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State-space formulas for the computation of the gap 

JESSE DE DOESt 

We consider the computation of the gap between the graphs of rational 
transfer functions. The gap is related to the norm of a parallel projection, 
which can be computed as a regular indefinite linear quadratic optimal control 
problem with partially specified initial conditions. The use of coprime factoriza
tions is avoided in this way, and Riccati equations are derived directly in terms 
of the state-space realizations. The computation needed to check whether the 
gap is smaller than some fixed number y is shown to be an eigenvector/eigen
value problem for a hamiltonian matrix in which the state-space parameters of 
minimal realizations of the transfer functions are stacked. 

1. Introduction 
Our computations are based on the geometrical relations between several 

subspaces of Hilbert spaces that one can associate with a linear system. 
Therefore, a few words about these different spaces are in order. For a transfer 
function G from U to Y, the graph is defined as a subspace of H 2 : = H 2(C , 
Y x U) by 

C§(G) = {(y, u) E H2jy(s) = G(s)u(s)} 

The external behaviour '273w(2:) of a linear system in a certain space W (which 
can be either L 2(0, oo) or L 2(-oo, oo)) is the set of its external solution 
trajectories in that space (cf. Willems 1991). The relation between the graph and 
the different behaviours can be sketched as follows: choose any state-space 
realization 'Z= 'Z(A, B, C, D) of G, let ;;f be the Fourier-Laplace transform 
isomorphism from L2(-oc, oc) to L2(ilR) = H2 E9 H2, and let C(R X) be the 
space of continuous functions from IR to the state-space X. Then one defines 
\13L,(-x,oc)( G) as 

\13L,(-w,x)(2:) := {(y, u) E L2(-oo, oo)j3x E C(IR, X): (x, y, u) E !R} 

The behaviour on the right half-line is obtained by applying the truncation 
operator n+ to the behaviour on the whole line 

~llL;-(G) := fl+('2l3L,(-xc,:ci(G)) 

In the following 'J3( G) denotes the behaviour in L2( - oo, oo), ~'73+( G) 1s the 
behaviour in L~. Let 

<?A0 (2:) := {(y, u) E L 2 j3x E C(IR, X): (x, y, u) El'/\ x(O) = O} 

and <?A~(};) := fl+('!l3°(2:)). Then the graph corresponds in the time domain to 
the solutions with initial state zero 

Cf3(G) = c'f('J3 1!(G)) 
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and an alternative useful description is 

~( G) = :£(073( G) n Li) 

Here, Li is considered as embedded in the standard way in L1, f ~ f' with 
f'(t)=Ofort<O. 

The gap between two subspaces Vi and V2 of a Hilbert space is, by 
definition, o(Vi, V2) := llIIv, - IIv2 ll, where IIv is the orthogonal projection on 
V. Alternatively 

-+ 
where o is the directed gap, given by 

-+ 
o(Vi. Vi) = sup d(x, V2) 

xeV1,llxll,.;;;l 

The second definition leads to an expression for the gap as the norm of a 
projection 

-+ 
o(Vi, V2) = llIIvtld 

In the following we refer to this projection as II1 := llIIv5-ll. It is on this 
expression as an operator norm that the computation of the -gap in Georgiou 
(1988) is based: writing shift-invariant V1 and V2 as the images of isometric 
shift-invariant operators el and e2 respectively, we get 

llII1ll = ll11imefe1ll 
Now, by the commutant lifting theorem 

and the rightmost term in this equality defines a model-matching problem that 
can be solved by standard techniques of Hoo-optimization. The initial idea 
behind this note was that the leftmost term 'looks easier'. Indeed, this can be 
shown directly, without using any Hoo optimization theory, to define a linear 
quadratic optimal control problem (cf. Remark (2.5)). However, there are some 
difficulties in the case of non-strictly proper systems in this approach: the Riccati 
equations one obtains are of higher order than necessary. 

