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ABSTRACT

We generalize the extended backward differentiation formulas (EBDFs) introduced by Cash and by Psihoyios

and Cash such that the system matrix in the modified Newton process can be block-diagonalized. This

enables an efficient parallel implementation. We construct methods which are L-stable up to order p = 6
with the same computational complexity per processor as the conventional BDF methods. Numerical

experiments with the order 6 method show that a speedup factor between 2 and 4 on four processors can

be expected.
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1. Introduction

In [4] we discussed the parallel implementation of the extended backward differentiation formulas
(EBDFs) introduced by Cash in [1] and [2] for the numerical solution of initial value problems for
stiff differential equations of the form

dy
dt

= f(t,y), y, f ∈ Rd, t ≥ t0. (1.1)

The parallel approach described in [4] is based on block-diagonalization of the system matrix in
the modified Newton process used for solving the implicit EBDF relations. The system matrix
is of the form I − (A ⊗ hJ), where h is the stepsize, I is the identity matrix, the matrix A is
determined by the EBDF method coefficients, and J is an approximation to the Jacobian matrix
∂f/∂y. Since exact block-diagonalization is not possible due to defectiveness of the matrix A, we
applied approximate block-diagonalization. Although the rate of convergence is less than that of
true modified Newton, the experiments in [4] show a speedup on a three-processor configuration
of between 2 and 3.

The same parallel approach can be applied to the more general EBDF methods which have recently
been proposed by Psihoyios and Cash [12]. These more general EBDF methods also lead to
defective coefficient matrices A in the modified Newton process, but have the property that they
can be made L-stable up to order p = 6 (the original EBDFs are L-stable up to order p = 4).
However, approximate block diagonalization is now much less accurate than in the case of the
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original EBDF methods. The aim of this paper is to construct methods which are L-stable up to
order p = 6 with a nondefective matrix A, so that exact block-diagonalization is possible.

In Section 2, we define a family of EBDF-type methods which generalizes the Cash and Psihoyios-
Cash methods. The order conditions, the global error for the Prothero-Robinson test equation,
and stability conditions are derived. Section 3 discusses the sequential and parallel implementation
of these methods and in Section 4 we derive L-stable, nondefective EBDF methods of order up to
p = 6. Per processor, the computational complexity of these methods is comparable to that of the
conventional BDF methods. Finally, Section 5 reports numerical experiments for the sixth-order
method. These experiments indicate that a speedup factor in the range of 2 to 4 on four processors
can be expected.

2. EBDF-type methods

The generalizations of the EBDF methods to be discussed in this paper are of the form

(B ⊗ I)Yn+1 − h(C ⊗ I)F(etn + ch,Yn+1) = (E ⊗ I)Vn,

Vn = (yTn−s+1, . . . ,y
T
n )T .

(2.1)

Here, ⊗ denotes the Kronecker product, h is the stepsize tn+1 − tn, e and c are r-dimensional
vectors, e = (1, . . . , 1)T , c = (c1, . . . , cr)T with cr = 1. I is the d by d identity matrix, B and
C are r by r lower triangular matrices and E is an r by s matrix. The unknown stage vector
Yn+1 contains r stages yn+ci of dimension d, representing numerical approximations at the points
tn+cih, and F(etn+ch,Yn+1) contains the r righthand side values f(tn+cih, yn+ci). Since B and
C are lower triangular, the first r− 1 stage equations may be considered to be predictor formulas
providing the internal stage values yn+ci , i = 1, . . . , r− 1, needed in the last stage equation. This
last stage equation will be referred to as the corrector equation defining the output or step point
value yn+cr = yn+1.

We shall call (2.1) an EBDF-type method, because it can be viewed as a generalization of the
original three-stage EBDF and MEBDF methods of Cash and the four-stage version recently
discussed by Psihoyios and Cash. Note that the one-stage versions with c1 = 1 assume the form
of the conventional BDF methods.

2.1 Nonstiff order of accuracy
Given the abscissa vector c = (ci), the matrices B, C and E can be determined such that the ith
stage equation in (2.1) is consistent of order pi provided that pi + 1 free coefficients are available
for that equation. To formulate the consistency conditions, we first write (1.1) in autonomous
form by adding the equation dyd+1/dt = 1, so that (2.1) also becomes autonomous. Next, we
introduce the abscissa vector for the back-values b := (1−s, 2−s, . . . , 0)T , and the component-wise
notation g(v) associated with a scalar function g : R→ R to denote the vector with components
g(vi), where v = (vi). Upon substitution of the exact solution into (2.1), that is, we set Yn+1 =
exp(ch d/dt)⊗y(t)|tn and Vn = exp(bh d/dt)⊗y(t)|tn , it is easily seen that the ith stage equation
in (2.1) is consistent of order pi if

