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RECONCILING DATA FLOW MACHINES AND CONVENTIONAL LANGUAGES* 

by 

Arthur H. VE:!en 

ABSTRACT 

This p.aper discusses the problems that arise when programs written 
in a conventional language are to be com.piled into machine code for a 
data flow machine. It describes the current state of a project aimed at 
developing a compiler for an existing high level language for string 
processing. The compiler is intended.to accept the full language without 
changing it:s semantics in any respect. The implementation of a sizeable 
subset of the language is described and solutions to the remaining 
problems are suggested. The results indicate that the gap between data 
flow machines and conventional languages is easier to bridge than 
previously assumed. 

KEY WORDS & PHRASES: data flow computers, data flow languages, data flow 
analysis, code generation, parallel computing 

*) This report is not for review; it is submitted for publication in the 
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1. INTRODUCTION 

Designs for data flow macqines have been with us for half a decade. 
Some machines have been built while others are in various stages of 
development. A number of high level languages have been designed 
specifically for these machines. In this paper I will investigate 
whether such languages are indeed necessary, or whether conventional 
languages will do. 

The original impetus for data flow research came from the need for a 
simpler and more reliable scheme to express concurrency in programs. The 
data flow schema's of Dennis [6] led to a design for a new type of 
parallel computer and since then the focus of the data flow field has 
been on both computer architecture and programming languages. Several 
higher level languages have been designed specifically for data flow 
machines. The argument given for this development is usually the radical 
difference in architecture between data flow machines and conventional 
machines. 

There has been wide-spread pessimism in the data flow field 
concerning the suitability of existing conventional languages as source 
languages for data flow machines. The following quote from [15] 
illustrates this: 

"While it is possible that compile time analysis can be 
performed on sequential programs to produce an equivalent 
program of greater concurrency, this does not help programmers 
to express computations in a form which exhibits a high level 
of concurrency. Furthermore, no compile time analysis has been 
able to extract the inherent concurrency from a program 
containing unnecessary constraints which are the result of 
language features based on the assumption of sequential 
computer organization." 

The first objection raised in this quote will be discussed in 
section 7. The second objection probably refers to static analyzers that 
attempt to break up a given program written in a language like Fortran 
into parts which can safely be executed concurrently. This task is 
complicated by features like goto statements, pointers, arrays, global 
variables, aliasing, and the like. In a data flow computer, however, 
part of determining which instructions can be executed in parallel is 
done by special hardware at run time. This simplifies the analysis that 
has to be performed at compile time and I will argue in this paper that 
it is quite feasible to use a conventional language as a source language 
for a data flow machine. The compiler that translates a conventional 
language into data flow machine code can be of the same order of 
complexity as a conventional compiler and can generate code that is as 
efficient as the code that can be generated from some of the special data 
flow languages that have been defined so far. 
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The advantages of using an existing language to program a data flow 
machine are quite obvious. It would greatly enhance the chances that 
these machines will be used as general purpose computers and that they 
will help to satisfy the ever growing need for computing power. For good 
reasons most people are very reluctant to purchase a machine on which 
none of their old software -runs and which forces programmers to learn and 
use completely new languages. The number of general purpose programming 
languages which are used today is already staggering and new ones should 
not be added lightly. 

In the next two sections I will give a short description of data 
flow machines and languages. Section 4 describes an (implemented) 
algorithm to translate a somewhat restricted conventional language to 
machine code for an existing data flow computer. Section 5 describes the 
steps that are necessary to extend the existing implementation to a 
compiler for a complete language. Section 6 summarizes the results 
obtained so far. 

2. DATA FLOW MACHINES 

A data flow computer is a type of parallel computer on which 
sequencing of computation steps is governed by the availability of data 
rather than by special synchronization or control flow instructions. 

I will not describe the des·ign or architecture of data flow 
computers or their advantages and disadvantages as compared to other 
parallel machines. Introductory material on these topics may be found in 
[ 10, 12]. Instead I will concentrate on those characteristics that are 

-interesting from a programmer's point of view. 

The computational steps that can be performed in parallel are small. 
These steps are the machine instructions which are typically of the 
same level of complexity as conventional machine instructions. 

A machine instruction is initiated when all its input data are 
available and then it runs to completion without interruption. The 
instructions are purely functional and free of side effects. This 
means that all the information used by an instruction is contained 
in its input data and that the only effect of its execution is the 
production of output data. 

