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ABSTRACT

Dissolution of stoichiometric multi-component particles is an important process ocurring during the heat

treatment of as-cast aluminium alloys prior to hot extrusion. A mathematical model is proposed to describe

such a process. In this model equations are given to determine the position of the particle interface in time,

using a number of diffusion equations which are coupled by nonlinear boundary conditions at the interface.

This problem is known as a vector valued Stefan problem. Moreover the well-posedness of the moving boundary

problem is investigated using the maximum principle for the parabolic partial differential equation. Furthermore,

for an unbounded domain and planar co-ordinates an analytical asymptotic approximation based on self-

similarity is derived. Moreover, this self-similar solution and the asymptotic approximation are extended to the

vector valued Stefan problem. The approaches are compared to each other and the asymptotic approximation

is used to gain insight into the influence of all components on the dissolution. Subsequently a numerical

treatment of the vector valued Stefan problem is described. The numerical method is compared with solutions

by analytical methods. Finally, an example is shown.
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Keywords and Phrases: self-similar solution, vector valued Stefan problem, alloy homogenisation, finite differences, (discrete)
Newton Raphson method, Jacobian
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1. Introduction

Heat treatment of metals is often necessary to optimise their mechanical properties both for
further processing and for final use. During the heat treatment the metallurgical state of the
alloy changes. This change can either involve the phases being present or the morphology of
the various phases. Whereas the equilibrium phases can be predicted quite accurately from
the thermodynamic models, until recently there were no general models for microstructural
changes nor general models for the kinetics of these changes. In the latter cases both the initial
morphology and the transformation mechanisms have to be specified explicitly. One of these
processes that is amenable to modelling is the dissolution of secondary (multi-component)
phase particles in a matrix with a given initial composition.

To describe this particle dissolution in solid media several physical models for binary alloys
have been developed, incorporating the effects of long-distance diffusion [40, 2, 28] and non-
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equilibrium conditions at the interface [23, 1, 30]. These articles did not cover the technolog-
ically important dissolution of stoichiometric multi-component particles in multi-component
alloys.

The phase transformation element in steel has been studied in [13, 36]. Reiso et al [26] inves-
tigated the dissolution of Mg2Si-particles in aluminium alloys mainly experimentally. They
compared their results to a simple dissolution model valid for dissolution in infinite media.
Hubert [15] studied the dissolution and growth of second phase particles, consisting of AlN
in an iron-based ternary alloy. His analysis was carried out to predict the size of second phase
particles during hot-rolling of steel. His model was based on similar physical assumptions as
in this paper. However, his approach was purely numerical. The numerical method of [15]
differs significantly from the method presented in this paper and is applicable to compounds of
maximally two alloying elements. Vermolen et al [31] proposed a numerical method, based on
a Newton-Raphson iteration for the computation of the dissolution in ternary alloys. They
also analysed the properties of this Stefan problem in terms of existence, uniqueness and
monotonicity of the solution and well-posedness of the model [32], [31]. Some physical impli-
cations of the model are described in [33] and applications in aluminium and steel industry
are given in respectively [34] and [15].

All analyses indicate that the addition of more alloying elements can influence the dissolu-
tion kinetics strongly. The present paper describes the dissolution of spherical and needle
shaped particles, a planar medium, a spherical layer of segregation and the combination of a
dissolving particle and a dissolving spherical layer of segregation in multi-component alloys.
In many metallurgical situations, the thermal treatment also aims at the dissolution of the
segregation layer around the grains.

The present work covers a Stefan problem in which the growth or dissolution of the particle
is determined by diffusion of several chemical elements in the primary phase. This Stefan
problem is referred to as a vector valued Stefan problem. The analysis of the vector valued
Stefan problem is done in terms of:

• A mathematical model for particle dissolution which leads to a vector valued Stefan
problem,

• Fundamental properties of the (scalar) Stefan problem,

• The extension of a self-similarity solution of the scalar Stefan problem to a vector valued
Stefan problem,

• An asymptotic limit for the vector valued Stefan problem,

• A numerical method to solve vector valued Stefan problems,

• An application to a three component Al −Mg − Si-system.

