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Abstract 

In this paper a translation from a subclass of logic programs consisting of 
the simply moded logic programs into rewriting systems is defined. In these 
rewriting systems conditions and explicit substitutions may be present. We 
argue that our translation is more natural than previously studied ones and 
establish a result showing its correctness. 

1 Introduction 

Logic and functional programming are both instances of declarative pro
gramming and hence it is not surprising that the relationship between them 
has been studied. However, the work so far has in our opinion not yet re
sulted in clear cut and simple to state results clarifying this relationship. 
Moreover, most of the work in the area concerns only termination of logic 
programming, via a translation into term rewriting systems. See Section 5 
for a discussion of related work. 

The aim of the present paper is to relate in a precise way the operational 
semantics of logic programming, resolution, to the operational semantics 
of functional programming, rewriting, thus abstracting from the syntactic 
details of particular programming languages. We discuss extensively the 
merits and deficiencies of possible translations and argue that the use of 
conditions and explicit substitutions makes it possible to design a natural 
and intuitive translation. Our translation can be used as a basis for an 
alternative implementation of a subset of logic programming via a translation 
to functional programs. 

We provide a rigorous result showing the correctness of our translation. 
This result states that one resolution step using a clause C is translated 
into one or more rewrite steps, all using the rewrite rule C*, which is the 
translation of C. Hence in particular termination of a logic program is 
implied by termination of its translation. Moreover, a successful resolution 
sequence is translated into a rewriting sequence that ends in an expression 
in normal form, from which the computed answer substitution can be read 
immediately. 
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2 Preliminaries 

We assume the reader to be familiar with logic programming and refer to [1] 
for an overview. In this section we fix the notation and give the definitions 
that are less well-known. 

We assume a set V consisting of infinitely many variables written as 
x, y, z, .. .. A logic program is a triple of the form (F, n, C) with (f, g E) Fa 
set of fu.nction symbols, (r, f, g E) n a set of relation symbols and (C, C' E) 
C a set of clau.ses over (F, R). Queries are denoted by Q, Q', .. . , and the 
empty query is written as D. Terms are denoted by s, t, ... and atoms by 
a,b, .... 

Substitutions are denoted by a, r,.. .. The identity substitution is de
noted by E, and the composition of substitutions a and r is denoted by ar. 
The result of applying a substitution a to a term s is denoted by sa. 

The set of free variables occurring in an expression X is denoted by V(X). 
We denote the union of the variables in the domain and the variables in the 
codomain of a substitution a by V(a). 

The relation symbols of the logic programs considered in this paper use 
some arguments as input and some arguments as output. This is formalized 
using the notion of modes. Modes were introduced by Mellish [9] and further 
studied by Reddy [10]. A base mode is either inpu.t, denoted by .j., or ou.tput, 
denoted by t. An m-ary mode is a product, denoted using x, of m base 
modes. Without loss of generality, an m-ary mode is of the form .J.. x ... x ..(. 
x t x ... x t with first p times .J.. and then q times t, and p + q = m. Such 
a mode is denoted by (p, q). In the remainder of this paper, every relation 
symbol is supposed to have a fixed mode. The following convention will be 
used. 

Notation 2.1 If r is a relation symbol of mode (p, q), then r(s, t) denotes 
the atom with terms s = si, ... , Sp in the input positions of r and terms 
t = t 1, .•. , tq in the output positions of r. Note that p and q may be zero. 
The length of a sequence 8 is denoted by IS!. 