These difficulties can be circumvented by using another way of relating the 
gap to the norm of a projection. Let nt; denote the parallel projection of 
V1 + V2 along Vi on V2 • We use the term parallel projection in a somewhat 
broader sense than usual, as we also consider it when V1 n V 2 -:/= {O}, in which 
case it is not a mapping, but it is still defined as the linear relation { (x, v2) e 
(V1 +Vi) x V2 j3v1 e V1 : v1 + v2 = x}. Recall the definition of the minimal 
angle cp(Vi, V2) between subspaces by (we give the Banach space definition) 

sincp(Vi, V2) = inf d(x, V2) 
xeV1,llxil,.;;;1 

Good references for the use of these notions in robustness analysis are Foias 
et al. (1991), Ober and Sefton (1991), Schumacher (1992). We now use the 
following simple geometric fact 

(1 - b(Vi. V2)2)1/2 = sin cp(V1, Vt) = llnrtll-1 
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For n~~ we use the notation n2. The norm of Il2 turns out to be more 
convenient to compute. 

In the remainder of this note, let V = <§( G). v· 1 = (;§( G i). 

v 2. State-space expression of llv; 
The first thing we need is a description of the orthogonal complement of the 

graph of a transfer function G. In L 2(-x. x), the orthogonal complements of 
shift-invariant spaces are shift-invariant themselves, and the adjoint of a multipli
cation operator is also a multiplication operator. so the orthogonal complement 
of a behaviour in L2(-rxi, rxi) is easy to describe. 

Lemma2.1 

973(G) 1 = 21a(-Gl 

Proof: Write 

:£(rJ3(G)) = M[NJ L1(i!R) 
M 

where G = NM- 1 is a coprime factorization over L,. and M 19 is the multiplica
tion operator by E>. The adjoint of the multiplication operator by 

is of course the operator 

[Z] 
MIN]' = M[\/ ,;\IJ 

LM 
so .'1;( '!A( G)) 1 = ker M 1;; St 1. and the latter space is ::i(dl( - G)). 

Lemma2.2: 

0 

Proof: It is easy to verify that for V. W closed subspaces of a Hilbert space. 
one has, in general. V8(VnW)=n1 (W.t). Apply this to V=H> w =.CJ:(@( G)). w.t = ::1'(2Tl(-G)). v n w = 'f;(G). n1·(W 1 ) = '.f(;'il+(-G)). 0 

As a consequence, it is possible to derive sta~-space equations for the parallel 
projection along C§( G) on '§( Gi).L = :£(!.13 + (- G)). Using the fact that the graph 
of a system corresponds in the time domain ,to solutions with initial state zero, 
and (C(sl - A)- 1 B + Df. = -BT(sl - (-A 1 W1C 1 +Dr. we can render the 
situation 

Y1 = Gu1 

(y2, U2) E ,;f('!A+(-G1)) 

(y3, U3) = (Y1· ll1) + (y2, 112) 

in the time domain as follows 

i 1 = Ax1 + Bui. x1(0) = 0 

y1 = Cx 1 + Du1 
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i2 = -Af x2 + Cf yz 

u2 = Bfx2 - Df y2 

We also consider the parallel projection as defined by these equations when it is 
not a mapping (that is when S§( G) n S§( G1).L =I= {O} ). Perhaps it should be 
emphasized that the main idea of this section is a slight enhancement of the 
expressive power of differential equations with constant coefficients, obtained by 
specifying the initial conditions x(O) partially. One can give state-space descrip
tions of mappings commuting with the forward shift (transfer functions) from 
Li to Li by fixing initial conditions x(O) = 0 for the whole state x. Backwards 
invariant subspaces of Li ('behaviours') are described by differential equations 
without restrictions on the initial state. By imposing partial constraints on the 
initial state, certain time-variant mappings that play a role In the geometric 
theory of robust stabilization can be provided with a state-space description ( cf. 
Remark (2.5)). 

