L \in \mathbb{L}(\pi)$ is a projective plane (since it is clearly generated by any two of the lines L). It follows that $\left\{f^{-1}[L] \mid L \in \mathbb{L}(\pi)\right\}$ coincides with the line $B(T)$. This line clearly contains no point of rad B since no point of $B(\pi)$ is in $\operatorname{rad} B$.

For $L, M \in \mathbb{L}(A)$, set $[L] \sim[M]$ if there are $L^{\prime}, M^{\prime} \in \mathbb{L}(A)$ with $L\left\|L^{\prime}, M\right\| M^{\prime}$, and $\left\langle L^{\prime}, M^{\prime}\right\rangle$ a projective plane in (P, L).
2.4. Lemma. Again assume (P, \mathbb{L}) has rank at least three. Then two points b_{1} and b_{2} of $B \backslash \operatorname{rad} B$ are collinear by a line disjoint from $\operatorname{rad} B$ if and only if $f\left(b_{1}\right) \sim f\left(b_{2}\right)$ (i.e., if and only if there exist lines $L, M \in \mathbb{L}(A)$ such that $A(L) \subseteq \Delta(M), L \in f\left(b_{1}\right)$, and $M \in f\left(b_{2}\right)$).
Proof. Suppose first that b_{1} and b_{2} are collinear by a line R in $L(B)$ disjoint from rad B. Then by the previous lemma, there exists an affine plane π containing 2 lines L and M which are not parallel and for which $f\left(b_{1}\right)=[L]$ and $f\left(b_{2}\right)=[M]$. It follows that $A(L) \subseteq \Delta(M)$.
Conversely, assume lines L and M exist with $L \in f\left(b_{1}\right), M \in f\left(b_{2}\right)$, and $A(L) \subseteq \Delta(M)$. Then for each point p of A lying in L, we have $p^{\perp} \cap A(M)=\varnothing$ or $A(M)$. In either case p is collinear with the point b_{2} comprising $B(M)$. Thus $A(L) \subseteq b_{2} \frac{1}{2}$. Since L is thick, $|A(L)| \geq 2$, so b_{2}^{\perp} contains the point b_{1} of $B(L)$. Thus b_{2} is collinear with b_{1}. Finally if the line R on b_{1} and b_{2} contains a deep point of B, no point of A could be collinear with both b_{1} and b_{2}. But we have just seen that the points of $A(L)$ are collinear with both b_{1} and b_{2}. Thus R contains no point of $\operatorname{rad} B$.

It will be convenient to write $\Delta([L])$ rather than $\Delta(L)$; since there is no ambiguity, we shall sometimes do so.

Let \equiv be the relation on the set of parallel classes of $L(A)$ defined by $[L] \equiv[M]$ if and only if $\Delta([L]) \cap \Delta([M])=\varnothing$.
2.5. Lemma. Suppose, for two lines L, M of $L(A)$, we have $[L] \equiv[M]$. Then there is a unique partition $A=$ $\cup \Delta\left(L_{\sigma}\right)$ with $L, M \in\left\{L_{\sigma}\right\}_{\sigma \in I}$. The points $f^{-1}([L])$ and $f^{-1}([M])$ of B are collinear by a line R and the $\sigma \in I$
set $\left\{f^{-1}\left(\left[L_{\sigma}\right]\right)\right\}_{\sigma \in I}$ coincides with $B(R) \backslash \operatorname{rad} B$. Moreover, if (P, \mathbb{L}) has rank three or more, then $\operatorname{rad} B \subseteq B(R)$.
Proof. Suppose $\Delta(L) \cap \Delta(M)=\varnothing$ for $L, M \in \mathbb{L}(A)$ and set $B(L)=\{b\}, B(M)=\{c\}$. Then each point of $A(L)$ is collinear with exactly one point of $A(M)$ and vice versa, forcing a 1-1 correspondence $A(L) \rightarrow A(M)$ defined by collinearity. Since (P, L) is a polar space, $b \neq c$ and b and c are a collinear pair of points. Let R be the line in L on b and c. Clearly $R \in \mathbb{L}(B)$. Suppose a point x in A were collinear with two points of R. Then $x \in b^{\perp} \cap c^{\perp}$ and as $f(b)=[L]$ and $f(c)=[M]$ this means $x \in \Delta(L) \cap \Delta(M)$, a contradiction.
On the other hand, the polar space property forces $x^{\perp} \cap B(R) \neq \varnothing$ and so we see that each point of A is collinear with exactly one point of $B(R) \backslash \operatorname{rad} B$. Since collinearity of $x \in A$ with $r \in B(R) \backslash \operatorname{rad} B$ means $x \in \Delta(f(r))$, we have a partition

$$
\begin{equation*}
A=\bigcup_{r \in B(R) \backslash \operatorname{rad}(B)} \Delta(f(r)) . \tag{2.1}
\end{equation*}
$$

If (P, L) has rank at least three, then by the previous lemma, R must contain a deep point of B.
It remains to show that this partition of A is the unique such one containing $\Delta(L)$ and $\Delta(M)$ as components. Suppose instead there were a second partition

$$
A=\Delta(L) \cup \Delta(M) \cup \bigcup_{\tau \in J}^{\bullet} \Delta\left(L_{\tau}\right)
$$

Since this partition is assumed to differ from that in (2.1), there exists at least one value $\tau \in J$ such that $\Delta\left(L_{\tau}\right)$ is not one of the components of (2.1). Set $\{y\}=f^{-1}\left(\left[L_{\tau}\right]\right)=L_{\tau} \cap B, y \notin R$. As argued for b and c alone, $\Delta\left(L_{\tau}\right) \cap \Delta(L)=\varnothing$ implies b is collinear with y via some line R^{\prime} distinct from R. But similarly $\Delta\left(L_{\tau}\right) \cap \Delta(M)=\varnothing$ implies y collinear with c whence $R^{\prime} \subseteq R^{\perp}$, so $\left\langle R, R^{\prime}\right\rangle$ is a plane. This means (P, L) has rank at least three. Then by the above, R^{\prime} and R both contain a deep point. But by corollary 1.3 , there is only one deep point. Thus $R \cap R^{\prime} \supseteq\{b, d\}$ with $b \neq d$. This implies (P, \mathbb{L}) is not linear, defying the nondegeneracy of (P, \mathbb{L}) by well-known arguments.

As an immediate consequence, we have
2.6. Corollary. Suppose ($P, \mathrm{~L}$) has rank at least 3 or $\operatorname{rad} B \neq \varnothing$. Then the reflexive closure of \equiv is an equivalence relation. If X is an \equiv-class on $\mathrm{L} / \|$ of size at least 2 , then there is a line $R \in \mathbb{L}(B)$ with $B(R)=\operatorname{rad} B \cup\left\{f^{-1}([N]) \mid[N] \in X\right\}$.
2.7. Proposition. For $i=1,2$, let $\left(P_{i}, \mathrm{~L}_{i}\right)$ be a non-degenerate polar space. Let B_{i} be a hyperplane of $\left(P_{i}, \mathrm{~L}_{i}\right)$. Set $A_{i}=P_{i} \backslash B_{i}$. Suppose $\phi:\left(A_{1}, \mathrm{~L}_{1}\left(A_{1}\right)\right) \rightarrow\left(A_{2}, \mathrm{~L}_{2}\left(A_{2}\right)\right)$ is an isomorphism of incidence systems. Then ϕ can be uniquely extended to an isomorphism $\phi:\left(P_{1}, \mathrm{~L}_{1}\right) \rightarrow\left(P_{2}, \mathrm{~L}_{2}\right)$.
Proof. For $L \in \mathbb{L}_{i}\left(A_{i}\right)$, let $[L]$ be the parallel class in $\left(A_{i}, L_{i}\left(A_{i}\right)\right)$ containing L - i.e. all lines L^{\prime} of $L_{i}\left(A_{i}\right)$ such that $\Delta\left(L^{\prime}\right)=\Delta(L)$. Then, for each $i=1,2$, there are bijective mappings $f_{i}: B_{i} \backslash \operatorname{rad} B_{i} \rightarrow \mathrm{~L}_{i}\left(A_{i}\right) / / /$ from the set of non-deep points of B_{i} to the set of parallel classes on $L_{i}\left(A_{i}\right), i=1,2$.
Obviously ϕ, being an isomorphism, maps parallel classes on $\mathrm{L}_{1}\left(A_{1}\right)$ to parallel classes on $\mathrm{L}_{2}\left(A_{2}\right)$, and commutes with the 'functor' $\Delta: \mathbb{L}_{i}\left(A_{i}\right) \rightarrow \mathbb{P}\left(A_{i}\right)$, the power set of $A_{i}, i=1,2$. Since the property of $\left(P_{i}, \mathbb{L}_{i}\right)$ having rank at least three can be recognized in $\left(A_{1}, \mathrm{~L}_{1}\left(A_{1}\right)\right)$ by the property that each line lies in an affine plane, it follows that

$$
\begin{equation*}
\left(P_{1}, \mathrm{~L}_{1}\right) \text { has rank at least three if and only if }\left(P_{2}, \mathrm{~L}_{2}\right) \text { does. } \tag{2.2}
\end{equation*}
$$

If ($P_{1}, \mathrm{~L}_{1}$) is a generalized quadrangle, then the presence of a deep point in B_{1} can be recognized by the fact that the reflexive closure of the relation \equiv (defined for $\left(P_{i}, L_{i}\right)$ as above for (P, L)) is an equivalence relation on the set of parallel classes $\mathrm{L}_{1}\left(A_{1}\right) / \|$. Otherwise, B_{1} is a non-degenerate generalized quadrangle.
On the other hand, if $\left(P_{1}, L_{1}\right)$ has rank at least three, the presence of a deep point in B_{1} is indicated by the appearance of two lines L, M in $\mathbf{L}_{1}\left(A_{1}\right)$ with $[L] \equiv[M]$. Thus
B_{1} has a (unique) deep point if and only if B_{2} does .
We now extend $\phi: A_{1} \rightarrow A_{2}$ to $\hat{\phi}: P_{1} \rightarrow P_{2}$ as follows. First $\hat{\phi}$ restricted to A_{1} is ϕ. If $b \in B_{1} \backslash \operatorname{rad} B_{1}$ is a non-deep point of $B_{1}, \operatorname{set} \hat{\phi}(b)=f_{2}^{1}\left(\left[\phi\left(L_{b}\right)\right]\right)$ where L_{b} is any representative of the parallel class $f_{1}(b)$. Put another way, since Δ is 'functorial', there is an induced map $\bar{\phi}: \mathbb{L}_{1}\left(A_{1}\right) / / /$ $\rightarrow \mathrm{L}_{2}\left(A_{2}\right) / / /$. Then $\hat{\phi}(b)=f_{2}^{-1} \cdot \bar{\phi} \cdot f_{1}(b)$. Finally, if d_{1} is a deep point of B_{1}, then d_{1} is unique via lemma 1 and, by (2.3), B_{2} has a unique deep point d_{2}, and we write $\phi\left(d_{1}\right)=d_{2}$.
From the above it is clear that, if there is an extension of ϕ as stated, it must coincide with $\hat{\phi}$. Thus uniqueness follows and it remains to show that $\hat{\phi}: P_{1} \rightarrow P_{2}$ induces a mapping $\hat{\phi}: \mathrm{L}_{1} \rightarrow \mathrm{~L}_{2}$ via incidence. We already have $\hat{\phi}: \mathrm{L}_{1}\left(A_{1}\right) \rightarrow \mathrm{L}_{2}\left(A_{2}\right)$, a bijective mapping preserving incidence since ϕ was an isomorphism $\left(A_{1}, \mathrm{~L}_{1}\left(A_{1}\right)\right) \rightarrow\left(A_{2}, \mathrm{~L}_{2}\left(A_{2}\right)\right)$.
Suppose, first, $\left(P_{1}, \mathrm{~L}_{1}\right)$ is a generalized quadrangle and B_{1} has a deep point d_{1}. Then the reflexive closure of the relation \equiv on $\mathcal{L}_{1}\left(A_{1}\right)$ is an equivalence relation, and so the reflexive closure of \equiv on $\mathbb{L}_{2}\left(A_{2}\right) / \|$ is also an equivalence relation. Since each line of $L_{i}\left(B_{i}\right)$ is formed by taking d_{i} together with $f_{i}^{-1}([L])$ where $[L]$ ranges over a fixed \equiv-class on $L_{i}\left(A_{i}\right) / \|$, we see ϕ induces a bijection $\mathrm{L}_{1}(B) \rightarrow \mathrm{L}_{2}(B)$ and we are done. Next, suppose $\left(P_{1}, \mathrm{~L}_{1}\right)$ and $\left(P_{2}, \mathrm{~L}_{2}\right)$ are still both generalized quadrangles but the reflexive closure of \equiv is not an equivalence relation on $\mathrm{L}_{i}\left(A_{i}\right) / / /$. Then still it is true that whenever $\Delta(L) \cap \Delta(M)=\varnothing$ there is a line R on $f_{1}^{-1}([L])=b$ and $f_{1}^{-1}([M])=c$ in $\mathrm{L}_{1}(B)$ (containing no deep point) and a unique partition