One of the main differences between logic programming and rewriting is that 
the resolution relation of a logic program is defined using unification whereas 
the rewrite relating of a rewriting system is defined using matching. Apt and 
Etalle identify in [2] several classes of Prolog programs for which unification 
can be replaced by iterated matching. One of these classes consists of pro
grams that are well-moded and satisfy in addition another restriction; in the 
present paper these programs are said to be simply moded. The class of sim
ply moded logic programs is used as the domain of the translation defined in 
Section 4. For the definition of simply modedness we first need the definition 
of well-modedness, which is originally due to Dembinski and Maluszynski [5]. 
The following definition is taken from [1 ]. Intuitively, well-modedness is a 
restriction concerning the flow of information in a program. 
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Definition 2.2 

1. A query rt(s\, i'i), ... ,rm(S'm, 4ri) is said to be well-moded if 

i-1 
V(S;) ~ LJ V(fi) 

j=l 

for every i E { 1, ... , m}. 

2. A clausero(tO,sm+i) +-r1(s1,f1), ... ,rm(sm,4n) is well-modedif 

i-1 
V(si) ~ LJ V(f'y) 

j=O 

for every i E { 1, ... , m + 1}. 

3. A logic program (:F, R, C) is well-moded if every clause in C is well
moded. 

Note that if r1 (81, f;_), ... , rm(sm, 4n) is a well-moded query, then V(s1) = 0. 
The concept of well-modedness is important because computing well-moded 
queries in well-moded programs yields computed answer substitution that 
are ground (see [1]). Modes play an important role in the programming 
language Mercury [11]. 

Definition 2.3 

1. A query r1(.91J1),. . .,rm(sm, 4n) is said to be simply moded if 

(a) it is well-moded, 

(b) the terms i;_, ... , 4n are distinct variables. 

2. A clausero(so,tQ) t-ri(s1,i'1),. . .,rm(S'm,4n) is simply modedif 

(a) it is well-moded, 

(b) the terms £;., ... , 4n are distinct variables. 

3. A logic program (:F, R, C) is simply moded if every clause in C is simply 
moded. 

Note that our terminology differs from the one used in [2]: simply moded in 
the sense of Definition 2.3 is equivalent to the conjunction of well-modedness 
and simply modedness in the sense of [2]. 

In the remainder of this paper we restrict attention to simply moded 
logic programs and queries. We will make use of the following notion of 
resolution. 
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Definition 2.4 Let (F, R, C) be a simply moded logic program. A resolu
tion step is defined as a pair written as 

(Q; a) *c (Q1; a') 

with Q, Q1 queries, a, a', r substitutions and Ca clause in C such that: 

1. V(C)nV((Q;a)) =0, 

4. T is a most general unifier of h and a1, 

with T1 the substitution T restricted to V(h) and T2 the substitution 7 re
stricted to V ( a1). 

A sequence of resolution steps is called a resol,ution sequence. A resolution 
sequence is successful if it ends in (D; er), for some substitution a. We write=? 
instead of =?c if it is clear or irrelevant which clause is used in the resolution 
step. 

A few remarks concerning the previous definition are appropriate. First, 
note that always the leftmost atom is selected. Second, the expressions 
that are transformed are pairs consisting of a query and a substitution. In 
some other definitions of the resolution relation, see for instance [l ], the 
expressions that are transformed are queries. We consider the first option 
to be more natural; moreover it is closer to actual implementations. Third, 
we make essential use of the form of simply moded clauses and programs, 
which also ensures that instead of unification iterated matching can be used 
[2]. Suppose, using the notation of Definition 2.4, that a1 = r(.s'i, ti) and 
h = r(s, f) are unifiable. Then to start with 81 and s are unifiable, which 
means, since V( s'i) = 0, that there is a substitution 7 1 such that sr1 = 81. 

We call this substitution the matching substitution since it matches the input 
part of the head of a clause with the input part of an atom. Second, since ft 
are distinct variables, the substitution 72 that assigns &1 to f1 is a unifier of 
£;.and &1 . Because T2 expresses which values are computed for the variables 
i;, we call T2 the computation S'Ubst'ii'utfon. 

In the remainder of the paper we will tacitly make use of the following 
result, which combines results of [l] and [2]. 