eTi ((B − hC) exp(ch)−E exp(bh)) = O(hpi+1), i = 1, . . . , r, (2.2)

where ei is the ith unit vector. The conditions (2.2) lead to the order equations

eTi Ebj = eTi (Bcj − jCcj−1), j = 0, . . . , pi, i = 1, . . . , r, (2.3)

where we define 00 = 1. If (2.3) is satisfied, then the stage order of (2.1) is defined by p̄ := min{pi}.
In general, the output value yn+cr = yn+1 has nonstiff order of accuracy p = p̄. However, if the
first r−1 entries of the last row of the matrix B in (2.1) vanish (as will be the case for the methods
of Section 4) and if pr = p̄+ 1 (as will henceforth be assumed), then the nonstiff order of accuracy
is equal to p̄+ 1. The stiff order of accuracy is discussed in the following section.
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2.2 Stiff order of accuracy
We study the global error of the EBDF-type method (2.1) when applied to the Prothero-Robinson
equation dy(t)/dt = λy(t) + φ(t), where φ is a given function. By means of this test equation we
can obtain insight into the behavior of the error components in the integration of the general ODE
system (1.1) by interpreting λ as an eigenvalue of the matrix J , where J denotes the Jacobian of
the ODE system. For general linear methods, Hundsdorfer [9] has derived an upper bound for the
global error, so that by rewriting (2.1) as a general linear method, we can use his results. However,
the rather special form of (2.1) makes it easier to derive such error bounds directly.

Applying (2.1) to the Prothero-Robinson equation yields the EBDF solution

yn+1 = eTr Yn+1 = eTr (B − zC)−1 (hCφ(etn + ch) +EVn) , z := hλ. (2.4)

Furthermore, upon substitution of the exact solution y(t) into (2.4) we define the local error δn+1

by the relation

y(tn+1) = eTr (B − zC)−1
(
hCφ(etn + ch) +EṼn

)
+ δn+1,

Ṽn = (y(tn−s+1), . . . , y(tn))T .
(2.5)

By subtracting (2.4) from (2.5) and defining the global errors εn := y(tn)− yn, we obtain

εn+1 = eTr (B − zC)−1E(εn−s+1, . . . , εn)T + δn+1. (2.6)

From this global error recursion we derive the following result:

Theorem 2.1 Let p̄ be the stage order of the EBDF-type method (2.1). Then, the global error of
the Prothero-Robinson equation behaves according to εn+1 = O(z−1hp̄+1) as h→ 0 and z = hλ→
∞.

Proof. First an explicit expression for the global error εn+1 in terms of the local errors δi is
derived. In this derivation, it is convenient to rewrite the multistep difference equation (2.6) in
one-step form. Let us define the s-dimensional vector function u(z), the s-dimensional local error
vector δn+1, and the s-dimensional global error vector εn+1 by

uT (z) := eTr (B − zC)−1E, δn+1 := δn+1es, εn+1 := (εn−s+2, . . . , εn+1)T . (2.7)

Then, assuming that ε0 = 0, we obtain

εn+1 = Rεn + δn+1 =
n∑
i=0

Riδn+1−i,

R = R(z) :=


1

1
. . .

1
u1(z) u2(z) u3(z) · · · us(z)

 .

Applying partial summation (see [6], p. 242), we arrive at the expression

εn+1 = eTs (I −R)−1(I −Rn+1)esδ1 + eTs
n∑
i=1

(I −R)−1(I −Rn+1−i)es(δi+1 − δi), (2.8)

provided that I −R is nonsingular.
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Next, we express εn+1 in terms of the derivatives of the exact solution y(t). Using the relation
φ(t) = y′(t)− λy(t), it follows from (2.5) that δn+1 has the Taylor expansion

δn+1 =
∞∑
j=0

1
j!
γj(z)hjy(j)(tn),

γ0(z) := 1− eTr (B − zC)−1(Ee− zCe),

γj(z) := 1− eTr (B − zC)−1(Ebj + jCcj−1 − zCcj), j ≥ 1.

(2.9)

From (2.3) we see that Ebj = Bcj − jCcj−1 for j = 0, . . . , p̄, p̄ being the stage order, so that
the first p̄+ 1 terms in the Taylor expansion vanish. Since (2.7) implies uT (z) = −z−1eTr C

−1E +
O(z−2), it follows from the structure of the matrix R(z) that R(z)n vanishes as z →∞ for n ≥ s.
Hence, we conclude from (2.8) and (2.9) that

εn+1 = eTs (I −R(z))−1esδ1(z) +O(hp̄+2)

=
1

(p̄+ 1)!
eTs (I −R(z))−1γp̄+1(z)eshp̄+1y(p̄+1)(tn) +O(hp̄+2) as z →∞, n ≥ s.