$$
A_{1}=\bigcup_{r \in R} \Delta\left(f_{1}(r)\right)
$$

Then

$$
\begin{equation*}
A_{2}=\phi\left(A_{1}\right)=\bigcup_{r \in R} \phi\left(\Delta\left(f_{1}(r)\right)=\bigcup_{r \in R} \Delta\left(\bar{\phi}\left(f_{1}(r)\right)=\bigcup_{r \in R} \Delta\left(f_{2}(\hat{\phi}(r))\right.\right.\right. \tag{2.4}
\end{equation*}
$$

is a partition on A_{2} containing $\Delta\left(f_{2}(\hat{\phi}(b))\right)$ and $\Delta\left(f_{2}(\hat{\phi}(c))\right)$ as components. By lemma $2.5, \hat{\phi}(b)$ and $\hat{\phi}(c)$ are collinear by a line R_{2} in $\mathrm{L}_{2}(B)$ and there is a partition

$$
\begin{equation*}
A_{2}=\bigcup_{r^{\prime} \in R_{2}} \Delta\left(f_{2}\left(r^{\prime}\right)\right) \tag{2.5}
\end{equation*}
$$

also containing $\left.\Delta\left(f_{2} \hat{(\phi}(b)\right)\right)$ and $\left.\Delta\left(f_{2} \hat{(\phi}(c)\right)\right)$ as components. But by lemma 2.5 such a partition is unique subject to containing these two components and so the right side of (2.5) is the same partition as the one in the expression after the last equal sign of (2.5). This means $\hat{\phi}(R)=R_{2}$.
Now assume ($P_{1}, \mathrm{~L}_{1}$) has rank at least three. Then the reflexive closure of \equiv is an equivalence relation whose classes of size at least 2 represent lines in $\mathrm{L}_{1}\left(B_{1}\right)$ on a deep point d_{1} of B_{1}. Then, just as in the first part of the proof when $\left(P_{1}, L_{1}\right)$ was a generalized quadrangle, ϕ takes the point-shadows of lines of $\mathrm{L}_{1}\left(B_{1}\right)$ lying on a deep point of B_{1} to the point-shadows of lines of $\mathrm{L}_{2}\left(B_{2}\right)$ lying on a deep point of $\mathrm{L}_{2}\left(B_{2}\right)$ - i.e. ϕ induces a 1-1 mapping of all lines on d_{1} in L_{1} to all lines of L_{2} on a deep point d_{2}. There remain the lines of $\mathrm{L}_{1}\left(B_{1}\right)$ contained in $B \backslash \operatorname{rad} B$. Since $\left(P_{1}, \mathrm{~L}_{1}\right)$ has rank at least three, such a line R has as its points the set $\left\{f_{1}^{-1}([L]) \mid L \in L(\pi)\right\}$ for some affine plane π of $\left(A_{1}, L_{1}\left(A_{1}\right)\right)$ (cf. lemma 2.3). Then $\hat{\phi}\left(f_{1}^{-1}([L])\right)=f_{2}^{-1}([\phi L])$, so $\hat{\phi}(R)=\left\{f_{2}^{-1}\left(\left[L_{2}\right]\right) \mid L_{2} \in L(\phi \pi)\right\}$ where $\phi \pi$ is an affine plane of $\left(A_{2}, \mathrm{~L}_{2}\left(A_{2}\right)\right)$. By lemma 2.3 once more, $f_{2}^{1}([\phi(L)]), \phi(L) \in \phi(\pi)$, now ranges over all points of a line R_{2} of $\mathbb{L}_{2}\left(B_{2}\right)$ not containing a deep point of $B 2$. This means $\phi(R)=R_{2}$. As $\left(P_{2}, L_{2}\right)$ has rank three, this procedure is reversible and so $\hat{\phi}$ induces a bijective mapping of the lines of B_{1} not containing a deep point to the lines of B_{2} not containing a deep point. It is now clear the $\hat{\phi}$ induces a complete bijective mapping $\mathrm{L}_{1} \rightarrow \mathrm{~L}_{2}$ via point shadows and so $\hat{\phi}$ is an isomorphism $\left(P_{1}, \mathrm{~L}_{1}\right) \rightarrow\left(P_{2}, \mathrm{~L}_{2}\right)$ extending ϕ.

3. Affine polar spaces.

We consider here the following axioms concerning a connected incidence system (P, \mathbb{L}) :
(3.1.i) Any two collinear points lie on a unique line (thus, L can be viewed as a collection of subsets of P); any three pairwise collinear points lie in a plane, i.e., a singular subspace of singular rank 2.
(3.1.ii) There exists a plane. The points and lines incident with (i.e., contained in) any fixed plane form an affine plane.
(3.1.iii) If $p \in P$ and π is a plane such that p is not contained in π, then $p^{\perp} \cap \pi$ is either empty, is the set of points on a line or is the set of points in π. Moreover, $x^{\perp} \subseteq y^{\perp}$ implies $x=y$ for any two points x and y.
By Π we shall denote the set of planes of (P, \mathbb{L}). Note that any three pairwise collinear points that are not contained in a line lie in a unique plane. For, by (3.1.i), (P, L) is a gamma space, and (3.1.ii) implies that $\left(L_{x}, \Pi_{x}\right)$ - the incidence system of lines and planes on $x \in P$ - is a non-degenerate polar space. Thus, if $y, z \in x \perp$ are such that $x y$ and $x z$ are distinct lines and $z \perp y$, then $\langle x, y, z\rangle$ is the unique line (member of Π_{x}) on the collinear points $x y$ and $x z$ of L_{x}.

Also, any line lies in a plane. For, if $L \in L$, then by connectedness of the incidence system, we may assume there is $M \in \mathbb{L}$ with $L \cap M \neq \varnothing$ and a plane $\pi \in \Pi$ with $M \subset \pi$; invoking (3.1.iii), we see that there is a line M^{\prime} contained in $\pi \cap L^{\perp}$. Now, the previous paragraph shows that $\left\langle L, M^{\prime}\right\rangle$ is a plane on L.
3.1. Remark. The triple (P, L, Π) satisfying (3.1) is a connected geometry of points, lines, and planes. This leads to an alternate description of the geometry, in terms of a diagram. For incidence systems (P, \mathcal{L}) with finite singular rank n, hypothesis (3.1) is equivalent to the following
(3.2.i) Γ is a residually connected geometry with diagram

having at least three nodes (i.e., $n \geq 2$).
(3.2.ii) The residue of an object of type 0 is a building - i.e. a non-degenerate polar space of rank n.
(3.2.iii) If $P=\{$ objects of type 0$\}$ and $\mathbb{L}=\{$ objects of type 1 \}, then the incidence system induced on (P, \mathbb{L}) is a gamma space.
To see that (3.2) implies (3.1) is straightforward, the triple (P, \mathbb{L}, Π) being the set of objects of type $0,1,2$, respectively.
Assume (3.1). Then (3.1.iii) and the fact that planes are linear spaces imply that (P, \mathbb{L}) is a gamma space.

We next argue that each point lies on some plane and each such plane has a fixed universal order $q \geq 2$ independent of the plane or the point. Since (P, L) is connected and Π is not empty it suffices to show that if a point x lies on a plane of order q and y is a point collinear with x then y lies on a plane of order q. Suppose x lies on plane π. If $y \in \pi$ we are done, so suppose $y \notin \pi$. Since $y^{\perp} \cap \pi$ contains x, by (3.1.ii), $y^{\perp} \cap \pi$ is a line or is π. In any event, there is a line L in $y^{\perp} \cap \pi$ lying on x. Then by (3.1.iii) as $|L|>2$ (from π being an affine plane), we see that $\langle L, y\rangle$ generates a plane on y. Thus every point lies on a plane. Now consider the sets of lines and of planes on a point p-i.e. the residue geometry at p. Thus we regard the lines on p as Points and the planes on p as Lines. Then by (3.1.iii), two Points L and M on p are Collinear if and only if $L^{\perp} \subseteq M$ (so $\langle L, M\rangle$ generates an affine plane). Moreover, if π is a plane on p and L is a line on p with $L \cap \pi=\{p\}$ it follows that $L^{\perp} \cap \pi$ is either a line on p, or includes all lines on p within π - i.e. one or all Points incident with the Line P. Thus the residue geometry at a point obeys the fundamental 'one or all' polar space axiom of [2]. Moreover, the last part of (3.1.ii) implies this residue geometry has no radical. Thus by the theorem of Buekenhout \& Shult [2], the residue geometry is a non-degenerate polar space of rank at least two, and so is a building. Since (P, L) is a gammá space, the subspaces of the residue geometry of a point correspond to singular subspaces whose planes are affine and whose point residues are projective. Hence, including singular subspaces of rank $i(0 \leq i \leq n)$ as objects of our geometry, we obtain a diagram geometry with diagram that of (3.1.i). It is clearly residually connected, and all parts of (3.2) hold.

Note that if Γ satisfies (3.1), the polar space comprising the residue of a point has thick lines. This is because for each Line of $\operatorname{Res}(x):=\left(\mathrm{L}_{x}, \Pi_{x}\right)$ there is $\pi \in \Pi_{x}$ such that all lines through x incident with π have $q+1$ points. Since q, if finite, is at least two, any Line of Res (x) must have at least $1+q \geq 3$ points. Thus all Lines of Res (x) are thick. This is important in applying the results of section 2.

For the remainder of this section, we assume that Γ satisfies (3.1). Since members of \mathbb{L} and Π are determined by their point shadows (i.e., the sets of points incident with them), we may and shall regard them as sets of points. We shall now derive properties of the affine polar space ($P, \mathrm{~L}$).