Theorem 2.5 Let (:F, R, C) be a simply moded logic program and let Q be 
a simply moded query. If (Q; !J') :::} (Q'; a 1), then the query Q' is also simply 
mod ed. 
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3 Conditional Rewriting 

In this section we define conditional rewriting systems that will serve as the 
codomain of the translation defined in Section 4. They differ from the usual 
ones in several respects. First, conditions are treated on an object-level 
instead of on a meta-level. Second, the expressions that are transformed are 
not terms, but environments with conditions. Moreover, the conditions may 

contain explicit substitutions. 
We assume a set V consisting of infinitely many variables written as 

x, y, z, ... and a set T = {T; I i ;:::: O} of symbols for tupling. The arity of 
T; E T is i. A conditional rewriting system is specified by a pair (:F, RR) 
consisting of a set of function symbols and a set of conditional rewrite rules. 

We assume that T ~ :F. 
The set of terms is denoted by Terms and terms are denoted by s, t, ... 

as in the previous section. We write T instead of Ta and s instead of Ti ( s). 

We assume further a binary operator 0 on the set of terms. A condition 

is an element of the rnonoid (Terms, 0, T), so T is the (left- and right-) 
neutral element for @. We will work modulo the equality relation of the 

monoid. The set of conditions is denoted by Con and conditions are denoted 
by c, d,.... Note that Terms ~ Con. We will make use of the following 

syntactic constructs. 

Definition 3.1 

1. An environment is inductively defined as follows. 

(a) [] is an environment (the empty environment), 

(b) if e is an environment, and for some m > 0, x1, ... , Xm are 
variables and s1, ... , Sm are terms, then e [T m(x1, ... , xm) .-
T m(s1, ... , sm)] is an environment. 

2. A condition with explicit substitution is a pair consisting of a condition 
c and an environment e, denoted using juxtaposition by ce. Condi
tions with explicit substitutions are like conditions denoted by c, c', .... 
Terms with explicit substitutions are denoted as terms without explicit 
substitutions. 

3. A conditional term is a pair consisting of a term and a condition, where 
both the term and the condition may contain explicit substitutions. A 
conditional term is denoted by s <= c. 

4. A conditional environment is a pair consisting of an environment and 

a condition, where the condition may contain explicit substitutions. A 
conditional environment is denoted by e <= c. 

We write s instead of s <= T and e instead of e <= T. Further we adopt the 
equality e[x := se] = e[x := s]e. The definition of a conditional rewrite rule 
is as follows. 
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Definition 3.2 A conditional rewrite rule is a pair l --+ (r <i= c) such that 

1. l is a non-variable term, 

2. r <i= c is a conditional term, 

3. V(r <i= c) ~ V(l). 

A function symbol that occurs as the head-symbol of the left-hand side of 
a conditional rewrite rule is said to be a defined symbol. A function symbol 
that is not a defined symbol is a constructor symbol. We assume the symbols 
in T to be constructor symbols. A context is an expression with one hole in 
it. The result of replacing the hole [ ] in a context C[ ] by an expression X 
is denoted by C[X]. 

Definition 3.3 Let (:F, 'R'R) be a conditional rewriting system. The rewrite 
relation --+ on conditional environments is defined as follows. We have 

(e <i= c) --+p (e' <== da ® c') 

if there is a rewrite rule p = l --+ (r <i= d) in 'RR, a substitution a and a 
context C[ ] such that 

1. ( e <i= c) = C[la], 

2. (e' <== d) = C[ra]. 

The relation --+ is defined as the union UpERR --+p. 

The transitive closure of a relation --+ is denoted by --+ + and the reflexive
transitive closure is denoted by -». Note that we consider only one level of 
conditions. For instance, we have e <== c1 ® c2 instead of (e <i= c 1) <i= c2. 

A conditional environment that cannot be rewritten is said to be in normal 
form. Note that a conditional environment without defined symbols is in 
normal form. 