The theorem now follows from the fact that (I−R(z))−1 is bounded as z →∞ and that γp̄+1(z) =
1− eTr cp̄+1 +O(z−1) = O(z−1). �
If the stiff order of accuracy is defined by the order of εn+1 in h as z → ∞, then we conclude
from this theorem that the stiff order of EBDF-type methods is p̄ + 1. This favorable property
of EBDF-type methods perhaps explains the impressive performance of the MEBDF methods
observed in [11].

2.3 Stability
From the linear difference equation (2.4) it follows that, with respect to the stability test equation
y′ = λy (i.e. φ = 0), EBDF-type methods are stable if the characteristic equation associated with
(2.4) has roots only on the unit disk. Using the identity

pTP−1q =
det(P + qpT )

det(P )
− 1,

which holds for any nonsingular m by m matrix P and any two m-dimensional vectors p and q,
we find that (2.4) can be written as

yn+1 = eTr (B − zC)−1EVn =
det(B − zC +EVneTr )

det(B − zC)
− 1. (2.4′)

Hence, the characteristic equation is given by

ζs =
det(B − zC +EΓ(ζ)eTr )

det(B − zC)
− 1, Γ(ζ) := (1, ζ, . . . , ζs−2, ζs−1)T . (2.10)

First of all, we require that (2.1) is zero-stable; that is, we require that for z = 0 the characteristic
equation (2.10) has one simple root at 1 and s − 1 roots on the unit disk with only simple roots
on the unit circle.

Theorem 2.2 Let B be nonsingular and let the row vectors of the matrix B−1E be denoted by
wT
i . The EBDF-type method (2.1) is zero-stable if the equation ζs = wT

r Γ(ζ) has one simple root
ζ1 = 1 and s−1 roots ζi, i = 2, . . . , s−1, on the unit disk with only simple roots on the unit circle.

Proof. For z = 0, the characteristic equation (2.10) simplifies to

ζs =
det(B +EΓ(ζ)eTr )

detB
− 1 = det(I +B−1EΓ(ζ)eTr )− 1.
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The matrix B−1EΓ(ζ)eTr has zero columns, except for its last column which has entries wT
i Γ(ζ),

i = 1, . . . , r. Hence, (2.4′) reduces to ζs = wT
r Γ(ζ), which proves the assertion of the theorem. �

Note that this theorem holds for any general linear method of the form (2.1) such that the output
(step point) value is given by one of the stages, regardless of the structures of the matrices B, C
and E.

Secondly, the stability region of (2.1) is defined by the points in the z-plane where the zeros of
(2.10) are on the unit disk. Setting ζ = exp(iθ), the boundary of this region is defined by the
boundary locus equation

(eisθ + 1) det(B − zC)− det(B − zC +EΓ(eiθ)eTr ) = 0, 0 ≤ θ < 2π. (2.11)

This equation can be used for plotting stability regions.

Finally, we remark that an A(α)-stable method is automatically L(α)-stable, because the charac-
teristic equation (2.10) reduces to ζs = 0 as z →∞.

3. Sequential and parallel iteration

The solution of (2.1) can be obtained by successively solving r subsystems, each of dimension
d (recall that B and C are assumed to be lower triangular). If a (modified) Newton method is
applied, then the iteration scheme for the ith stage yn+ci of Yn+1 assumes the form

(I − hC̃iiJ)(y(j)
n+ci − y(j−1)

n+ci ) = −y(j−1)
n+ci + hC̃iif(tn+ci ,y

(j−1)
n+ci )

+ h
i−1∑
k=1

C̃ikf(tn+ck , yn+ck) +
s∑
k=1

Ẽikyn−s+k, j = 1, . . . ,mi, (3.1)

where C̃ik and Ẽik denote the entries of the matrices B−1C and B−1E, respectively, J is an
approximation to the Jacobian matrix of the righthand side function in (1.1) at tn+1, and y(0)

n+ci
is an initial approximation to yn+ci . This amounts to the solution of m̄r linear systems per step,
where m̄ denotes the (average) number of Newton iterations needed in the r subsystems. This
approach will be called sequential iteration.

