
Translating Logic Programs into
Conditional Rewriting Systems

Femke van Raamsdonk
CWI
P.O. Box 94079, 1090 GB Amsterdam
The Netherlands
femke@cwi.nl

Abstract

In this paper a translation from a subclass of logic programs consisting of
the simply moded logic programs into rewriting systems is defined. In these
rewriting systems conditions and explicit substitutions may be present. We
argue that our translation is more natural than previously studied ones and
establish a result showing its correctness.

1 Introduction

Logic and functional programming are both instances of declarative pro
gramming and hence it is not surprising that the relationship between them
has been studied. However, the work so far has in our opinion not yet re
sulted in clear cut and simple to state results clarifying this relationship.
Moreover, most of the work in the area concerns only termination of logic
programming, via a translation into term rewriting systems. See Section 5
for a discussion of related work.

The aim of the present paper is to relate in a precise way the operational
semantics of logic programming, resolution, to the operational semantics
of functional programming, rewriting, thus abstracting from the syntactic
details of particular programming languages. We discuss extensively the
merits and deficiencies of possible translations and argue that the use of
conditions and explicit substitutions makes it possible to design a natural
and intuitive translation. Our translation can be used as a basis for an
alternative implementation of a subset of logic programming via a translation
to functional programs.

We provide a rigorous result showing the correctness of our translation.
This result states that one resolution step using a clause C is translated
into one or more rewrite steps, all using the rewrite rule C*, which is the
translation of C. Hence in particular termination of a logic program is
implied by termination of its translation. Moreover, a successful resolution
sequence is translated into a rewriting sequence that ends in an expression
in normal form, from which the computed answer substitution can be read
immediately.

168

169

2 Preliminaries

We assume the reader to be familiar with logic programming and refer to [1]
for an overview. In this section we fix the notation and give the definitions
that are less well-known.

We assume a set V consisting of infinitely many variables written as
x, y, z, A logic program is a triple of the form (F, n, C) with (f, g E) Fa
set of fu.nction symbols, (r, f, g E) n a set of relation symbols and (C, C' E)
C a set of clau.ses over (F, R). Queries are denoted by Q, Q', .. . , and the
empty query is written as D. Terms are denoted by s, t, ... and atoms by
a,b,

Substitutions are denoted by a, r,.. .. The identity substitution is de
noted by E, and the composition of substitutions a and r is denoted by ar.
The result of applying a substitution a to a term s is denoted by sa.

The set of free variables occurring in an expression X is denoted by V(X).
We denote the union of the variables in the domain and the variables in the
codomain of a substitution a by V(a).

The relation symbols of the logic programs considered in this paper use
some arguments as input and some arguments as output. This is formalized
using the notion of modes. Modes were introduced by Mellish [9] and further
studied by Reddy [10]. A base mode is either inpu.t, denoted by .j., or ou.tput,
denoted by t. An m-ary mode is a product, denoted using x, of m base
modes. Without loss of generality, an m-ary mode is of the form .J.. x ... x ..(.
x t x ... x t with first p times .J.. and then q times t, and p + q = m. Such
a mode is denoted by (p, q). In the remainder of this paper, every relation
symbol is supposed to have a fixed mode. The following convention will be
used.

Notation 2.1 If r is a relation symbol of mode (p, q), then r(s, t) denotes
the atom with terms s = si, ... , Sp in the input positions of r and terms
t = t 1, .•. , tq in the output positions of r. Note that p and q may be zero.
The length of a sequence 8 is denoted by IS!.

One of the main differences between logic programming and rewriting is that
the resolution relation of a logic program is defined using unification whereas
the rewrite relating of a rewriting system is defined using matching. Apt and
Etalle identify in [2] several classes of Prolog programs for which unification
can be replaced by iterated matching. One of these classes consists of pro
grams that are well-moded and satisfy in addition another restriction; in the
present paper these programs are said to be simply moded. The class of sim
ply moded logic programs is used as the domain of the translation defined in
Section 4. For the definition of simply modedness we first need the definition
of well-modedness, which is originally due to Dembinski and Maluszynski [5].
The following definition is taken from [1]. Intuitively, well-modedness is a
restriction concerning the flow of information in a program.

