
Cent rum
voor

Wiskunde
en

lnformatica
Centre for Mathematics and Con'1>uter Science

E. Kranakis, 0 .0 .M. Krizanc

Computing Boolean functions on anonymous networks

Computer Science/Department of Algorithmics & Architecture Report CS-R8935 September

1989

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301664902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Centrum voor Wiskunde en lnformatica
Centr~ for Mathematics and Computer Science

E. Kranakis, D.D.M. Krizanc

Computing Boolean functions on anonymous networks

Computer Science/ Department of Algorithmics & Architecture Report CS-R8935 September

... -:;.::.-::-;;:; .:. ._

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

COMPUTING BOOLEAN FUNCTIONS ON
ANONYMOUS NETWORKS

Evangelos Kranakis (l)

(eva@cwi.nl)
Danny Krizanc <1•2>

(krizancOcs.rochester .edu)

(1) Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

(2) University of Rochester, Department of Computer Science
Rochester, New York, 14627, USA

Abstract

We study the bit-complexity of computing boolean functions on anonymous net­
works. Let N be the number of nodes, 6 the diameter and d the maximal node degree
of the network. For arbitrary, unlabeled networks we give a general algorithm of poly­
nomial bit complexity O(N4 • 6 · d2 · log N) for computing any boolean function which
is computable in this network. Thie improves the previous beat known algorithm which
was of exponential bit complexity O(dN

2
). We consider the cl&BS of distance regular

unlabeled networks and show that in such networks symmetric functions can be com­
puted efficiently in O(N · 6 · d ·log N) bits. Thia compares favorably with a lower bound
O(N · 6 · d) bits for symmetric functions on regular networks. We also consider the
n-dimensional hypercube, with N = 2" nodes. We show that in the oriented hypercube
an arbitrary boolean function f is computable if and only if it i1 kept invariant under
all the flipping automorphi1ms of the hypercube, in which case it can be computed
in O(N2) bits. Further we 1how that every symmetric function can be computed in
O(N · log2 N) bits on the oriented and in O(N ·log* N) bits on the unlabeled hyper­
cube.

1980 Mathematics Subject Clusiftcation: 68Q99
CR Categories: C.2.1
Key Words and Phrues: Anonymous network, boolean function, distance regular
graph, distance transitive graph, group of automorphisms, hypercube, labeled and un­
labeled networks, oriented and unoriented networkl, ring, symmetric boolean function,
threshold function, torus, transitive graph.
Note: This paper will submitted for publication elsewhere.

Report CS-R8935
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

1 Introduction

A very important problem in distributed computing is the designing of efficient algorithms
for computing boolean functions in distributed networks of processors. For both practical
and theoretical considerations it is useful to minimize the total number of exchanged bits
which are necessary in order to compute a certain boolean function, but at the same time
keeping the processors as similar to each other aa possible.

A distributed network is a simple, connected graph consisting of nodes (vertices) on
which the processors are located, and links (edges) along which the interprocess communi­
cation takes place. The processors are assumed to have unlimited computational power but
may exchange messages only with their neighbors in the network. Initially, each processor
is given an input bit, either 0 or 1.

The processors follow a deterministic protocol (or algorithm). During each step of the
.protocol they perform certain computations depending on their input value, their previous
history and the me8sages they receive from their neighbors and then transmit the result
of this computation to some or all of their neighbors. After a finite number of steps,
predetermined by the initial conditions and the protocol, the processors terminate their
computation and output a certain bit. Let BN be the set of boolean functions on N
variables. Let N = (V, E) be a network of size N, with node set V = {O, 1, ... , N -1} and
edge set E ~ V x V. An input to N is an N-tuple I=< b,, : v E V > of bits b,, E {O, 1},
where processor v receives as input value the bit b,,. Given a function f E BN known to all
the processors in the network we are interested in computing the value/(/) on all inputs/.
To compute f on input I =< b,, : v E V > ea.eh proceuor v E V starting with the input bit
b,, should terminate its computation according to the given protocol and output the value
b such that /(/)=b. A network computes the function f if for each input I, at the end of
the computation each processor computes correctly the value /(/). The bit complexity for
computing f is the total number of bits exchanged during the computation off. We are
interested in providing algorithms that minimize the bit complexity of boolean functions.

We make the following assumptions regarding the networks and their processors:

1. the processors know the network topology and the size of the network (i.e. total
number of processors),

2. the processors are anonymous (this means that they do not know either the identities
of themselves or of the other processors),

3. the processors are identical (this means they all run the same algorithm),

4. the processors are deterministic,

5. the network is asynchronous,

6. the network may or may not be oriented (by orientation we mean a global, consistent
labeling of the network links).

Note that changing any of the above assumptions changes the computational capabilities
and limitations of the model. If the size of the network is not known to the processors then
it may not even be possible to compute any nonconstant function, e.g. in the ring [ASW85].
Angluin [Ang80] has shown that if the processors are anonymous and identical there is no
algorithm for electing a leader. If we add randomization to the model it becomes possible
to improve greatly the average and worst case bit complexity. In synchronous networks

2

information can be gathered not only through message passing but also through the absence
of communication during a particular time interval. The last condition on orientation will
be discussed in the next section.

1.1 Labeled versus Unlabeled Networks

Before proceeding with an outline of the main results of the paper it will be useful to clarify
the notions of labeled, unlabeled and oriented networks and their impact on computability
questions. By a labeling of the network .N = (V, E) we understand a function that for all
nodes v E V, with degree deg(v), associates the values 1, 2, ... , deg(11) to the links incident
with v. More formally it is a function, C., on the set {(x, y), (y, x) : {x, 11} E E}, such
that for each node v E V the mapping u - C.(11, u) is 1 - 1 on the set of neighbors u of
v. Note that in general £(u, 11) :F C.(11, u). If a network .N has an associated labeling C.