2. A model of dissolution in multi-component alloys

Consider n + 1 chemical species denoted by Spi, i ∈ {1, ..., n + 1}. The dissolution of a
Πn+1
i=1 (Spi)mi particle in an Sp1, ..., Spn+1 alloy is investigated. In this formula mi denote

the stoichiometry (composition) of the particle. We divide the material into cells in which
a particle dissolves in an Spn+1-rich phase. It is assumed that the overall concentrations of
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Spi, i ∈ {1, ..., n} are small with respect to the concentration of component Spn+1. The
concentrations are written as ci (mol/m3), i ∈ {1, ..., n}. At a given temperature the initial
concentrations in the Spn+1-rich phase are equal to c0i , i ∈ {1, ..., n}. The composition of
the components in the particle are denoted by cparti , i ∈ {1, ..., n}. We assume the particle
concentrations to be fixed. The interface concentrations csoli are variant. As an example
consider the dissolution of an Mg2Si particle in an Al-rich phase. Then Sp1 = Mg, Sp2 = Si,
and Sp3 = Al. The values of m1 and m2 are 2, 1 respectively, and n = 2.

We consider a one-dimensional problem. The geometry is given by Ω(t) = {r ∈ R|ML ≤
SL(t) < r < SR(t) ≤ MR}, t ∈ [0, T ] where T is an arbitrary positive number. In some
applications there is a time tL and tR such that respectively SL(t) = ML, t ≥ tL and SR(t) =
MR, t ≥ tR. For the determination of ci we use the multi-component version of Fick’s Second
Law (see [33], [24] p. 160). For simplicity we assume that all species diffuse independently, and
that the diffusion coefficients Di, i ∈ {1, ..., n} (m2/s) are constant. The resulting equations
are:

∂ci
∂t

=
Di
ra

∂

∂r
(ra

∂ci
∂r

), r ∈ Ω(t), t ∈ (0, T ], i ∈ {1, ..., n}, (2.1)

where a is a geometric parameter, which equals 0,1, or 2 for respectively a planar, a cylindrical,
or a spherical geometry. Note that ML should be non-negative for a 6= 0. All these geometries
occur in metallurgical applications. As initial conditions we use

ci(r, 0) = c0i (r), r ∈ Ω(0), i ∈ {1, ..., n}, (2.2)

where c0i are given non-negative functions. When a moving boundary becomes fixed, we
assume that there is no flux through the boundary, so

∂ci
∂r

(Mk, t) = 0, for t ≥ tk, i ∈ {1, ..., n}, k ∈ {L,R}. (2.3)

It is possible that the particles contain different chemical species. In the following we assume
that particle k contains nk chemical species with indices in Φk ⊂ {1, ..., n + 1}, k ∈ {L,R}.
The complement of Φk is defined as Φc

k = {1, ..., n + 1} \ Φk. On the moving boundaries the
following conditions and definitions are used:

∂ci
∂r

(Sk(t), t) = 0, t ∈ [0, T ], i ∈ Φc
k, k ∈ {L,R}, (2.4)

and

csoli,k (t) := ci(Sk(t), t), t ∈ [0, tk], i ∈ Φk, k ∈ {L,R}. (2.5)

So 2 + nL + nR unknown quantities remain: Sk(t), and csoli,k (t), i ∈ Φk, k ∈ {L,R}. To
obtain a unique solution 2 + nL + nR boundary conditions are necessary. We assume that
the particles are stoichiometric, which means that the concentrations cparti,k in the particles are
constant. Using the Gibbs free energy of the stoichiometric compound we get [33]:

Πi∈Φk(csoli,k (t))mi = Kk, t ∈ (0, tk), k ∈ {L,R}, (2.6)

where Kk are constants. The balance of atoms and the constant composition of the particle
lead to the following equations for the moving boundary positions:

(cparti,k − c
sol
i,k (t))

dSk
dt

(t) = Di
∂ci
∂r

(Sk(t), t), t ∈ (0, tk], i ∈ Φk, k ∈ {L,R}. (2.7)
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Condition (2.7) implies

Di
cparti,k − csoli,k (t)

∂ci
∂r

(Sk(t), t) =
Dj

cpartj,k − csolj,k(t)
∂cj
∂r

(Sk(t), t), i, j ∈ Φk, k ∈ {L,R}. (2.8)