The equations can be rewritten in state-space form. 

Lemma 2.3: Let V be a shift-invariant subsgace in Li ( Y X U), with finite
dimensional state-space representation V = 03+(X(A, B, C, D)), where (A, B, 
C, D) is minimal. Let V1 be analogously represented by 2:'1 :=(Ai. B1, C1, D1). 

Assume I + DDf is non-singular. Then the parallel projection of V + Vf along 
V on V f is given by the system of equations 

[;~] = $[;~] + 03w, X1(0) = 0 

fl~;(w) = ~[Xl] + ~W 
t Xz 

w = [y(' )] E L + 
u(·) 2 

x(') E C([O, oo), X) 

where 

s4 =[A - BDf(I + DDf)-1C -BBf + BDf(J + DDf)- 1DBf] 
-ciu + DDf)-1C -AT+ Cf(J + DDf)-1 DBf 

03 = [BDf(I + DDf)-1 -BDf(J + DDf)-1D + BJ 
Cf(J + DDf)-1 -ciu + DDf)-1 D 

~ -[-(! + DDf)- 1c u + DDf)-1 DBI J 
- Df(J + DDf)-1c Bf - viu + DDf)-1 DBI 

~ -[ (1 + DDf)- 1 -(/ + DDf)- 1 DJ 
- -Df(I + DDft1 Df(I + DDf)-1 D 

Furthermore, the system (.<A, 03, Cf6, ~)is minimal. 

Proo~: The formulas are obtained by straightforward manipulation. What 
remams to be shown is the minimality of the system ($, 03, ~' ~). It is clear 
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that th~ order of the system is the sum n + n 1 of the McMillan degrees of G 
and -: G1 · We use a relation between parallel projections and closed loop 
behaviours to see that the transfer function ~(sf - .s11r10A + 0J also has degree 
n ~ n 1 • For a feedback interconnection of a plant G and a controller K, put 
P - ker [I - G], C = ker [ - K I]. The closed loop transfer function ( cf 
Vidyasagar 1985) is defined by · 

[ I -1G]-1 = [o/ H(P, C) = -K ~] + [~] (/ - KG)- 1[K /] 

It is easy to verify that 

rfj, =[~](I - KG)-1[-K I], H(P, C) = [~ ~] + m[ ~/ ~] 
so the McMillan degrees of the matrix expressions for rfj, and H(P, C) are the 
same. But the McMillan degree of H(P, C) is equal to that of its inverse, which 
equals the degree of 

which is obviously equal to the sum of the degrees of G and K. Apply this 
argument to K = -Gi. rr~ =~(sf - .sa)- 1\lA + rzt>. o 
It must be noted that this lemma does not give a direct method to actually 
compute the parallel projection of a given function w( ·) E L 2. A two-point 
boundary value would have to be solved to find an initial condition x2 ; that is, 
such that the state-space trajectory x( ·) of the system (.sd, \JA, et;;, rztJ) remains 
L2-stable with initial state (0, x2) and input w( · ). 

Remark 2.4: For V = V1, one gets the orthogonal projection on V .L. In this 
case, the equations are of the type that can arise from a variational approach to 
optimal control, and this is, of course, not accidental. To solve an optimal 
control problem with cost criterion Jilull2 + llYll2. we can go about it as follows: 
among the external trajectories corresponding to the initial state x0, the one with 
minimal norm is the orthogonal projection of the origin on the set of trajectories 
with initial condition x 0 , so we must solve (for a strictly proper system) 

[;~] =[-~Tc --~~TJ [~~] + [iT g] [~]' X1(0) = Xo 

and the problem of finding the optimal state-space trajectory becomes the 
problem of finding x2 such that (x0 , x 2) is in the stable invariant subspace 'Zf'_(.sd) 
of the Hamiltonian matrix .s.4. This is, in turn, the problem of writing 

