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Abstract 

Diffie and Hellman proposed a key exchange scheme in 1976, which got 

their name in the literature afterwards. In the same epoch-making paper, 

they conjectured that breaking their scheme would be as hard as taking 

discrete logarithms. This problem has remained open for the 

multiplicative group modulo a prioe P that they originally proposed. 

Here it is proven that both problems are (probabilisticly) polynomial-time 

equivalent if the totient of P-1 has only small prime factors with respect to 

a (fixed) polynomial in 2togP. 

There is no algorithm known that solves the discrete log problem in 

probabilistic polynomial time for the this case, i.e., where the totient of 

P-1 is smooth. Consequently, either there exists a (probabilistic) 

polynomial algorithm to solve the discrete log problem when the totient of 

P-1 is smooth or there exist primes (satisfying this condition) for which 

Diffie-Hellman key exchange is secure. 

Introduction 

Let P be a prime and g be a generator of the multiplicative group 

GF(P)*. Letfbe an element of GF(P)*. Solving for x 

(1) f = gXmodP, 
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is called the Discrete Logarithm Problem (D.L. probl'em). Until now, no 

general purpose algorithm has appeared that computes x mod P-1 in 

probabilistic polynomial time (see [Odl]). In [Poh], an algorithm is given 

which solves the D.L. problem in polynomial time for the case where all 

prime factors of P-1 are smaller than some constant B. The time remains 

polynomial if we take B = q(2togP), for some fixed polynomial q(.). 

Numbers with this property will be called smooth( with respect to P and 

q). 

Based on the difficulty of solving the general D.L. problem a key 

exchange protocol is proposed in [DH]: The first step is to establish a prime 

Panda generator g of GF(P)* common for all participants. Each party 

j chooses randomly a secret number Zj and computesfj = li Thefj 

are made public. The public numbers are sufficient to establish a secret and 
common key for each pair of participants. For example let us assume that 
the first party has secret x and computed 

(2) fJ = gx mod P. 

and similarly the second party has secret y and computed 

(3) f2 = gY mod?. 

The first party computesf2 x and the second party computesfJY. 

Thus both parties obtain 

(4) f3 = gXYmodP, 

which they can use as a common secret key. For a passive eavesdropper to 

determine this key, he must findf3 satisfying (4) with suitable x and y 

satisfying (2) and (3) where the gathered data is just 

(P,g/J J2). 

This problem will be called the D.H. problem. An obvious way to solve it 

is to solve a D.L. problem with input (P,g/J) and then to use the output x 
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to compute f3 by f3 =fr. The critical question is canf3 be found 
without obtaining (much) information about x or y in the process. In 

[OH] the authors conjecture that solving x or y is basicly the only way to 

solve the D.H. problem. More precisely they conjecture that the D.H. 

problem is hard if the D.L. problem is hard. A sufficient way to prove this 

is showing there exists an algorithm to solve the D.L. problem comprising 

of a (probabilistic) polynomial number of calls to an algorithm which 

solves the D.H. problem (here after called a D.H. oracle) and a 

(probabilistic) polynomial number of "elementary" operations. 

In this paper we present such an algorithm for the case where the totient 

of P-1 is smooth with respect to P and q(.). In the literature no 

probabilistic time algorithm 9t exists to solve the D.L. problem for primes 

P for which the totient of P-1 is smooth (notice that P-1 itself has to be 

smooth for Pohlig-Hellman algorithm to be polynomial-time, see[Poh]). 

From our design follows that either such an algorithm 9t exists or primes 

P exist for which the D.H. problem is hard. In the latter case primes P 

for which the biggest prime factor of P-1 is bigger than pe for some 

fixed positive real number e serve as candidates (while the double totient 
of P is smooth). 

Main idea 

Let B be a number which depends polynomially on the logarithm of 

P. It always holds thatP-1 has a unique factorization MN, where the 

prime factors of M are smaller than B and the prime factors of N are 

bigger (or equal) than B. Assume also that the totient of P-1 is smooth. 

Given a generator g of the multiplicative group modulo P and a member 

f of that group we are interested in solving x from ( 1 ). It suffices to 

compute x modulo M and x modulo N and use them in a Chinese 

Remainder Algorithm. A solution z of the equation 

JN= gzN modP 
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is equal to x mod M. This number can be computed in polynomial time 

with techniques similar to Pohlig-Hellman[Poh]. 

Replacing N by M in the last equation and solving the new equati.:m 

would give us x modulo N . At this moment it is not (publicly) known 

how to solve this in polynomial time. What we do is exploiting the 

D.H.oracle to solve that new equation. Because the totient of P-1 is 

smooth, each prime factor Q of N appears with multiplicity 1 (otherwise 

Q would be a prime factor of the totient of P-1) and moreover it holds 

that Q-1 is smooth. We proceed computing x modulo N by computing 

x modulo Q for each prime divisor of N. 