If, however, a parallel computer system is available, then one may change to a more efficient
parallel approach. In [4] we developed for the original EBDF and MEBDF methods of Cash a
highly parallel iterative method for solving the implicit relations in (2.1). This parallel approach
can also be applied to methods of the form (2.1) with more general matrices B, C and E. It is
based on the approximate block-diagonalization of the modified Newton method applied to the
full (block) system (2.1). Let us define the residue function

Rn(Y) := Y − h(B−1C ⊗ I)F(etn + ch,Y) − (B−1E ⊗ I)Vn. (3.2)

Then, solving (2.1) by m modified Newton iterations amounts to

(I −B−1C ⊗ hJ)(Y(j)
n+1 −Y(j−1)

n+1 ) = −Rn(Y(j−1)
n+1 ), j = 1, . . . ,m. (3.3)

Unfortunately, if we use an abscissa vector of the form c = (1, 2, . . . , r − 1, 1)T and assume
the same zero structure of the matrices B, C and E as in the original EBDF and MEBDF
methods, then the matrix B−1C is defective, so that we cannot directly diagonalize (3.1) by
applying a similarity transformation. One option is to replace the matrix B−1C in (3.3) by a
diagonalizable approximation A∗, for example, by A∗ = diag(B−1C). The rate of convergence
will be less than that of the modified Newton method, however. In the case of the three-stage
EBDF and MEBDF methods, the loss in rate of convergence is modest (see the experiments in [4])
because the diagonalizable approximation is quite accurate. In fact, even with the simple choice
A∗ = diag(B−1C), we obtained surprisingly fast convergence. However, for higher-stage methods,
where diagonalizable approximations are less accurate, the rate of convergence is expected to
decrease significantly.
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3.1 Nondefective methods
Rather than applying approximate block-diagonalization, we follow an alternative approach in
which the abscissa vector is changed to the form c = (c1, 2, 3, . . . , r − 1, 1)T and in which we
choose c1 6= 1 such that B−1C is no longer a defective matrix (except for the degenerate case
s < r − 2). We shall call such EBDF methods nondefective EBDF methods. Nondefective EBDF
methods can directly be diagonalized by the transformation Ỹ(j) = (Q−1 ⊗ I)Y(j), where Q is
such that Q−1(B−1C)Q = D with D diagonal. This yields the transformed iteration method

(I −D ⊗ hJ)(Ỹ(j) − Ỹ(j−1)) =− (Q−1 ⊗ I)Rn

(
(Q⊗ I)Ỹ(j−1)

)
, j = 1, . . . ,m,

Yn+1 =(Q⊗ I)Ỹ(m)
(3.4)

and will be called parallel iteration. We emphasize that (3.4) is algebraically equivalent to (3.3).

The introduction of the free parameter c1 in the abscissa vector c = (c1, 2, . . . , r− 1, 1)T preserves
the attractive property that all stage values, except for the first one, can be reused in the initial
approximation Y(0) needed in the succeeding time step. In fact, setting c1 = 1 has no additional
advantages, because it ’duplicates’ the output value at tn+1.

3.2 Convergence condition
Defining the iteration error ε(j) := Y(j) −Yn+1, we derive for (3.3) the error recursion

ε(j) = hKΦ(ε(j−1)), j = 1, . . . ,m,

K := (I − B−1C ⊗ hJ)−1(B−1C ⊗ I),
Φ(ε) := F(etn + ch,Yn+1 + ε)− F(etn + ch,Yn+1)− (I ⊗ J)ε.

Let Φ(ε) have at ε = 0 a Lipschitz constant LΦ with respect to the Euclidean norm and let the
problem be dissipative, i.e. µ2[J ] ≤ 0, where µ2[·] denotes the logarithmic norm associated with
the Euclidean norm. Then, by applying the matrix version of von Neumann’s theorem (see [6], p.
356), we conclude that for dissipative problems

‖ε(j)‖2 ≤ hLΦLK‖ε(j−1)‖2, LK = max{‖(I − zB−1C)−1B−1C‖2 : Re(z) ≤ 0}. (3.5)

Hence, for dissipative problems, a sufficient condition for convergence is

h ≤ 1
LΦLK

.

Thus, difference in convergence of two EBDF-type methods is mainly determined by differences
in the upper bound LK .

3.3 Analysis of computational expenses
Finally, the computational expenses of (3.1) when implemented on one processor (sequential iter-
ation of the subsystems) are compared with those of (3.4) implemented on r processors (parallel
iteration). In (3.1) we define m̄ := r−1(m1 + · · · + mr) and we denote the number of distinct
diagonal entries of C by r0. Table 3.1 lists the numbers of floating point operations to advance
the solution one time step using a fixed stepsize. In this table, Cf and CJ respectively denote the
average numbers of operations needed to compute a component of f and an entry of J .