170

Definition 2.2

1. A query rt(s\, i'i), ... ,rm(S'm, 4ri) is said to be well-moded if

i-1
V(S;) ~ LJ V(fi)

j=l

for every i E { 1, ... , m}.

2. A clausero(tO,sm+i) +-r1(s1,f1), ... ,rm(sm,4n) is well-modedif

i-1
V(si) ~ LJ V(f'y)

j=O

for every i E { 1, ... , m + 1}.

3. A logic program (:F, R, C) is well-moded if every clause in C is well
moded.

Note that if r1 (81, f;_), ... , rm(sm, 4n) is a well-moded query, then V(s1) = 0.
The concept of well-modedness is important because computing well-moded
queries in well-moded programs yields computed answer substitution that
are ground (see [1]). Modes play an important role in the programming
language Mercury [11].

Definition 2.3

1. A query r1(.91J1),. . .,rm(sm, 4n) is said to be simply moded if

(a) it is well-moded,

(b) the terms i;_, ... , 4n are distinct variables.

2. A clausero(so,tQ) t-ri(s1,i'1),. . .,rm(S'm,4n) is simply modedif

(a) it is well-moded,

(b) the terms £;., ... , 4n are distinct variables.

3. A logic program (:F, R, C) is simply moded if every clause in C is simply
moded.

Note that our terminology differs from the one used in [2]: simply moded in
the sense of Definition 2.3 is equivalent to the conjunction of well-modedness
and simply modedness in the sense of [2].

In the remainder of this paper we restrict attention to simply moded
logic programs and queries. We will make use of the following notion of
resolution.

171

Definition 2.4 Let (F, R, C) be a simply moded logic program. A resolu
tion step is defined as a pair written as

(Q; a) *c (Q1; a')

with Q, Q1 queries, a, a', r substitutions and Ca clause in C such that:

1. V(C)nV((Q;a)) =0,

4. T is a most general unifier of h and a1,

with T1 the substitution T restricted to V(h) and T2 the substitution 7 re
stricted to V (a1).

A sequence of resolution steps is called a resol,ution sequence. A resolution
sequence is successful if it ends in (D; er), for some substitution a. We write=?
instead of =?c if it is clear or irrelevant which clause is used in the resolution
step.

A few remarks concerning the previous definition are appropriate. First,
note that always the leftmost atom is selected. Second, the expressions
that are transformed are pairs consisting of a query and a substitution. In
some other definitions of the resolution relation, see for instance [l], the
expressions that are transformed are queries. We consider the first option
to be more natural; moreover it is closer to actual implementations. Third,
we make essential use of the form of simply moded clauses and programs,
which also ensures that instead of unification iterated matching can be used
[2]. Suppose, using the notation of Definition 2.4, that a1 = r(.s'i, ti) and
h = r(s, f) are unifiable. Then to start with 81 and s are unifiable, which
means, since V(s'i) = 0, that there is a substitution 7 1 such that sr1 = 81.

We call this substitution the matching substitution since it matches the input
part of the head of a clause with the input part of an atom. Second, since ft
are distinct variables, the substitution 72 that assigns &1 to f1 is a unifier of
£;.and &1 . Because T2 expresses which values are computed for the variables
i;, we call T2 the computation S'Ubst'ii'utfon.

In the remainder of the paper we will tacitly make use of the following
result, which combines results of [l] and [2].

Theorem 2.5 Let (:F, R, C) be a simply moded logic program and let Q be
a simply moded query. If (Q; !J') :::} (Q'; a 1), then the query Q' is also simply
mod ed.

172

3 Conditional Rewriting

In this section we define conditional rewriting systems that will serve as the
codomain of the translation defined in Section 4. They differ from the usual
ones in several respects. First, conditions are treated on an object-level
instead of on a meta-level. Second, the expressions that are transformed are
not terms, but environments with conditions. Moreover, the conditions may

contain explicit substitutions.
We assume a set V consisting of infinitely many variables written as

x, y, z, ... and a set T = {T; I i ;:::: O} of symbols for tupling. The arity of
T; E T is i. A conditional rewriting system is specified by a pair (:F, RR)
consisting of a set of function symbols and a set of conditional rewrite rules.

