
AFDEL I NG INFORMATICA

stichting

mathematisch

centrum

l\'l 146/80
(DEPARTMENT OF COMPUTER SCIENCE)

A.H. VEEN

SEPTEMBER

RECONCILING DATA FLOW MACH INES AND CONVENTIONAL LANGUAGES

Preprint

~
MC

kruislaan 413 1098 SJ amsterdam

n·JOLlO'!rtt:[K 1; ~,li,'.!~<~!·i \.:t:htl'i\\/\{\.
Atlr~; r L [{.C;J\i;cl

Ptun:ted a:t :the Ma.:thema,ti,c.ai. Cen.tJr.e, 413 Kll.l.U6laan, Am6:tvuf.am.

The Ma:thema.ti.c.ai. Cen.tJr.e , fiou.nded :the 11-:th ofi FebJu.LCCJr.y 1946, l!, a. non­
pnofi..U bu,:tltuti.on cwnlng a:t :the pll.omo:tlon ofi puJLe ma.:thema.ti.e1i a.nd .,{;a
a.ppllc.a,ti,on6. 1:t l!, .&pon6oll.ed by :the Ne:thetlf..a.n.d6 Govennmen:t :thll.ough :the
Ne:thelli.a.nd6 Onga.vuza.:tlon fioll. :the Adva.nc.emen:t ofi PU/Le RueaJLc.h (Z.W.O.).

I

1980 Mathematics subject classification: 68B99

ACM-Computing Reviews-category: 4.12, 4.20

RECONCILING DATA FLOW MACHINES AND CONVENTIONAL LANGUAGES*

by

Arthur H. VE:!en

ABSTRACT

This p.aper discusses the problems that arise when programs written
in a conventional language are to be com.piled into machine code for a
data flow machine. It describes the current state of a project aimed at
developing a compiler for an existing high level language for string
processing. The compiler is intended.to accept the full language without
changing it:s semantics in any respect. The implementation of a sizeable
subset of the language is described and solutions to the remaining
problems are suggested. The results indicate that the gap between data
flow machines and conventional languages is easier to bridge than
previously assumed.

KEY WORDS & PHRASES: data flow computers, data flow languages, data flow
analysis, code generation, parallel computing

*) This report is not for review; it is submitted for publication in the
proceedings of CONPAR 81, Conference on Analysing Problem-Classes and
Program.ming for Parallel Computing.

1

1. INTRODUCTION

Designs for data flow macqines have been with us for half a decade.
Some machines have been built while others are in various stages of
development. A number of high level languages have been designed
specifically for these machines. In this paper I will investigate
whether such languages are indeed necessary, or whether conventional
languages will do.

The original impetus for data flow research came from the need for a
simpler and more reliable scheme to express concurrency in programs. The
data flow schema's of Dennis [6] led to a design for a new type of
parallel computer and since then the focus of the data flow field has
been on both computer architecture and programming languages. Several
higher level languages have been designed specifically for data flow
machines. The argument given for this development is usually the radical
difference in architecture between data flow machines and conventional
machines.

There has been wide-spread pessimism in the data flow field
concerning the suitability of existing conventional languages as source
languages for data flow machines. The following quote from [15]
illustrates this:

"While it is possible that compile time analysis can be
performed on sequential programs to produce an equivalent
program of greater concurrency, this does not help programmers
to express computations in a form which exhibits a high level
of concurrency. Furthermore, no compile time analysis has been
able to extract the inherent concurrency from a program
containing unnecessary constraints which are the result of
language features based on the assumption of sequential
computer organization."

The first objection raised in this quote will be discussed in
section 7. The second objection probably refers to static analyzers that
attempt to break up a given program written in a language like Fortran
into parts which can safely be executed concurrently. This task is
complicated by features like goto statements, pointers, arrays, global
variables, aliasing, and the like. In a data flow computer, however,
part of determining which instructions can be executed in parallel is
done by special hardware at run time. This simplifies the analysis that
has to be performed at compile time and I will argue in this paper that
it is quite feasible to use a conventional language as a source language
for a data flow machine. The compiler that translates a conventional
language into data flow machine code can be of the same order of
complexity as a conventional compiler and can generate code that is as
efficient as the code that can be generated from some of the special data
flow languages that have been defined so far.