For a linear problem, only one Newton iteration is needed. Hence, assuming that the costs of
building and factoring the Jacobian are negligible, it follows from Table 3.1 that the parallel
speedup can be estimated by

S = r
(2− r−1)Cf + 2d+ 2s+ 6− 2r−1

Cf + 2d+ 2s+ 3r + 3
.
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Table 3.1: Operation costs per processor to advance the solution one time step.
Sequential iteration Parallel iteration

Once per Jacobian update
Jacobian evaluation CJd

2 1
rCJd

2

System matrix r0d d
LUD of system matrix 2

3r0d
3 2

3d
3

Once per time step
Righthand side (Cf + 2s+ 1)rd − (Cf + 2)d (2s− 1)d
Per Newton iteration
Forward/backward 2rd2 2d2

Updates r(Cf + 5)d (Cf + r + 4)d
Transformations – 2rd

At the other extreme, assume a very stiff nonlinear problem such that the Jacobian must be
evaluated once per step. Then, we obtain

S = r
m̄(2d+ Cf + 5) + (Cf + 2s+ 1) + r−1(CJd− Cf − 2) + r0r

−1(1 + 2
3d

2)
m(2d+ Cf + 3r + 4) + (2s− 1) + r−1CJd+ (1 + 2

3d
2)

,

from which the following observations can be made:

• If the evaluation of the Jacobian dominates the computation, then S ≈ r.

• If factoring the Jacobian dominates the computation, then S ≈ r0.

• If the iterations dominate the computation, then S ≈ rm̄m−1.

4. Construction of nondefective EBDF methods

We shall construct nondefective versions of the original three-stage and four-stage EBDF-type
methods given in [1] and [12].

4.1 Three-stage methods
We consider methods of the form (2.1) with r = 3 and

c =

c12
1

 , B =

 1 0 0
B21 1 0
0 0 1

 , C =

C11 0 0
0 C22 0
C31 C32 C33

 ,

E =

E11 E12 · · · E1s

0 E22 · · · E2s

E31 E32 · · · E3s

 .

(4.1)

Given the abscissa c1 and one of the parameters C3j , the remaining entries in the arrays in (4.1)
can be computed by means of the order conditions (2.3) such that p1 = p2 = s and p3 = s + 1.
Hence, the order of accuracy (both stiff and nonstiff) is p = s + 1. The cases {c1 = 1, C31 = 0}
and {c1 = 1, C33 = C11 = C22} respectively define the original EBDF and MEBDF methods. For
future reference, Table 4.1 lists for p = 3, . . . , 6 the MEBDF values of the angle of unconditional
stability α; the parameters D1 and D2 determining the rectangle {z : −D1 ≤ <(z) ≤ 0,−D2 ≤
=(z) ≤ D2} containing the region of instability in the left half-plane; and the maximal modulus
of the characteristic roots ζ in this region of instability. For larger values of p, the angle α
quickly decreases, so that the resulting integration methods are less useful for solving general stiff
problems.

As we already observed, the MEBDF methods of Table 4.1 are defective, so that direct diago-
nalization is not possible. Therefore, we used the two free parameters c1 and C31 to construct a
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Table 4.1: Three-stage MEBDF methods of Cash with c1 = 1, C33 = C11 = C22.
p 3 4 5 6
α 90◦ 90◦ 88.4◦ 83.1◦

(D1, D2) (0,0) (0,0) (0.040, 1.8) (0.246, 2.6)
|ζ|max 1 1 1.029 1.121

nondefective, zero-stable and L(α)-stable EBDF method with (i) a relatively large α and (ii) a
well-conditioned transformation matrix Q. Requiring that Q be lower triangular with unit diag-
onal entries, we found by a straightforward numerical search the results listed in Table 4.2 (for
the L-stable third- and fourth- order methods, the generating matrices B−1C, B−1E, D and Q
needed in (3.4) are given in the Appendix to this paper). We mention only that there is a lot of
freedom in choosing the parameters c1 and C31 to determine L-stable 3-stage methods satisfying
(i) and (ii). For the 4-stage methods of the next section, the L-stable parameter space is much
more restricted.

Table 4.2: Three-stage, nondefective EBDF methods of the form (4.1).
p 3 4 5 6
c1 5/4 5/4 5/4 5/4
C31 0 0 2/7 3/13
‖Q‖∞ 6.1 7.9 6.6 8.3
α 90◦ 90◦ 88.5◦ 83.9◦

(D1, D2) (0, 0) (0, 0) (0.04, 2.1) (0.24, 3.9)
|ζ|max 1 1 1.029 1.121

4.2 Higher-stage methods
The original EBDF and MEBDF methods have c = (1, 2, 1)T , so that there is one ‘future point’
at tn + 2h. This method can be interpreted as the successive application of the s-step BDF
formula at tn + h and tn + 2h for predicting the future point value at tn + 2h needed in the
(s+ 1)-step (M)EBDF corrector formula. More generally, we may introduce further future points
by using c = (1, 2, 3, . . . , r − 1, 1)T . Considering only the stability of the corrector formula (last
stage equation), we verified that up to order 18 the maximal order of L-stable formulas increases
by 2 and the maximal order of L(α)-stable formulas increases by 3 with each additional future
point. Of course, the use of BDF predictors will reduce the stability of the overall method, but
we may still hope for improvement: Psihoyios and Cash [12] have shown that there exist L-stable
4-stage methods of order 6. However, just as in the case of the three-stage EBDF, choosing
c = (1, 2, 3, . . . , r − 1, 1)T yields defective matrices B−1C. Therefore, we shall consider abscissae
vectors of the form

c = (c1, 2, 3, . . . , r − 1, 1)T , (4.2a)

where c1 is a free parameter. According to the structure of the original (M)EBDF methods, we
impose the following sparsity pattern on the matrices B, C and E:

B :=


1
∗ 1
...