We assume that T ~ :F.
The set of terms is denoted by Terms and terms are denoted by s, t, ...

as in the previous section. We write T instead of Ta and s instead of Ti (s).

We assume further a binary operator 0 on the set of terms. A condition

is an element of the rnonoid (Terms, 0, T), so T is the (left- and right-)
neutral element for @. We will work modulo the equality relation of the

monoid. The set of conditions is denoted by Con and conditions are denoted
by c, d,.... Note that Terms ~ Con. We will make use of the following

syntactic constructs.

Definition 3.1

1. An environment is inductively defined as follows.

(a) [] is an environment (the empty environment),

(b) if e is an environment, and for some m > 0, x1, ... , Xm are
variables and s1, ... , Sm are terms, then e [T m(x1, ... , xm) .-
T m(s1, ... , sm)] is an environment.

2. A condition with explicit substitution is a pair consisting of a condition
c and an environment e, denoted using juxtaposition by ce. Condi
tions with explicit substitutions are like conditions denoted by c, c',
Terms with explicit substitutions are denoted as terms without explicit
substitutions.

3. A conditional term is a pair consisting of a term and a condition, where
both the term and the condition may contain explicit substitutions. A
conditional term is denoted by s <= c.

4. A conditional environment is a pair consisting of an environment and

a condition, where the condition may contain explicit substitutions. A
conditional environment is denoted by e <= c.

We write s instead of s <= T and e instead of e <= T. Further we adopt the
equality e[x := se] = e[x := s]e. The definition of a conditional rewrite rule
is as follows.

173

Definition 3.2 A conditional rewrite rule is a pair l --+ (r <i= c) such that

1. l is a non-variable term,

2. r <i= c is a conditional term,

3. V(r <i= c) ~ V(l).

A function symbol that occurs as the head-symbol of the left-hand side of
a conditional rewrite rule is said to be a defined symbol. A function symbol
that is not a defined symbol is a constructor symbol. We assume the symbols
in T to be constructor symbols. A context is an expression with one hole in
it. The result of replacing the hole [] in a context C[] by an expression X
is denoted by C[X].

Definition 3.3 Let (:F, 'R'R) be a conditional rewriting system. The rewrite
relation --+ on conditional environments is defined as follows. We have

(e <i= c) --+p (e' <== da ® c')

if there is a rewrite rule p = l --+ (r <i= d) in 'RR, a substitution a and a
context C[] such that

1. (e <i= c) = C[la],

2. (e' <== d) = C[ra].

The relation --+ is defined as the union UpERR --+p.

The transitive closure of a relation --+ is denoted by --+ + and the reflexive
transitive closure is denoted by -». Note that we consider only one level of
conditions. For instance, we have e <== c1 ® c2 instead of (e <i= c 1) <i= c2.

A conditional environment that cannot be rewritten is said to be in normal
form. Note that a conditional environment without defined symbols is in
normal form.

Example 3.4 As an example, we consider the conditional rewriting system
defined by the following rewrite rules:

a --+ (b -<= c)

c -+ T

We have the following rewrite sequence:

[x := a] -+ ([x := b] <== c) --+ [x := b].

174

4 The Translation

In this section we define the translation from simply moded logic programs
into conditional rewriting systems.

Statics. The symbols used in a logic program are variables, function sym
bols with a fixed arity and relation symbols with a fixed mode. These sym
bols should be translated into symbols used in a conditional rewriting sys:tem.
We suppose variables to be universal. Both the function symbols and the
relation symbols of a logic program are translated into function symbols as
follows.

Definition 4.1

1. A variable x is translated into itself.

2. A function symbol f E :F of arity m is translated into a function
symbol f* of arity m.

3. A relation symbol r E 'R of mode (p, q) is translated into a function
symbol r* of arity p.

The set {!* I f E :F} is denoted by :F* and the set { r* I r E 'R} is denoted by
'R •. We will write f and r instead of f* and r*. The translation of function
symbols is extended homomorphically to the set of atoms. Note that the
translation is the identity on the set of terms of a logic program.

Dynamics. The dynamics of a logic program is prescribed by its set of
clauses. In a rewriting system, the rewrite rules determine how expressions
can be transformed. We will define how to translate simply moded clauses
into conditional rewriting rules with explicit substitution as defined in Sec
tion 3. First we motivate the use of the three main particularities of the class
of rewriting systems used as codomain: tupling, conditions and explicit sub
stitutions.