Example 3.4 As an example, we consider the conditional rewriting system 
defined by the following rewrite rules: 

a --+ (b -<= c) 

c -+ T 

We have the following rewrite sequence: 

[x := a] -+ ([x := b] <== c) --+ [x := b]. 
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4 The Translation 

In this section we define the translation from simply moded logic programs 
into conditional rewriting systems. 

Statics. The symbols used in a logic program are variables, function sym
bols with a fixed arity and relation symbols with a fixed mode. These sym
bols should be translated into symbols used in a conditional rewriting sys:tem. 
We suppose variables to be universal. Both the function symbols and the 
relation symbols of a logic program are translated into function symbols as 
follows. 

Definition 4.1 

1. A variable x is translated into itself. 

2. A function symbol f E :F of arity m is translated into a function 
symbol f* of arity m. 

3. A relation symbol r E 'R of mode (p, q) is translated into a function 
symbol r* of arity p. 

The set {!* I f E :F} is denoted by :F* and the set { r* I r E 'R} is denoted by 
'R •. We will write f and r instead of f* and r*. The translation of function 
symbols is extended homomorphically to the set of atoms. Note that the 
translation is the identity on the set of terms of a logic program. 

Dynamics. The dynamics of a logic program is prescribed by its set of 
clauses. In a rewriting system, the rewrite rules determine how expressions 
can be transformed. We will define how to translate simply moded clauses 
into conditional rewriting rules with explicit substitution as defined in Sec
tion 3. First we motivate the use of the three main particularities of the class 
of rewriting systems used as codomain: tupling, conditions and explicit sub
stitutions. 

First we discuss the use of tupling. Consider a clause of the form h ~, 
with an empty body. Such a clause is of the form 

f(s1, ... , Sp1 t1, ... , iq) ~ 

with the first p arguments input and the last q arguments output. The 
natural translation of such a clause is 

with T q a symbol for tupling of arity q as defined in Section 3. We identify 
the tuple of arity 0 with 'true'. Hence a simply moded clause (:F, 'R) will 
be translated into a rewrite rule over the alphabet :F* U 'R* U T with T = 
{Ti I i ;;:;:: O} as defined in Section 2. 
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Second we discuss the use of conditions. As an example we consider the 
following logic program: 

even(O) +-
odd(s(x)) +- even(x) 

This program is translated into the following conditional rewriting system: 

even(O) -+ T 
odd(s(x)) -+ T {:: even(x) 

with modes even, odd: .j... Intuitively, the resolution sequence 

(odd(s(O)); E) => (even(O); E):::} (D; E} 

corresponds to the rewrite sequence 

odd(s(O)) -+ (T {:: even(O)) -+ T. 

Note that the use of conditions on an object level is essential, if we want 
every resolution step to correspond to at least one rewriting step. Using 
'normal' conditional rewriting, the second rewrite step would take place on 
a meta-level and would hence not be observable. 

Third we discuss the use of explicit substitutions. To make the discussion 
more concrete, consider the logic program for addition of natural numbers: 

add(O, x, x) +-
add(s(x ), y, s(z)) +- add(x, y, z) 

with mode add: .j.. x .j.. x f. A naive but elegant way of translating this logic 
program yields the following conditional rewriting system: 

add(O, x) 
add(s(x),y) 

-+ x 
-+ s(z) {:: add(x,y)....,. z 

Note that this conditional rewriting system is not in the format defined in 
Section 2; it is in fact a conditional rewriting system with so-called extra 
variables, since the variable z in the last rewrite rule does not appear in the 
left-hand side. This is, ignoring some notational differences, the translation 
used by Ganzinger and Waldmann in [6]. Although for the purpose of that 
paper, which is to provide a method to prove termination of logic programs, 
this translation is satisfactory, for the purposes of the present paper it is not, 
for the following reasons. First, every successful resolution sequence starting 
in a simply moded query is translated into a rewrite sequence consisting of 
one rewrite step, so the translation does not give any indication of the cost 
of a computation expressed in the number of transformation steps. This is 
the case since resolution steps at object-level are translated into rewriting 
steps at meta-level. Second, we think that the conditional part of a rewriting 
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rule should be used to check a condition and not to calculate the value of 
a variable. Reconsidering the second rewrite rule reveals that the problems 
mentioned above can be solved by turning the condition of the second rewrite 
rule into a substitution, yielding the following rewrite rule: 

add(s(x), y)--+ s(z)[z := add(x, y)]. 