The moving boundary problem given by equations (2.1),..., (2.7) is known as a Stefan problem.
We define the space Q as Q := {(r, t) ∈ Ω(t), t ∈ (0, T )}. We look for solutions of the
Stefan problem with the following properties: S ∈ C1(0, T ] and ci ∈ C2,1(Q) ∩ C(Q̄). When
c0i (S(0)) 6= csol(0), i ∈ {1..n}, then ci cannot be required to be continuous in (S(0), 0). In
these points, we require:

min{c0i (S(0)), csoli (0)} = lim inf
(r,t)∈Q

(r,t)→(S(0),0)

ci(r, t) ≤ lim sup
(r,t)∈Q

(r,t)→(S(0),0)

ci(r, t) = max{c0i (S(0)), csoli (0)},

compare Friedman [12]. For a recent book where this type of problems is considered we
refer to [35] (see for instance p. 132 (2.5), (2.9)). There are some differences between the
dissolution in a binary alloy and in a multi-component alloy. In the first place, n diffusion
equations have to be solved, which are coupled through the conditions (2.5), (2.6), and (2.7)
on the moving boundaries. Secondly, the problems are nonlinear due to the balance of atoms
on SL, SR, both in the binary and the multi-component case. However, in the mathematical
model for a multi-component alloy an extra non-linearity occurs in equation (2.6). Survey
papers and books on the Stefan problem are: [10], [14], [18], [8], [19], and [5].

3. Properties of the scalar d-dimensional Stefan problem

In this section first the maximum principle is formulated. Using this maximum principle the
well-posedness of the Stefan problem is discussed. It is proven that there are Stefan problems
for which no solution exists. The properties and solution of the Stefan problem are first
discussed for the case of one diffusing element, therefore the subscript for the index of the
alloying element is omitted. For completeness, we pose the general multi-dimensional scalar
Stefan problem.

We consider diffusion in the primary phase domain, Ω(t) ⊂ Rd, in which diffusion of a chemical
element takes place. This domain encloses and / or is enclosed by the particle, of which the
domain is denoted by P (t). The initial concentration in the primary phase domain is given
by c(r, 0) = c0, ∀r ∈ Ω(0). For the concentration, we have in Ω(t):

∂c

∂t
= D∇ (∇c) , r ∈ Ω(t), t ∈ (0, T ]. (3.1)

For the concentration inside the particle, P (t), we have:

c(r, t) = cpart, r ∈ P (t), t ∈ (0, T ]. (3.2)

As boundary conditions, we have at the moving boundary (S(t) = Ω(t) ∩ P (t)):

c(r, t) = csol, r ∈ S(t), t ∈ (0, T ],

and the normal component of the velocity of the moving boundary, vν(t), is given by:

(cpart − csol)vν(t) = D ∂c
∂ν
, r ∈ S(t), t ∈ (0, T ], (3.3)
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and at the fixed boundary, Γ := ∂Ω\S(t), we have a homogeneous Neumann condition, with
ν defined as the outward normal:

∂c

∂ν
= 0, r ∈ Γ, t ∈ (0, T ].

In this section cpart, csol and c0 are assumed constant. We will now summarise some basic
properties of this scalar Stefan problem.

3.1 The maximum principle for the diffusion equation
The Stefan problem is formed by the diffusion equation and a displacement equation for the
moving boundary. The solution c(r, t) of the diffusion equation with the above requirements
is unique and satisfies a maximum principle:

Maximum principle
Suppose c satisfies the inequality

∇2c− ∂c

∂t
≥ 0, r ∈ Ω(t), t ∈ (0, T ], (3.4)

then a local maximum has to occur at the boundaries, or at t = 0 (the initial condition).
Suppose that a local maximum occurs at the point P on S or Γ. If ∂

∂ν denotes the derivative
in an outward direction from Ω(t), then ∂c

∂ν > 0 at P .

This statement is referred to as the maximum principle and has been proved by Protter and
Weinberger for a general parabolic operator (see [25] p. 168, p. 170) and by Vuik [37] for
an unbounded domain (see [37], Lemma 2.4., p. 18). For completeness, we generalise the
maximum principle to the presence of a discontinuity at (S(0), 0) ∈ Q̄ in the appendix. This
principle can also be applied for local minima (and ∂c

∂ν < 0) when the inequality in (3.4)
is reversed. The principle thus requires the global extremes of a solution to the diffusion
equation to occur either at the boundaries S(t),Γ or at t = 0.