2

The advantages of using an existing language to program a data flow
machine are quite obvious. It would greatly enhance the chances that
these machines will be used as general purpose computers and that they
will help to satisfy the ever growing need for computing power. For good
reasons most people are very reluctant to purchase a machine on which
none of their old software -runs and which forces programmers to learn and
use completely new languages. The number of general purpose programming
languages which are used today is already staggering and new ones should
not be added lightly.

In the next two sections I will give a short description of data
flow machines and languages. Section 4 describes an (implemented)
algorithm to translate a somewhat restricted conventional language to
machine code for an existing data flow computer. Section 5 describes the
steps that are necessary to extend the existing implementation to a
compiler for a complete language. Section 6 summarizes the results
obtained so far.

2. DATA FLOW MACHINES

A data flow computer is a type of parallel computer on which
sequencing of computation steps is governed by the availability of data
rather than by special synchronization or control flow instructions.

I will not describe the des·ign or architecture of data flow
computers or their advantages and disadvantages as compared to other
parallel machines. Introductory material on these topics may be found in
[10, 12]. Instead I will concentrate on those characteristics that are

-interesting from a programmer's point of view.

The computational steps that can be performed in parallel are small.
These steps are the machine instructions which are typically of the
same level of complexity as conventional machine instructions.

A machine instruction is initiated when all its input data are
available and then it runs to completion without interruption. The
instructions are purely functional and free of side effects. This
means that all the information used by an instruction is contained
in its input data and that the only effect of its execution is the
production of output data.

An instruction contains pointers to all instructions which use its
result. A data flow machine program is thus less compactly coded
than the equivalent conventional program. This extra dependency
information enables special hardware to sequence instruction
execution very efficiently.

This last property of machine level programs implies that they can be
represented as directed graphs. Because of this, the instructions and
the data dependency pointers are often called nodes and data paths. The

3

values that travel from node to node over the data paths are called
tokens. A node absorbs the tokens on its input data paths, performs a
functional operation on it and produces the computed result as tokens on
its output paths.

Data flow machines differ considerably in the way they handle
reentrancy. Reentrant graphs are subgraphs corresponding to loops and
(recursive} procedures, which are used more than once in a computation.
Reentrant graphs can present problems because they contain cycles and
therefore certain nodes will have an input point where tokens belonging
to different activations may arrive simultaneously. There are three
methods of avoiding confusion between these tokens. One is to surround
the graph with guards which prevent new tokens from entering until all
tokens of a previous activation have left the graph. This seriously
limits the concurrency of the computation. The second method is to
create a copy of a subgraph every time it is activated. The third
method, which is equivalent to making a copy of the subgraph but is much
cheaper in resources, is to color all tokens corresponding to the
activations they belong to and to require that all nodes copy the color
of their input tokens. A node is only activated when there are tokens of
the same color on all its input paths. Special instructions are provided
which manipulate the color of tokens.

The first data flow machines which were completed were the DDM1 [5]
and the LAU machine [11). The data flow group at MIT is in the process
of building its first prototype [7]. The first machine using token
coloring, is currently near completion at Manchester University [14).

Machine level programs in the form of instructions with pointers are
hard to read. Therefore they are usually presented graphically. In this
form, which will also be used throughout this paper, they are slightly
more readable than conventional assembly language programs. There is
however a clear need for a higher level language that can be translated
into data flow machine code and such languages are the subject of the
remainder of this paper.

3. DATA FLOW LANGUAGES

At least four high level data flow languages have been defined in
conjunction with the design of a data flow machine. One of the oldest is
LAU, from Toulouse, France [11] • The language LAPSE has been designed
for the data flow machine at Manchester [8]. The data flow group at MIT
has developed a language called VAL [1] • The group at Irvine has
produced the language ID [3]. A comparison of some of these languages
can be found in [2] and [13). The differences between data flow
languages on the one hand and conventional languages on the other reflect
the differences in the underlying machines:

4

In a data flow language statement delimiters and goto statements
cannot be used to affect the sequencing of statement execution. The
order of the statements , in the program is generally irrelevant.
This reflects the fact that, in a data flow machine, the execution
sequence is governed by the availability of data and is in no way
influenci:d by the order in which instructions are stored in the
program memory.