An instruction contains pointers to all instructions which use its 
result. A data flow machine program is thus less compactly coded 
than the equivalent conventional program. This extra dependency 
information enables special hardware to sequence instruction 
execution very efficiently. 

This last property of machine level programs implies that they can be 
represented as directed graphs. Because of this, the instructions and 
the data dependency pointers are often called nodes and data paths. The 
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values that travel from node to node over the data paths are called 
tokens. A node absorbs the tokens on its input data paths, performs a 
functional operation on it and produces the computed result as tokens on 
its output paths. 

Data flow machines differ considerably in the way they handle 
reentrancy. Reentrant graphs are subgraphs corresponding to loops and 
(recursive} procedures, which are used more than once in a computation. 
Reentrant graphs can present problems because they contain cycles and 
therefore certain nodes will have an input point where tokens belonging 
to different activations may arrive simultaneously. There are three 
methods of avoiding confusion between these tokens. One is to surround 
the graph with guards which prevent new tokens from entering until all 
tokens of a previous activation have left the graph. This seriously 
limits the concurrency of the computation. The second method is to 
create a copy of a subgraph every time it is activated. The third 
method, which is equivalent to making a copy of the subgraph but is much 
cheaper in resources, is to color all tokens corresponding to the 
activations they belong to and to require that all nodes copy the color 
of their input tokens. A node is only activated when there are tokens of 
the same color on all its input paths. Special instructions are provided 
which manipulate the color of tokens. 

The first data flow machines which were completed were the DDM1 [5] 
and the LAU machine [11). The data flow group at MIT is in the process 
of building its first prototype [7]. The first machine using token 
coloring, is currently near completion at Manchester University [14). 

Machine level programs in the form of instructions with pointers are 
hard to read. Therefore they are usually presented graphically. In this 
form, which will also be used throughout this paper, they are slightly 
more readable than conventional assembly language programs. There is 
however a clear need for a higher level language that can be translated 
into data flow machine code and such languages are the subject of the 
remainder of this paper. 

3. DATA FLOW LANGUAGES 

At least four high level data flow languages have been defined in 
conjunction with the design of a data flow machine. One of the oldest is 
LAU, from Toulouse, France [ 11] • The language LAPSE has been designed 
for the data flow machine at Manchester [8]. The data flow group at MIT 
has developed a language called VAL [ 1] • The group at Irvine has 
produced the language ID [3]. A comparison of some of these languages 
can be found in [2] and [ 13). The differences between data flow 
languages on the one hand and conventional languages on the other reflect 
the differences in the underlying machines: 
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In a data flow language statement delimiters and goto statements 
cannot be used to affect the sequencing of statement execution. The 
order of the statements , in the program is generally irrelevant. 
This reflects the fact that, in a data flow machine, the execution 
sequence is governed by the availability of data and is in no way 
influenci:d by the order in which instructions are stored in the 
program memory. 

In a con,il'entional language variables correspond to memory locations 
in the machine which can be accessed an arbitrary number of times. 
In a data flow language variables correspond to data paths in the 
machine code. As a consequence, a variable gets a value once, namely 
when a token appears on the corresponding data path. This is 
reflected in the Single Assignment Rule, which states that every 
variable appears exactly once at the left hand side of an assignment 
statement. 

In a data flow language procedures are purely functional. They have 
no intermediate memory through which information can be transferred 
from one: procedure activation to another. There are no global 
variables. The single assignment rule implies that parameter 
passing is by value only. Recursive calling of procedures presents 
no probli:m. 

Arrays in a conventional language most closely resemble a 
dynamically addressable memory but they play a markedly different 
role in data flow languages. The single assignment rule forbids the 
assignment to arbitrary elements of an array. Data flow languages 
provide constructs like a forall statement which allow the 
programmer to specify the calculation of all elements of an array in 
one stati:ment. The effect of changing a single element in an array 
can be achieved by creating a new array that is a copy of the old 
array with one element replaced by a new value. 

4. USING A CONVENTIONAL LANGUAGE 

In this section I will present an algorithm that translates a subset 
of a conventional language into data flow machine code. Algorithms to 
translate data flow programs into data flow machine code have been 
described in [4] and [8]. Whitelock was the first to implement a 
conventional-to-data flow compiler [ 16] and the development of the 
algorithm described in this section greatly benefited from his work. 