From the Stefan-condition (3.3), one can deduce immediately that the normal component of
the interface velocity, vν has to satisfy:

vν(t)(cpart − csol) ∂c
∂ν

(r, t) > 0, ∀r ∈ S(t), t ∈ (0, T ], cpart 6= csol 6= c0, (3.5)

note that ∂c
∂ν 6= 0 due to the maximum principle and csol 6= c0.

3.2 Existence of a solution to the Stefan problem
We will analyse the existence of a solution to a class of Stefan problems. Inequality (3.5) will
be used in the proof of the existence proposition. First we introduce the following definition:

Definition 3.1 A solution to the Stefan problem is mass-conserving if the solution satisfies:∫
Ω(t)∪P (t)

(c(r, t)− c0)dV =
(
cpart − c0

) ∫
P (0)

dV, ∀t ∈ (0, T ]. (3.6)

This definition states that the total mass remains constant in time. Note that c(r, t) =
cpart, r ∈ ¶(t), t ∈ (0, T ]. It then can be proven easily that if the solution is mass-conserving
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(i.e. (3.6) holds), we have:

∂c

∂ν
= 0,∀r ∈ Γ, t ∈ (0, T ]⇒ (cpart − csol)vν(t) = D∂c(r, t)

∂ν
∀r ∈ S(t), t ∈ (0, T ]. (3.7)

Now, we formulate a proposition about the existence of a mass conserving solution.

Proposition 3.1 The problem as constituted as the Stefan problem has no solution if(
cpart − c0

)(
cpart − csol

)
≤ 0, and csol 6= c0 with cpart, csol, c0 ∈ R+ ∪ {0}.

Proof

Suppose that a solution exists for the Stefan problem with
(
cpart − c0

) (
cpart − csol

)
< 0. We

then have c0 < cpart < csol or csol < cpart < c0.

First we consider the case that c0 < cpart < csol. From the maximum principle we then have
∂c
∂ν > 0. From equation (3.5) and (csol − c0) ∗ ∂c

∂ν > 0, follows that vν(t) < 0 and thus the
particle grows. Considering t = 0, we have for the global mass difference:

∫
Ω(0)∪P (0)

(c(r, 0) − c0)dr = (cpart − c0)
∫
P (0)

dV.

For t > 0, we have for the global mass difference:∫
Ω(t)∪P (t)

(c(r, t)− c0)dV = (cpart − c0)
∫
P (t)

dV +
∫

Ω(t)
(c(r, t)− c0)dV

= (cpart − c0)

(∫
P (0)

dV +
∫
P (t)\P (0)

dV

)
+
∫

Ω(t)
(c(r, t)− c0)dV =

= (cpart − c0)
∫
P (0)

dV +
∫

Ω(0)
(c(r, t)− c0)dV.

From the maximum principle, it follows that c(r, t) > c0. It is then clear that∫
Ω(t)∪P (t)

(c(r, t)− csol)dV = (cpart − c0)
∫
P (0)

dV +
∫

Ω(0)
(c(r, t)− c0)dV > (cpart − c0)

∫
P (0)

dV.

This implies that equations (3.7) and (3.6) are not equivalent, according to the definition, the
solution is not mass-conserving. The Stefan problem with c0 < cpart < csol does not have a
solution and is therefore ill-posed.

A similar proof can be given to show that for the case csol < cpart < c0 no solution exists
either. We then can show that

(cpart − c0)
∫
P (t)

dV +
∫

Ω(t)
(c(r, t)− c0)dV < (cpart − c0)

∫
P (0)

dV.
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Suppose that a solution exists for the Stefan problem with
(
cpart − c0

) (
cpart − csol

)
= 0, then

we either have cpart = c0 or cpart = csol. For the first case a similar proof as the preceeding
one can be used to show that no solution exists. For the second case one can prove that |vν(t)|
has to blow up in order to keep |∂c(S(t),t)

∂ν | > 0 as required due to the maximum principle when
csol 6= c0 (note the requirements on continuity of c). 2

This proposition has been given and proven for a one-dimensional unbounded Stefan problem
in [32].