. then it is called a labeled network and is usually denoted by .N[C.). Otherwise it is called
an unlabeled network. If we want to emphasize that a certain labeling is known to all
processors of the network then we call the labeling an orientation. Of special interest are
the canonical orientations of the following three networks: rings, tori, and hypercubes.

The ring RN consists of N processors arranged in a ring in such a way that processors
i, j are adjacent if and only if j = i ± 1 mod N. For the ring RN we define an orientation as
follows: .C{i,i+l) = 1 and .C(i+l,i) = 2, where addition is modulo N. The two dimensional
n x n torus, with N = n2 nodes, is the standard two dimensional mesh with wrap-around
edges and side consisting of n nodes. We define a labeling of the torus as follows: the edges
of node (x,y) corresponding to (x,y + 1), (x + 1,y), (x,y -1), (x -1,y) {where addition
is modulo n) are labeled 1 {up), 2 (right), 3 {down), 4 (left), respectively. The oriented
hypercube will be defined in section 4.

Let Aut(N) be the group of automorphisms of the network N. It is clear that Aut(N)
is a subgroup of the symmetric group of permutations SN. A boolean function f E BN
is invariant under a permutation u E SN if for all input• xi, ... ,xN, f(a:i, ... ,xN) =
J(xu(l)i ... , Xu(N»· The automorphism group of a network provides a necessary {but not
always sufficient) condition for a boolean function to be computable on the network. It is
easy to show that any boolean function f E BN computable on a network N is invariant
under all the automorphisms of the network. This result will be very useful in distinguish­
ing between oriented and unlabeled networks. An automorphism </> of the network N is
consistent with a labeling .C if for any adjacent nodes x,y, .C(x,y) = .C(t/>(x),t/>(y)). A la­
beling of the edges of N is consistent with a group G ~ Aut(N) of automorphisms of N
if any automorphism </> E G is consistent with .C. We denote by Aut(N[.C]) the group of
automorphisms of N that are consistent with .C. In the same manner we can show that any
function computable on the network .N[.C) is invariant under the group of automorphisms
Aut(N[.C]). It is not hard to show that oriented networks are more powerful than unlabeled
ones. As a matter of fact we can prove the following result.

Theorem 1.1 For N ~ 6, there is a boolean function f E BN computable on the oriented
ring {torus, hypercube} but not computable on the unlabeled ring (torus, hypercube}. D

The proof of the theorem is not difficult. One way to prove it is by providing a group
theoretic characterization of the boolean functions computable on the corresponding ori­
ented network. Such a characterization is in fact possible for all the oriented networks
listed above. The group of permutations of SN that leave the boolean function f invariant
is called invariance group off {see [CK89]) and is denoted by S(/). It follows from the main

3

result of [ASW85] that a boolean function f E BN is computa.ble on the oriented ring RN
if a.nd only if it is inva.riant under the cyclic group ON {this is the group of a.utomorphisms
generated by the N-cycle (0, 1, ... , N - 1)) while it is computa.ble on the unlabeled ring
RN if and only if it is invariant under the dihedral group DN {this is the group of automor­
phisms generated by the N-cycle (0, 1, ... , N - 1) and the reftection permutation). Similar
considerations show that the boolean functions f E BN computable on the 2 dimensional,
n x n, oriented torus, are exactly the onea which are inva.riant under the group On® On.
The case of the hypercube will be handled separately in theorem 4.3.

Thus to every network N, with labeling £, there corresponds the claaa of functions
computable on N[£] and denoted by ,rN(.CJ. The above observations clearly indicate that
this class offunctions depends on the labeling of the network considered. However, if ,rN is
the class of functions computable on the unlabeled network N then it is easy to show that

,rN = n ,rN(.C),
.c

where £ above ranges over all labelings of N. The main goal of the present paper is to
provide efficient algorithms for computing the class of functions ,r.Nl.CI for labeled and .rN
for unlabeled networks. ·

1.2 Outline and Results of the Paper

In the sequel we assume that N is the number of proceaaora in a. given anonymous network.
The simplest topology considered in the study of the bit complexity of computing boolean
functions is the ring e.g., [AAHK88), [ASW85), (AS88), (MW86), [PKR84). It has been
shown by [ASW85] that there is an algorithm for computing all (computable on the ring)
boolean functions with bit complexity O(N2). Moreover, this bit complexity is the same on
both oriented and unlabeled rings. In a.ddition, [MW86) show that any nonconstant function
has bit complexity O(N ·log N) on the ring, and a.1110 construct boolean functions with bit
complexity 9(N ·log N) on the ring. For the oriented torus [BB89] give an algorithm with
bit complexity O(Nl.5), and construct nonconstant functions with bit complexity 9(N).
For general graphs [YK87a] and [YK87b] show that the message complexity of computing
a boolean function on an arbitrary unlabeled network is O(N2 · m), where m is the number
of links of the network. However, these messages consist of trees of depth N 2 and fanout
the corresponding degrees of the nodes of the network. For regular graphs of degree d this
translates into an exponential O(dN:i) bit complexity (d = 4 for the torus, and d = log N
for the hypercube).