...
. . .

∗ ∗ · · · 1
0 0 · · · 0 1

 , C :=


∗
∗

. . .
∗

∗ ∗ · · · ∗ ∗

 , E :=


∗ ∗ · · · ∗ · · · ∗
∗ · · · ∗ · · · ∗

. . .
...

∗ · · · ∗
∗ ∗ · · · ∗ · · · ∗

 ,

(4.2b)

The entries in the matrices B, C and E can be determined such that the first r−1 stage equations
in (4.2b) are consistent of order s. The last stage equation contains r+ s free parameters, so that
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it can be made consistent of order r + s − 1. Since the order of accuracy of (4.2a,4.2b) cannot
exceed s + 1, we shall choose the entries in the corrector equation such that it is consistent of
order s + 1, leaving r − 2 free parameters. Together with the free parameter c1, we obtain an
(r − 1)-parameter family of EBDF-type methods with stage order p̄ = s and order of accuracy
p = s + 1. From this family, we want nondefective, L-stable methods, again under the condition
of zero-stability and a well-conditioned transformation matrix Q.

Let us consider the case of four stages (r = 4) with three free parameters. As already mentioned,
Psihoyios and Cash have considered the defective case c1 = 1 and shown that L-stable, sixth-
order methods exist for a particular choice of the remaining two free parameters. For example,
they verified that the parameters C41 = 1/10 and C43 = 1/20 generate an L-stable method with
p = s + 1 = 6. This motivated us to search for nondefective, L- and zero-stable methods by
choosing c1 6= 1. A numerical search produced for p = s+ 1 = 5 the values c1 = 3/2, C41 = 3/10,
C43 = 7/50 giving ‖Q‖∞ ≈ 31.5 and for p = s + 1 = 6 the values c1 = 6/5, C41 = 11/100,
C43 = 1/20, giving ‖Q‖∞ ≈ 167.5. The corresponding generating matrices B−1C, B−1E, D and
Q needed in (3.4) are given in the Appendix.

Together with the conventional BDF methods of order p = 1 and p = 2, and the three-stage
nondefective EBDF methods of order p = 3 and p = 4 derived in the preceding section, we now
have L-stable methods up to order six, all having a comparable effective computational complexity
per step, provided that we employ three processors for p = 3, 4 and four processors for p = 5, 6.

5. Numerical experiments

Preliminary numerical experiments have been conducted using Matlab. We compare two meth-
ods from the three-parameter family of four-stage, 6th-order EBDF-type methods of the form
(4.2a,4.2b) with free parameters c1, C41 and C43. The first method is due to Psihoyios and Cash
and is defined by c1 = 1, C41 = 0.10, C43 = 0.05. It is L-stable, but defective, so that sequential
iteration has to be applied (see Section 2.4). The second method is defined by c1 = 1.2, C41 = 0.11,
C43 = 0.05. It also is L-stable, but nondefective, so that the parallel iteration method (3.4) can be
applied. In the following, we call these methods the Defective and Nondefective EBDF methods,
respectively. The values of the parameter LK in (3.5) are LK ≈ 1.88 for the Defective EBDF
method and LK ≈ 1.68 for the Nondefective EBDF method, so we would expect the methods to
have similar convergence behaviors. In addition to the these methods, we reproduced the results
from [4] obtained for the original three-stage, 6th-order EBDF method of Cash when iterated by
the diagonal iteration method (3.2) with A∗ = diag(B−1C), to be referred to as Diagonal EBDF.
By mutual comparison of the three methods we can see what we have gained by the introduction
of nondefective EBDF methods.

Following [4] the initial iterates for the iteration processes are obtained by taking the most recent
approximation available or, if not yet available (in the case of the future value at tn+r−1 and at
tn+c1), by 6-point extrapolation of already computed approximations. The Jacobian matrix J
is evaluated in each step using the future-point-approximation to yn+1 from the preceding step.
The starting values were obtained either from the exact solution (if available) or by applying the
5th-order Radau IIA method with a 5 times smaller stepsize and using 10 Newton iterations per
step.