In a con,il'entional language variables correspond to memory locations
in the machine which can be accessed an arbitrary number of times.
In a data flow language variables correspond to data paths in the
machine code. As a consequence, a variable gets a value once, namely
when a token appears on the corresponding data path. This is
reflected in the Single Assignment Rule, which states that every
variable appears exactly once at the left hand side of an assignment
statement.

In a data flow language procedures are purely functional. They have
no intermediate memory through which information can be transferred
from one: procedure activation to another. There are no global
variables. The single assignment rule implies that parameter
passing is by value only. Recursive calling of procedures presents
no probli:m.

Arrays in a conventional language most closely resemble a
dynamically addressable memory but they play a markedly different
role in data flow languages. The single assignment rule forbids the
assignment to arbitrary elements of an array. Data flow languages
provide constructs like a forall statement which allow the
programmer to specify the calculation of all elements of an array in
one stati:ment. The effect of changing a single element in an array
can be achieved by creating a new array that is a copy of the old
array with one element replaced by a new value.

4. USING A CONVENTIONAL LANGUAGE

In this section I will present an algorithm that translates a subset
of a conventional language into data flow machine code. Algorithms to
translate data flow programs into data flow machine code have been
described in [4] and [8]. Whitelock was the first to implement a
conventional-to-data flow compiler [16] and the development of the
algorithm described in this section greatly benefited from his work.

The lanquage accepted by the algorithm contains the following
features: different data types (integer, real, string), sequencing by
means of conv·entional statement delimiters, multiple assignment, loops,
conditionals, case-statements, procedures, recursion and global
variables. The language is in fact a subset of SUMMER [9] , a locally
designed language which is tailored towards string processing
applications (such as compilers). The reasons for choosing SUMMER were

5

purely pragmatic. The features of SUMMER that were included in the
subset have exactly the same semantics as in the original language and
can be mixed and nested just as freely. The language is expression
oriented in the sense that eve'ry construct delivers a value and can be
used as part of other expressions. This stands in contrast to the
language that Whitelock's · compiler accepts, which includes, roughly
spoken, the same features but in a much more restricted manner. The
original SUMMER compiler, which is written in SUMMER itself, consists of
a parser and a code generator. The data flow compiler described here,
was obtained by using the almost unmodified parser and by writing a new
code generator. Almost all of the algorithm described here concerns this
new code generator.

The machine code I have chosen to generate is that of the Manchester
machine, with a few additions which were needed to support string
processing. This machine was chosen because its instruction set is
clearly defined [8,16], and because it supports efficient interpretation
schemes due to its color mechanism described in section 2. (The
Manchester group uses the term tag rather than color) In the sequel the
reader is assumed to be familiar with the general principles of a data
flow computer but not with the details of this particular machine.

The code generator processes the parse tree representation of a
program and produces the nodes and data paths of the equivalent data flow
graph. In contrast to data flow languages the order of statements in a
conventional language is important and the code generator makes explicit
use of this order. However certain permutations of this order do not
change the meaning of a program and these permutations will have no
effect on the generated graph. This means that an important source of
the overspecification of execution sequencing in conventional languages
is removed by the translation process.

The code generator makes extensive use of objects called cocoons.
The code for each expression is generated in the context of one or more
nested cocoons, the innermost of which is called the current cocoon. The
cocoons serve a dual purpose. First, they associate variables with nodes
in the graph. Just like in a data flow language, there is a
correspondence between variables and data paths in the generated graph.
At any particular point during code generation a variable is associated
with the node in the graph that is to produce the value the variable
refers to. Because there is no single assignment rule these associations
might change and the same variable can correspond to data paths in
different parts of the graph. The second purpose of a cocoon is the
generation of nodes in the graph that are needed for certain statements
as an interface to the rest of the graph. Different statement types
therefore lead to the creation of different varieties of cocoons, as I
will now describe in more detail.