First we discuss the use of tupling. Consider a clause of the form h ~,
with an empty body. Such a clause is of the form

f(s1, ... , Sp1 t1, ... , iq) ~

with the first p arguments input and the last q arguments output. The
natural translation of such a clause is

with T q a symbol for tupling of arity q as defined in Section 3. We identify
the tuple of arity 0 with 'true'. Hence a simply moded clause (:F, 'R) will
be translated into a rewrite rule over the alphabet :F* U 'R* U T with T =
{Ti I i ;;:;:: O} as defined in Section 2.

175

Second we discuss the use of conditions. As an example we consider the
following logic program:

even(O) +-
odd(s(x)) +- even(x)

This program is translated into the following conditional rewriting system:

even(O) -+ T
odd(s(x)) -+ T {:: even(x)

with modes even, odd: .j... Intuitively, the resolution sequence

(odd(s(O)); E) => (even(O); E):::} (D; E}

corresponds to the rewrite sequence

odd(s(O)) -+ (T {:: even(O)) -+ T.

Note that the use of conditions on an object level is essential, if we want
every resolution step to correspond to at least one rewriting step. Using
'normal' conditional rewriting, the second rewrite step would take place on
a meta-level and would hence not be observable.

Third we discuss the use of explicit substitutions. To make the discussion
more concrete, consider the logic program for addition of natural numbers:

add(O, x, x) +-
add(s(x), y, s(z)) +- add(x, y, z)

with mode add: .j.. x .j.. x f. A naive but elegant way of translating this logic
program yields the following conditional rewriting system:

add(O, x)
add(s(x),y)

-+ x
-+ s(z) {:: add(x,y)....,. z

Note that this conditional rewriting system is not in the format defined in
Section 2; it is in fact a conditional rewriting system with so-called extra
variables, since the variable z in the last rewrite rule does not appear in the
left-hand side. This is, ignoring some notational differences, the translation
used by Ganzinger and Waldmann in [6]. Although for the purpose of that
paper, which is to provide a method to prove termination of logic programs,
this translation is satisfactory, for the purposes of the present paper it is not,
for the following reasons. First, every successful resolution sequence starting
in a simply moded query is translated into a rewrite sequence consisting of
one rewrite step, so the translation does not give any indication of the cost
of a computation expressed in the number of transformation steps. This is
the case since resolution steps at object-level are translated into rewriting
steps at meta-level. Second, we think that the conditional part of a rewriting

176

rule should be used to check a condition and not to calculate the value of
a variable. Reconsidering the second rewrite rule reveals that the problems
mentioned above can be solved by turning the condition of the second rewrite
rule into a substitution, yielding the following rewrite rule:

add(s(x), y)--+ s(z)[z := add(x, y)].

If the condition is evaluated in the usual way, then this rewrite rule takes
the following form:

add(s(x),y)--+ s(add(x,y)).

In this way the logic program for addition is translated into the usual rewrit
ing system for addition. However, for the moment we choose not to evaluate
the conditions in right-hand sides of rewrite rules for the following reason.
Translating the clause

f(x,a) t-- f(a,y)

with mode f: .j, x t into a rewrite rule with explicit conditions yields

f(x) --+ a[y := f(a)].

If the condition is evaluated, the rule takes the form

f(x) --+ a.

In that way a non-terminating logic program is translated into a terminating
rewriting system. In the translation with explicit substitution, the infinite
resolution sequence is translated into an infinite rewrite sequence in which
almost all rewrite steps take place in 'garbage'. Finally, the order in which
the explicit substitutions occur in the translation of a clause is determined
by the flow of information, which is in simply moded clauses from left to
right. See for an illustration Example 4.3.

This discussion motivates the following definition of the translation of a
moded (not necessarily simply moded) clause.

Definition 4. 2 Let
G=ht--b1, ... ,bm

with h = r(s, {) and m 2: 0 be a moded clause over (:F, R) with distinct
variables in the output positions of the body. Define for every p E { 1, ... , m+
1 }: Gp= h t-- bp, ... , bm.