If we have
(
cpart − c0

)
∗
(
cpart − csol

)
> 0, we either have (cpart < c0) ∧(cpart < csol) or

(cpart > c0) ∧(cpart > csol). Then it can be proven in a similar way that it is possible to
conserve mass and we then call the Stefan problem well posed. Furthermore, it appears that
we will have dissolution, i.e. vν > 0, if

(
csol − c0

) (
csol − cpart

)
< 0 and contrarily for the

other well-posed problems, we will have growth.

4. An asymptotic solution to a planar vector valued Stefan problem

Consider a planar particle that is dissolving in an infinite matrix: Ω(t) := {r ∈ R|S(t) < r <
∞}. We take Φ = {1, ..., n}. The diffusion is then given by:

∂ci
∂t

= Di
∂2ci
∂r2

, r ∈ Ω(t), t ∈ (0, T ], i ∈ {1, ..., n}.

At the interface, we define:

ci(S(t), t) =: csoli (t), i ∈ {1, ..., n}.

At infinity and for t = 0:

ci(r, 0) = c0i , ci(∞, t) = c0i , S(0) = S0, i ∈ {1, ..., n}.

where c0 is a given constant.

It can be proven that the solution is [39],[32]:

c̃i(r, t) =
c0i − csoli

erfc( k
2
√
Di

)
∗ erfc

(
r − S0

2
√
Dit

)
+ c0i , r ∈ Ω(t), t ∈ (0, T ], i ∈ {1, ..., n}. (4.1)

with k as defined in: S(t) = S0 + k
√
t. Note that due to condition (2.8), the value of k does

not depend on the chemical element. Combination of (4.1) with (2.7) and the square-root like
solutions of the free boundary position S(t), yields the following set of equation to be solved
for k and csoli for all chemical elements:

k

2
=

(
c0i − csoli

)(
cparti − csoli

)√Di
π
∗

exp
(
− k2

4Di

)
erfc

(
k

2
√
Di

) , ∀i ∈ {1, ..., n}. (4.2)
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Πn
i=1(csoli )mi = K. (4.3)

For the scalar Stefan problem this has been analysed in [32]. We solve the system (4.2,4.3)
of n+1 nonlinear equations for n+1 variables (k, csoli , i ∈ {1, ..., n}) with a numerical method.
It turns out that the value of k in the above equation can be approximated by

k̃ = 2

(
c0i − csoli

)(
cparti − csoli

) ∗√Di
π

(4.4)

provided that | c
0
i−csoli

cparti −csoli
| << 1, ∃i ∈ {1, ..., n}. The value k̃ leads to the same solution as

one would obtain from a (inverse) Laplace transform of the diffusion equation [40], [1]. Before
we state the accuracy of (4.4), we define:

Ai :=
c0i − csoli
cparti − csoli

·
√

1
π
,

xi :=
k

2
√
Di
,

f(x) :=
exp(−x2)

erfc(x)
.

It turns out that approximation (4.4) represents a lower limit for the value of k. This is
formulated in the following theorem in which the definitions for Ai, xi and f(xi) are used:

Theorem 4.1 Let xi
Ai

= f(xi) for a given, fixed Ai <
1√
π

and f(xi) as defined above, then:

Ai < xi <
Ai

1−
√
π ·Ai

.

Proof

Using a series expansion of f(x)
x at x→∞ [32], one obtains (for ease of notation we here omit

the index i):

limx→∞
f(x)
x

=
√
π.

Furthermore, it is easy to see that:

limx→−∞f(x) ↓ 0.

Since f(x), f ′(x), f ′′(x) > 0, x ∈ R (f is convex and increases monotonously), one obtains:
0 < f ′(x) <

√
π, x ∈ R. With f(0) = 1 and from the Mean Value Theorem xi

Ai
= 1 + xi ·

f ′(x̃i), x̃i ∈ (0, xi), one obtains: 1 < xi
Ai
< 1 +

√
π · xi. This implies that:

Ai < xi <
Ai

1−Ai ·
√
π
. 2
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We remark that the theorem agrees with the requirement of well-posedness as discussed in
Section 3. For the case of a Stefan problem in R1 (planar geometry) in an infinite domain,
one thus can state that the solution is a self-similar solution. Using the above theorem, one
can easily show by subtraction of Ai the following on the accuracy of approximation (4.4):

Corollary 4.1 Let xi
Ai

= f(xi) for a given, fixed Ai and f(x) from the above definition, then:

|xi −Ai
xi

| = O(Ai).