6

ASSIGNMENT

For the statement

a:= b + c

only one new node with instruction code ADD is created. Data paths that
are to carry the values "b" and "c" are constructed terminating at the
new node. The origins of these data paths are obtained from the current
cocoon. The assignment itself is not visible in the generated graph, but
has the effect that in the current cocoon "a" is associated with the ADD
node. This is illustrated in figure 1a. The nodes and data paths of the
generated code are drawn in solid lines. The two unlabeled nodes are
assumed to be part of the graph generated by previous statements. The
new statement only adds one node and two data paths. The broken lines
indicate compiler constructs like cocoons and their associations.

a := b + c

' ' ' .

FIGURE la

. ' ' ,

a := b + c;
a := b - a•c

' I

' '

FIGURE lb

In general, for a statement of the form

<identifier> := <expression>

' '
' '

a data flow tree is generated which closely resembles the parse tree of
<expression> with the identifiers removed. Each logical or arithmetical
operation of the source program is mapped onto one node or onto a small
subgraph. Datapaths are then created which terminate at the new subtree
and which originate at the nodes which are associated in the current
cocoon with the identifiers in <expression>. The output node of the new
subgraph is then associated with <identifier>. The resulting graph after
processing the additional statement

can be seen
assignment.

a:= b - a*c

in figure 1b, which also shows the effect of multiple
The variable "a" is now associated with the SUBtract node,

7

while the ADD node is inaccessible to later statements: no more data
paths originating at the ADD node can be created. In conventional terms
one would say that the old value of "a" has been overwritten.

CONDITIONAL STATEMENTS

In a data flow machine the outcome of the evaluation of a condition does
not affect the control flow but influences the flow of tokens along data
paths. Each data flow machine provides for this purpose instructions
which can switch the flow of tokens in different directions. The
instruction set of the Manchester machine includes a BRAnch instruction
which copies an incoming data token onto one of two outgoing data paths
depending on the value of a boolean control input token. The Pass-If­
True (PIT) and Pass-If-False (PIF) instructions are merely variations on
the BRAnch instructions in which the data token is either copied or
absorbed. These three instructions are called switches. For a statement
of the form

if A then B else c fi

the graph corresponding to A is generated and linked to the appropriate
nodes in the existing graph. The output node of this graph will produce
a boolean value and is called the condition node. Then a new cocoon is
created which is to generate all the switches that distribute input data
to the two branches of the conditional. All switches have their control
inputs connected to the condition node. The new cocoon will also collect
those tokems that are produced in the two branches and are used later.
Within this cocoon two additional cocoons are created in which the graphs

. corresponding to B and C are generated. The cocoons act as interfaces to
the rest of the graph. The example in figure 2 illustrates some of the
possibilities. The DUPlicate instructions simply copy the incoming data
items to one or more output paths and are generally used in the
interfaces. The purpose of the DUPlicate node labeled "a" in the outer
cocoon, is to merge the data paths of the values "a" in the two branches.
After the code generation for this statement the variable "a" is
associated with this DUPlicate node. Through this mechanism a variable
is, at any point during code generation, always associated with one node
in the graph even if the data flow for that variable cannot statically be
decided. Here we see an example of the division of labor between the
compiler and the data flow machine: the compiler performs the data flow
analysis as far as statically feasible and it generates the code that
enables the machine to complete this analysis dynamically.
A conditional expression is translated in much the same way except that
each of the graphs corresponding to the two branches contains a node
which produces the value of that branch. These two nodes are linked to a
DUPlicate node which represents the value of the whole expression. A
condi tiona.l as the target of an assignment as in

if id<0 then neg else pos fi := id

8

if a (b
then C . - a
else a . - b

a . - b
f i

is also allowed. In this
distributes the value of

· appropriately.

FIGURE 2

case a graph of switches is generated which
"id" and the old values of "neg" and "pos"

A case statement is converted into a series of tests, which can be
evaluated in parallel, and a series of subgraphs corresponding to the
branches. Each subgraph is surrounded by Pass-If-True switches
controlled by the corresponding test. The parallel evaluation of the
tests is possible because in SUMMER, of each case statement exactly one
test evaluates to TRUE.