1. The translation of Gp, denoted by G;, is defined by induction on m +
1-p.

(a) Suppose that p = m + 1. The translation of Gp is defined as
follows:

G; = r(S)--+ Ti(t) with i =I~-

177

(b) Suppose that 1 $ p < m+l and let c;+l = lp+i -t (rp+l {::: Cp+1).

i. If bp = rp(Sp, t;,) with lt;il = i > 0, then

c; = lp+l -t rp+1[Ti(t;,) := rp(sp)] {::: Cp+i[Ti(t;,) := rp(Sj,)].

ii. If bp = rp(.?p), then

c; = lp+l -+ (rp+l {::: rp(S'p) ® Cp+1).

2. The translation of C, denoted by C*, is defined as follows: C* = Ci.

Note that we have lp = r(S) for every p E {1, ... ,m+ 1} in the previous def
inition. Another observation is that the relation symbols of a logic program
are translated into defined symbols, and its function symbols are translated
into constructor symbols.

Example 4.3 Consider the simply moded clause

C = f(x, z) +- g(x, y), h(y), g' (y, z)

with modes f, g, g': -!.. x t and h: .j,.. Following Definition 4.2, we find the
following:

C4 = f(x,z) +-
Cs = f(x, z) t- g'(y, z)
02 = f (x, z) t- h(y), g'(y, z)
01 = f (x, z) t- g(x, y), h(y),g'(y, z)

C4 = j(x)-+ z
c; = f(x)-+ z[z := g'(y)]
02 = f(x)-+ z[z := g'(y)] <= h(y)
Ci = f(x)-+ z[z := g'(y)][y := g(x)] <=

h(y)[y := g(x)]

The following result states that the translation of a simply moded clause is
a conditional rewrite rule.

Proposition 4.4 Let C be a simply moded clause. Then G* is a conditional
rewrite rule.

Expressions. In a resolution step, a pair consisting of a query and a sub
stitution is transformed into another pair consisting of a query and a sub
stitution. We now define the translation of such pairs into conditional envi
ronments. First, a substitution is translated into a conditional environment
as follows.

Definition 4.5 Let u = { x1 t--t s1, ... , Xm t--t sm} be a substitution. Its
translation, denoted by u*, is defined as follows:

(J'• = [x1 := s1] ... [xm := Sm]·

Note that the translation of a substitution is a conditional environment in
normal form, since a term in a logic program is translated into a term not
containing defined symbols.

A moded query is also translated into a conditional environment.

178

Definition 4.6 Let Q = a1, ... , am with m ~ 0 be a moded query over

(:F, n) with distinct variables in the output positions. Define for every p E

{1, ... ,m+l}: Qp=ap, ... ,am.

l. The translation of Qp, denoted by Q;, is defined by induction on m +
1 - p as follows.

(a) Suppose that p = m + l. Then:

Q;= [].

(b) Suppose that 1sp<m+1. Suppose that Q;+i = ep+l ~ Cp+l·

i. If ap = rp(B'p, i;,) with !i;,I = i > 0, then

Q; = ep+1[Ti(t;,) := rp(.?p)].;,:: cp+1[Ti(-l;,) := rp(s;,)].

ii. If ap = rp(B'p), then

Q; = ep+l {:: rp(sp) 0 cp+l·

2. The translation of Q, denoted by Q*, is defined as follows: Q* = Qi.

Using the previous two definitions, the translation of a pair consisting of a

query and a substitution is defined as follows.

Definition 4. 7 Let Q be a query with translation Q* = e {:: c and let a be

an substitution with translation a*= e. Then: (Q;a-)* = ee ~c.

One might ask whether the order in which the environments e and e are

concatenated in the previous definition is essential. This is indeed the case.

Consider for instance the following (simply moded) clause

C = f(x,g(y)) f- h(x,y)

with modes f, h: + x t. Its translation is

C* = f(x)-+ g(y)[y := h(x)].

We have the resolution step

(f(a,z);€) :::}c (h(a,y); {z i-t g(y)}).

Using Definition 4.7, this resolution step is translated into the following

rewrite step:
[z := J(a)] -+c• [z := g(y)][y := h(a)].

Note that the translation is not correct if the order in which {z <--* g (y)} •
and the environment part of h(a, y)* are concatenated.