The lanquage accepted by the algorithm contains the following 
features: different data types (integer, real, string), sequencing by 
means of conv·entional statement delimiters, multiple assignment, loops, 
conditionals, case-statements, procedures, recursion and global 
variables. The language is in fact a subset of SUMMER [9] , a locally 
designed language which is tailored towards string processing 
applications (such as compilers). The reasons for choosing SUMMER were 
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purely pragmatic. The features of SUMMER that were included in the 
subset have exactly the same semantics as in the original language and 
can be mixed and nested just as freely. The language is expression 
oriented in the sense that eve'ry construct delivers a value and can be 
used as part of other expressions. This stands in contrast to the 
language that Whitelock's · compiler accepts, which includes, roughly 
spoken, the same features but in a much more restricted manner. The 
original SUMMER compiler, which is written in SUMMER itself, consists of 
a parser and a code generator. The data flow compiler described here, 
was obtained by using the almost unmodified parser and by writing a new 
code generator. Almost all of the algorithm described here concerns this 
new code generator. 

The machine code I have chosen to generate is that of the Manchester 
machine, with a few additions which were needed to support string 
processing. This machine was chosen because its instruction set is 
clearly defined [8,16], and because it supports efficient interpretation 
schemes due to its color mechanism described in section 2. (The 
Manchester group uses the term tag rather than color) In the sequel the 
reader is assumed to be familiar with the general principles of a data 
flow computer but not with the details of this particular machine. 

The code generator processes the parse tree representation of a 
program and produces the nodes and data paths of the equivalent data flow 
graph. In contrast to data flow languages the order of statements in a 
conventional language is important and the code generator makes explicit 
use of this order. However certain permutations of this order do not 
change the meaning of a program and these permutations will have no 
effect on the generated graph. This means that an important source of 
the overspecification of execution sequencing in conventional languages 
is removed by the translation process. 

The code generator makes extensive use of objects called cocoons. 
The code for each expression is generated in the context of one or more 
nested cocoons, the innermost of which is called the current cocoon. The 
cocoons serve a dual purpose. First, they associate variables with nodes 
in the graph. Just like in a data flow language, there is a 
correspondence between variables and data paths in the generated graph. 
At any particular point during code generation a variable is associated 
with the node in the graph that is to produce the value the variable 
refers to. Because there is no single assignment rule these associations 
might change and the same variable can correspond to data paths in 
different parts of the graph. The second purpose of a cocoon is the 
generation of nodes in the graph that are needed for certain statements 
as an interface to the rest of the graph. Different statement types 
therefore lead to the creation of different varieties of cocoons, as I 
will now describe in more detail. 
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ASSIGNMENT 

For the statement 

a:= b + c 

only one new node with instruction code ADD is created. Data paths that 
are to carry the values "b" and "c" are constructed terminating at the 
new node. The origins of these data paths are obtained from the current 
cocoon. The assignment itself is not visible in the generated graph, but 
has the effect that in the current cocoon "a" is associated with the ADD 
node. This is illustrated in figure 1a. The nodes and data paths of the 
generated code are drawn in solid lines. The two unlabeled nodes are 
assumed to be part of the graph generated by previous statements. The 
new statement only adds one node and two data paths. The broken lines 
indicate compiler constructs like cocoons and their associations. 

a := b + c 

' ' ' . 

FIGURE la 

. ' ' , 

a := b + c; 
a := b - a•c 

' I 

' ' 

FIGURE lb 

In general, for a statement of the form 

<identifier> := <expression> 

' ' 
' ' 

a data flow tree is generated which closely resembles the parse tree of 
<expression> with the identifiers removed. Each logical or arithmetical 
operation of the source program is mapped onto one node or onto a small 
subgraph. Datapaths are then created which terminate at the new subtree 
and which originate at the nodes which are associated in the current 
cocoon with the identifiers in <expression>. The output node of the new 
subgraph is then associated with <identifier>. The resulting graph after 
processing the additional statement 

can be seen 
assignment. 

a:= b - a*c 

in figure 1b, which also shows the effect of multiple 
The variable "a" is now associated with the SUBtract node, 
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while the ADD node is inaccessible to later statements: no more data 
paths originating at the ADD node can be created. In conventional terms 
one would say that the old value of "a" has been overwritten. 