In the present paper we study the bit complexity for boolean functions on arbitrary
unlabeled networks and on distance regular networks. We show in section 2 that for any
unlabeled N-node network of maximal node valency d and diameter 6, every boolean func­
tion which is computable on the network can be computed in O(N4 · 6 · cP ·log N) bits,
thus significantly improving the previous O(dN

2
) upper bound of [YK87b). For the case

of distance regular networks we show in section 3 how to compute any symmetric function
in 0(N · 6 · d · log N) bits. Since for symmetric functions on regular graphs we can prove
an optimal O.(N · 6 · d) lower bound on the bit complexity, our algorithm in this case is
within a log N factor of optimal. In section 4 we give a characterization of the functions
computable on the oriented hypercube, as the boolean functions which are kept invariant
under the group of automorphisms of the oriented hypercube and provide a.n O(N2) upper
bound for general computable boolean functions, and an O(N · log2 N) upper bound for

4

symmetric boolean functions. For unlabeled hypercubes we give an O(N · log3 N) upper
bound for symmetric boolean functions. We conclude in section 5 with some discussion and
open problems.

2 Unlabeled Networks

In this section we give a general algorithm which computes any boolean function computable
on a given network using polynomial bit complexity. One of the results that will be used
very frequently in the sequel concerns the computation of certain simple operations, like
maximum and set-union on general unlabeled networks. To facilitate and simplify our
discussion and avoid unnecessary repetition we state our main algorithm for computing
such functions as a separate theorem. First we need a few definitions.

Let <> be a commutative, associative and idempotent binary operation on a set A, i.e.
<> : A x A --+ A satisfies the following axioms for all a, b, c e A,

• O(a, b) = O(b, a) (commutativity),

• O(a, O(b, c)) = <>(O(a, b), c) (aaaociativity),

• O(a, a)= a (idempotency).

Such operations include maximum, minimum, set-union and set-intersection. For simplicity
from now on we will abbreviate 0(a, b) by aOb.

Let N(V, E) be an unlabeled network and let <> be an operation satisfying the above
three conditions. Let AN be the set of all N-tuples from elements of A. For any input
I =< ip : p E V >E AN to the network we can define a function <> : AN --+ A by the
following equation

<>(I)= ioOi1 <> .. · OiN-1·

(By an abuse of notation we use the same symbol for the binary operation <> : A x A --+

A and the function <> : AN --+ A.) In view of the associativity of <> this function is
well defined. As a first step in our goal for providing an algorithm for computing all
(computable) boolean functions we will show that functions, like 0, which arise from such
binary operations give rise to computable functions.

Theorem 2.1 Let N be an unlabeled network with ma:cimal node valency d and diameter
6 and let <> be a commutative, associative and idempotent binary operation. There is an
algorithm for computing O(I) for any input I =< ip : p E N >E AN with bit complexity
O(N ·a· 6 · d), where a denotes the number of bits neceasary to represent an element of A.

Proof. The idea of the algorithm is rather simple. Each processor sends its initial input
value to all its neighbors. After receiving a value from its neighbors it applies the operation
<>to the value it already has and the values it receives. Every processor executes these steps
6 many times. Eventually every input value to a node of the network will be distributed
and accounted for by every other processor. More formally the algorithm is as follows. Let
I=< ip: p e V >be the input to the network.

Algorithm for procesor p:
Initialize: valuep[O] := ip ;
for i := 0, 1, ... , 6 - 1 do

5

send valuep[i] to all neighbors of Pi
receive value9 [i] from all neighbors q of Pi
compute valuep[i + 1] := 0({valuep[i]} U {value9[i]: q is a neighbor of p})i

odi
output valuep := valuep[6].

The proof of correctness of the algorithm is not difficult. By commutativity and asso­
ciativity it is immaterial the order in which the operation 0 is applied to the given values.
It can happen that in the course of the execution of the above algorithm by processor p the
operation 0 is applied more than once to some element a, which is the initial input value to
a certain processor q. The number of times 0 is applied depends on the number of walks of
length less than 6 from p to q through the network. However because of the idempotency of
the operation 0 we have that aOaO · · · Oa = a. It follows that all processors will compute
exactly the same value O(I), namely valuep = O(J), for all p.

It remains to determine the bit complexity of the algorithm. The processors receive
through their neighbors elements of A, apply the operation 0, create new elements of A
and transmit them to their neighbors. The cost of transmitting each of these elements is
a, the number of bits necessary to represent an element of A. Each of the N processors
transmits a value to its d neighbors once in each of the 6 phases of the above algorithm.
This gives the desired bit complexity. 0

An obvious corollary of the theorem concerns the bit complexity of the ORN function.
This is worth stating separately.

Corollary 2.1 On an unlabeled N-node network with mammal node valency d and diameter
6 the ORN function can be computed with bit complezity O(N · 6 · d).

Proof. Apply theorem 2.1 to the operation of binary or, i.e. aOb = a V b. 0
If the network is regular then 0 RN requires 0(N · 6 · d) bits. For a proof of this see [ASW85]
or theorem 3.2. Thus for this case the above algorithm is optimal.

Another corollary will be useful in the proof of our general theorem 2.2 about the bit
complexity of computable boolean functions on general networks.

Corollary 2.2 Let .N be an unlabeled N-node network with m~imal node valency d and
diameter 6. There is an algorithm for computing the set { ip : p E N} for any input
I =< ip: p E V >E AN with bit comple:i:it'll O(N2 ·et· 6 · d), where a denotes the number of
bits necessary to represent an element of A.

Proof. Here we apply the main theorem 2.1 to the binary operation union, O(a, b) =a U b
where the input to node p is the singleton set {ip}· The elements transmitted in the course
of the algorithm are subsets of the set { ip : p E N}. Each element can be coded with a
bits, and therefore such sets can be coded with N · a bits. 0

We are now ready to give our algorithm for computing arbitrary boolean functions on
a given unlabeled network. We will prove the following theorem.

Theorem 2.2 Let .N(V, E) be an unlabeled N-node network with mazimal node valency
d and diameter 6. There is an algorithm that computes an'JI boolean function which is
computable on the network with bit complezity 0(N 4 • 6 · d2 · log N).