3.2. Lemma. For any two points x and y, the polar spaces Res (x) and Res (y) are isomorphic.

Proof. First, assume $d(x, y)=2$, that is x and y are at distance 2. The lines on x are of two types: the set $\mathbf{L}_{A}(x, y)$ of lines which meet y^{\perp} and the set $\mathbb{L}_{B}(x, y)$ of lines which do not meet y^{\perp}.
Similarly, by (3.1.ii), there are two sets of planes on x, the set $\Pi_{A}(x, y)$ of planes meeting y^{\perp} at a line and the set $\Pi_{B}(x, y)$ of planes which do not contain a point of $y \perp$. Now each plane in $\Pi_{A}(x, y)$ meets y^{\perp} at a line L and carries exactly one line on x parallel to L. This means, $\left(\mathrm{L}_{B}(x, y), \Pi_{B}(x, y)\right)$ is a hyperplane of the polar space $\operatorname{Res}(x)$. Similarly $\left(L_{B}(y, x), \Pi_{B}(y, x)\right)$ is a hyperplane of the polar space Res (y).
For every line M in $\mathrm{L}_{A}(x, y)$, there is a corresponding line $\phi(M)=\left\langle M \cap y^{\perp}, y\right\rangle$ in $\mathrm{L}_{A}(y, x)$. Moreover, for each plane π in $\Pi_{A}(x, y)$, there is a corresponding plane $\phi(\pi)=\left\langle\pi \grave{\gamma}^{\perp}, y\right\rangle$. These mappings preserve incidence and have both left and right inverses. Thus we have an isomorphism

$$
\phi:\left(\mathbb{L}_{A}(x, y), \Pi_{A}(x, y)\right) \rightarrow\left(\mathbb{L}_{A}(y, x), \Pi_{A}(y, x)\right)
$$

Since the polar spaces Res (x) and Res (y) are both thick, by proposition $2.5, \phi$ can be extended to an isomorphism $\hat{\phi}: \operatorname{Res}(x) \rightarrow \operatorname{Res}(y)$. Thus the conclusion of the lemma holds when x and y are at distance 2 from one another.
Next suppose x and y are collinear, and set $L=x y$. Since $\operatorname{Res}(x)$ is a non-degenerate polar space of rank at least 2 there is a plane π on L. Then choose $z \in \pi \backslash L$. Again since Res (z) ia a non-degenerate polar space there is a plane π_{1} on z not lying in π^{\perp} and intersecting π at the line L^{\prime} on z parallel to L. Then, for any point $w \in \pi_{1} \backslash L^{\prime}$, we have $d(w, x)=2=d(w, y)$. Then, from the argument of the previous case, $\operatorname{Res}(x) \cong \operatorname{Res}(w) \cong \operatorname{Res}(y)$. Thus we see that if x and y are collinear, then $\operatorname{Res}(x) \cong \operatorname{Res}(y)$.
Finally, since (P, L) is connected, the isomorphism holds for any x, y in P.
3.3. Lemma. The collinearity graph of $\Gamma=(P, \mathbb{L})$ has diameter at most 3 . If x and y are at distance 3, all lines on x contain a point at distance 2 from y.
Proof. Assume $d(x, y)=3$. Then there exists a point z collinear with x and at distance 2 from y. The lines and planes on z which meet y^{\perp} at a point or line respectively, form the incidence system $\left(L_{A}(z, y), \Pi_{A}(z, y)\right)$, and complements the hyperplane $\bar{B}=\left(\mathbb{L}_{B}(x, y), \Pi_{B}(z, y)\right)$ of Res (z) for which the line
$L=z x$ is a deep point. By lemma 2.1, since $\operatorname{Res}(z)$ has thick lines, L is the unique deep point of \bar{B} and $\bar{B}=(\bar{L}) \perp$. Thus $\mathrm{L}_{B}(z, y)$ is simply the set of all lines on z lying within x^{\perp}, and every point of \bar{B} distinct from L is adjacent to a line of $L_{A}(z, y)$. This means, that each point $r \in x^{\perp} \cap z^{\perp}$ not on the line L, r is collinear with a point of y^{\perp} (since $z r$ lies in a plane with a line of $L_{A}(z, y)$ carrying a point of y^{\perp}). Thus we see that if L in $\operatorname{Res}(x)$ contains a point z at distance 2 from y, then the same holds for any line M of $\operatorname{Res}(x)$ with $M \subseteq L^{\perp}$. Since Res (x), being a non-degenerate polar space of rank at least two, is connected, we see that every line of Res (x) carries a point at distance 2 from y. It follows that no pair of points of Γ are at distance 4, and, since Γ is connected, Γ has diameter at most 3 .

3.4. Definition. We define an equivalence relation " $/ /$ " on L as follows. For each line L in L, set

$$
\Delta(L)=\{p \in P \mid p \perp \cap L=L \text { or } \varnothing\}
$$

We write $L_{1} / / L_{2}$ if and only if $\Delta\left(L_{1}\right)=\Delta\left(L_{2}\right)$ and say L_{1} is parallel to L_{2}, for any two lines L_{1} and L_{2} of L. Manifestly, " $\mid /$ " is an equivalence relation on L. For each line L of L, we let $[L]$ be the equivalence class of L containing line L - i.e. the set of all lines parallel to L.

Note that if π is a plane, and L_{1} and L_{2} belong to the same parallel class in the ordinary sense of parallelism for an affine plane, then $\Delta\left(L_{1}\right)=\Delta\left(L_{2}\right)$, and so L_{1} and L_{2} are parallel in the sense of the previous two paragraphs. For, if $p \in \Delta\left(L_{1}\right)$ then by (3.1.ii), $p^{\perp} \cap \pi$ is either empty, or is a line, or is π. In the first and last cases $p \in \Delta\left(L_{2}\right)$. If $p^{\perp} \cap \pi=M \in \mathbb{L}$, then clearly, as $p \in \Delta\left(L_{1}\right)$, either $M=p^{\perp} \cap L_{1}=L_{1}$ or $M \cap L_{1}=p^{\perp} \cap L_{1}=\varnothing$. In any case, M is parallel (in the ordinary sense) to L_{1} and hence to L_{2}. Thus, in all cases, $p \in \Delta\left(L_{2}\right)$.

This shows that " $\|$ " contains at least the transitive extension on L of the relation of being parallel lines within an affine plane. In the next two lemmas it will be seen that parallelism is precisely this extension.

3.5. Lemma. Suppose $y \in P$ and $L \in \mathbb{L}$. Then, for at least one line $L_{0} \in[L]$, the intersection $y \perp \cap L_{0}$ is non-empty.

Proof. Let y, L be such that there is no plane π on L with $y^{\perp} \cap \pi \neq \varnothing$. By the previous lemma, there is a path $y \perp t \perp x$ with $x \in L$.
Take a plane ρ_{1} on $t x$. As $H_{1}=y^{\perp} \cap \rho_{1}$ contains t but not x, it is a line, so $\sigma_{1}=\left\langle H_{1}, y\right\rangle$ is a plane. Similarly $K_{1}=L^{\perp} \cap \rho_{1}$ is a line (observe that $t \notin L^{\perp}$ since otherwise $\langle t, L\rangle$ defies the hypothesis) and $\pi_{1}=\left\langle K_{1}, L\right\rangle$ a plane. If $H_{1} \cap K_{1}$ contains a point, say w, then $w \in \pi_{1} \cap y^{\perp}$, contradicting the hypothesis. Thus $H_{1} \cap K_{1}=\varnothing$, and so $H_{1} / / K_{1}$.
Now choose $x_{1} \in K_{1} \backslash\{x\}$. Take t_{1} to be the point on H_{1} and on the line in ρ_{1}, through x_{1} parallel to $t x$, and take y_{1} in σ_{1} such that $N_{1}=y y_{1}$ is parallel to H_{1} and $t_{1} y_{1}$ is parallel to $t y$. Denote by L_{1} the line in π_{1} on x_{1} parallel to L. If $x_{1} \perp y_{1}$, the $x_{1} \in\left(t_{1} y_{1}\right)^{\perp}$, so $x_{1} \in \Delta\left(t_{1} y_{1}\right)=\Delta(t y)$ whence, as $x_{1} \perp t$, we have $x_{1} \in(t y)^{\perp}$, and so $x_{1} \in y^{\perp} \cap \pi_{1}$, a contradiction. Thus $d\left(x_{1}, y_{1}\right)=2$.
From now on assume that there is no line $L_{0} / / L$ with $\cdot y^{\perp} \cap L_{0} \neq \varnothing$. This implies the earlier assumption on L that there is no plane π on L with $y^{\perp} \cap \pi \neq \varnothing$. Suppose μ is a plane on L_{1} with $\mu \cap y_{\perp}^{\perp} \neq \varnothing$. Then, as $x_{1} \in \mu \backslash y_{\perp}^{\perp}$, we have that $\mu \cap y_{\perp}^{\perp}$ is a line. If this line is a parallel of L_{1}, then $\left\langle y_{1}, \mu \cap y_{\perp}^{\perp}\right\rangle$ contains a parallel L_{0} of L with $y_{1} \in y^{\perp} \cap L_{0}$, a contradiction. So $\mu \cap y_{\perp}^{\perp}$ is a line of μ meeting L_{1} in a point, say z_{1}. Now $z_{1} \in \Delta\left(K_{1}\right)=\Delta\left(N_{1}\right)$ and $z_{1} \in y \perp$ imply $z_{1} \in N_{\perp}^{\perp}$ so $z_{1} \perp$, again a contradiction. Hence there is no plane v on L_{1} such that $y_{1}^{\perp} \cap v \neq \varnothing$. We repeat the construction of the previous paragraph to get H_{2}, K_{2}, N_{2}, L_{2} as $H_{1}, K_{1}, N_{1}, L_{1}$, now starting from $L_{1}, x_{1}, y_{1}, t_{1}$ instead of L, x, y, t. We choose the plane $\rho_{2}=\left\langle H_{2}, K_{2}\right\rangle$ on $t 1 x_{1}$ in such a way that $y \perp \cap \rho_{2}$ and $y^{\perp} \cap \rho_{2}$ are distinct lines. (In Res t_{1}), this simply means that $H_{1} \notin H_{2}^{\perp}$. Then $N_{2} / / H_{2} / / K_{2}$ (as before).
Since $y^{\perp} \cap \rho_{1}=H_{1}$ and $y^{\perp} \cap \rho_{2} \neq H_{2}$, we see (from a look at $\operatorname{Res}\left(t_{1}\right)$) that $N_{1} \pm N_{2}^{\perp}$. Therefore, $y^{\perp} \cap N_{2}=\left\{y_{1}\right\}$, whence $y \notin \Delta\left(N_{2}\right)=\Delta\left(K_{2}\right)$. Consequently, $y^{\perp} \cap K_{2}$ is a point, and so $y^{\perp} \cap \pi_{2} \neq \varnothing$. But now there is a line $L_{2} / / L_{1} / / L$ in π_{2} on K_{2}, the final contradiction.
3.6. Corollary. If $y \in \Delta(L)$, then y lies on a line of $[L]$. In other words, $\Delta(L)$ is the point-set union of the lines of $[L]$.
Proof. Suppose $L_{0} \in[L]$ and $L_{0} \subseteq y^{\perp}$. If $y \in L_{0}$ we are done. Otherwise we may form the plane $P=\left\langle y, L_{0}\right\rangle$ and find a parallel of L_{0} in y and again we are done. So we must assume no line of $[L]$ lies in y^{\perp}. But since $y \in \Delta(L)$, this means $y^{\perp} \cap L_{0}=\varnothing$ for each $L_{0} \in[L]$, contrary to the previous lemma.

3.7. Lemma. No two lines of $[L]$ meet at a point.

Proof. Suppose $L_{1}, L_{2} \in[L]$ and $L_{1} \cap L_{2}=\{p\}$. Then, for any point $q \in L_{1} \backslash\{p\}$, we have $q \in \Delta\left(L_{1}\right)=\Delta\left(L_{2}\right)$ and $q \in p^{\perp}$, so $q \in L \frac{\perp}{2}$. Thus $L_{1} \subseteq L_{2}^{\perp}$ and there is a plane π containing L_{1} and L_{2}. Let y be any point of p^{\perp} not in π. Then $y^{\perp} \cap \pi$ is a line on π or is all of π. In the former case, if $y^{\perp} \cap \pi$ is a line distinct from L_{1} then $y \notin \Delta\left(L_{1}\right)$ and so $y^{\perp} \cap \pi$ is also distinct from L_{2}. But similarly if $y^{\perp} \cap \pi$ contains L_{1} it must also contain L_{2} and hence all of π. Thus π corresponds to a Line of $\operatorname{Res}(p)$ containing two Points L_{1} and L_{2} whose 'perps' in $\operatorname{Res}(p)$ are identical. But as $\operatorname{Res}(p)$ is a non-degenerate polar space, it is well known that this implies $L_{1}=L_{2}$, against our assumption $L_{1} \cap L_{2}=\{p\}$. The proof is complete.

Now we see from corollary 3.5 and lemma 3.6 that $\Delta(L)$ is the union of disjoint lines from $[L]$. Moreover, if L_{1} and L_{2} are two distinct lines of [L], either $L_{\perp}^{\perp} \cap L_{2}=\varnothing$ or $L_{1} \subseteq L_{2} \perp$. In the latter case L_{1} and L_{2} are parallel lines within the same affine plane $\left\langle L_{1}, L_{2}\right\rangle$. For, if $L_{1} \subseteq L_{2}^{\perp}$ and $x \in L_{2}$, then $x \notin L_{1}$ (by lemma 3.6) and so $\pi=\left\langle L_{1}, x\right\rangle$ is a plane, and so x carries a line L^{\prime} in π parallel to L_{1}. But then L_{2} and L^{\prime} are lines of $[L]$ lying on x, so $L^{\prime}=L_{2}$ by lemma 3.6 again. Thus $\left\langle L_{1}, L_{2}\right\rangle$ is the plane π.