CONDITIONAL STATEMENTS 

In a data flow machine the outcome of the evaluation of a condition does 
not affect the control flow but influences the flow of tokens along data 
paths. Each data flow machine provides for this purpose instructions 
which can switch the flow of tokens in different directions. The 
instruction set of the Manchester machine includes a BRAnch instruction 
which copies an incoming data token onto one of two outgoing data paths 
depending on the value of a boolean control input token. The Pass-If­
True (PIT) and Pass-If-False (PIF) instructions are merely variations on 
the BRAnch instructions in which the data token is either copied or 
absorbed. These three instructions are called switches. For a statement 
of the form 

if A then B else c fi 

the graph corresponding to A is generated and linked to the appropriate 
nodes in the existing graph. The output node of this graph will produce 
a boolean value and is called the condition node. Then a new cocoon is 
created which is to generate all the switches that distribute input data 
to the two branches of the conditional. All switches have their control 
inputs connected to the condition node. The new cocoon will also collect 
those tokems that are produced in the two branches and are used later. 
Within this cocoon two additional cocoons are created in which the graphs 

. corresponding to B and C are generated. The cocoons act as interfaces to 
the rest of the graph. The example in figure 2 illustrates some of the 
possibilities. The DUPlicate instructions simply copy the incoming data 
items to one or more output paths and are generally used in the 
interfaces. The purpose of the DUPlicate node labeled "a" in the outer 
cocoon, is to merge the data paths of the values "a" in the two branches. 
After the code generation for this statement the variable "a" is 
associated with this DUPlicate node. Through this mechanism a variable 
is, at any point during code generation, always associated with one node 
in the graph even if the data flow for that variable cannot statically be 
decided. Here we see an example of the division of labor between the 
compiler and the data flow machine: the compiler performs the data flow 
analysis as far as statically feasible and it generates the code that 
enables the machine to complete this analysis dynamically. 
A conditional expression is translated in much the same way except that 
each of the graphs corresponding to the two branches contains a node 
which produces the value of that branch. These two nodes are linked to a 
DUPlicate node which represents the value of the whole expression. A 
condi tiona.l as the target of an assignment as in 

if id<0 then neg else pos fi := id 
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if a ( b 
then C . - a 
else a . - b 

a . - b 
f i 

is also allowed. In this 
distributes the value of 

· appropriately. 

FIGURE 2 

case a graph of switches is generated which 
"id" and the old values of "neg" and "pos" 

A case statement is converted into a series of tests, which can be 
evaluated in parallel, and a series of subgraphs corresponding to the 
branches. Each subgraph is surrounded by Pass-If-True switches 
controlled by the corresponding test. The parallel evaluation of the 
tests is possible because in SUMMER, of each case statement exactly one 
test evaluates to TRUE. 

LOOP 

The generat1ed code for the iterative loop includes instructions to 
manipulate the color of tokens. Part of the color called the Iteration 
Level (IL) is used to separate the tokens of different iterations. Again 
nested cocoons are created which handle different parts of the interface 
process. In figure 3 we see the outer cocoon contains the switching 
nodes that distribute the tokens to the next iteration or to the 
continuation of the program. The other nodes in this cocoon are 
necessary for the correct manipulation of the color. This mechanism will 
not be described here. The right inner cocoon contains the test part and 
the left orne the body of the loop. The latter creates the IIL nodes 
which Increllllent the Iteration Level between iterations. We see the 
values of "n" and "top" circulate around the loop. The tokens carrying 
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'· 

n : = 0; 
while (sq:= n•nl < top 
do n := n+I od 

tOp IIL \ 

FIGURE 3 

9 

sq 

the successive values for "sq" are absorbed in the PIF node until the 
·test evaluates to FALSE at which time the last token is ejected from the 
loop together with the last value for "n". 