6

Proof. Our algorithm relies on several cost efficient adjustments and improvements of the
algorithm of [YK87a) using Theorem 2.1. Let f E BN be any computable boolean function
on the anonymous network N. Let I=< b11 : p E V > be the input to the network, where
b11 is the input to node p. We present the algorithm in three phases.

Phase 1. Each processor chooses an arbitrary labeling for all its incident edges, i.e., the
links of pare labeled with the numbers 1, 2, ... , deg(p), where deg(p) is the degree of p. Now
each processor transmits to each neighbor the label it has chosen for t·he link connecting
them. Let £ be the resulting labeling of the network .N. Next, e11.eh pair (p, q) of processors
labels their corresponding link with

l(p,q) = (.C(p,q),C(q,p)).

The processors keep this labeling fixed throughout the algorithm. It should be pointed out
that this is only a local labeling and not a global orientation of the network; the processors
·know only the labeling of their corresponding links, and are completely unaware of the
choice of labeling by the other processors in the network.

Phase 2. In this phase each processor gathers as much information as possible from
the rest of the processors about the input to the network in order to be able to compute
correctly the value/(/). Each processor p computes its view, T.t:,I(P) [YK87b). Since£ and
I are fixed below we will denote the view of p by T11• This is a vertex and edge labeled tree
of depth N 2 • In a sense, each node p "unwraps" the network and forms a tree with itself
as root. Since the network is anonymous it cannot use names for the processors, instead
it can only label the vertices of the tree with the input bits it receives in the course of the
interprocess communication. Thus, the root of T11 is labeled with the input bit b11 and the
node corresponding to the node q is labeled with the bit b9• However it needs to be stressed
here that when the processors label a node with the bit 69 they do not necessarily know
that the name of the processor they are labeling is q.

The processors need to exchange enough information in order to compute correctly each
Tp· They do this by exchanging the views they have constructed. However, trees of depth i
have exponential bit complexity O(tt) and transmitting them is rather expensive. Therefore
we must be careful if we want to achieve an algorithm with polynomial bit complexity. In
the sequel we concentrate on the issue of coding and transmission of the trees concerned.
Processor p computes a sequence of trees r; of depth i, i = 0, 1, ... , N 2

I by executing the
following algorithm.

Algorithm for procesor p:
Initialize: T~ := bp and set~ := {T~};
for i := 0, ... , N 2 do

od;

compute the set set~ := {T; : q E V};
code the elements of the set ~et~ with integers 1, ... , k_, where k $ N is
the number of ele~ents of set~, by ordering the set set~ lexicographically
and letting code(Ti) = j, if T; is the jth tree in this ordering;
form the tree r;+ i it is a tree of depth 1 with root la.beled bp;
for each neighbor q of p there is an edge labeled l(p, q); its leaves are labeled
code(T:), where q is a neighbor of p;
send the tree r;+i to all the neighbors of p;

output set:~.

7

After the trees of level i have been constructed the processors use the set algorithm
given in corollary 2.2 to compute the set {T; : p E V}. Once all processors know all the
trees of depth i there is no need to transmit to each other the decoded full trees themselves.
It is sufficient to transmit the codes of the trees, and these can be just integers from 1 up
to N. The processors themselves can decode the trees in order to generate the views. To
code the trees the processors order them lexicographically and let the code of the tree T be
j, if T is the jth tree in this ordering. The processors then form new trees of depth i + 1,
namely r;+i. The tree has a root which is labeled with p's input bit. The leaves of the
tree consist of the above codes of the corresponding trees of depth i and the edges have the
corresponding labeling. Now the processors transmit these new trees to all their neighbors,
etc. As indicated above we iterate this algorithm N 2 times.

Phase 3. At this point all processors have computed the set of all views of depth N 2 ,

namely the set {T:
2

: p E V}. As in [YK87b] we define an equivalence relation among
trees. Two trees T and T' are equivalent if they are isomorphic including vertex and edge
labels, but ignoring names of the vertices. By lemma 3.3 in [YK87b] for any two trees if
their restrictions to depth N 2 are isomorphic then the full trees themselves must also be
isomorphic. Let [T]1,t: denote the equivalence class of T, where the subscript is to stress
the dependence of the equivalence class on the input and the chosen labeling. It follows
from the above discussion that ea.eh processor will be able to find representatives of all the
equivalence classes of the full trees. Further, it follows from theorem 4.1 in [YK87b] that
since f is computable on the network its value depends only on the equivalence classes of
the trees above, i.e. for any inputs/,/' and any labelings C,C', if [T]I,c = [T']J',t:', for
any trees T,T', then/(/)=/(/'). The processors want to compute/(/), but they do not
know the input /. To resolve this problem the proce880r uses its knowledge of the network
topology to construct a labeling C' and a.n input I' such that [T]J,.c = [T]J',C'i for all trees
T. Certainly, each processor ma.y choose a different input I' and labelin1 r./. However by
exchanging information using corollary 2.2 the proce11ors can agree on a unique input J1
and labeling C'. Since the value of f depends only on the equivalence classes of the trees
we conclude that /(/) = /(/'). Thus it is sufficient to output /(/') and this will be the
desired, correct value assumed by f on input /.

This concludes the description of the algorithm. It remains to determine its bit com­
plexity. Phases 1 and 3 either involve local computations which do not require any bit
exchanges or simple low cost bit exchanges. The main bit exchanges take place in phase
2. There we have N 2 iterations of the algorithm in corollary 2.2. We need d · log N bits
to represent each of the corresponding trees. This mea.ns that the bit complexity of the
algorithm is O(N4 • 6 · d2 ·log N). D

As an application of the main theorem we conclude that every boolean function which is
computable on the unlabeled torus (respectively, hypercube) can be computed with O(N4·5 .

log N) (respectively, O(N4 · log4 N)) bits.