If the condition is evaluated in the usual way, then this rewrite rule takes 
the following form: 

add(s(x),y)--+ s(add(x,y)). 

In this way the logic program for addition is translated into the usual rewrit
ing system for addition. However, for the moment we choose not to evaluate 
the conditions in right-hand sides of rewrite rules for the following reason. 
Translating the clause 

f(x,a) t-- f(a,y) 

with mode f: .j, x t into a rewrite rule with explicit conditions yields 

f(x) --+ a[y := f(a)]. 

If the condition is evaluated, the rule takes the form 

f(x) --+ a. 

In that way a non-terminating logic program is translated into a terminating 
rewriting system. In the translation with explicit substitution, the infinite 
resolution sequence is translated into an infinite rewrite sequence in which 
almost all rewrite steps take place in 'garbage'. Finally, the order in which 
the explicit substitutions occur in the translation of a clause is determined 
by the flow of information, which is in simply moded clauses from left to 
right. See for an illustration Example 4.3. 

This discussion motivates the following definition of the translation of a 
moded (not necessarily simply moded) clause. 

Definition 4. 2 Let 
G=ht--b1, ... ,bm 

with h = r(s, {) and m 2: 0 be a moded clause over (:F, R) with distinct 
variables in the output positions of the body. Define for every p E { 1, ... , m+ 
1 }: Gp= h t-- bp, ... , bm. 

1. The translation of Gp, denoted by G;, is defined by induction on m + 
1-p. 

(a) Suppose that p = m + 1. The translation of Gp is defined as 
follows: 

G; = r(S)--+ Ti(t) with i =I~-



177 

(b) Suppose that 1 $ p < m+l and let c;+l = lp+i -t (rp+l {::: Cp+1). 

i. If bp = rp(Sp, t;,) with lt;il = i > 0, then 

c; = lp+l -t rp+1[Ti(t;,) := rp(sp)] {::: Cp+i[Ti(t;,) := rp(Sj,)]. 

ii. If bp = rp(.?p), then 

c; = lp+l -+ (rp+l {::: rp(S'p) ® Cp+1). 

2. The translation of C, denoted by C*, is defined as follows: C* = Ci. 

Note that we have lp = r(S) for every p E {1, ... ,m+ 1} in the previous def
inition. Another observation is that the relation symbols of a logic program 
are translated into defined symbols, and its function symbols are translated 
into constructor symbols. 

Example 4.3 Consider the simply moded clause 

C = f(x, z) +- g(x, y), h(y), g' (y, z) 

with modes f, g, g': -!.. x t and h: .j,.. Following Definition 4.2, we find the 
following: 

C4 = f(x,z) +-
Cs = f(x, z) t- g'(y, z) 
02 = f (x, z) t- h(y), g'(y, z) 
01 = f (x, z) t- g(x, y), h(y),g'(y, z) 

C4 = j(x)-+ z 
c; = f(x)-+ z[z := g'(y)] 
02 = f(x)-+ z[z := g'(y)] <= h(y) 
Ci = f(x)-+ z[z := g'(y)][y := g(x)] <= 

h(y)[y := g(x)] 

The following result states that the translation of a simply moded clause is 
a conditional rewrite rule. 

Proposition 4.4 Let C be a simply moded clause. Then G* is a conditional 
rewrite rule. 