It is clear that, for $L \in \mathbb{L}$, we may form a linear incidence system whose points are the lines of $[L]$ and whose lines are the sets of lines of [L] lying in planes generated by two mutually perpendicular members of $[L]$. We denote this incidence system by the symbol $\Delta(L) / L$.
3.8. Lemma. Assume $L \in L$ and x is a point not in $\Delta(L)$. Then the lines on x which do not meet $\Delta(L)$ and the planes on x which do not meet $\Delta(L)$ form a hyperplane $B(x,[L])$ of Res (x).
Proof. Suppose π is a plane on x containing a point z of $\Delta(L)$. Then, by corollary $3.5, z$ lies on a line L_{1} in [L]. Since x is not in $\Delta(L)=\Delta\left(L_{1}\right), x^{\perp} \cap L_{1}=\{z\}$ and so $L_{\perp}^{\perp} \cap \pi$ is a line M not on x. But $M \subseteq \Delta(L)$. Any further point of $\pi \cap \Delta\left(L_{1}\right)$, since it lies in z^{\perp} must lie in L_{\perp}^{\perp} whence $\Delta(L) \cap \pi=\Delta\left(L_{1}\right) \cap \pi=L_{\perp} \perp \cap \pi=M$.
Thus every line on x lying in π meets $\Delta(L)$ (at a point of M) except one, namely, the line M_{1} on x parallel to M (in π). As, obviously, $M_{1} \cap \Delta\left(L_{1}\right)=\varnothing$, we have thus seen that every Line of Res (x) has exactly one or all of its Points represented by lines on x not meeting $\Delta(L)$. It follows that the lines on x not meeting $\Delta(L)$ represent a hyperplane $B(x,[L])$ of $\operatorname{Res}(x)$.

We also consider the incidence system $A(x,[L])=\left(L_{A}(x,[L]), \Pi_{A}(x,[L])\right)$ of all lines on x which meet $\Delta(L)$ and all planes on x which meet $\Delta(L)$ at a line. Then $A(x,[L])$ and $B(x,[L])$ together form $\operatorname{Res}(x)$.
3.9. Corollary. If x and y are two points not lying in $\Delta(L)$, then $B(x,[L]) \cong B(y,[L])$ as incidence systems. Moreover, $A(x,[L]) \cong \Delta(L) / L$.
Proof. For each line L_{1} of [L] there is a unique point $x\left(L_{1}\right)$ with $\left\{x\left(L_{1}\right)\right\}=x^{\perp} \cap L_{1}$ and a unique line $\phi_{x}\left(L_{1}\right):=x\left(x\left(L_{1}\right)\right)$ on x meeting $\Delta(L)$ at a point of L_{1}. If L_{1} and L_{2} lie in $[L]$, then $L_{1} \subseteq L_{2}^{\perp}$ if and only if $x\left(L_{1}\right) \in x\left(L_{2}\right)^{\perp}$ if and only if $\phi_{x}\left(L_{1}\right) \subseteq\left(L_{2}\right)^{\perp}$. Thus $\phi_{x}:[L] \rightarrow L_{A}(x,[L])$ is a 1-1 correspondence preserving collinearity and as $A(x,[L])$ is a gamma space which is partial linear, the " $\perp \perp$ " operation on pairs of distinct collinear points defines lines, and so ϕ_{x} extends to an isomorphism $\phi: \Delta(L) / L \rightarrow A(x,[L])$ of linear incidence systems.
Similarly, $\Delta(L) / L \cong A(y,[L])$ and so $f=\phi_{y} \phi_{x}^{-1}$ is an isomorphism $f: A(x,[L]) \rightarrow A(y,[L])$. By proposition 2.7, f extends to an isomorphism $\operatorname{Res}(x) \rightarrow \operatorname{Res}(y)$, whose restriction to the complementary hyperplane $B(x,[L])$ defines the required isomorphism $B(x,[L]) \rightarrow B(y,[L])$ between hyperplanes.
3.10. Lemma. Let L be a line and x a point in $P \backslash \Delta(L)$. Suppose M is a line on x, representing a deep point of $B(x,[L])$ in $\operatorname{Res}(x)$. Then
(i) $\Delta(L) \cap \Delta(M)=\varnothing$.
(ii) There is no line in $[M]$ on which there is a plane meeting $\Delta(L)$.

Proof. By hypothesis, no plane on M meets $\Delta(L)$ (non-trivially). Let [$M]_{0}$ represent those lines M^{\prime} of $[M$] for which no plane on M^{\prime} meets $\Delta(L)$. Thus $M \in[M]_{0}$.
If $u \in \Delta(L) \cap \Delta(M)$, then u carries a line $M^{\prime} \in[M]$, and any plane on M^{\prime} will contain u, so meets $\Delta(L)$ non-trivially, whence $[M] \backslash[M]_{0}$ is nonempty. Thus (i) will be a consequence of (ii).
As for (ii), suppose, by way of contradiction, that $[M] \backslash[M]_{0}$ is nonempty. Since $\Delta(M) / M$ is connected (cf. corollaries $3.9,3.8$, and lemma $1.1(\mathrm{i})$), there is a line $M_{1} \in[M] 0$ lying in a plane π_{1} with a line $M_{2} \in[M] \backslash[M]_{0}$. Then M_{2} lies in a plane π_{2} which meets $\Delta(L)$ at a line N. Since $\pi_{1} \cap \Delta(L)=\varnothing$, by hypothesis, we see N is parallel to $M_{2}=\pi_{1} \cap \pi_{2}$ in π_{2}. Since N lies in $\Delta(L)$ and $N \notin[L]$, it corresponds to a plane ρ in $\Delta(L)$ representing a line of $\Delta(L) / L$. (Observe that $\rho=\left\langle N, L_{1}\right\rangle$ for each $L_{1} \in[L]$ meeting N at a point.) Take a point $y \in M_{1}$. The fact $M_{1} \cap \Delta(L)=\varnothing$ implies that $y \perp \cap \rho$ is a line M_{y} not in [L]. Moreover, if $q \in M_{y} \cap N$, then $y^{\perp} \cap \pi_{2}$ contains M_{2} and q and hence all of π_{2}. Thus $N \subseteq y^{\perp}$ and so $\pi_{3}=\langle y, N\rangle$ is a plane and π_{3} contains a line N^{\prime} on y parallel to N. From the above, $N \in[M]$, so $N^{\prime} \in[M]$, and, by lemma 3.7, $N^{\prime}=M_{1}$. But then π_{3} is a plane containing M_{1} and meeting $\Delta(L)$ in N, contradicting $M_{1} \in[M] 0$.
Thus M_{y} must be parallel to N. Now choose any point z on M_{y}. Then $z{ }^{\perp} \cap M_{1}$ is not M_{1} as $M_{1} \in[M] 0$, so $z{ }^{\perp} \cap M_{1}=\{y\}$ and $z \perp \cap \pi_{1}$ is a line S not parallel with M_{1}. Thus $S \cap M_{2}=\left\{y_{2}\right\}$. Then $y \frac{\perp}{2} \cap \rho$ includes both N and z not lying on M. Thus $y \frac{\perp}{\perp}$ contains all of ρ. But since ρ contains lines from $[L]$ we have $y_{2} \in \Delta(L)$, so π_{1} meets $\Delta(L)$ non-trivially against our choice of M_{1} as lying in $[M]_{0}$. This contradiction completes the proof.
3.11. Remark. Quite clearly the converse of lemma 3.9 holds - that is

If $\Delta(L) \cap \Delta(M)=\varnothing$ and $x \in \Delta(M)$ and M^{\prime} is the unique (see lemma 3.6) line of [M] lying on x, then M^{\prime} represents a deep point of the hyperplane $B(x,[L])$ of Res (x).
Proof. Clearly as $M^{\prime} \cap \Delta(L)=\varnothing$, the line M^{\prime} represents a point of $B(x,[L])$. But if M^{\prime} were not a deep point, there would be a plane π on M^{\prime} meeting $\Delta(L)$ at a point y. But then y carries a line $M^{\prime \prime}$ parallel to M^{\prime} so $y \in \Delta(M) \cap \Delta(L)$, a contradiction.
3.12. Definition. We denote by $\overline{\mathrm{L}}$ the collection of parallel classes of lines of L . We define the relation \equiv on $\overline{\mathrm{L}}$ by asserting $[L] \equiv[M]$ if and only if $\Delta(L) \cap \Delta(M)=\varnothing$. Considering that $L, L^{\prime} \in[L]$ if and only if $\Delta(L)=\Delta\left(L^{\prime}\right)$, this relation is certainly well defined.

3.13. Lemma. The reflexive closure of the relation \equiv is an equivalence relation on $\overline{\mathrm{L}}$.

Proof. Assume $\Delta(L) \cap \Delta(M)=\varnothing=\Delta(M) \cap \Delta(N)$ for lines L, M, N, and that $\Delta(L) \cap \Delta(N)$ contains a point u. Then there exist lines L^{\prime} and N^{\prime} on u belonging to $[L]$ and $[N]$, respectively, and, by the above remark, L^{\prime} and N^{\prime} both represent deep points of the hyperplane $B(u,[M])$ of $\operatorname{Res}(u)$. As Res (u) is a nondegenerate thick polar space, corollary 1.3 forces $L^{\prime}=N^{\prime}$ and hence $\Delta(L)=\Delta(N)$. This proves the assertion.
3.14. Corollary. Suppose $\Delta\left(L_{1}\right) \cap \Delta\left(L_{2}\right)=\varnothing$ for two lines L_{1} and L_{2}. Then the sets $\Delta([L])$ for $[L]$ running over the members of the \equiv-class of $\left[L_{1}\right]$, form a partition of P.
Proof. Denote by X the \equiv-class of $\left[L_{1}\right]$. Clearly, for [M], $[N] \in X$, we have $\Delta(M) \cap \Delta(N)=\varnothing$ so it remains only to show that each $p \in P$ lies in some $\Delta(L)$ for $[L] \equiv\left[L_{1}\right]$. Choose $x \in \Delta\left(L_{1}\right)$ and $y \in \Delta\left(L_{2}\right)$. Then $B\left(y,\left[L_{1}\right]\right)$ contains a deep point - some line parallel to L_{2} - see remark 3.8. But, by corollary 3.9, $B\left(y,\left[L_{1}\right]\right) \cong B\left(p,\left[L_{1}\right]\right)$ and so the latter contains a deep point in $\operatorname{Res}(p)$ represented by the line L. By the above lemma, $\Delta(L) \cap \Delta\left(L_{1}\right)=\varnothing$ and so $[L] \equiv\left[L_{1}\right]$ as required.

We now wish to define a second relationship on \bar{L}. Write $[L] \sim[M]$ if some line L^{\prime} of $[L]$ and some line M^{\prime} of [L] lie together in a plane. Note that in this case $\Delta(L) \cap \Delta(M)$ is not empty (it contains every point of the aforementioned plane, for example). The next several lemmas concern this relation \sim.
3.15. Lemma. For any line M, the subset $\Delta(M)$ is a subspace of (P, L). If L is a line with $L \subseteq \Delta(M)$, then $[L] \sim[M]$.
Proof. Suppose $L \cap \Delta(M)$ contains two distinct points u_{1}, u_{2}. If u_{1} and u_{2} lie on a line M^{\prime} of [M] then $L=M^{\prime}$ by (3.1.i).
Thus we may assume u_{1} and u_{2} are not collinear by a line of [M], so $L \notin[M]$. Now, by corollary 3.6, there exist lines $M_{i} \in[M]$ on u_{i} for both $i=1,2$. Since $L \subset \Delta(M)$, in the space $\Delta(M) / M$, the points M_{1} and M_{2} are collinear, and so $\left\langle M_{1}, M_{2}\right\rangle$ is a clique of the collinearity graph containing L. But as $\left\langle M_{1}, M_{2}\right\rangle$ is a plane carrying a member of $[M]$ lying on u_{2}, and u_{2} lies on a unique member of [M] (cf. lemma 3.6), we see that $\left\langle M_{1}, M_{2}\right\rangle$ is this plane. Since $\left\langle L, M_{1}\right\rangle$ is now a plane, $[L] \sim[M]$, as required.
3.16. Lemma. Let L and M be lines such that $L \cap \Delta(M)=\varnothing$ and $\Delta(L) \cap \Delta(M) \neq \varnothing$. Then $[L] \sim[M]$.