This algorithm requires a generator h of the multiplicative group 

GF(Q)*, which can be found in probabilistic polynomial time, [Rie] (in a 

practical setting h is already constructed while constructing the big prime 

P). Either x = 0 mod Q or x = hY mod Q for some y. The first 

possibility appears ifffa = 1 mod P, where LQ = P-1 =MN. In this 

(unlikely) case we are lucky, having found the answer (x mod Q) already. 

In the other case we proceed by computing the unknown y mod Q-1. 

To compute y it is sufficient to compute y modulo any prime power 

divisor of Q-1 because we can combine these answers with the Chinese 

Remainder Algorithm to get y modulo Q-1. We will only show how to 

compute y modulo a prime divisor p of Q-1 . 

Let l be (Q-1 )Ip and compute U = gx}-. This can be done by less 

than 2 2/og(l) calls to the D.H.oracle. This indeed can be done because on 

input (g,gX°',~) the D.H.oracle should output gX°'+b. Next one 

computes uL and compares this with glhla for 0 :::; a < p . There is 

bound to be equality for one of the choices of a and for this a it holds that 

a = y modulo p . 

The above mentioned equality occurs because it is equivalent to the 

equality LhYl = Lhal mod P-1 and this is equivalent to the equality 

hYl = hal mod Q. This last equality is equivalent to yl =al mod Q
I and finally this is equivalent toy = a mod p. 

Combining these answers for all prime divisors of Q-1 with the 

Chinese Remainder Algorithm we get a solution for y mod Q-1 and we 
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compute x = hY mod Q. Repeating this for each prime divisor Q of N 

and using the the Chinese Remainder Algorithm again we establish x mod 

N. Combining this with the already established value for x mod M we 

have arrived at the solution of equation ( 1 ). In the actual algorithm in the 

next section we do not mind about multiplicities of prime factors and we 

will also exploit the birthday attack. Furthermore we solve y modulo Q-1 

without the Chinese Remainder Algorithm. 

The main algorithm 

In what follows we describe our algorithm to solve the D.L. problem 

,an algorithm which is allowed to make a polynomial number of calls to a 

D.H. oracle and a polynomial number of elementary steps. At the end of 

this section we will be specific about these numbers. 

Let q(.) be a fixed polynomial. Let P be prime and P-1 =MN, 

where M, resp. N has small, resp. big prime factors with respect to 

B = q(log(P)) (like in the previous section). We want to solve equation 

(1). We already remarked that solving x modulo M can be done in 

polynomial time. In practical settings we can assume that the factorization 

of N is given (otherwise finding a generator modulo P would be 

difficult). If the factorization of N is not given we can find the factors of 

Nin probabilistic polynomial time using Pollard-p-1 method [Pol] in an 

adapted form (details left to the reader). As we remarked in the previous 

section N is squarefree. 

Let Q be prime divisor of N. We will establish w defined by x 

modulo Q. Let us define L =(P-1 )IQ. The algorithm to compute w 

requires a generator h of the multiplicative group GF(Q)*, which can be 

found in probabilistic polynomial time, [Riel (in a practical setting his 

already constructed while constructing the big prime P). Either w = 0 

mod Q or w = hY mod Q. The first possibility appears iffjl = 1 mod 

P. In this (unlikely) case we are done. In the other case we proceed by 

computing the unknown y mod Q-1. 
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Now we will describe the residues which has to be computed in our 
k 

algorithm. Given is the factorization Q-1 = TIP . , where 
i= 1 J 

Pi $,Pi+l and Pk :5 B. Define for j = (-1 ),(0),1 , ... ,k-1,(k) 

lo= 1, 
j 

11= rrpi 
i=l 

mj =(Q-1 )/Pj+l , 

I· 
Uj = gX 1 modulo P, 

lbj = (Pj+1- brj+J)mjand 
tb· 

Tbj= gLh ~modulo P 

for 0 ~ b .i (p/rj)J, 

am· 
Saj = h J modulo Q for 0 Sa<')· 

Yk-1 = 0 • 

Cj = h Yj 1J modulo Q. 
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The algorithm starts with computing Uj+l from Ujusing the D.H.oracle. 