Three of the test problems are the same as in [4], viz. the Kaps problem [10]

dy1

dt
= −1002y1 + 1000y2

2,

dy2

dt
= y1 − y2(1 + y2),

y1(0) = y2(0) = 1, 0 ≤ t ≤ 5;

(5.1)

the eight-dimensional ‘High Irradiance RESponse’ problem given in ([6], p. 157):

HIRES on the interval [5, 321.8122], (5.2)
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where the initial conditions at t = 5 were obtained by applying the RADAU 5 code [7] on [0, 5];
and the non-autonomous Robertson problem

y′1 = −0.04y1 + 104y2y3 − 0.96e−t, y1(0) = 1,
y′2 = 0.04y1 − 104y2y3 − 107(y2)2 − 0.04e−t, y2(0) = 0, 0 ≤ t ≤ 1.
y′3 = 3× 107(y2)2 + e−t, y3(0) = 0,

(5.3)

The fourth test problem is the 15-dimensional circuit analysis problem due to Horneber [8] and
extensively discussed in [3] and [5]. In our implementation, we used the specification given in [11]:

Ring modulator on the interval [0, 10−3] with Cs = 10−9. (5.4)

In our numerical experiments, we denoted the number of steps by N , the number of iterations in
each iteration process by m, and the total number of iterations by M (not including the iterations
needed to compute the starting values). Note that for fixed values of m and N , Defective EBDF
requires four times more sequential righthand side evaluations and forward-backward substitutions
than the Diagonal and Nondefective EBDF methods, because Defective EBDF solves four subsys-
tems per step. Hence, for Defective EBDF the value of M is four times greater. The accuracy is
given by the number of significant correct digits scd ; that is, we write the maximal absolute end
point error in the form 10−scd. In the tables of results, we shall indicate negative scd -values by *.

5.1 Fixed numbers of iterations
The Tables 5.1, 5.2 and 5.3 list for given values of m and N the resulting scd -values for the first
three problems (5.1)–(5.3). These results show that the three methods converge to solutions with
comparible accuracy. Furthermore, the convergence rate is for Diagonal EBDF slightly less than
for the other two methods.

Table 5.1: Values of scd for the Kaps problem (5.1).
N Method m = 1 m = 2 . . . m =∞
10 Defective EBDF 5.0 . . . 5.0

Nondefective EBDF 5.2 . . . 5.2
Diagonal EBDF * 4.7 . . . 4.5

20 Defective EBDF 6.8 . . . 6.8
Nondefective EBDF 6.9 . . . 6.9
Diagonal EBDF * 6.4 . . . 6.3

40 Defective EBDF 8.5 . . . 8.5
Nondefective EBDF 8.8 . . . 8.8
Diagonal EBDF * 8.2 . . . 8.1

Table 5.2: Values of scd for the HIRES problem (5.2).
N Method m = 1 m = 2 m = 3 m = 4 . . . m =∞
10 Defective EBDF 3.1 3.0 2.0 3.2 . . . 3.1

Nondefective EBDF 3.4 3.0 2.0 2.9 . . . 2.8
Diagonal EBDF * 2.8 2.5 2.7 . . . 2.7

20 Defective EBDF 2.6 3.7 3.9 3.9 . . . 3.8
Transformed EBDF 3.6 3.7 3.6 3.6 . . . 3.6
Diagonal EBDF * 3.6 3.4 3.3 . . . 3.3

40 Defective EBDF 5.0 4.8 4.9 . . . 4.9
Nondefective EBDF 4.4 4.7 4.8 . . . 4.8
Diagonal EBDF * 4.4 4.3 . . . 4.3
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Table 5.3: Values of scd for the Robertson problem (5.3).
N Method m = 1 m = 2 . . . m =∞
10 Defective EBDF 7.6 . . . 7.6

Nondefective EBDF 7.7 . . . 7.7
Diagonal EBDF 7.8 7.9 . . . 7.9

20 Defective EBDF 9.3 . . . 9.3
Nondefective EBDF 9.3 . . . 9.3
Diagonal EBDF * 9.6 . . . 9.6

40 Defective EBDF 11.0 . . . 11.0
Nondefective EBDF 11.0 . . . 11.0
Diagonal EBDF * 11.3 . . . 11.3

5.2 Variable number of iterations
In our dynamic iteration strategy, we used the stopping strategy described in ([6], p. 130) using for
the tolerance parameter Tol an estimate of the local truncation error LTE (see [4] for details on this
modification). In the Defective EBDF and Diagonal EBDF cases, the difference yn−1+c1−yn−1+cr ,
available from the preceding step, provides us with a free estimate of LTE. In the Nondefective
EBDF case, we used yn−2+c2 − yn−1+cr (i.e. the difference between the order p− 1 initial guess
and the order p converged solution at time step n.) All further iteration strategy parameters are
the same as in [4].