PROCEDURES 

For a procedure call, nodes have to be generated that manipulate a part 
of the color called the Procedure Number. A special instruction causes 
the machine to generate . a unique color ( a non-functional operator! ) , 
which is distributed to all tokens that enter the procedure. These 
tokens are sent to the appropriate input points of the procedure. To the 
output points of the procedure tokens are sent which describe the nodes 
which are to receive the results computed by the procedure. In this way 
data paths are created dynamically and recursion is implemented without 
problems. Results produced by the procedure are given the old color of 
the invoking procedure. Global variables that are used in the procedure 
are treated as if they were additional input parameters. Global 
variables that are targets of assignments within the procedure are 
treated as if they were additional results. For this purpose the first 
pass of the compiler is slightly modified in such a way that the· code 
generator knows of each procedure which of the global variables are 
needed as extra input and which ones are needed as extra output. 
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INPUT-OUTPUT 

Communication with the outside world has intrinsic side-effects, which 
means that in general it does matter in what order input and output 
statements are executed. Therefore the basic I/O-routines need special 
consideration (in VAL [1] for instance, they are completely absent). In 
the current implementation the basic input and output routines increment 
a common global variable called an access token. This has the effect 
that all invocations of these routines are sequentialized because each 
invocation has to pass the access token to the next one. The possession 
of this token grants access to a non-functional module of the system. It 
is interesting to note that no additional measures have to be taken to 
provide sequential input-output; this can be solved completely within the 
framework of procedures with global side effects. A generalization of 
this concept is described in the next section. 

OPTIMIZATION AND VERIFICATION 

The representation of a program in the form of a data flow graph 
facilitates some useful optimization and program consistency checks. The 
code generator implemented so far performs checks on uninitialized or 
unused variables and superfluous assignments. It also carries out 
constant folding. If both inputs to an instruction are constants then 
the execution of the instruction is simulated and the instruction is 
replaced by the resulting constant. A warning is given when the 
controlling condition of a loop or conditional statement is folded into a 
constant. Carrying this constant folding to the extreme, would result in 
folding every program that does not contain an input statement, into one 
constant: the execution of the whole program would be simulated at 
compile time. In the current implementation, however, all instructions 
that manipulate colors are exempted from the constant folding, which has 
the effect that the compile time simulation stops at the boundaries of 
loops and procedure activations. 
In SUMMER values rather than variables have types. This means that 
variables potentially refer to values of different types, which 
necessitates dynamic type checking. Most variables, however, always 
refer to values of the same type, and this type can usually quite easily 
be deducted from the data flow graph. This has the advantage that most 
of the type checking can be done at compile time. 

S. EXTENDING THE SUBSET TO A FULL LANGUAGE 

In this section I will describe how the subset described in the 
previous section can be extended to the complete language. Ultimately 
the compiler will have to be able to accept itself as source program. 
There are a number of features of SUMMER which have not been included in 
the subset. The implementation of some of them is quite trivial and they 
will be left undiscussed. The implementation of other features, however, 
touches upon some basic problems with data flow languages. 
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JUMPS 

Almost all conventional langu~ges provide facilities to specify sudden 
breaks in the control flow. The classical example is of course the goto 
statement. A more restrained form is the generation of an exception 
signal which transfers control to a specified point. Most languages 
include a return statement which has the effect that the execution of the 
current procedure is aborted and control is returned to the calling 
procedure. SUMMER has no goto statement but provides the other, more 
restrained forms of jumps. 
The effect of a return statement can be simulated as follows: Each 
( compound) statement which contains a return statement delivers an 
additional boolean signal indicating whether the return has been 
activated or not. The subsequent parts of a statement sequence are 
surrounded by a new cocoon which controls the flow of incoming and 
outgoing tokens through a mechanism similar to that used in figure 2. 
The control input of the switches is in this case the return signal. 
This mechanism effectively postpones the execution of the remaining 
statements until the condition that controls the return statement has 
been evaluated. 
The interruption of an expression evaluation due to the generation of an 
exception can be simulated by a more involved variation of the same 
mechanism. 

ARRAYS 

Arrays differ from simple data types in that one element can be changed 
while the rest remains the same. An attractive way of looking at such an 
·operation, is to say that effectively a new array is created which 
differs from the old one at only one point. This is generally the way an 
assignment to an array element is treated in data flow languages. The 
programmer is forced to invent a new name every time she updates one 
element of an array. An equivalent and cheaper way to implement an 
assignment to an array element makes use of the access token mechanism 
described in the previous section. With each array an access token is 
associated., which is incremented by each access to that array. In this 
way all n~trieves from and updates to a particular array are fully 
sequentialized. This can be optimized by letting retrieves from an array 
only wait for the previous update and letting each update wait for all 
retrieves since the previous update. With this optimization the same 
concurrency is obtained as when the algorithm was written in a data flow 
language. 