~-(.sd) = im[~ J 
For a similar derivation of a solution to a smoothing problem see Weinert and 
Desai ( 1981). D 

Remark 2.5: Along the same lines, one can obtain state-space formulas for 

operators of the form 
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Our original gap computations were based on the state-space expression of 

g§(G){~J 
They were not entirely satisfactory because the system obtained has higher 
McMillan degree than the one in (2.3). However, it is suggested that the direct 
translation of this type of operator to state-space equations may be useful in 
other contexts, as it plays an important role in the branch of operator theory 
that is connected with H,, optimization (cf. for instance Nikol'skil 1986). D 

3. Computing llIT2ll = llIT~tll 
Recall 

(1 - b(V, V1f)1/.2 = sincp(V, Vt) = llII~tll- 1 

So we must compute the norm of I12 as defined in § 1. Two special cases must 
be singled out. 

(i) The input-output behaviour determined by the equations of Lemma 2.3 is 
not a mapping. Then, V n vt * {O}, and the gap is 1. This occurs when 
the stable subspace of the $-matrix of the system (.sd, 013, r15, 51) of Lemma 
2.3 has non-trivial intersection with the space {x lx1 = O}. 

(ii) The system is not minimal, or I + DDf is singular. We have already 
shown that the system is minimal if I + DDT is non-singular. If it is 
singular the gap is 1. 

Lemma3.1: Suppose I+ DDT is singular. Then c'S(C,§(G), C§(G1)) = 1. 

Proof: Using (2.1), it can be seen that the Loo-norm of the mapping 

un ·- n'&(-C1l -[CJ (I + G- G)-1[G- I] CF • - <fj( C) - I 1 1 

is related in the same way to the Lrgap (i.e. the gap between the behaviours of 
the systems 2: and 2:1 in L2( - CXJ, oo)) as the norm of IT2 is to the H rgap 
between the graphs 

[1 - b(03(G), 03(G1))2]112 = 11Ii~(~}'lll~ 1 

The graph of 'J' =<fb(sl - sl)- 103 + Cil! is a subspace of the graph of II2 • This can 
be seen from the fact that the graph of '!J> corresponds in the time domain to 
solutions, with all initial conditions zero, of the system in Lemma 2.3. It follows 
that its norm is not greater than llIT2 ll- This implies that the L 2-gap is, in 
general, smaller than the Hrgap. When I+ DDT is singular,<"!) is not in L"', so 
the L 2-gap and the H 2-gap are both 1 in this case. D 

So, we may assume (sl, !A, <f?,, r:fli) is minimal. As is well-known (cf. for 
instance, Boyd et al. 1989 for the computation of the H °' norm), computing the 
norm of an operator is related to solving optimal control problems with the cost 
criterion 

w(y, u) = Y2 llull2 - 1Lvll2 

In this case, it is more convenient to state the solution directly in terms of the 
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associated hamiltonian matrix than 
equations. The hamiltonian is 

to solve the problem in terms of Riccati 

~y = [ ~ -~T J + [~ 0 J [-(1 y! 1-1['{ 0 
-l€T yf _(/lj _ 0 

Let W be the subspace {x[x1 ~ O} oft?~ state space X, and let 2fy be the stable 
subspace of ~r_· We are now m a position to state the main result of this note. 
In_ the _appendix we summarize its use for the computation of the gap bv a 
y-1teration procedure. ~ · 

Proposition 3.2: [[n2fl < Y ~ ~Y has no imaginary eigenvalues, there is a sym
metric matrix K such that 

and K is negative definite on W. 