179

The Main Result. The main result is that using the translation of the
present paper, a resolution step using a clause C corresponds to a rewrite
sequence consisting of at least one step using the translation of C. In a
diagram:

(Q;er) =>c (Q';er')

(Q; er)* -+;j. (Q'; er')*

This is expressed in the following theorem, which is proved by induction on
the translation of the clause C. In the proof we work modulo three natural
equations concerning conditional environments.

Theorem 4.8 If (Q;er) =>c (Q';er'), then (Q;er)* -+;j. (Q';er')*.

A corollary of Theorem 4.8 is that termination of a logic program is im
plied by termination of its translation. Since the translation of (D; a) is
a conditional environment in normal form, we have moreover the following
result.

Theorem 4.9 A successful resolution sequence is translated into a rewrite
sequence ending in a conditional environment in normal form.

A resolution sequence that ends with failure might be translated into an
infinite rewrite sequence. However, it is easy to imagine a marking device
that indicates which part of the translation of a query Q corresponds to
the left-most atom of Q. In this way, termination with failure can also be
detected in the translation of a logic program.

Finally, the translation of the clauses of a logic program can be put into a
more readable form by evaluating the explicit substitutions in the usual way.
Then the statement of Theorem 4.8 doesn't hold anymore; instead we obtain
the weaker result that (Q;er) =>c (Q';er') implies (Q;er)* -»c• (Q';u')*.

Example. As an example we consider quicksort. Using the notational
conventions of Prolog, this program consists of the following clauses:

q([], []).

q([X I Xs], Ys) :
p(X, Xs, Ls, Bs),
q(Ls, Ls'), q(Bs, Bs'),
app(Ls', [X I Bs'], Ys).

P ex, CJ , [J , []) .
p(X, [Y I Ys], [Y I Ls], Bs)

X >= Y, p(X, Ys, Ls, Bs).
p(X, [Y I Ys], Ls, [Y I Bs])

180

X < Y, p(X, Ys, Ls, Bs).
app ([] , Xs , Xs) .
app([X I Xs], Ys, [X I Zs])

app(Xs, Ys, Zs).

with modes q: + x t, p: + x + x t x t, app: + x + x t. Translating
this program yields a conditional rewriting system. If we evaluate some
of the explicit conditions in this conditional rewriting system, and use the
notational conventions of Gofer, then we obtain the following functional
program.

q([])

q(x:xs)

p(x, [])
p(x, (y:ys))

app([], xs)
app((x:xs), ys)

= []
= app(q(ls), (x:q(bs)))

where (ls, bs) = p(x, xs)
= ([), [])
= ((y:ls), bs) if x >= y
= (ls, (y:bs)) if x < y

where (ls, bs) = p(x, ys)
xs
(x:app(xs, ys))

5 Concluding Remarks

Related Work. The first to study a translation from logic programs into
functional programs is Reddy (10]. The logic programs that are translated
in this paper are not subject to any restriction; as a consequence, the trans
lation yields functional programs that are in fact only notationally different
from the logic programs they are derived from.

In (7), Krishna Rao, Kapur and Shyamasundar define a translation from
well-moded logic programs into (unconditional) term rewriting systems. The
main result of the paper is that termination of a logic program is implied
by termination of its translation. The definition of the translation is quite
complex and different from the translation defined in the present paper. For
instance, the translation of a relation symbol with more than one output
position is not unique but introduces for every output position a new function
symbol.

The paper [6) by Ganzinger and Waldmann is concerned with termination
of logic programs. Well-moded logic programs are translated into conditional
rewriting systems in the naive but elegant way as discussed in Section 4,
modulo some differences in notation. An earlier result by Ganzinger states
that conditional rewriting systems that are quasi-reductive are terminating.
The main result of [6) is that a logic program is terminating if its translation
into a conditional rewriting system is quasi-reductive. This line of research
is continued by Avenhaus and Loria-Saenz, who present in [4) a critical pair
criterion for quasi-reductive conditional rewriting systems. A corollary of the

181

results presented in [6] and [4] is that a well-moded logic program terminates
in a unique result, if its translation (in the naive way) is quasi-reductive and
satisfies the critical pair criterion of [4].