All intermediate Uj have to be stored. The residues Tbj need to be stored 

for each different prime divisor Pj of Q-1. The residues Saj may need to 

be stored (especially if p/ is a divisor of Q-1). We compute Zj starting 

with}= k-1 down to 0 and Yj starting from)= k-2 down to -1 as 

follows. For j = k-1 down to 0 we search for a and b for which the 

equation 

(5) 

holds. Define z; by a+brj+l and Yj-1 by Yj+Zj>j- Equation (5) always 

has a solution and finally we can compute w because it is equal to hQ-J-y_1 

modulo Q. 
Now we will briefly sketch why this algorithm computes x mod Q. 

After we checked that Q does not divide x we may assume that 

x = hY +Qr mod MN for some y and r. By induction we will show that 

y +Yi== 0 mod Di for i == k-1, ... ,-1. 

This is trivially true for i = k-1. Consider the left side of (5). This is 

equal 

The exponent can be written as 

for some t. The right side of (5) is equal to 

Equality (5) holds iff the exponents are equal mod MN. This holds iff 
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hY lj +Yj lj +a m'J· -h(P1'+J - b r· J)m. 
- J+ J mod Q. 

This last equality holds iff 

(6) lj(y + Yj) +a mj = (Pj+l -b 'j+l) mj modQ-1. 

Under the induction hypothesis y + Yj = c Dj for some c. Because/· D. 

equals mi equation (6) holds iff c + a = Pj+ I - b ')+I mod Pj+ 1. B:ca~se 
of the chosen range for (a,b) such an equality will occur. For this pair 

(a,b) we define Zj =a+ bj and Yj-1 = Yj + Zj DJ- Now it holds that 

Y+Yj-1 =Y+Yj+(a+brj+J)Dj= 

= (c +a +brj+l)Dj= 

= 0 modPj+l Dj-

Because Pj+l Dj = Dj-1. this proves our induction step and ends the 
sketch of the proof. 

We repeat this algorithm for each (big) divisor Q of N and use the 

Chinese Remainder Algorithm to find x modulo N. After that another 

combination with x modulo M establishes the solution x (modulo P-1) 
of our original problem (equation (1).) 

In the following theorem we assume that the factorization of P-1 is 

given and also that generators of the multiplicative groups GF(Q)* are 

given for each big prime factor Q of P-1. Furthermore we require that 

the D.H. oracle gives the right answer for each question. 

Theorem : An algorithm to solve the D.L. problem for a prime P 

for which the totient of P-1 is smooth with respect to P and q requires 

order fog2(P) calls to the D.H.oracle and order log2(P) j q(log(P)) 

multiplications. This algorithm requires order Jog2(P) j q(log( P)) of 

bits of memory space. 
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The first two assumptions of the three assumptions in the paragraph 

just preceding our theorem can be dropped and we still have (probabilistic) 

polynomial-time equivalence. This is also the case if we weaken the last of 

the three assumptions (because of the algebraic structure we can construct 

"majority answers"). 

Conclusion 

At this moment no efficient algorithm to compute the Discrete 

Logarithm is known for the case where the totient of P contains a prime 

factor bigger than pe, where e is some fixed positive real number. So we 

could safely use a Diffie-Hellman key exchange for the subcase where the 

biggest prime factor of the double-totient is smaller than some fixed 

polynomial in the logarithm of P 

An interesting property of our algorithm to solve the D.L. problem 
using a D.H. oracle is that it mimics the algorithm to solve the D.L. 

problem in polynomial time without a D.H. oracle for the case where P-1 

itself is smooth. It is conceivable that a polynomial-time algorithm to solve 

the D.L. problem for the case where the totient of P-1 (the double totient 

case) is smooth may enable us to design an algorithm to solve the D.L. 

problem in the triple totient case in polynomial time and a polynomial 

number of calls to a D.H. problem. If this goes on for higher and higher 

totients we at last have proved that either the general D.L. problem has a 

polynomial-time solution or there exists primes for which the D.H. 

problem is hard. 

References 

[DH] Diffie, W. and M.E. Hellman, New directions in cryptography, IEEE 

Trans. Inf. Theory, IT-22, pp. 644-654, Nov. 1976. 

[Odl] Odlyzko, A.M., Discrete logarithms in finite fields and their 

cryptographic significance, Advances in Cryptology: Proc. Eurocrypt '84, 

Lecture Notes in Computer Science 209, Springer, Berlin etc., pp. 224-

314, 1985 



539 

[Poh] Pohlig, S.C. and M.E. Hellman, An improved algorithm for 

computing logarithms over GF(p) and its cryptographic significance, IEEE 

Trans. lnf. Theory, IT-24, pp.106-110, Jan 1978. 

[Pol] Pollard, J.M., Theorems on Factorization and Primality testing, 

Proc. Cambr. Philos. Soc., 76, pp 521-528, 1974 

[Rie] Riesel, H., Primality Testing and Factorisation, Birkhauser, Boston, 

1985 