Proof. There exists a point $u \in \Delta(L) \cap \Delta(M)$ and by corollary $3.6 u$ lies on a line M^{\prime} of $[M]$ and a line L^{\prime} of $[L]$. Since $\operatorname{diam}(\Delta(L) / L) \leq 3$ (for it is a polar space minus a hyperplane, see corollaries 3.9, 3.8, and lemma 1.1(i)); there exist planes π_{1}, π_{2}, and π_{3} such that π_{1} contains $L^{\prime}, \pi_{1} \cap \pi_{2}=L_{1} \in[L] \backslash\left\{L^{\prime}\right\}$, $\pi_{2} \cap \pi_{3}=L_{2} \in[L], L_{3} \subseteq \pi_{3}, L_{3} \neq L_{2}, L_{3} \in[L]$ so that the line L is either L_{3}, L_{2} or L_{1}.
Now $\left(M^{\prime}\right)^{\perp} \cap \pi_{1}$ is a line N_{1}. If $N_{1} \in[L]$ we are done since $\left\langle N_{1}, M^{\prime}\right\rangle$ is a plane. So we may assume N_{1} is not parallel to L_{1} and so $N_{1} \cap L_{1}$ is a point $p_{1} \in L_{1}$. Now in the plane $\left\langle N_{1}, M^{\prime}\right\rangle$ and on the point p_{1} there is a line M_{1} parallel to M^{\prime}. As $p_{1} \in \Delta(M)$, the assumption $L \cap \Delta(M)=\varnothing$ yields $L \neq L_{1}$. So $L=L_{3}$ or L_{2}. Now $\left(M_{1}\right)^{\perp} \cap \pi_{2}=N_{2}$ is a line. Again if $N_{2} \in[L]$ we are done since $\left\langle N_{2}, M_{1}\right\rangle$ is a plane and $M_{1} \in[M]$. Thus we may assume N_{2} is not parallel to L_{2} and hence $N_{2} \cap L_{2}$ is a point $p 2$ which lies in $\Delta(M)$. Again $L \cap \Delta(M)=\varnothing$ yields $L \neq L_{2}$, whence $L=L_{3}$. On p_{2} there is a line M_{2} parallel to M_{1}, so $M_{2} \in[M]$, and again $\left(M_{2}\right)^{\perp} \cap \pi_{3}$ is a line N_{3}. If $N_{3} \in[L]$ we are done as $\left\langle N_{3}, M_{2}\right\rangle$ is a plane. Thus N_{3} is not parallel to $L_{3}=L$ and so $\varnothing \neq N_{3} \cap L_{3} \subseteq L \cap \Delta(M)=\varnothing$, a contradiction. This completes the proof.

3.17. Lemma. Let L and M be lines. Assume $|L \cap \Delta(M)| \geq 1$ and $[L] \sim[M]$. Then $L \subseteq \Delta(M)$.

Proof. Since $[L] \sim[M]$ there exists a plane π containing $L_{1} \in[L]$ and $M_{1} \in[M]$.
Suppose, by way of contradiction, L does not lie in $\Delta(M)$. Then $|L \cap \Delta(M)|=1$ by hypothesis and the previous lemma. Choose $w \in L \backslash \Delta(M)$. Then $w^{\perp} \cap M_{1}$ is a point p, and so $w \perp \cap$ is a line N not parallel to M_{1}. If N were not parallel to L_{1} we would have $\left|w^{\perp} \cap L_{1}\right|=1$ against $w \in L \subseteq \Delta\left(L_{1}\right)$. Thus N is parallel to L_{1}. Then there is a line N^{\prime} on w in the plane $\langle w, N\rangle$ parallel to N. Thus $N^{\prime} \in[L]$ and since it lies on $w, L=N^{\prime}$. Thus $L^{\perp} \cap \pi=N$. Recall there is a point $v \in L \cap \Delta(M)$. Now $v^{\perp} \cap \pi$ contains N, whence a point p of M_{1}, and so, as $v \in \Delta(M)$, we must have $M \subseteq v^{\perp}$. This means $v^{\perp} \cap \pi \supseteq\left\langle N, M_{1}\right\rangle=\pi$. Taking $q \in M_{1} \backslash\{p\}$, we see that $q \in \Delta(L)$ and $v \in q^{\perp} \cap L$, whence $q \in L^{\perp} \subseteq w^{\perp}$. Therefore, $w^{\perp} \supseteq M_{1}$, so $w \in \Delta(M)$, contrary to assumption. This completes the proof.

The final lemma of this section combines both relations \equiv and \sim on \bar{L}.
3.18. Lemma. Let L, M, and R be lines with $[R] \sim[L] \equiv[M]$. Then either $[R]=[L]$ or $[R] \sim[M]$.

Proof. We may assume that R and L intersect at a point x in some plane π. Then $R \subseteq \Delta(L)$, whence (as $[L] \equiv[M]$) we have $R \cap \Delta(M)=\varnothing$, and in view of lemma 3.16 we may assume $[R] \equiv[M]$ (otherwise the proof is complete). Now R and L are deep points of the hyperplane $B(x,[M])$ in $\operatorname{Res}(x)$. But deep points are unique (cf. corollary 1.3) so $L=R$. and the proof is complete.

4. Characterization of affine polar spaces.

Starting with an affine polar space, i.e. an incidence system (P, \mathbb{L}) satisfying (3.1), we form a new geometry $(\underline{P}, \underline{\mathrm{~L}})$ whose definition depends upon the following case division: (i) All \equiv-classes on $\overline{\mathrm{L}}$ have cardinality one, and (ii) some \equiv-class on $\overline{\mathrm{L}}$ contains at least two elements.
The points of \underline{P} are of two or three kinds
\underline{P}_{1} : the points of P;
\underline{P}_{2} : the elements of $\overline{\mathbb{L}}$, that is, the parallel classes $[L], L \in \mathbb{L}$;
in the event of case (ii)
\underline{P}_{3} : the symbol ∞ (otherwise we disregard \underline{P}_{3}).
The lines also, are of two or three kinds
$\underline{L}_{1}:$ for each $L \in \mathbb{L}$, the $\operatorname{set} L \cup\{[L]\}$;
\underline{L}_{2} : the set $\{[L] \mid L \in \mathbb{L}(\pi)\}$ for each plane π;
$\underline{L}_{3}:$ the sets $\{\infty\} \cup X$ for each \equiv-class X of \underline{L} of cardinality at least 2 (of course if case (ii) fails, \underline{L}_{3} is empty).
Incidence on $(\underline{P}, \underline{L})$ is defined by containment.
4.1. Theorem. The incidence system $(\underline{P}, \mathrm{~L})$ is a nondegenerate polar space of rank at least 3. If we put $\underline{P}_{0}=\underline{P}_{2} \cup \underline{P}_{3}$ and $\underline{L}_{0}=\underline{L}_{2} \cup \underline{L}_{3}$, then $\left(\underline{P}_{0}, \underline{L}_{0}\right)$ is a hyperplane of (P, L).
Proof. To show that (P, L) is a polar space it suffices to verify the basig 'one or all' axiom for non-incident point-line pairs of $\underline{P} \times \overline{\mathrm{L}}$. This task will be easier if we review first what L -collinearity means for points.
First, two points p, q of P_{1} are collinear if they are collinear in (P, L). Second, a point $p \in \underline{P}_{1}$ and a point [L] of P_{2} are collinear $\overline{\text { if }}$ and only if $p \in \Delta(L)$. Third, two elements $[L]$ and $[M]$ of $\bar{L} \bar{a} r e \overline{c o l l i n e a r}$ if and only if $\bar{L}]=[M]$ or $[L] \sim[M]$. Fourth, ∞ is collinear with all elements of $\underline{L}_{2} \cup \underline{L}_{3}$.
Case 1. point p; line $M \cup\{[M]\} \in \mathrm{L}_{1}$. If $p \in \Delta(M)$ then, by corollary $3.4, p$ lies on a line $M^{\prime} \in[M]$ and $M^{\prime} \cup\{[M]\}$ is a line on p, so p is collinear with [M]. But as $p \in \Delta(M)$, by definition, $p^{\perp} \cap M=\varnothing$ or M. Thus p is \mathbb{L}-collinear to just $[M]$ or to all of $M \cup\{[M]\}$.
If $p \notin \Delta(M)$, then $\left|p^{\perp} \cap M\right|=1$ and p is not collinear with [M] so p is \underline{L}-collinear with exactly one point of $M \cup\{[M]\}$ in this case.
Case 2. point $p \in P$; line $\{[L] \mid L \in \mathbb{L}(\pi)\} \in \mathbb{L}_{2}$. First assume $p^{\perp} \cap \pi=\varnothing$. Then, for all $L \in \mathbb{L}(\pi)$, we have $p^{\perp} \cap L=\varnothing$ so $p \in \Delta(L)$, whence p is \underline{L}-collinear with [L]. Similarly, if $p^{\perp} \supseteq \pi$, then $p \in \Delta(L)$ for all $L \in \mathbb{L}(\pi)$ and the same conclusion holds.
In the remaining case, $p^{\perp} \cap \pi$ is a line N. Then, by definition of $\Delta(L)$, we have, for $L \in \mathbb{L}(\pi)$, that $p \in \Delta(L)$ holds if and only if $[L]=[N]$, so p is \underline{L}-collinear with exactly one point of the line.
Case 3. point $p \in P$; line $A=(\{\infty\} \cup X) \in L_{3}$. Here, by corollary 3.14 , the sets $\Delta([L]),[L] \in X$, partition P, hence p is \underline{L}-collinear with precisely one point of A.
Case 4. point $[N] \in \underline{P}_{2}$; line $M \cup\{[M]\} \in \underline{L}_{1}$. Since the point and line are not incident, we have $[N] \neq[M]$.
Assume [N] is not \underline{L}-collinear with any point of M. Then $M \cap \Delta(N)=\varnothing$. If $\Delta(M) \cap \Delta(N)=\varnothing$, then [M] and $[N]$ are collinear by a line of \underline{L}_{3}. So assume $\Delta(M) \cap \Delta(N) \neq \varnothing$. We have now attained the hypotheses of lemma 3.16 and so $[M] \sim[N]-\bar{i} . e .$, they are \underline{L}_{2}-collinear. So far, we have shown that
If $[N]$ is collinear with no point of M, it is collinear with $[M]$.
Next assume [N] is collinear with two points of M. Then $\left|N^{\prime} \cap \Delta(M)\right| \geq 2$ for some $N^{\prime} \in[N]$, and so, as $\Delta(M)$ is a subspace (cf. lemma 3.15), $N \subseteq \Delta(M)$ and so $[N] \sim[M]$. This means that
If $[N]$ is collinear with two points of M, it is collinear with all points of $M \cup[M]$.
It remains to consider the case where [N] is collinear with $[M]$ and a point of M. Then $M \cap \Delta(N) \neq \varnothing$. In particular $\Delta(M) \cap \Delta(N) \neq \varnothing$ and so $[N] \sim[M]$. We now have the hypotheses of lemma 3.17 and so $M \subseteq \Delta(N)$. This shows

If $[N]$ is collinear with $[M]$ and a point of M, then it is collinear with all points of $M \cup\{[M]\}$.
The assertions (4.1), (4.2), and (4.3), put together, complete case 4.
Case 5. point $[N] \in \underline{P}_{2}$; line $\underline{A}=\{[L] \mid L \in \mathbb{L}(\pi)\} \in \underline{L}_{2}$. If a line $N^{\prime} \in[N]$ meets π non-trivially then $\left(N^{\prime}\right)^{\perp} \cap \pi$ is either a line R or all of π. In the former case $N^{\prime} \subseteq \Delta(R)$ and $[R]$ is the unique point $[L]$ of A with $N^{\prime} \subseteq \Delta(L)$. Therefore $[N] \sim[R]$ and, for $L \in \mathbb{L}(\pi)$ with $[L] \neq[R]$, neither $[N] \equiv[L]$ nor $[N] \sim[L]$ holds (cf. lemma 3.17). Thus $[N]$ is collinear with exactly one member of A, namely $[R]$. In the latter case, $N^{\prime} \subseteq \Delta(L)$ for all $L \in \mathbb{L}(\pi)$ and, by $3.15,[N]$ is collinear with all members of A.