LOOP

The generat1ed code for the iterative loop includes instructions to
manipulate the color of tokens. Part of the color called the Iteration
Level (IL) is used to separate the tokens of different iterations. Again
nested cocoons are created which handle different parts of the interface
process. In figure 3 we see the outer cocoon contains the switching
nodes that distribute the tokens to the next iteration or to the
continuation of the program. The other nodes in this cocoon are
necessary for the correct manipulation of the color. This mechanism will
not be described here. The right inner cocoon contains the test part and
the left orne the body of the loop. The latter creates the IIL nodes
which Increllllent the Iteration Level between iterations. We see the
values of "n" and "top" circulate around the loop. The tokens carrying

I
I

'·

n : = 0;
while (sq:= n•nl < top
do n := n+I od

tOp IIL \

FIGURE 3

9

sq

the successive values for "sq" are absorbed in the PIF node until the
·test evaluates to FALSE at which time the last token is ejected from the
loop together with the last value for "n".

PROCEDURES

For a procedure call, nodes have to be generated that manipulate a part
of the color called the Procedure Number. A special instruction causes
the machine to generate . a unique color (a non-functional operator!) ,
which is distributed to all tokens that enter the procedure. These
tokens are sent to the appropriate input points of the procedure. To the
output points of the procedure tokens are sent which describe the nodes
which are to receive the results computed by the procedure. In this way
data paths are created dynamically and recursion is implemented without
problems. Results produced by the procedure are given the old color of
the invoking procedure. Global variables that are used in the procedure
are treated as if they were additional input parameters. Global
variables that are targets of assignments within the procedure are
treated as if they were additional results. For this purpose the first
pass of the compiler is slightly modified in such a way that the· code
generator knows of each procedure which of the global variables are
needed as extra input and which ones are needed as extra output.

10

INPUT-OUTPUT

Communication with the outside world has intrinsic side-effects, which
means that in general it does matter in what order input and output
statements are executed. Therefore the basic I/O-routines need special
consideration (in VAL [1] for instance, they are completely absent). In
the current implementation the basic input and output routines increment
a common global variable called an access token. This has the effect
that all invocations of these routines are sequentialized because each
invocation has to pass the access token to the next one. The possession
of this token grants access to a non-functional module of the system. It
is interesting to note that no additional measures have to be taken to
provide sequential input-output; this can be solved completely within the
framework of procedures with global side effects. A generalization of
this concept is described in the next section.

OPTIMIZATION AND VERIFICATION

The representation of a program in the form of a data flow graph
facilitates some useful optimization and program consistency checks. The
code generator implemented so far performs checks on uninitialized or
unused variables and superfluous assignments. It also carries out
constant folding. If both inputs to an instruction are constants then
the execution of the instruction is simulated and the instruction is
replaced by the resulting constant. A warning is given when the
controlling condition of a loop or conditional statement is folded into a
constant. Carrying this constant folding to the extreme, would result in
folding every program that does not contain an input statement, into one
constant: the execution of the whole program would be simulated at
compile time. In the current implementation, however, all instructions
that manipulate colors are exempted from the constant folding, which has
the effect that the compile time simulation stops at the boundaries of
loops and procedure activations.
In SUMMER values rather than variables have types. This means that
variables potentially refer to values of different types, which
necessitates dynamic type checking. Most variables, however, always
refer to values of the same type, and this type can usually quite easily
be deducted from the data flow graph. This has the advantage that most
of the type checking can be done at compile time.

S. EXTENDING THE SUBSET TO A FULL LANGUAGE

In this section I will describe how the subset described in the
previous section can be extended to the complete language. Ultimately
the compiler will have to be able to accept itself as source program.
There are a number of features of SUMMER which have not been included in
the subset. The implementation of some of them is quite trivial and they
will be left undiscussed. The implementation of other features, however,
touches upon some basic problems with data flow languages.

11

JUMPS

Almost all conventional langu~ges provide facilities to specify sudden
breaks in the control flow. The classical example is of course the goto
statement. A more restrained form is the generation of an exception
signal which transfers control to a specified point. Most languages
include a return statement which has the effect that the execution of the
current procedure is aborted and control is returned to the calling
procedure. SUMMER has no goto statement but provides the other, more
restrained forms of jumps.
The effect of a return statement can be simulated as follows: Each
(compound) statement which contains a return statement delivers an
additional boolean signal indicating whether the return has been
activated or not. The subsequent parts of a statement sequence are
surrounded by a new cocoon which controls the flow of incoming and
outgoing tokens through a mechanism similar to that used in figure 2.
The control input of the switches is in this case the return signal.
This mechanism effectively postpones the execution of the remaining
statements until the condition that controls the return statement has
been evaluated.
The interruption of an expression evaluation due to the generation of an
exception can be simulated by a more involved variation of the same
mechanism.