Proof: Define the available storage Va(x0) of a minimal state-space system J: 
with respect to w as 

Va(xo) = 

inf {L"'y2[[u(t)f[2 - [fy(t)f[2 dt[3x( · ): (x( · ), y( · ), u( · )) E '2A+(El /\ x(O) = x0} 

Let the optimal cost K+(x) = -Va(x). It is well-known how to compute the 
optimal cost from a Riccati equation (cf., for instance, Trentelman and Willems 
1991): if K is such that 

~y=im[~] 
then < Kx, x) = K+ (x ). It is clear that optimal cost must be negative definite on 
the subspace { x [x1 = O} for the parallel projection norm to be less than y. D 

As already pointed out, the L:o norm of the system (sl, ;J3, (tl,, Gl) is related to 
the Lz-gap 

[1 - b(03(G), 03(01))2] 112 = [[Cfb(s/ - s4)- 1;J3 + ~1[~ 1 

So the smallest value of y for which the hamiltonian has no imaginary 
eigenvalues corresponds to the Lrgap. As we already noted, the L2 gap is, in 
general, smaller than the Hi-gap; the topology it induces is weaker. It is the 
lower bound for the gap given by Zhu et al. (1989). 

4. Criterion for o( V, V 1) = 1 
After the computation of one directed gap, it must be checked whether the 

other directed gap is equal to it. It is known that the gap is 1 when the two 
directed gaps are not equal, so one peeds to do just the one step in the 
y-iteration for the computation of [[n~,'1 fl to verify this. We give yet another 

criterion. 

Lemma 4.1: Let V, V1 be ..;closed subspaces of a Hilbert space. Assume 
b(V, V1) < 1, and b(V, V1) =I= o(V1, V). Then V 1 n V1 -:f. {O}. 
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Proof: This is not new ( cf. Georgiou and Smith 1990, Krasnosel'skil'. et al. 
1972). It is known that the two directed gaps are equal unless the restricted 
orthogonal projection IIv 11V is not bijective. This is the same as V.L n V1 =I= {O}. 

D 

Proposition 4.2: Suppose V, Vi are graphs of transfer functions with minimal 
state-space realizations (A, B, C, D) and (Ai, Bi. Ci, D 1) respectively. Then 

4 ~ ~ 

D(V' V1) < 1, o(V, V1) =I= o(V1, V) 

implies that the stable subspace of the matrix 

[ 
-AT+ CT(/ + D1DT)-1D1BT 

Sil'= -B1BT + B1DT(I + D1DT)- 1 D1BT 

has non-trivial intersection with the subspace {xlx2 = O}. 

Proof: Combine remark (i) of the previous section with Lemma 4.1. D 

To give a complete classification of the cases in which the gap is 1, we need the 
robustness margin for Fredholm indices of pairs of closed subspaces of a Banach 
space as given by Kato (1982) 

( U V) . _ . f d( v, U) 
y ' .- m 

veV\U d(v, u n V) 

and the result 
y( U, V) > 0 ~ U + V is closed 

When Un V = {O}, y(U, V) is equal to sincp(U, V) = llII~ll- 1 . 

Lemma4.3: Let V = C§(G), Vi= C§(G1). Suppose o(03(G), 03(Gi)) < 1. Then 
.L 4 .L 

C§(G) +C§(G1) is closed, and D(V, Vi)= 1 => V n V 1 =I= {O}. 

Proof: It follows from oL,( G, G1) < 1 that the mapping <!P = II~(af rl is in L"'. 
This implies that <&(G) + c§(-G1) is closed, as y(<&(G), C§(-G1)) = lle?ll- 1 when 
the intersection is trivial. Bu_! it follow~ from the rel~tion C§~F) ~ :£( B~( F)) that 
the co-dimension [:£(03+(-G1)): c&(-G1)] = [03+(-G1)): B+(-G1)] is finite (in 
fact it is equal to the McMillan degree of G1). This implies)hat :£(913 + ( - G1)) + 
C§(G) is closed. Hence, y(V, Vi)> 0, so (V n Vf = {O} => o(V, V1) < 1). D 

Lemma4.4: Let V = C§(G), Vi= <&(G1), let Sil and Sil' be as in Lemmas 2.3 
and 4.2 respectively. Then we have o(V, Vi)= 1 iff one of the following 
possibilities holds: 

(i) The stable space of Sil has non-trivial intersection with { x lx1 = O}. 