Thus we may assume no member of [N] meets π non-trivially - i.e. $\pi \cap \Delta(N)=\varnothing$. This means each point of π is collinear with exactly one point of N^{\prime} for each $N^{\prime} \in[N]$. There are thus only two situations which can arise
(a) There exists a unique $x_{0} \in N$ with $x_{0}^{\perp} \supseteq \pi$ and $x^{\perp} \cap \pi=\varnothing$ for all $x \in N \backslash\left\{x_{0}\right\}$.
(b) For each $x \in N$, the intersection $x^{\perp} \cap \pi=M_{x}$ is a line, and the lines M_{x} all belong to one parallel class of π.
Consider first case (a). Here, the lines of L on x_{0} lying in the linear space $\left\langle x_{0}, \pi\right\rangle$ form a projective plane in $\operatorname{Res}\left(x_{0}\right)$ and those meeting π are the complement of a hyperplane of this projective plane. Since this hyperplane is a projective line of $\operatorname{Res}\left(x_{0}\right)$ it means that there is an affine plane π_{1} of $\left\langle x_{0}, \pi\right\rangle$ lying on x_{0} and containing no line on x_{0} meeting π non-trivially. In particular, $\pi_{1} \cap \pi=\varnothing$. Now for each line L in π, the subspace $\left\langle x_{0}, L\right\rangle$ is a plane, and it carries a line L^{\prime} on x_{0} parallel to L. But L^{\prime} is a line on x_{0} in $\left\langle x_{0}, \pi\right\rangle$ not meeting π and so, from the construction of π_{1} we see that L^{\prime} lies in π_{1}. Thus π_{1} is a plane with $\left\{\left[L^{\prime}\right] \mid L^{\prime} \in \mathbb{L}(\pi)\right\}=\underline{A}$, so we may replace the plane π by π_{1} in our proof. But now we have the situation in which N meets π non-trivially which was covered at the beginning of this case, so we are done.
Next we consider case (b). Clearly $M_{x} \in \underline{A}$ for each $x \in N$. If $x, y \in N$, then $y^{\perp} \cap M_{x}=M_{x}$ or \varnothing. Thus, $N \subseteq \Delta\left(M_{x}\right)$, whence, by lemma 3.16, $[N] \sim\left[M_{x}\right]$. Consequently, $[N]$ is L-collinear with each $\left[M_{x}\right]$.
Next assume $[N] \equiv\left[L_{0}\right]$ for some L_{0} in π. For any $L \in \mathbb{L}(\pi)$, we have $[L] \sim\left[L_{0}\right] \equiv[N]$, and so, by lemma 3.18 , we see that $[N] \sim[L]$. Thus $[N]$ is collinear to all points of A.

Therefore we may assume $\Delta(N) \cap \Delta(L) \neq \varnothing$ for any $L \in \mathbb{L}(\bar{\pi})$. Since, for $L \in \mathbb{L}(\pi)$ and $x \in N$ with $[L] \neq\left[M_{x}\right]$, we have $N \cap \Delta(L)=\varnothing$ (as $x^{\perp} \cap L=M_{x} \cap L$ is a point), it follows from lemma 3.16 that $[N] \sim[L]$. Thus $[N]$ is collinear with each member of A. This completes case 5.
Case 6. point $[N] \in \underline{P}_{2}$; line $\{\infty\} \cup X \in \underline{L}_{3}$. Assume $[N] \sim[L]$ for some $[L] \in X$. Then, for any $[M] \in X$ different from $[L]$, we have $[N] \sim[L] \equiv[\bar{M}]$, and so, by lemma 3.18 once again, $[N] \sim[M]$. Thus, as $[M]$ was arbitrary in $X \backslash\{[L]\}$, we see that $[N]$ is L-collinear with all points on the line A.
Otherwise, $[N]+[L]$ for any $[L] \in X$, which means - as $[N] \not \equiv[L]$ for any $[L] \in X$ by the hypothesis $[N] \notin A$ - that $[N]$ is \underline{L}-collinear only with ∞ on \underline{A}. This finishes case 6 .

Case 7. point ∞; line $M \cup\{[M]\} \in \underline{L}_{1}$. Then ∞ is adjacent only to $[M]$ so the 'one or all' rule holds.
CASE 8. point ∞; line $\{[L] \mid L \in \mathbb{L}(\pi)\} \in \underline{L}_{2}$. The point ∞ is collinear to all $[L]$.
CASE 9. point ∞; line $(\{\infty\} \cup X) \in \underline{L}_{3}$. In this case ∞ is incident with the line, so there is nothing to prove.
This establishes that $(\underline{P}, \underline{L})$ is a polar space. Nondegeneracy of $(\underline{P}, \underline{L})$ follows from the fact that, for each $x \in P$, the space Res (\bar{x}) is non-degenerate. Finally, $\left(\underline{P}_{0}, \underline{L}_{0}\right)$ is clearly a hyperplane of $(\underline{P}, \underline{L})$.

5. Classification of hyperplanes

According to the fundamental result of Tits \& Veldkamp (cf. Trrs [7], Theorem 8.22), a polar space of rank ≥ 3 whose planes are Desarguesian is isomorphic to the polar space associated with a nondegenerate polarity, the polar space associated with a nondegenerate pseudo-quadratic form or the Grassmannian whose points are the lines of a 3-dimensional projective space \mathbb{P}^{3} and whose lines are the pencils (X, π), where X is a projective point of the projective plane π, consisting of all projective lines on X in π.
We shall deal with the latter case first.

The Grassmannian of lines in \mathbb{P}^{3}. Let \mathbb{P}^{3} denote the projective space of rank 3 over some (skew) field. Setting P for the set of lines of \mathbb{P}^{3} and \mathbb{L} for the set of pencils (X, π), where X is a point of \mathbb{P}^{3} incident to the plane π of \mathbb{P}^{3}, we obtain a polar space (P, L) of rank 3 if incidence of the line $l \in P$ with the pencil (X, π) is given by $X \in l \subseteq \pi$.
5.1. Proposition. If B is a hyperplane of (P, \mathbb{L}), then either $B=l \perp$ for some $l \in P$, or there is a symplectic polarity on \mathbb{P}^{3} (i.e., a polarity with the property that all points of \mathbb{P}^{3} are absolute) such that B coincides with its absolute lines.
Proof. Suppose B contains a plane of (P, L). Then, up to duality, we may assume B contains all lines $l \in P$
contained in a plane π of \mathbb{P}^{3}. Take a point X of \mathbb{P}^{3} outside π, and consider the plane of (P, \mathbb{L}) consisting of all lines of \mathbb{P}^{3} on X. There must be a line $\left(X, \pi^{\prime}\right) \in \mathbb{L}$ all of whose P-points belong to B. The plane π^{\prime} meets π in a line, say l. Now any \mathbb{P}^{3}-line meeting l belongs to B. For, if m is such a line meeting l in Z, say, consider the plane $\pi^{\prime \prime}$ on Z containing both X and m. Since the P-points $\pi^{\prime \prime} \cap \pi$ and $\pi^{\prime \prime} \cap \pi^{\prime}$ both belong to $B \cap\left(Z, \pi^{\prime \prime}\right)$, the whole P-line ($\left.Z, \pi^{\prime}\right)$, whence m, belongs to B. Thus, $B=l^{\perp}$.
Next, suppose B has rank 2 . Then, in each plane π of \mathbb{P}^{3}, there is a unique point $\sigma(\pi)$ of \mathbb{P}^{3} such that $(\sigma(\pi), \pi) \in \mathbb{L}(B)$. Also, each point X of \mathbb{P}^{3}, lies in a unique plane $\sigma(X)$ of \mathbb{P}^{3} such that $(X, \sigma(X)) \in \mathbb{L}(B)$. It is readily seen that σ defines a symplectic polarity, and that $B=\{l \in P \mid \sigma(l)=l\}$, where $\sigma(l)$ is the line $\sigma\left(X_{1}\right) \cap \sigma\left(X_{2}\right)$ whenever $l=X_{1} X_{2}$ for X_{1}, X_{2} distinct points of \mathbb{P}^{3}. \square

The embedding of (P, L) in the Veldkamp space is a "synthetic version" of the well-known Plücker embedding of the polar space ($P, \mathrm{~L}$) in the Klein quadric, and is also valid if the division algebra is noncommutative. In the finite case, over \mathbf{F}_{q}, have $\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ points in P and $q^{2}\left(q^{3}-1\right)$ hyperplanes corresponding to symplectic polarities, together accounting for the $\left(q^{6}-1\right) /(q-1)$ points of the Veldkamp space.

Projective embeddings. Now we suppose (P, \mathbb{L}) has an embedding (W, π, ϕ), that is, a thick projective space W with polarity π such that $\phi: P \rightarrow W \backslash W^{\perp \pi}$ is an injection mapping lines to lines of $W \pi$, the polar space of totally isotropic points and lines with respect to π, and such that $W=[\phi P]$. (Here we adopt the terminology and much of the notation of Trss [7], § 8.5.) We recall that a morphism $\mu:(\bar{W}, \bar{\pi}, \bar{\phi}) \rightarrow(W, \pi, \phi)$ of embeddings of (P, \mathcal{L}) is a morphism $\mu: \bar{W} \rightarrow W$ of projective spaces such that $\bar{\pi}=\mu^{*} \pi$ and $\phi=\mu \bar{\phi}$ (where $\mu^{*} \pi(x, y)=\pi(\mu x, \mu y)$ for $\left.x, y \in \bar{W}\right)$, and that an embedding (W, π, ϕ) is called dominant if every morphism of embeddings to it is an isomorphism.

By Trrs [7], § 8.6 and 8.7 , the embeddable polar space $(~(~, L \mathbb{L})$ has a dominant embedding (W, π, ϕ), and $(P, \mathcal{L}) \cong W_{\pi}$ or W_{κ}, where κ is a projective pseudo-quadratic form in W with associated polarity π. In particular, up to polar space isomorphism, we may assume $(P, \mathbb{L})=W_{\pi}$ or $W_{\mathcal{K}}$, and $\phi=i d P$.
5.2. Proposition. Let (P, \mathcal{L}) be a nondegenerate polar space of finite rank ≥ 3 of the form W_{π} or W_{K}, where W is a projective space and π is a polarity of W and κ is a projective pseudo-quadratic form with associated polarity π. Suppose that $(W, \pi, i d p)$ is a dominant embedding. If H is a hyperplane of (P, \mathbb{L}), then [H], the projective subspace of W spanned by H, is a hyperplane of W, and $H=[H] \cap P$.
Proof. If $[H] \neq W$, then, for $x \in P \backslash H$, by lemma $2.1,\langle H, x\rangle=P$, so $[H, x]=[P]=W$, showing that $[H]$ is a hyperplane. Furthermore, $[H] \cap P$ is proper subspace of P containing H, and so, by the same lemma, $H=[H] \cap P$, as required.
Therefore, assume $[H]=W$. Then $\left(W, \pi, i d_{H}\right)$ is an embedding of H. By Trrs [7], § 8.6 (and the observation rk $H \geq \operatorname{rk} P-1 \geq 2$), there exists a morphism μ of embeddings of H from a dominant embedding $(\bar{W}, \bar{\pi}, \bar{\phi})$ to $W, \pi, i d_{H}$). (Thus $\mu \bar{\phi}=i d_{H}$ and $\mu^{*} \pi=\bar{\pi}$). Since, by assumption $H \neq P$, theorem 8.6 and corollary 8.7 of [7] show that $P=W_{\mathcal{K}}$, and $\bar{\phi} H=\bar{W}_{\underline{\underline{K}}}$, where $\bar{\kappa}$ is a projective pseudo-quadratic form with associated polarity $\bar{\pi}$. Now $\mu^{*} \kappa(c f .[7], 8.4 .1)$ and $\bar{\kappa}$ are both projective pseudo-quadratic forms with associated polarity $\bar{\pi}=\mu^{*} \pi$, and if $\bar{x} \in \bar{W}$ satisfies $\bar{\kappa}(\bar{x})=0$ (in the obvious interpretation that $\bar{q}(\bar{x})=0$ for any pseudoquadratic form \bar{q} representing $\bar{\kappa})$, then $\bar{x} \in \bar{\phi} H$, so $\mu(\bar{x}) \in H \subseteq P$, whence $\mu^{*} \kappa(\bar{x})=\kappa(\mu(\bar{x}))=0$. Thus, as $[\bar{H}]=\bar{W}_{*}$ (by [7], 8.2.5), we have $\bar{\kappa}=\mu^{*} \kappa$. If $x \in \bar{P}$, taking $\bar{x} \in \bar{W}$ with $x=\mu(\bar{x})$, we get $\bar{\kappa}(\bar{x})=\mu^{*} \kappa(\bar{x})=\kappa(x)=0$, and so $x=\mu(\bar{x}) \in \mu(\phi H)=H$, showing $P=H$, a contradiction. Hence the proposition.