3 Symmetric Functions in Distance Regular Graphs

In this section we show that by taking advantage of the topology of distance regular graphs
we can derive efficient algorithms for computing symmetric functions on such graphs.

The distance between any two nodes p, q E V of a network .N', denoted d(p, q), is the
length of the shortest path between p and q. The circle (disc) with center p E V and
radius k, denoted by G(p; k) (D(p; k)), is the . set of nodes q E V such that d(p, q) = k

8

(d(p, q) ~ k). The set of neighbors of p, denoted .N{p), is the circle C{p; 1). The threshold
function Th1c E BN is defined to be 1 on inputs of weight at least k and 0 otherwise. (By
the weight of an input I we understand the number of occurrences of 1 in the input.)

Distance regular graphs are graphs .N such that for any nodes p, q E V with d(p, q) = k
the quantities

I C(p; 1) n C(q; le -1) 1,
I C(p; 1) n C{q; k + 1) I

depend only on the distance d(p, q). More formally, for le= d(p, q) we define

a1c - l{rEO(p;l):d(q,r)=k-l}l,k-1,2, ... ,6

b1c = I {r E C(p;l): d(q,r) = k+ 1} l,k =0,1, ... ,6-1,
c1c = I {r E C(p; 1): d(q,r) = k} l,k = 0,1, ... ,6.

Such graphs include hypercubes, odd graphs, triangle graphs, complete bipartite graphs,
etc. [Big74], [Cam83]. They satisfy several useful properties. We mention only a few
obvious ones and refer the reader to [Big74] and [Cam83] for further properties. Distance
regular graphs are regular with valency d == bo. By definition, ao = 0. Moreover, co = 0
and a1 = 1. Since, if d(p, q) = k every neighbor of p has distance k, k - 1 or k + 1 from
q it is clear that c1c = d - a1c - b1o. A network .N is distance transitive if for any nodes
p, q, F' q' with d(p, q) = d(p I q') there is an automorphism "'e Aut(.N) such that t/>(p) = F
and </>(q) = q1

• It is easy to see that all distance transitive graphs are distance regular, but
the converse is false [Big74].

Now we are ready to prove the main theorem of this section.

Theorem 3.1 On an unlabeled N -node dutance regular network of valency d and diameter
6 every symmetric function can be computed in O(N ·6·d·log N) bits. Moreover the threshold
function Th1c can be computed in O(N · 6 · d ·log k) bits, where k ~ N.

Proof. For any input configuration I=< b,, : 11 E V >, any processor p and any distance
k ~ /j let J{p; k) be the number of processors x at distance k from the processor p such
that b:z: = 1. To compute a symmetric function it is sufficient for each proceaaor p to know
J(p; k), for each k ~ 6. The idea of the proof is to find a (inductive) formula. for computing
J{p; k) in terms of the previously computed values /{p; l), where l < k, and values I(q, l),
where q E C{p; 1) is a neighbor of p, l < k. We note that

L I(q;k-1) - l{<q,x>:qE.N(p),d(q,x)-k-1,b:z:=l}I
qEN(p)

- L I {q E .N(p): d(q,x) = k -1} I

L I {q E .N(p): d(q,x) = k-1} I+
ba=l,d(p,:z:)=lc

L I {q E .N(p): d(q,x) = k -1} I+
b.,=l,d(p,:z:)=/c-1

L I {q E .N{p): d{q,:zi) = k -1} I
b.,=l,d(p,z)=lc-2

CAt-1 +
ba =l ,d(p,:z:)=le b., :::l ,d(p,11)a:/c-1 ba =l ,d(p,111)a/c-2

= a1c · I(p; k) + c1c-1 · I(p; k - 1) + b1c-2 · I(p; k - 2),

9

which in turn leads to the following inductive formula

l(p; k) = _!:_ · (L I(q; k - 1) - (d - a,,_1 - b,,_1) · l(p; k - 1) - b,,_:i · l(p; k - 2)) .
a1c qeJl/(p)

(1)
Formula (1) and the knowledge of the network topology (i.e. the numbers a,, and b,,)

make it possible to construct an efficient algorithm for computing symmetric functions. Let
f E BN be a symmetric function and let j-,11 be the value off on inputs of weight k.

Algorithm for processor p:
initialize: I(p; 0) := 1 if p's input bit is 1 and is := 0 otherwise;
send input bit to all neighbors;
compute J(p; 1) :=the number of ls among the neighbors of p;
for k := 1, ... , 6 - 1 do

od;

send J(p; k) to all the neigbora of Pi
compute J(p; k + 1) from l(p; k -1), J(p; le) and the J(q; k)s,
where q ranges over all neighbors of p, via formula (1);

compute the sum s := Ef.o I(p; k);
output fa

The correctness of the algorithm was shown above. It remains to determine its com­
plexity. For k = 0, ... , 6 each processor p transmits the number /(p; k) to all its neighbors.
This requires transmission of 6 messages

I(p;O), ... ,I(p;6)

(each of length $ log N bits) to each of the d neighbors of p, i.e. 0(6 · d ·log N) bits per
processor for a total of O(N · 6 · d · log N).

The proof of the bit complexity of computing the threshold function Th,. employs the
previous algorithm. Observe that when the number of ls at a certain distance from a
processor exceeds the threshold value k then we only need to transmit k which requires
log k bits. D

As mentioned above every distance transitive graph is distance regular. Distance tran­
sitive graphs include the complete graphs KN, the complete bipartite graphs Kn,n 1 with
N = 2 · n, the rings RN, the hypercubes Qn with N = 2" (which will be studied in detail in
section 4), the odd graphs 01c, k 2: 2, and the graphs J(n,m). For more examples we refer
the reader to [Big74] and [Cam83] and the references thereof.