(ii) The stable space of Sil' has non-trivial intersection with {x lx2 = 0}. 

(iii) Sil has eigenvalues on the imaginary axis. 

(iv) .Sil' has eigenvalues on the imaginary axis. 

(v) I+ DD{ is singular. 

Proof: We proceed by elimination. It is clear that (iii)-(v) correspond to the 
L 2 gap being 1, and that (i), (ii) correspond respectively to V n Vf =I= {O}, 
Vi n V .L i= {O}. So all of (i)-(v) imply that the gap is 1. If none of (iii)-(v) 
holds, 6(03( G), 03( G1)) < 1. By the previous lemma this implies that if neither 
(i) nor (ii) holds, then o(V, V 1) < l. D 
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Note that it suffices to calculate the eigenvalues of sl, as -). is an eigenvalue of 
sa.' for each A E a(sa.), and vice versa. In fact, we can simplify the calculations a 
bit further. Let 2r_(A) be the maximal stable invariant subspace of a matrix, 
with 2t+(A) its antistable space. 

Proposition 4.5: We have <5( V, V1) < 1 iff I + DDT is non-singular, td has no 
eigenvalues on the imaginary axis, and iL(s1) is complementary to {x!x 1 = O}. 

Proof: It is easily verified that .stl' = -.stlT. Now, since for matrices without 
eigenvalues on the imaginary axis we have 2L(XT) = 2t+(X).i, it follows that 

2f:_(.st1')::::: (~_(sd).l) 

Hence 2r_(sd.') n {x!x2 = {O} ~ ;f_(sd).i n {x!x2 ::::: O} ::::: {O} ~ :L(-<4) + 
{x!x1 = O} is the whole space. o 
An alternative to the gap that has the advantage of giving a less conservative 
estimate of robustness is the following (proposed by Vinnicombe 1993). For 
completeness we sketch the relation with the formulas of this section. 

Definition 4.6: The Vinnicombe gap Dv between V = 'fi( G) and V1 = 'fi( G1) 

is given by the following definition: If dim V n Vf =dim V1 n v.i then 
Dv(V, Vi)= C>L/V, Vi); else bv(V, Vi)= 1. 

It can be shown that this distance measure is a metric equivalent to the gap, and 
that the robustness margin for the two metrics is identical. The next proposition 
shows how it can be computed in terms of the formulas of this paper. 

Proposition4.7: We have Dv(V, V1) = 1 iff 

(i) D12(V, V1) = 1 or 

(ii) dim2r_(sd.) n {xix1 =0} :fodim(X1 + X2) 8 (2r_(sd.) + {x!x1 =0}) 

Proof: Using the proof of the previous proposition, we can see that it is 
sufficient to see that 

dim V n Vf = dim2r_(sd) n {x!x1 = O} 

This is not difficult to see from Lemma 2.3, for the space of stable outputs with 
input O of the system of equations given there has dimension equal to 
dim2r_(sa.) n {xix1 = O}. D 

So the Vinnicombe gap is somewhat easier to compute than the standard one, as 
the calculation consists of one test for the position of ~ _ ( sd) and the computa
tion of an LCX> norm, for which fast optimized routines are available. 

Appendix 
Below, we summarize the computation of the gap with accuracy £ in the 

form of a pseudo-Algal procedure. By ~YE Dom (Ric) it is meant that the 
stable invariant subspace of ~Y can be written in the form 

and in this case X = Ric(~y)· 
The test for definiteness is likely to be numerically unreliable when X is 



746 J. de Does 

close to being singular, i.e. when we are close to the L 2 gap. We briefly 
compare this computation to the one that follows from Georgiou's (1988) 
reduction to a model matching problem. To do a computation in Georgiou's 
approach one needs to solve a Riccati equation in order to obtain the 
normalized coprime factorization, and then the resulting model matching prob
lem can be solved using state-space formulas. An implementation of such a 
procedure is available, for instance, in the MATLAB package 'mu-tools'. The 
amount of work that needs to be done to solve a model matching problem in 
such a way is comparable with the running time of our procedure. 