Non-embeddable polar spaces. The classification of polar spaces possessing planes non-Desarguesian planes has also been completed by Trrs [7], see § 9.1. In this case, the planes are defined over a division Cayley algebra C. Conversely, for each division Cayley algebra C there is a unique nondegenerate polar space of rank at least 3 whose planes are defined over C. It has rank 3 and is not embeddable in a projective space.
Throughout the remainder of this section, we let (P, \mathbb{L}) be a nondegenerate polar space of finite rank 3 whose planes are defined over a division Cayley algebra C. Denote by n the norm map from C to k, the center of C. Then by [loc. cit.], (P, \mathcal{L}) has rank 3 , is uniquely determined up to isomorphism, and for any
two noncollinear $x, y \in P$ the subspace $\{x, y\}^{\perp}$ is isomorphic to the dual Q^{*} of the generalized quadrangle Q associated with the quadratic form $C \oplus k^{4} \rightarrow k$ defined by

$$
\left(x_{0} ; x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto n\left(x_{0}\right)-x_{1} x_{3}+x_{2} x_{4}
$$

where $x_{0} \in C$ and $x_{1}, x_{2}, x_{3}, x_{4} \in k$.
Let E be the algebraic k-group of linear transformations of $C \oplus k^{4}$ that is the direct product of the anisotropic orthogonal group (type D_{4}) over k on C (acting trivially on the direct summand k^{4}) and the group $G L(2, k)$ (an algebraic k-group of type $A_{1} T_{1}$, where T_{1} indicates a 1-dimensional torus) acting trivially on C and on k^{4} via

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(a x_{1}+b x_{2}, c x_{1}+d x_{2},\left(d x_{3}+c x_{4}\right) /(a d-b c),\left(b x_{3}+a x_{4}\right) /(a d-b c)\right)
$$

Then E induces a group of automorphisms of Q, whence of Q^{*}, of type $D_{4} A_{1} T_{1}$, fixing the lines $(0 ; *, *, 0,0):=\left\{\left(0 ; x_{1}, x_{2}, 0,0\right) \mid x_{1}, x_{2} \in k\right\}$ and $(0 ; 0,0, *, *)$ of Q.

The following result, derived by study of Q, establishes nonexistence of certain kinds of hyperplane of Q^{*}.
5.3. Lemma. Let Q^{*} be as above.
(i) Each hyperplane of Q^{*} of rank 2 is of the form p^{\perp} for some point p of Q^{*}.
(ii) There is no E-invariant ovoid on Q^{*} containing $\{x, y\}^{\perp}$, where $x=(0 ; *, *, 0,0)$ and $y=(0 ; 0,0, *, *)$.

Proof. Let H^{*} be a hyperplane Q^{*}. Then its dual H is a set of points and lines of Q with the following properties.
(a) If l, m are lines of H meeting in a point $p \in Q$, then p belongs to H.
(b) If p is a point of H, then any line of Q on p belongs to H.
(c) Every point of Q belongs to at least one line of H.

As a direct consequence of (a) and (b), we obtain:
(d) If p, q are noncollinear points of H, then $p^{\perp} \cap q^{\perp}$ is entirely contained in H.
(i). Now suppose H^{*} has rank 2. Then it contains a line, and so H contains a point. Assume that H^{*} contains no deep point. Then, for each line l of H, there is $m \in H$ with $l \cap m=\varnothing$. We claim that H contains a quadrangle. For take a point p_{1} of H and a line l_{1} containing p_{1}. Then, by (b), l_{1} belongs to H. As we have just seen, there is a line l_{3} in B with $l_{1} \cap l_{3}=\varnothing$. By the 'one or all' axiom, there is a line l_{2} on p_{1} with $l_{2} \cap l_{3}=\left\{p_{2}\right\}$ for some point p_{2}. Then l_{2} and p_{2} belong to B in view of (b) and (a). Again by the above, there is a line l_{4} in B disjoint from l_{2}. Now, letting p_{3}, p_{4} be the unique points of $p_{2}^{\perp} \cap l_{4}$, $p_{\perp}^{\perp} \cap l_{4}$, respectively, we obtain the quadrangle with points $p_{1}, p_{2}, p_{3}, p_{4}$ fully contained in H, as claimed. Since the automorphism group of Q is (Moufang and hence) transitive on the set of quadrangles in Q, there is no loss in assuming that $p_{1}=(0 ; 1,0,0,0) k, p_{2}=(0 ; 0,1,0,0) k, p_{3}=(0 ; 0,0,1,0) k$, and $p_{4}=(0 ; 0,0,0,1) k$ belong to H. Take $a, b \in C$ with $a \neq b$ and $n(a)=n(b)=1$. (This choice is possible.) Then $p_{a}=(a ; 0,-1,0,1) k$ and $p_{b}=(b ; 0,-1,0,1) k$ are distinct points of Q contained in $p_{1}^{\perp} \cap p_{3}^{\perp}$ and so, by (d), belong to H. Moreover, they are noncollinear, so for each $\lambda \in k$, the point $q \lambda=\left(0 ; 1, \lambda, \lambda^{2}, \lambda\right) k$, being contained in $p_{a}^{\perp} \cap p_{b}^{\perp}$, also belongs to H. Finally, p_{3} and $q \lambda$ are non collinear, so $(0 ; 0,0, \lambda, 1) k$ being in $p \frac{1}{1} \cap q \lambda$, belongs to H for each $\lambda \in k$. We conclude that all the points of the line $p_{3} p_{4}=\{(0 ; 0,0, \lambda, \mu) k \mid \lambda, \mu \in k\}$ of Q are in H, so that $p_{3} p_{4}$ is a deep point of H^{*}. This contradicts the assumption, and so ends the proof of (i).
(ii). Now suppose H^{*} is an ovoid containing $\{x, y\}^{\perp}$. Then H is a spread of Q. Notice that the part of the spread corresponding to the subset $\{x, y\}^{\perp}$ of H^{*} covers all points $\left(x_{0} ; x_{1}, x_{2}, x_{3}, x_{4}\right)$ of Q having $x_{0}=0$. Suppose z were the line of H on the point $p:=(1 ; 1,0,1,0)$ of Q. Then z contains a point $q=\left(q_{0} ; q_{1}, q_{2}, q_{3}, q_{4}\right)$ of Q with $p \perp q$. Now p_{0} and q_{0} are linearly independent over k (for otherwise, z would contain a Q-point of $(0 ; *, *, *, *)$, and so meet a member of $\{x, y\}^{\perp \perp}$). Replacing q by a $q+\lambda p$ for a suitable $\lambda \in k$, we may assume, $\left(q_{0} \mid 1\right)=0$. The stabilizer E_{p} of p in E contains the orthogonal group of
type B_{3}, so there is an E_{p}-conjugate $q^{\prime}=\left(q_{0}^{\prime} ; q_{1}, q_{2}, q_{3}, q_{4}\right)$ of q with $q_{0}^{\prime} \neq q_{0}$. Thus, if H^{*} is E invariant, the line on p and q^{\prime} also belongs to the spread H, contains p and is distinct from z. This is absurd. Hence the lemma.

It is immediate from part (i) of the above lemma that if H is a hyperplane of $(P, \mathrm{~L})$ of rank 3 , then $H=x^{\perp}$ for some $x \in P$. Thus, it remains to classify nondegenerate hyperplanes of rank 2.
5.4. Lemma. Let H be a nondegenerate hyperplane of rank 2. For each $a \in H$, the residue H_{a} of H at a is an ovoid in the generalized quadrangle P_{a} with the property that, if $x a$ and ya are noncollinear points of P_{a} (where $x, y \in a \perp_{\backslash\{a\})}$ with $\left|\{x a, y a\}^{\perp} \cap H_{a}\right|>1$, then $\{x a, y a\}^{\perp} \subseteq H_{a}$. Moreover, either $\{x, y\}^{\perp} \subseteq H$ or $\{x, y\}^{\perp} \cap H=\{x, y, a\}^{\perp}$.
Proof. For x, y, a as indicated, take u, v to be points of $H \cap a \perp \backslash\{a\}$ such that $u a, v a$ are distinct points of $\{x a, y a\}^{\perp} \cap H_{a}$. Since H has rank $2, H_{a}$ contains no lines. In particular, the points u, v are noncollinear. The subspace $\{x, y\}^{\perp} \cap H$ is a hyperplane of the generalized quadrangle $\{x, y\}^{\perp}$ (it is of rank 2 as it contains the line $u a$) and, by the previous lemma, either has shape $\{x, y, b\}^{\perp}$ for some $b \in\{x, y\}^{\perp}$ or coincides with $\{x, y\}^{\perp}$. In the latter case, we have $\{x, y\}^{\perp} \subseteq H$ and we are done, so assume the former. Then $b \in\{x, y, u, a, v\}^{\perp}=\{a\}$, so $\{x, y\}^{\perp} \cap H=\{x, y, a\}^{\perp}$, as required.

The following lemma states that every point of the Veldkamp space lies on a secant, that is a line with at least two points of the form x^{\perp} for some $x \in P$.
5.5. Lemma. Let H be a nondegenerate hyperplane of (P, \mathbb{L}) of rank 2. For each quadrangle $V \subset H$, and any two $x, y \in V^{\perp} \backslash H$, we have $\{x, y\}^{\perp}=x^{\perp} \cap H=y^{\perp} \cap H$.
Proof. Clearly, x and y are noncollinear. Let $a \perp u \perp b \perp v \perp a$ be the circuit in V. The points $x a, y a$ of P_{a} are noncollinear and satisfy $\{x a, y a\}^{\perp} \cap H_{a} \supseteq\{u a, v a\}$. By the previous lemma, $\{x, y\}^{\perp} \subseteq H$ implies $\{x, y\}^{\perp} \cap H=\{x, y, a\}^{\perp}$. But then, likewise we have $\{x, y\}^{\perp} \cap H=\{x, y, b\}^{\perp}$, contradicting $a \in\{x, y, a\}^{\perp} \backslash b{ }^{\perp}$. Hence $\{x, y\}^{\perp} \subseteq H$.
Suppose $h \in x^{\perp} \cap H$. If $z \in y^{\perp} \cap h x \backslash\{h\}$, then $z \in\{x, y\}^{\perp} \subseteq H$ and $h \in H$, so $x \in h z \subseteq H$, contradicting $x \notin H$ (for $x \in H$ would imply rk $H=3$). Hence $h \in\{x, y\}^{\perp}$, proving $\{x, y\}^{\perp}=x^{\perp} \cap H$. The remainder follows by symmetry in x and y.
5.6. Lemma. Let H be a nondegenerate hyperplane of (P, \mathbb{L}) of rank 2. If $a, b \in H$ are distinct, then $\{a, b\}^{\perp \perp} \subseteq H$.
Proof. If $a \perp b$, then $\{a, b\}^{\perp \perp}$ is the line on a and b, and so belongs to H by the definition of subspace.
Otherwise, let $c \in\{a, b\}^{\perp \perp}$ and take distinct $u, v \in\{a, b\}^{\perp} \cap H$. There are $x, y \in\{a, b, u, v\}^{\perp} \backslash H$. By the above lemma, $\{x, y\}^{\perp} \subseteq H$. Thus, $c \in\{a, b\}^{\perp \perp} \subseteq\{x, y\}^{\perp} \subseteq H$, as required.