We conclude this section with a lower bound on the bit complexity of computing sym­
metric functions on regular networks. It shows that the result of theorem 3.1 is optimal up
to a factor log N.

Theorem 3.2 On an unlabeled regular network of valenc'll d and diameter 6 the bit com­
plexity of every nonconstant aymmetric function ia O(N · 6 · d).

Proof. The proof is similar to the proof of theorem 4.1 in (ASW85]. Let A be an algorithm
computing a nonconstant symmetric function f. There exists an integer k such that for all
inputs 1,11 of weights k, k + 1, respectively, /(I)<#= J(I'). We show that execution of the
algorithm with input I will require O(N ·6·d) bits. Say the algorithm accepts I after exactly

10

t steps. Since the network is unlabeled, at each time step at least d bits are transmitted
by each processor to all its neighbors. Thus the proceasors terminate after sending at least
N · (t - 1) · d bits. To prove the theorem it is sufficient to show that t = 0(6). There exist
processors p, q such that d(p, q) = 6. Suppose that I and I' are inputs as above which differ
only on their input bit at processor q. We claim that 6 $ t. Assume to the contrary that
t < 6. Execute the algorithm A with input I'. After 6 - 1 steps the processor p will be in
exactly the same state as it was when the input was I and must therefore output the same
value as before. But this is a contra.diction. 0

4 Boolean Functions in Hypercubes

In this section we study the bit complexity of boolean functions in unlabeled and oriented
hypercubes.

4.1 Unlabeled Hypercubes

For general boolean functions we have the following immediate consequence of Theorem
2.2.

Theorem 4.1 On the unlabeled hypercube Qn, N = 2n, any boolean function which is
computable on the network can be computed with bit complezity O(N4 • log4 N). 0

Regarding symmetric functions on the unlabeled hypercube we have the following result
which is an immediate consequence of Theorem 3.1.

Theorem 4.2 On the unlabeled hypercube, every symmetric function can be computed in
O(N · log3 N) bits. Moreover the threahold function Th,. can be computed in O(N · log2 N ·
logk) bits, where k $ N.

Proof. Let n = log N. This is an immediate consequence of the fact that the hypercube
is distance regular. It is easy to show that in the notation of section 3, a1c = k, b1c = n - k
and c1c = 0. The resulting inductive formula (which is a special case of formula (1)) is the
following:

b(p;k)=~·(L b(q;k-1)-(n-k+2)·b(p;k-2)).o
qED(p;l}

4.2 Oriented Hypercubes

(2)

In this section we study the bit complexity of computing boolean functions on oriented
hypercubes and provide an algorithm with bit complexity O(N2) for computing such func­
tions.

The nodes of the n dimensional hypercube Qn consist of all sequences of bits (:z:1, ... , Xn)
of length n. Two such nodes are adjacent when they differ in exactly one component. We
distinguish two types of automorphisms of the hypercube: (1) the flipping automorphisms
that flip the bits of certain components, i.e. for any set S s;; {1, ... , n} let 4>s(:z:1 1 ••• , xn) =
(y1, ... , Yn), where Yi = Xi + 1, if i E S, and Yi = Xi otherwise (here addition is modulo
2); and (2) the permuting automorphisms that permute the components according to

11

a fixed permutation of {1, ... ,n}, i.e. for any permutation u e Sn, t/>v(x1 , .•• ,xn) =
(:z:u(l)i ... , :Z:u(n))· Notice that for any sets S, T ~ {1, ... , n} and any index i, we have that
t/>s o <l>-r = <Psr::.T, tP{i} = t/>c1,i) o <l>{l} o t/>c1,i)t where S 6 T is the symmetric difference of
S, T. Let Fn denote the group of flipping automorphisms and Pn the group of permuting
automorphisms of Qn.

A natural orientation of the hypercube is the following labeling £: the edge connecting
nodes x = (xi, ... , Xn) and y = (111 1 ••• , 1ln) is labeled by i if and only if Xi :/= Yi 1 i.e.
£(x, y) = £(y, x) = i. It is easy to see that this labeling ia consistent for the group of
flipping automorphisms, in the sense that if nodes x and 11 are labeled by i then so are <P(x)
and t/>(y), for any flipping automorphism q,.

Lemma 4.1 Fn is a normal subgroup of Aut(Qn)· Evef'1/ automorphism <P of the unoriented
hypercube is of the form </>s o <Pu for some flipping automorphism </>s and some permuting
automorphism tf>u· IJG2 is the permutation group on 2 element. generated by the cycle (1, 2)
then Fn = G2 ® · · · ® C2, n time•, and Aut(Qn) = Fn · Pn. Moreover, the group of automor­
phisms of the oriented hypercube Qnl.CJ is exactly the ff'OUP Fn of flipping automorphisms.

Proof. The lemma is not difficult to prove using the fact tha.t Qn is the graph product
of n rings R2. Normality of Fn follows from the identity q,;1 o </>so <Pu = </>,,-1(s)- On the
other hand it is easy to see no permuting automorphism can be consistent with the above
labeling. It follows that Aut(Qn[£]) is exactly the group of flipping automorphisms. D

We can prove the following theorem for this natural orientation.

Theorem 4.3 On the oriented hypercube Qn of degree n and for any boolean function
/ E B N, N = 2", / is computable on the hwercube Qn if and only if J is invariant under
the flipping automorphisms of Qn. Moreover, the bit complexity of any such computable
function is O(N2).