We have three sources for differences in efficiency. 

(1) We have a more efficient test for o = 1 that involves calculating the 
stable subspace of a matrix of dimension n + n 1 only (where n, ni are 
the degrees of the two original systems) and not the full size 2(n + n1) 
dimension of the hamiltonian used in the iteration. In addition, we do 
not need any normalized or other factorizations. 

(2) The normalized coprime factorization does not have to be performed. A 
normalized coprime factorization is less expensive than one step in the 
bisection procedure; so, on the whole, this makes for some difference in 
efficiency in cases when the gap turns out to be l, or no high accuracy is 
required and not many iteration steps are performed. 

(3) The problem X = Ric (~) that has to be solved in both procedures is of 
the same dimension, but we only have to test the definiteness of one 
block of X. 

We have compared a MATLAB procedure of our own to the one in 
"mu-tools'. For fairness, our procedure relies on the same 'mu-tools' routine 
ric_schr. Sample systems [A, B, C, D], [Ai. B1, Ci. Di] were chosen according 
to the following procedure (not that it matters much): first, A, B, C, D were 
:hosen randomly with parameters between 0 and 1. Then, a random weight 
J e [O, 1] was chosen, and a random perturbation 6.A, 6. B, 6. C, 6. D, again 
vith parameters in [O, 1]. Our A1, Bi. C1, D1 were then A+ pi:\A, B + pi:\B, 
C + ptl.C, D + ptl.D. On a sample of 100 randomly chosen gap problems 
between systems of order 3, with accuracy 1/100, we had the following results. 

Mutools. Average number of floating point operations: 737 350. The gap 
was computed as one 25 times; the number of operations needed to find out 
about this was, on average, 197 656. With the gap not equal to one, mutools 
needed on the average 917 248 flops. 

Our own routine. It needed on average 590 422 operations. It decided 116 
times that the gap was equal to one, and needed, on average, 67184 flops to 
find out. The average number of operations needed for gaps not equal to 1 was 
690086. 

So, we may conclude there is some increase in efficiency, although it is not 
exactly sensational. 

real b(A, B, C, D, A1, B1, Ci. D1, e)/* Assumes minimality of both systems*/ 
begin 

if Singular(! + DDT) then return 1 fi 
(stl, ~. ~. 2.b) := SkewProjection(A, B, C, D, A1, Bi. C1, D1)/* Form the 
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system of Lemma 2.3 * / 
n == dim.'Jl 
N := dim.'Jl 

/* First check whether b = 1 as in § 4 * / 

~~rform an ordered (complex) Schur decomposition sl = UTU* 
I·= 1 
while i:,,;; N A Re Tii < 0 do i := i + 1 od 
if ii= m + 1 v Re Tu= 0 v Singular( Ui:m.I:m) return 1 fi 

/* Now do the y-iteration of § 3 * / 

b_ := ( 1 - 11~112 r/2 

b+ := 1 
Error := b+ - b_ 
b := 1 
while Error > E do 

b := (b_ + b+)/2 

y:= 1 
(1 - f,2)1/2 

~y :=[~ -~TJ [ 03 
+ 0 

if ~r E Dom (Ric) then 
SolutionExists : = true 
X := Ric('3ey) 

0 J [-Cf!j 
-~T yf 

yl J-l['t 
_(j:T Q 

SolutionDefinite := NegativeDefinite(Xm+l:n.m+I:n) 
else 

SolutionDefinite := SolutionExists :=false 
fi 
if SolutionExists A SolutionDefinite then b+ := b else b_ := 6 fi 
Error:= D+ - b_ 

od 
return 6 

end 
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