ARRAYS

Arrays differ from simple data types in that one element can be changed
while the rest remains the same. An attractive way of looking at such an
·operation, is to say that effectively a new array is created which
differs from the old one at only one point. This is generally the way an
assignment to an array element is treated in data flow languages. The
programmer is forced to invent a new name every time she updates one
element of an array. An equivalent and cheaper way to implement an
assignment to an array element makes use of the access token mechanism
described in the previous section. With each array an access token is
associated., which is incremented by each access to that array. In this
way all n~trieves from and updates to a particular array are fully
sequentialized. This can be optimized by letting retrieves from an array
only wait for the previous update and letting each update wait for all
retrieves since the previous update. With this optimization the same
concurrency is obtained as when the algorithm was written in a data flow
language.

OTHER DATA STRUCTURES

A central feature in SUMMER is the class mechanism which allows the
programmer to specify abstract data types of arbitrary complexity.
Access to class objects can also be controlled by access tokens. The
same optimization as in the case with arrays is possible, if a
distinction is made between retrieve and update accesses. All accesses

12

which change the internal state of the object in any way are update
accesses and are synchronized accordingly. An access to an object can
also make use of or change a global variable. These are treated as extra
input and output in the same way as in the case of a normal procedure
call,

6, CONCLUSIONS

The translation of a program written in a conventional language into
code for a data flow machine is not as difficult a task as often assumed,
An important :reason for this may be that ambiguities in the data flow can
be left unresolved at compile time since the target data flow machine is
equipped with special hardware to complete this analysis at run time. A
compiler for a quite extensive subset of a conventional language has been
implemented. Implementation of the hereto excluded features seems
feasible.

The algorithm described in section 4, to implement the subset is
based on Whitelock's method, which in turn is based on methods generally
used in data flow analysis. The chief characteristic of my
implementation is the pervasive use of active data structures (classes).
Each cocoon, constant or node in the graph is an active object with its
own autonomous administration. The data flow graph is generated in
response to the exchange of requests between these objects. These
objects, of course, carry out essentially the same data flow analysis as
Whitelock' s compiler does, and in fact many conventional optimizers do.
The implementation method chosen, however, seems to be far more flexible
and amenable to generalizations and extensions than Whitelock's method.
These properties have contributed greatly to the ease of implementation
of the subset. This subset is expression oriented, which has as a
consequence that side effects may arise in any part of an expression.
This would greatly complicate a more conventional implementation scheme.

It is hard to give a quantitative measure for the complexity of a
program, but it is indicative that, in my compiler, the code generator,
where all the data flow analysis is_ concentrated, is smaller in size than
the conventional parser. It is also hard to judge the quality of the
produced code since there are almost no alternative implementations.
Whitelock [16] compared his compiler with the one for LAPSE and reached
the tentative conclusion that the code generated from his language was as
good as or better than the code generated by the LAPSE compiler. The
compiler described in this paper produces better code than Whitelock' s
because more attention is paid to optimization.

The literature gives three reasons for the development of special
data flow lan~ruages:

13

Data flow languages are safer in the sense that they make it easier
to write correct programs since they exclude certain sources of
common errors. This is ,an important reason for defining a new
language, but much work in this area has already been done. It
might be a more fruitful approach to start from a conventional
language which has proven to be both safe and powerful and
concentrate on adding facilities which would aid in program
verification.