Expressions. In a resolution step, a pair consisting of a query and a sub
stitution is transformed into another pair consisting of a query and a sub
stitution. We now define the translation of such pairs into conditional envi
ronments. First, a substitution is translated into a conditional environment 
as follows. 

Definition 4.5 Let u = { x1 t--t s1, ... , Xm t--t sm} be a substitution. Its 
translation, denoted by u*, is defined as follows: 

(J'• = [x1 := s1] ... [xm := Sm]· 

Note that the translation of a substitution is a conditional environment in 
normal form, since a term in a logic program is translated into a term not 
containing defined symbols. 

A moded query is also translated into a conditional environment. 
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Definition 4.6 Let Q = a1, ... , am with m ~ 0 be a moded query over 

(:F, n) with distinct variables in the output positions. Define for every p E 

{1, ... ,m+l}: Qp=ap, ... ,am. 

l. The translation of Qp, denoted by Q;, is defined by induction on m + 
1 - p as follows. 

(a) Suppose that p = m + l. Then: 

Q;= []. 

(b) Suppose that 1sp<m+1. Suppose that Q;+i = ep+l ~ Cp+l· 

i. If ap = rp(B'p, i;,) with !i;,I = i > 0, then 

Q; = ep+1[Ti(t;,) := rp(.?p)].;,:: cp+1[Ti(-l;,) := rp(s;,)]. 

ii. If ap = rp(B'p), then 

Q; = ep+l {:: rp(sp) 0 cp+l· 

2. The translation of Q, denoted by Q*, is defined as follows: Q* = Qi. 

Using the previous two definitions, the translation of a pair consisting of a 

query and a substitution is defined as follows. 

Definition 4. 7 Let Q be a query with translation Q* = e {:: c and let a be 

an substitution with translation a*= e. Then: (Q;a-)* = ee ~c. 

One might ask whether the order in which the environments e and e are 

concatenated in the previous definition is essential. This is indeed the case. 

Consider for instance the following (simply moded) clause 

C = f(x,g(y)) f- h(x,y) 

with modes f, h: + x t. Its translation is 

C* = f(x)-+ g(y)[y := h(x)]. 

We have the resolution step 

(f(a,z);€) :::}c (h(a,y); {z i-t g(y)}). 

Using Definition 4.7, this resolution step is translated into the following 

rewrite step: 
[z := J(a)] -+c• [z := g(y)][y := h(a)]. 

Note that the translation is not correct if the order in which {z <--* g (y)} • 
and the environment part of h(a, y)* are concatenated. 
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The Main Result. The main result is that using the translation of the 
present paper, a resolution step using a clause C corresponds to a rewrite 
sequence consisting of at least one step using the translation of C. In a 
diagram: 

(Q;er) =>c (Q';er') 

(Q; er)* -+;j. (Q'; er')* 

This is expressed in the following theorem, which is proved by induction on 
the translation of the clause C. In the proof we work modulo three natural 
equations concerning conditional environments. 

Theorem 4.8 If (Q;er) =>c (Q';er'), then (Q;er)* -+;j. (Q';er')*. 

A corollary of Theorem 4.8 is that termination of a logic program is im
plied by termination of its translation. Since the translation of (D; a) is 
a conditional environment in normal form, we have moreover the following 
result. 

Theorem 4.9 A successful resolution sequence is translated into a rewrite 
sequence ending in a conditional environment in normal form. 

A resolution sequence that ends with failure might be translated into an 
infinite rewrite sequence. However, it is easy to imagine a marking device 
that indicates which part of the translation of a query Q corresponds to 
the left-most atom of Q. In this way, termination with failure can also be 
detected in the translation of a logic program. 

Finally, the translation of the clauses of a logic program can be put into a 
more readable form by evaluating the explicit substitutions in the usual way. 
Then the statement of Theorem 4.8 doesn't hold anymore; instead we obtain 
the weaker result that (Q;er) =>c (Q';er') implies (Q;er)* -»c• (Q';u')*. 