Proof. The if pa.rt is easy. We need only prove the only if part. Let J E BN be invariant
under all flipping automorphisms of the hypercube. The algorithm proceeds by induction
on the dimension n of the hypercube. Intuitively, it splits the hypercube into two n - 1
dimensional hypercubes. The first hypercube consists of all nodes with Xn = 0 and the
second of all nodes with Xn = 1. By the induction hypothesis the nodes of these hypercubes
know the entire input configuration of their corresponding hypercubes. Every node in the
hypercube with Xn = 0 is adjacent to unique node in the hypercube with Xn = 1. By
exchanging their information all processors will know the entire input configuration and
hence they can all compute the value off on the given input. More formally, the algorithm
is as follows. For any sequences of bits l, J let I J denote the concatenation of l and J. Let
l; denote the input to processor p at the ith step of the computation. Initially 12 is the
input bit to processor p.

Algorithm for processor p:
initialize: I~ is the input bit to processor Pi
for i := 0, ... , n - 1 do

od;

send. message l; top's neighbor q along the ith link
let l: be the message received by p from p's neighbor q along the ith link and

Put Ji+1 · - l' I'· p .- p q1

output J(I;)

12

Let Ip = I;: be the sequence obtained by procesaor p at the nth stage of the above
algorithm. Let p, q be any two processors of the hypercube. Clearly, there is a unique
flipping automorphism </> satisfying q,(p) = q, na.mely 4' = 4's, where i E S if and only if
Pi -:/= qi. In view of the above algorithm it is clear that thia automorphism will map the
input configuration Ip to the input configuration I9• Hence /(Ip) = /(I9). This proves the
correctness of the algorithm.

To study its complexity, let T(N) be the number of bits transmitted in order that at
the end of the computation all the processors in the hypercube know the input of the
entire hypercube. By performing a computation on each of the two n - !-dimensional
hypercubes we obtain that their nodes will know the entire input corresponding to their
nodes in T(N /2) bits. The total number of bits transmitted in this case is 2 · T(N /2). The
final exchange transmission consists of N /2 bits being tranamitted by N /2 nodes to their
N /2 corresponding other nodes, for a total of 2 · N /2 · N /2 = N 2 /2. Hence we have proved
that T(N)::; 2 · T(N/2) + N 2/2. It follows that T(N) S N 2 , as desired. 0

Contrasting oriented and unlabeled hypercubes we have the following result.

Theorem 4.4 For n ;:::: 2, there exist boolean function1 f E BN, N = 2", computable on
the oriented hypercube but not computable on the unlabeled h11percube Qn.

Proof. Define the boolean function f on inputs < b,, : :z: E Qn > as followa. The value of
f is 0 if for all adjacent nodes :z:, y with edge labeled by 1, be = b11 , otherwise it is equal to
1. More formally,

!(b . V)-{O ifV:z:,J1(.C(:zi111)=l=>b.=b11)
<:z:.:tE >- 1 th. o erw1se.

It is easy to see that f is kept invariant by all flipping automorphisms of Qn but this is
not true for any permuting automorphism </J,,. such that cr(l) > 1 (such an automorphism
will also move the label). It follows that Fn ~ S(/), but Fn · Pn ~ S(f), where S(/) is the
group of permutations in SN that keep the boolean function f invariant under all inputs
[CK89]. D

As a matter of fact we can prove a better result with a more difficult proof. There is a
boolean function f E BN such that S(/) = Fn. For this we need the representation theorem
for permutation groups given in [CK89]. The exact value of the cycle index of both groups
Fn and Fn · Pn is computed in [Har63].

Regarding symmetric functions on the oriented hypercube we have the following result.

Theorem 4.5 On the oriented hypercube Qn, every symmetric function can be computed in
O(N·log2 N) bits. Moreover the thresholdfu.nctionTh1a can be computed inO{N·logN·logk)
bits, where k ::; N.

Proof. The idea of the proof of theorem 4.3 can be used to compute the threshold function
Th1c. We employ exactly the same algorithm, however in this case, the processors need
only transmit the minimum between k and the number of ls they have encountered so
far, which requires at most log k bits. Consequently we obtain the inequality T(N) ::;
2 · T(N/2) + N · logk. It follows that T(N) ::; N · logN · logk, as desired. Symmetric
functions are handled in the sa.me way. In each stage the processors transmit the exact
number of ls encountered. D

13

Clearly, ORN can be computed in O(N ·logN) bits. The aame bit complexity holds for
the parity function. Observe that it is sufficient for the processors to transmit the bit 0 if
the number of ls seen so far is even, and 1 otherwise. Note that computing any symmetric
function requires O(N ·log N) bits. The lower bound proof given in [ASW85) works here as
well. It merely uses the fact that the diameter of the network is log N. Thus the algorithm
of theorem 4.5 is optimal to within a factor of O(log N) for arbitrary symmetric functions
and is exactly optimal for the functions ORN and parity.

5 Conclusion and Open Problems

The present paper has been concerned with the problem of determining algorithms with
polynomial bit complexity for computing boolean functions on anonymous distributed net­
works. The main result of section 2 provides such an algorithm for any unlabeled network
.N with bit complexity O(N4 • 6 · ,P. ·log N). It would be interesting however if we could
improve on this bit complexity.

Surprisingly enough we have been able to find very efficient algorithms for computing
symmetric functions on the class of distance regular networkt (theorem 3.1). Nevertheless
these algorithms do not seem to generalize to arbitrary unla.beled networks. Recently, using
a different approach, algorithms for the cue of symmetric functions have been found which
are more efficient for general unlabeled networks than those suggested by theorem 2.2 (see
[KKvdB89]).