We shall exploit the following description of (P, L). Recall that k is the center of the Cayley division algebra C and that $n: C \rightarrow k$ is the norm map. By proposition 7 of Trrs [8], there is an algebraic group G of adjoint type E_{7} over k whose anisotropic kernel is isogenous to $S O(C, n)^{\prime}$ (the commutator subgroup of the group of all linear transformations the 8 -dimensional k-vector space C that leave invariant the norm n). Adopting the labeling of Bourbaki [1] for the nodes of the Dynkin diagram of type E_{7}, the only maximal parabolic subgroups of G containing a fixed Borel subgroup are P_{1}, P_{6}, and P_{7}, the indices indicating the nodes of the diagram to which they correspond. According to Trrs [7] the building whose polar space is (P, L) can be viewed as the rank 3 geometry whose points, lines, and planes are the cosets of respectively P_{1}, P_{6}, and P_{7} in G, and in which two elements are incident if and only if they intersect (nonemptily).
A root group of G is a subgroup G-conjugate to the center of the unipotent radical of P_{1}. It is isomorphic to k^{+}. (The full unipotent radical R is unipotent of dimension 33 over k; its commutator subgroup coincides with the root group.) Denote by P_{o} the G-class of all root groups. For any two $x, y \in P_{o}$, we have either $[x, y]=1$ or $\langle x, y\rangle \cong S L(2, k)$. We shall write $x \perp y$, and say x and y are collinear if $[x, y]=1$. This definition is justified by the choice of lines in the following lemma.
5.7. Lemma. The polar space (P, \mathbb{L}) of rank 3 defined over C is isomorphic to the space $\left(P_{o}, \mathrm{~L}_{o}\right)$ whose lines are the sets $\{x, y\}^{\perp \perp}$ for any two distinct $x, y \in P_{o}$ with $[x, y]=1$.
Proof. By what has been said above, P can be viewed as $\left\{P_{1} g \mid g \in G\right\}$, and L as the collection of all $\left\{P_{1} g_{1}, P_{1} g_{2}\right\}^{\perp \perp}$ for $g_{i} \in G\left(i=1,2 ; P_{1} g_{1} \neq P_{1} g_{2}\right)$, where $P_{1} g_{1} \perp P_{1} g_{2}$ if and only if there is $h \in G$ with $P_{1} g_{1} \cap P_{6} h \neq \varnothing$ and $P_{1} g_{2} \cap P_{6} h \neq \varnothing$. Now if $x \in P_{o}$, then $N_{G}(x) \supseteq P P^{g}$ for some $g \in G$ (and hence coincides with it); setting $f(x)=P_{1} g$, we obtain a well-defined bijection $f: P_{o} \rightarrow P$. Moreover, $x, y \in P_{o}$ commute if and only if they are both in a conjugate of P_{6}. Hence the collinearity graphs of $\left(P_{o}, \mathrm{~L}_{o}\right)$ and $(P, \mathrm{~L})$ are isomorphic. Since $\left(P_{o}, \mathrm{~L}_{o}\right)$ is built from its collinearity graph in the same way that $(P, \mathrm{~L})$ can be obtained from its collinearity graph, the lemma follows.
We shall now identify (P, L) and ($P_{o}, \mathrm{~L}_{o}$). This enables us to consider P as a collection of (root) subgroups of G, and to consider G as a group of automorphisms of (P, L).
Some more notation: for $S \subseteq G$ and $X \subseteq P$, we write $S \cap X:=\{x \in X \mid x \subseteq S\}$ and $G(X)$ for the group generated by all $x \in X$.

5.8. Lemma. Let X be a subspace of (P, L). Then

(i) $\quad G(X) \cap P$ is a union of $G(X)$-orbits; any two points from different orbits commute.
(ii) Suppose $\{u, v\}^{\perp \perp} \subseteq X$ for any two non-collinear $u, v \in X$. Then $y \in X$ implies that the full $G(X)$ orbit $y^{G(X)}$ of y belongs to X.
Proof. (i). If, for $x, y \in G(X) \cap P$, we have $[x, y] \neq 1$, then, as the subgroup of G generated by x and y is isomorphic to $S L(2, k)$, we have $x \in y^{G(\{x, y\})}$. In particular, $x \in y^{G(X)}$. Thus, any two elements of $G(X) \cap P$ either commute or are $G(X)$-conjugate, whence (i).
(ii). Suppose $y \in X$. By induction on the length of an element of $G(X)$ expressed as a product of elements from root groups, it suffices for the proof of the last statement of the lemma to show that $y \xi_{\in X}$ for any $\xi \in x \in X$. If $[\xi, y]=1$, this is trivial, so suppose the contrary. Then $\{x, y\}^{\perp \perp} \subseteq X$ by the assumption on X. On the other hand, $G(\{x, y\})$ stabilizes this subspace (for, it stabilizes $(\langle x, y\rangle \cap P)^{\perp}$ which, by lemma 5.7, coincides with $\{x, y\}^{\perp}$), so $y^{\xi} \in\{x, y\}^{\perp \perp}$, whence $y \xi^{\xi} \in X$.

5.9. Proposition. Let H be a hyperplane of (P, L). Then $H=x^{\perp}$ for some $x \in P$.

Proof. Suppose H is a nondegenerate hyperplane of P of rank 2. By lemma 5.5 there are non-collinear $x, y \in P$ with $\{x, y\}^{\perp} \subseteq H$. Take $u \in\{x, y\}^{\perp}$ and consider $\mathrm{O}=\left(H \cap u^{\perp}\right) / u$ of u^{\perp} / u. The latter space is isomorphic to Q^{*} and its subspace 0 must be a hyperplane of rank 1 , so is an ovoid, and contains $\{x u, y u\}^{\perp}$. By lemmas 5.6 and $5.8($ ii $) H$ is $G(H)$-invariant, so O is $C_{G(H)}(u)$-invariant. In particular, $C_{G}(\{x, y\})(u)$ induces an algebraic k-group of automorphisms of $u \perp / u$ of type $D_{4} A_{1} T_{1}$ fixing the points $x u$ and $y u$, and stabilizing 0 . But then lemma 5.3(ii) asserts that no such 0 exists, a contradiction. Hence the proposition.
5.10. Remark. Part of the difficulties in establishing the above result arise from ignorance: we do not know whether, apart from the obvious algebraic subgroups, there are other overgroups in G of the algebraic subgroup $G\left(\{x, y\}^{\perp}\right)$ of type D_{6}. (Here x and y are as in the above proposition.) If the classification of all Moufang generalized quadrangles were available, another way to circumvent this problem would be to use that then the overgroup $G(H)$ of the hypothetical nondegenerate hyperplane H of (P, \mathbb{L}) containing $\{x, y\}^{\perp \perp}$ is known:

Lemma. Any nondegenerate hyperplane H of rank 2 is a Moufang generalized quadrangle (cf. p. 274 of Trrs [7]) and the group of all root automorphisms U_{α} (α a root of H; notation of [loc. cit.]) belongs to $G(H)$.
Proof. Suppose $a \perp u \perp b \perp v \perp a$ are the points of a quadrangle in H. Then the points and lines of this quadrangle form an apartment of H. To verify that H is Moufang, we shall consider the representatives $\pi=\{u, u a, a, a v, v\}$ and $\lambda=\{u b, u, u a, a, a v\}$ of the two kinds of roots, and verify that $G(\{a, u, v\} \cup u a)$ contains the subgroup U_{α} for both $\alpha=\pi, \lambda$.
Assume $\alpha=\pi$. Then, by definition, U_{α} is the kernel of the action of the pointwise stabilizer in Aut (H) of
$\{u, a, v\} \cup u a \cup v a$ on the set of all lines through a^{\perp}. Assume $b^{\prime} \in\{u, v\}^{\perp} \cap H$. It suffices to find an element in $U_{\alpha} \cap G(u a)$ moving b to b^{\prime}. The subgroup $C_{G}(u, v)$ of G centralizing u and v contains the orthogonal group D of type D_{6} over k of Witt index 2 ; the root groups a, b, and b^{\prime} belong to it and are 'classical root groups' of the classical group D (centers of the unipotent radical of the stabilizer of a line in the classical embeddable generalized quadrangle Q associated with D). In particular, there is $A \in a \in D$, fixing $\{a\}^{\perp}$ pointwise, such that $b^{A}=b^{\prime}$. But then $A \in a \subseteq U_{\alpha} \cap G(a)$, as required.
$\alpha=\lambda$. Then U_{α} is the kernel of the action of the pointwise stabilizer of $u a$ on the set of all lines passing through u or a. Assume $b^{\prime} \in u b \backslash\{u\}$ and $v^{\prime} \in a v \backslash\{a\}$ are collinear. We need to find $B \in U_{\alpha}$ moving bv to $b^{\prime} v^{\prime}$. By taking $x, y \in\{a, b, u, v\}^{\perp}$, and considering $C_{G}(x, y)$ (again an algebraic k-group of type D_{6} corresponding to the 12 -dimensional orthogonal group over k of Witt index 2), an element $B \in G(u a) \cong\left(k^{+}\right)^{10}$ can be found that fixes every line on a and on u lying in $\{x, y\}^{\perp}$, and satisfies $b^{B}=b^{\prime}$ and $v^{B}=v^{\prime}$. As $u a \subseteq H$ and B also fixes x and y, we have $B \in U_{\alpha} \cap G(u a)$. Hence the lemma.

We end the remark by indicating how we could use the above lemma to prove that every hyperplane of (P, L) is of the form x^{\perp} if the classification of Moufang generalized quadrangles were available: Suppose H is a hyperplane wothout a deep point. Then, as in the proof of proposition 5.9 we can show that H is a non-degenerate generalized quadrangle and that there exist non-collinear $x, y \in P \backslash H$ with $\{x, y\}^{\perp} \subseteq H$. Now, $D:=G\left(\{x, y\}^{\perp}\right)$ is an algebraic k-group of type D_{6} (Witt index 2) contained in H. But then, by the (assumed) classification of Moufang generalized quadrangles, $G(H)$ is an algebraic k-group which is an overgroup in G. The only maximal proper algebraic k-groups which are overgroups of D are parabolics of type D_{6} and $D C_{G}(D) \cong D . S L(2, k)$. If $G(H)$ is a parabolic R of type D_{6}, we get $H \subseteq R \cap P=z^{\perp}$ for some root z in the center of the unipotent radical of R, and if $G(H) \subseteq D C_{G}(D)$, then $H \subseteq G(H) \cap P \subseteq$ $\left(D C_{G}(D)\right) \cap P=\{x, y\}^{\perp} \cup\{x, y\}^{\perp \perp}$. In both cases, according to lemma 5.8, the rank of H must be 3 , a contradiction. Since also $G(H)=G$ leads to the contradiction $H=P$, this again establishes the nonexistence of rank 2 hyperlpanes in ($P, \mathrm{~L}$).

Summarizing the three propositions in this section, we get
5.11. Theorem. Every hyperplane of a polar space of rank at least 3 that is not of the form x^{\perp} for some point x, arises from a suitable embedding of the polar space in a projective space by intersecting it with a hyperplane of that projective space.

6. References

1. Bourbaki, N., Groupes et algèbres de Lie, Chap. IV, V, VI, Hermann, Paris (1968).
2. Buekenhout, F. and E.E. Shult, On the foundations of polar geometry, Geom. Dedicata 3 (1974) 155-170.
3. Buekenhout, F. and A. Sprague, Polar spaces having some line of cardinality two, J. Combinatorial Th. A 33 (1982) 223-228.
4. Hall, J.I. and E.E. Shult, Locally cotriangular graphs, Geom. Dedicata 18 (1985) 113-159. Zbl 578.05058
5. Johnson, P. and E.E. Shult, Local characterizations of polar spaces, Geom. Dedicata (1989) 127 151.
6. Teirlinck, L., On linear spaces in which every plane is either projective or affine, Geometriae Dedicata 4 (1975) 39-44.
7. Tits, J., Buildings of spherical type and finite BN-pairs, Lecture Notes in Math., Vol. 386, Springer, Berlin (1974).
8. Tits, J.L., Classification of algebraic semisimple groups, pp. 33-62 in: Algebraic groups and discontinuous subgroups, Boulder 1965, Proceedings of Symp. in Pure Math., vol. IX, Amer. Math. Soc., Providence, 1966.
9. Veldkamp, F.D., Polar Geometry I-IV, Indag. Math. 21 (1959) 512-551.