Marchiori proposes in [8) a translation from the class of simply mod~d
logic programs into (unconditional) term rewriting systems. This translation
is very complex and differs quite a lot from the one of the present paper.

Arts and Zantema present in [3] an algorithm to translate logic programs
into constructor systems. Moreover, they present a technique to prove ter
mination of constructor systems that is particularly suitable to prove termi
nation of the translation of logic programs, using their translation.

Conclusions. The translation proposed in the present paper is very in
tuitive and given the correctness result moreover suitable to be used as a
basis for an implementation of a subclass of logic programs via functional
programs.

The format of rewriting presented in Section 3 is tailor-made for the
translation; nevertheless some of its features, in particular the use of condi
tions at an object-level, are also interesting purely from a rewriting point of
view.

We conjecture that the main result can also be proved for a larger class
of logic programs obtained by relaxing the restriction of well-modedness.

Acknowledgements

I gratefully acknowledge helpful and motivating discussions with Krzysztof
Apt. I further wish to thank Gilles Barthe, Sandro Etalle, Pieter Hartel,
Aart Middeldorp, Vincent van Oostrom, Wim Vree and Mark Wielaard for
valuable remarks.

This research was supported by NWO/SION project number 612-33-003,
entitled 'Parallel declarative programming: transforming logic prog,Tams to
lazy functional programs'.

References

[1] K.R. Apt. From Logic Programming to Prolog. Prentice-Hall, 1997.

[2] K.R. Apt and S. Etalle. On the unification free Prolog programs. In
A. Borzyszkowski and S. Sokolowski, editors, Proceedings of the Confer
ence on Mathematical Foundations of Computer Science {MFCS '93),
pages 1-19, Berlin, Germany, 1993. Springer Verlag.

[3] T. Arts and H. Zantema. Termination of logic programs using semantic
unificition. In M. Proietti, editor, Proceedings of the 5th International
Workshop on Logic Program Synthesis and Transformation (LOPSTR

182

'95), volume 1048 of Lecture Notes in Computer Science, pages 219-233,
Utrecht, The Netherlands, September 1995. Springer Verlag.

[4) J. Avenhaus and C. Loria-Saenz. On conditional rewrite systems with
extra variables and deterministic logic programs. In F. Pfenning, edi
tor, Proceedings of the 5th International Conference on Logic Program

ming and Automated Reasoning {LPAR '94), volume 822 of Lecture
Notes in Artificial Intelligence, pages 215-229, Kiev, Ukraine, July
1994. Springer Verlag.

[5] P. Dembinski and J. Maluszynski. AND-parallelism with intelligent
backtracking for annotated logic programs. In Proceedings of the Inter
national Symposium on Logic Programming, Boston, USA, 1985.

[6] H. Ganzinger and U. Waldmann. Termination proofs of w~ll-moded
logic programs via conditional rewrite systems. In M. Rusinowitch and
J.L. Remy, editors, Proceedings of the third international workshop on

conditional term rewriting systems (CTRS '92), pages 430-437, Pont
a-Mousson, July 1992.

[7] M.R.K. Krishna Rao, D. Kapur, and R.K. Shyamasundar. A trans
formation methodology for proving termination of logic programs. In
E. Borger, G. Jager, H. Kleine Biining, and M.M. Richter, editors, Pro

ceedings of the 5th Workshop on Computer Science Logic (CSL '91),

pages 213-226, Berne, Switzerland, October 1991. Springer Verlag.

[8] M. Marchiori. Logic programs as term rewriting systems. In G. Levi
and M. Rodriguez-Artalejo, editors, Proceedings of the 4th International

Conference on Algebraic and Logic Programming {ALP '94), pages 223-

241, Madrid, Spain, September 1994.

[9] C.S. Mellish. The automatic generation of mode declarations for Prolog
programs. Technical Report DAI Research Paper 163, University of
Edinburgh, 1981.

[10] U.S. Reddy. Transformation of logic programs into functional programs.
In Proceedings of the Symposium on Logic Programming, pages 187-

196, Atlantic City, New Jersey, USA, February 1984. IEEE Computer
Society, Silver Spring, MD.

[ll] z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of
Mercury: an efficient purely declarative logic programming language.
Journal of Logic Programming, 29(1-3):17-64, 1996.