An interesting special case is that of the hypercube network. Based upon the results of
[ASW85] for unlabeled and oriented rings and (BB89] for oriented tori we conjecture that
there are more efficient algorithms for computing boolean functions on the unlabeled and
oriented hypercube than those suggested by theorem 4.1 and theorem 4.3 respectively.

There have been few studies in the literature regarding lower bounds. The only network
for which this question has been studied extensively is the ring [MW86], [AAHK88], (DG87].
[PKR84] studies the question for the extrema finding function but relies on specific proper­
ties of this function. [YK87a) give lower bounds for the message complexity of computing
boolean functions for broad classes of networks. However, very little is known about the bit
complexity of boolean functions on the anonymous torus or hypercube, not to mention the
general case of unlabeled networks.

Another interesting question concerns the group theoretic characterization of the class
_r-N(.C) offunctions which are computable on the network N'(.C]. As discussed in the introduc­
tion such characterizations are possible for the case of rings (oriented or not), oriented tori,
as well as oriented hypercubes. However nothing seems to be known for the case of unlabeled
tori or hypercubes. We know that for all networks .N[.C], ,rN(.C] ~ {I E BN : Aut(N'[.C]) $
S(f)}. However for which networks is it true that ,r.N = {/ E BN : Aut(.N) $ S(f)}? For
example can we show whether or not _rq .. = {! E BN : Fn · Pn $ S(/)}? It is interesting
to note that (YK87a) gives an example of a network and a labeling such that this equality
does not hold.

If we allow the processors to flip coins in the course of the computation then this changes
entirely the rules of the game. It is now possible to introduce algorithms with improved
average and worst case bit complexity. Also, the class of functions computable in this model
may be different. For the case of rings this has been studied by (AS88). For general networks

[SS89] have given algorithms with low message complexity for the problem of constructing
a rooted spanning tree (which can then be used to compute boolean functions efficiently).

14

It would be very interesting to examine more thoroughly the bit complexity for the case of
general anonymous networks.

6 Acknowledgements

We are grateful to L. Meertens for many fruitful converaations. C. Attiya and T. Tsantilas
were very helpful with the bibliography.

References

[AAHK88] Karl Abrahamson, Andrew Adler, Lisa Higham, and David Kirkpatrick. Ran­
domized evaluation on a. ring. In Jan van Leeuwen, editor, Distributed Algo­
rithms, !fad International Workshop, Amsterdam, The Netherlands, July 1981,
pages 324 - 331, Springer Verlag Lecture Notes in Computer Science, Heidel­
berg, 1988.

[Ang80] Dana Angluin. Local and global properties in networks of proceasors. In 12th
Annual ACM Sympo1ium on Theory of Computing, pages 82 - 93, 1980.

[AS88] Ha.git Attiya and Mark Snir. Better Computing on the Anonymous Ring. Tech­
nical Report RC 13657 (number 61107), IBM T. J. Watson Research Center,
November 1988. 33 pages.

[ASW85] Chagit Attiya, Mark Snir, and Manfred Warmuth. Computing on an anony­
mous ring. In 4th Annual ACM Sympo1ium on Principles of Distributed Com­
putation, pages 196 - 203, 1985.

[BB89] Paul W. Beame and Hans L. Bodlaender. Distributed computing on transitive
networks: the torus. In B. Monien and R. Cori, editors, 6th Annual Symposium
on Theoretical Aspects of Computer Science, STAGS, pages 294-303, Springer
Verlag Lecture Notes in Computer Science, Heidelberg, 1989.

[Big74] Norman Biggs. Algebraic Graph Theory. Cambridge University Press, 1974.

[Cam83] Peter J. Cameron. Automorphism groups of graphs. In Lowell W. Beineke and
Robin J Wilson, editors, Selected Topics in Graph Theory, Volume 2, chapter 4,
pages 89 - 127, Academic Press Inc., 1983.

[CK89] Peter Clote and Eva.ngelos Kra.nakis. Boolean functions invariance groups and
parallel complexity. In 4th Annual IEEE Symposium on Structure in Complex­
ity Theory, 1989.

[DG87] P. Duris and Z. Galil. Two lower bounds in asynchronous distributed com­
putation. In Proceedings !8th Annual IEEE S'IJmposium on Foundations of
Computer Science, pages 326 - 330, 1987.

[Har63] Michael A. Harrison. The number of transitivity sets of boolean functions. J.
Soc. lndust. Appl. Math., 11(3):806 - 828, September 1963.

[KKvdB89] E. Kranakis, D. Krizanc, and J. van der Berg. Computing symmetric functions
on anonymous networks. 1989. unpublished manuscript.

15

[MW86)

[PKR84)

[SS89]

[YK87a]

[YK87b]

~~ - -_

S. Moran and M. Warmuth. Gap theorems for distributed computation. In 5th
Annual ACM Sympoaium on Principle1 of Diatributed Computation, pages 131
- 140, 1986.

J. Pach!, E. Korach, and D. Rotem. A new technique for proving lower bounds
for distributed maximum finding algorithms. J. of the ACM, 31(4):905 - 918,
October 1984.

B. Schieber a.nd M. Snir. Calling names on nameless networks. In 8th Annual
ACM Symposium on Principlea of DiBtributed Computation, pages 319-328,
1989.

M. Yamashita and T, Kameda.. Computing on an Anonymous Network. Tech­
nical Report 87-15, Laboratory for Computer and Communication Research,
Simon Fraser University, 1987. 66 pages.

M. Yamashita and T. Kameda. Computing on an Anonymous Network. Tech­
nical Report 87-16, Laboratory for Computer and Communication Research,
Simon Fraser University, 1987. 27 pages.

16