Data flow languages coax a programmer into expressing his algorithm
in a form which exhibits a high level of concurrency. Most features
in the data flow languages developed so far have direct equivalents
in most conventional languages. The only exceptions that might be
of consequence are the forall construct and its derivatives. These
constructs are tailored to efficient execution on a data flow
machine and it remains to be seen whether a compiler will be able to
easily recognize the equivalent statements in a conventional
language. Similarly, certain language properties, like the fact
that an array update can only be accomplished by specifying (and
naming) a new array, might serve to discourage a programming style
which would diminish the concurrency. Whether these features will
indeed help to express algorithms more concurrently is still an open
question which can only be answered when far more experience has
been gained in the use of the$e languages by a di verse group of
programmers. Only at that point could the concurrency contained in
the resulting programs be contrasted with that of more conventional
approaches.

Without a data flow language it is difficult to construct a compiler
that generates efficient code for a data flow machine. The work
reported in this paper indicates that this is not a valid argument.
When an appropriate source language is chosen and a sufficiently
powerful implementation technique is used, then the complexity of
such a compiler is quite manageable. Which properties a language
should have in order to be suitable as a source language is still
not completely clear. The absence of an unrestrained goto
statement, which has as a consequence that a program can be
transformed into a reducible flow graph, seems to be an important
criterion.

REFERENCES

[1] Ackerman, w. and Jack B. Dennis, "VAL - A Value-Oriented Algorithmic
Language Preliminary Reference Manual," Technical Report 218,
MIT/Laboratory for Computer Science (June 1979).

14

[2] Ackerman, William B. , "Data Flow Languages," Proceedings National
Computing Conference Vol. 48, pp.1087-1095, AFIPS (Jun 1979).

[3] Arvind, Kim P. Gostelo.J.t, and Wil Plouffe , "An Asynchronous
Programming Language and Computing Machine," Technical Report #114a,
University of California, Irvine, Information and Computer Science
Dept (Dec 1978).

[4] Brock, J. D. and Lynn B. Montz, "Translation and Optimization of
Data Flow Programs," CSG Memo 181, MIT/Laboratory for Computer
Science (July 1979).

[5] Davis, A. L., "A Data Flow Evaluation Sytem Based on the Concept of
Recursive Locality," Proceedings National Computing Conference,
pp.1079-1086, AFIP (Jun 1979).

[6] Dennis, J. B., J. B. Fosseen, and J. P. Linderman, "Data Flow
Schemas," International Symposium~ Theoretical Programming Vol. 5,
pp.187-216 (1972).

[7] Dennis, Jack B., G. Andrew Boughton, and Clement K. c. Leung,
"Building blocks for Data Flow Prototypes," Seventh Annual Symposium
~ Computer Architecture, pp.1-8 (May 1980).

[8] Glauert, J. R. w., "A Single Assignment Language for Data Flow
Computing," Dissertation, Dept. of Computer Science - Victoria
University of Manchester (Jan 1978).

• [9] Klint, Paul, "An Overview of the SUMMER Programmi~g Language,"
Conference Record of the Seventh Annual ACM Symposium of Programming
Languages, pp.47-55, ACM (Jan 1980).

[10] Organick, E. I. , "New Directions in Computer Systems Architecture, "
Euromicro Journal Vol. 5, pp.190-202 (1979).

[11) Plas, A. and others, "LAU System Architecture: A Parallel Data­
driven Processor Based on Single Assignment," Proceedings of the
1976 International Conference on Parallel Processing, pp.293-302,
IEEE (Aug 1976).

[12] Treleaven, P. c., "Principal Components of a Data Flow Computer,"
Large Scale Integration: Technology, Applications and Impacts,
Fourth Euromicro Symposium on Microprocessing and Microprogramming,
pp.366-374 (1978).

[13] Veen, Arthur, "Data Flow Computers, " in Colloquium Hogere
Programmeertalen en Computerarchitectuur, ed. P. Klint (1980). (in
dutch)

15

[14] Watson, Ian and John Gurd, "A Prototype Data Flow Computer with
Token Labelling," Proceedings National Computing Conference Vol. 48,
pp.623-628, AFIPS (Jun 197,9).

[15) Weng, Kung-Son, "An Abstract Implementation for a Generalized Data
Flow Language," Technical Report 228, MIT/Laboratory for Computer
Science (May 1979).

[16) Whitelock, P. J., "A Conventional Language for Data Flow Computing,"
dissertation, Dept. of Computer Science - Victoria University of
Manchester (Oct 1978).

2