OTHER DATA STRUCTURES 

A central feature in SUMMER is the class mechanism which allows the 
programmer to specify abstract data types of arbitrary complexity. 
Access to class objects can also be controlled by access tokens. The 
same optimization as in the case with arrays is possible, if a 
distinction is made between retrieve and update accesses. All accesses 
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which change the internal state of the object in any way are update 
accesses and are synchronized accordingly. An access to an object can 
also make use of or change a global variable. These are treated as extra 
input and output in the same way as in the case of a normal procedure 
call, 

6, CONCLUSIONS 

The translation of a program written in a conventional language into 
code for a data flow machine is not as difficult a task as often assumed, 
An important :reason for this may be that ambiguities in the data flow can 
be left unresolved at compile time since the target data flow machine is 
equipped with special hardware to complete this analysis at run time. A 
compiler for a quite extensive subset of a conventional language has been 
implemented. Implementation of the hereto excluded features seems 
feasible. 

The algorithm described in section 4, to implement the subset is 
based on Whitelock's method, which in turn is based on methods generally 
used in data flow analysis. The chief characteristic of my 
implementation is the pervasive use of active data structures (classes). 
Each cocoon, constant or node in the graph is an active object with its 
own autonomous administration. The data flow graph is generated in 
response to the exchange of requests between these objects. These 
objects, of course, carry out essentially the same data flow analysis as 
Whitelock' s compiler does, and in fact many conventional optimizers do. 
The implementation method chosen, however, seems to be far more flexible 
and amenable to generalizations and extensions than Whitelock's method. 
These properties have contributed greatly to the ease of implementation 
of the subset. This subset is expression oriented, which has as a 
consequence that side effects may arise in any part of an expression. 
This would greatly complicate a more conventional implementation scheme. 

It is hard to give a quantitative measure for the complexity of a 
program, but it is indicative that, in my compiler, the code generator, 
where all the data flow analysis is_ concentrated, is smaller in size than 
the conventional parser. It is also hard to judge the quality of the 
produced code since there are almost no alternative implementations. 
Whitelock [ 16] compared his compiler with the one for LAPSE and reached 
the tentative conclusion that the code generated from his language was as 
good as or better than the code generated by the LAPSE compiler. The 
compiler described in this paper produces better code than Whitelock' s 
because more attention is paid to optimization. 

The literature gives three reasons for the development of special 
data flow lan~ruages: 
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Data flow languages are safer in the sense that they make it easier 
to write correct programs since they exclude certain sources of 
common errors. This is ,an important reason for defining a new 
language, but much work in this area has already been done. It 
might be a more fruitful approach to start from a conventional 
language which has proven to be both safe and powerful and 
concentrate on adding facilities which would aid in program 
verification. 

Data flow languages coax a programmer into expressing his algorithm 
in a form which exhibits a high level of concurrency. Most features 
in the data flow languages developed so far have direct equivalents 
in most conventional languages. The only exceptions that might be 
of consequence are the forall construct and its derivatives. These 
constructs are tailored to efficient execution on a data flow 
machine and it remains to be seen whether a compiler will be able to 
easily recognize the equivalent statements in a conventional 
language. Similarly, certain language properties, like the fact 
that an array update can only be accomplished by specifying ( and 
naming) a new array, might serve to discourage a programming style 
which would diminish the concurrency. Whether these features will 
indeed help to express algorithms more concurrently is still an open 
question which can only be answered when far more experience has 
been gained in the use of the$e languages by a di verse group of 
programmers. Only at that point could the concurrency contained in 
the resulting programs be contrasted with that of more conventional 
approaches. 

Without a data flow language it is difficult to construct a compiler 
that generates efficient code for a data flow machine. The work 
reported in this paper indicates that this is not a valid argument. 
When an appropriate source language is chosen and a sufficiently 
powerful implementation technique is used, then the complexity of 
such a compiler is quite manageable. Which properties a language 
should have in order to be suitable as a source language is still 
not completely clear. The absence of an unrestrained goto 
statement, which has as a consequence that a program can be 
transformed into a reducible flow graph, seems to be an important 
criterion. 
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