Example. As an example we consider quicksort. Using the notational 
conventions of Prolog, this program consists of the following clauses: 

q([], []). 

q([X I Xs], Ys) :
p(X, Xs, Ls, Bs), 
q(Ls, Ls'), q(Bs, Bs'), 
app(Ls', [X I Bs'], Ys). 

P ex, CJ , [J , []) . 
p(X, [Y I Ys], [Y I Ls], Bs) 

X >= Y, p(X, Ys, Ls, Bs). 
p(X, [Y I Ys], Ls, [Y I Bs]) 
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X < Y, p(X, Ys, Ls, Bs). 
app ( [] , Xs , Xs) . 
app( [X I Xs], Ys, [X I Zs]) 

app(Xs, Ys, Zs). 

with modes q: + x t, p: + x + x t x t, app: + x + x t. Translating 
this program yields a conditional rewriting system. If we evaluate some 
of the explicit conditions in this conditional rewriting system, and use the 
notational conventions of Gofer, then we obtain the following functional 
program. 

q([]) 

q(x:xs) 

p(x, []) 
p(x, (y:ys)) 

app( [], xs) 
app((x:xs), ys) 

= [] 
= app(q(ls), (x:q(bs))) 

where (ls, bs) = p(x, xs) 
= ([), []) 
= ((y:ls), bs) if x >= y 
= (ls, (y:bs)) if x < y 

where (ls, bs) = p(x, ys) 
xs 
(x:app(xs, ys)) 

5 Concluding Remarks 

Related Work. The first to study a translation from logic programs into 
functional programs is Reddy (10]. The logic programs that are translated 
in this paper are not subject to any restriction; as a consequence, the trans
lation yields functional programs that are in fact only notationally different 
from the logic programs they are derived from. 

In (7), Krishna Rao, Kapur and Shyamasundar define a translation from 
well-moded logic programs into (unconditional) term rewriting systems. The 
main result of the paper is that termination of a logic program is implied 
by termination of its translation. The definition of the translation is quite 
complex and different from the translation defined in the present paper. For 
instance, the translation of a relation symbol with more than one output 
position is not unique but introduces for every output position a new function 
symbol. 

The paper [6) by Ganzinger and Waldmann is concerned with termination 
of logic programs. Well-moded logic programs are translated into conditional 
rewriting systems in the naive but elegant way as discussed in Section 4, 
modulo some differences in notation. An earlier result by Ganzinger states 
that conditional rewriting systems that are quasi-reductive are terminating. 
The main result of [6) is that a logic program is terminating if its translation 
into a conditional rewriting system is quasi-reductive. This line of research 
is continued by Avenhaus and Loria-Saenz, who present in [4) a critical pair 
criterion for quasi-reductive conditional rewriting systems. A corollary of the 
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results presented in [6] and [4] is that a well-moded logic program terminates 
in a unique result, if its translation (in the naive way) is quasi-reductive and 
satisfies the critical pair criterion of [4]. 

Marchiori proposes in [8) a translation from the class of simply mod~d 
logic programs into (unconditional) term rewriting systems. This translation 
is very complex and differs quite a lot from the one of the present paper. 

Arts and Zantema present in [3] an algorithm to translate logic programs 
into constructor systems. Moreover, they present a technique to prove ter
mination of constructor systems that is particularly suitable to prove termi
nation of the translation of logic programs, using their translation. 

Conclusions. The translation proposed in the present paper is very in
tuitive and given the correctness result moreover suitable to be used as a 
basis for an implementation of a subclass of logic programs via functional 
programs. 

The format of rewriting presented in Section 3 is tailor-made for the 
translation; nevertheless some of its features, in particular the use of condi
tions at an object-level, are also interesting purely from a rewriting point of 
view. 

We conjecture that the main result can also be proved for a larger class 
of logic programs obtained by relaxing the restriction of well-modedness. 
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