For the three most difficult problems (5.2), (5.3) and (5.4), we performed experiments in which the
number of steps was chosen such that a prescribed scd -value was obtained. For these problems,
the maximal number of Newton iterations in the subsequent iteration processes was limited to
10. The Tables 5.4, 5.5 and 5.6 list the total number of iterations M needed to obtain a given
scd -value. From these values, we may conclude that the two parallel methods Nondefective EBDF
and Diagonal EBDF need about two to four times fewer iterations then the sequential method
Defective EBDF.

Table 5.4: Values of M for the HIRES problem (5.2).
Method scd = 4 scd = 5 scd = 6 scd = 7
Defective EBDF 96 168 573 928
Nondefective EBDF 73 102 195 343
Diagonal EBDF 83 133 189 241

Table 5.5: Values of M for the Robertson problem (5.3).
Method scd = 8 scd = 9 scd = 10 scd = 11 scd = 12 scd = 13
Defective EBDF 36 63 107 169 265 415
Nondefective EBDF 10 18 29 47 74 123
Diagonal EBDF 9 17 29 49 74 114

Table 5.6: Values of M for the Ring modulator (5.4).
Method scd = 6 scd = 7 scd = 8
Defective EBDF 49900 72400 104500
Nondefective EBDF 14800 22300 33800
Diagonal EBDF 20000 29700 42800
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Appendix A Coefficients of some nondefective EBDF methods

For reference we provide the coefficient matrices of the L-stable nondefective EBDF methods
considered in this paper. For each method we give the matrices B−1C, B−1E and Q needed for
parallel implementation of (3.4). Obviously, the diagonal matrix D needed for the implementation
of 3.4 is given by D = diag(B−1C). The coefficients listed are exact, expressed in fractional form,
and were determined by Maple.

The 3-stage L-stable method of order p = 3 is defined by c1 = 5/4, C31 = 0. The method
coefficients and transformation matrix are given by

B−1C =



45
56

0 0

72
77

6
11

0

0 − 4
23

22
23


, B−1E =



−25
56

81
56

−40
77

117
77

− 5
23

28
23


,

Q =



1 0 0

192
53

1 0

43008
10441

11
26

1

 .

(A.1)

A 3-stage L-stable method of order p = 4 is defined by c1 = 5/4, C31 = 0. The method coefficients
and transformation matrix are given by

B−1C =



585
908

0 0

192
227

6
13

0

0 − 18
197

150
197


, B−1E =



2025
7264

−4225
3632

13689
7264

1080
2951

−4204
2951

6075
2951

17
197

− 99
197

279
197


,

Q =



1 0 0

3328
719

1 0

18130944
5022215

39
128

1

 .

(A.2)

A 4-stage L-stable method of order p = 5 is defined by c1 = 3/2, C41 = 3/10, C43 = 7/50. The
method coefficients and transformation matrix are given by

B−1C =



315
496

0 0 0

864
1147

12
37

0 0

2768
3441

32
37

4
9

0

3
10

−3059487
4001600

7
50

5279163
4001600


,
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B−1E =



−1225
3968

6075
3968

−11907
3968

11025
3968

− 420
1147

2043
1147

−3884
1147

3408
1147

−12110
30969

2118
1147

−3907
1147

91382
30969

2153579
24009600

−3413921
8003200

4631823
8003200

3640463
4801920


, (A.3)

Q =



1 0 0 0

4608
1901

1 0 0

24616704
1617751

−36
5

1 0

−38599642812960
45767552496101

145802607
81838795

− 5042016
31506067

1


.

A 4-stage L-stable method of order p = 6 is defined by c1 = 6/5, C41 = 11/100, C43 = 1/20. The
method coefficients and transformation matrix are given by

B−1C =



16016
32525

0 0 0

40625
49438

15
38

0 0

39040625
41626796

30375
31996

180
421

0

11
100

−120153318
388515625

1
20

1497086157
1554062500


,

B−1E =



569184
4065625

−10469888
12196875

9018009
4065625

−12719616
4065625

32064032
12196875

5775
24719

−101768
74157

82350
24719

−105400
24719

227750
74157

5549775
20813398

−46526500
31220097

70906923
20813398

−42611025
10406699

90894625
31220097

− 211339877
6216250000

939457771
4662187500

−168763034
388515625

333046763
1554062500

19629003023
18648750000


,
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Q =



1 0 0 0

1015625
120733

1 0 0

7376452890625
53619698494

−405
14

1 0

−475587595010650768146875
51052091899348840572958

241922892409
78349451754

− 32713015625
350542022097

1


. (A.4)