When we insert the concentrations into the definitions, one obtains from the theorem:

S0 + 2 · c0i − csoli
cparti − csoli

·
√
Dit
π

< S0 + k ·
√
t < S0 + 2 · c

0
i − csoli

cparti − c0i
·
√
Dit
π
. (4.5)

From inequality (4.5), the velocity of the moving boundary can be approximated by:(
c0i − csoli

)(
cparti − csoli

) ·√Di
πt

<
dS(t)
dt

<

(
c0i − csoli

)(
cparti − c0i

) ·√Di
πt
. (4.6)

This (approximate) solution will be used in the remainder of the present paper as a solution of
the vector valued Stefan problem since it gives a good insight into the asymptotic behaviour
of the solution. It is also noted that this lower bound would be obtained if the interface would
be stationary, i.e. not moving [40]. Since the lower bound is only valid for the case that Ai is
sufficiently small, one must be careful in its use. Otherwise, the lower bound then may yield
solutions that are not mass-conserving (see Section 3 and [31]).

The solutions that have been described here only hold for a planar particle in an infinite
domain. Since in real world situations, the domain is finite, we formulate the following
proposition concerning the difference between the solution in an infinite and finite domain.
For simplicity, we formulate the proposition for one alloying element only and therefore omit
the subscript i.

Proposition 4.1 Let c∞ and cM be solutions of the diffusion equation on respectively the
unbounded and bounded domain (ΩM := {r ∈ R|S(t) < r < M},M<∞) with a homogeneous
Neumann boundary condition on the fixed boundary r = M, t ∈ (0, T ], and csol > c0 ≥ 0,
then:

cM (r, t) > c∞(r, t), ∀r ∈ ΩM(t), t ∈ (0, T ].

Proof
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Define w := cM − c∞, r ∈ Ω(t), t ∈ (0, T ], then

∂w(r, t)
∂t

= D∂
2w(r, t)
∂r2

, r ∈ Ω(t), t ∈ (0, T ],

and w(r, 0) = 0, w(S(t), t) = 0.
Since csol > c0, one can see ∂w(M,t)

∂ν > 0, ∀t ∈ (0, T ], with ν denoting the outward normal
at r = M . According to the maximum principle we only can have extremes at either of the
boundaries or at t = 0. We now consider two cases:

• Suppose w(r̃, t) < 0, for some r̃ ∈ (S(t),M ], we then either have at least one minimum
for r = r̃ to satisfy ∂w(M,t)

∂n > 0. This contradicts with the maximum principle.

• Suppose w(r̃, t) = 0, for some r̃ ∈ (S(t),M ], since ∂w(M,t)
∂ν > 0, we have w(M, t) > 0

(note that w(r, t) ∈ C2,1(Q) ∩ C(Q̄)). This contradicts with the maximum principle.

Hence w(r, t) > 0, for all r ∈ (S(t),M ], t ∈ (0, T ]. So: ∂w(M,t)
∂ν > 0, and w(r, t) satisfies the

maximum principle and hence:

cM − c∞ > 0, ∀r ∈ (S(t),M), t ∈ (0, T ],

which completes the proof. 2

From the above proposition follows that |∂c∞(S(t),t)
∂r | > |∂cM (S(t),t)

∂r | on t ∈ (0, T ].

Some limitations of vector valued Stefan problems are given in [31]. It appears that the
model breaks down when the concentration at the interface equals the concentration in the
particle. There it is shown that this happens if c0i = cparti for some i ∈ Φ and c0j = 0 for some
j ∈ Φ \ {i}. Monotonicity properties are described there too.

5. A limit of the solution to a planar vector valued Stefan problem

In this section we consider the consequences of the approximation (4.4, 4.6) as described in
Section 4. For this purpose, we take the special situation that

• cparti >> csoli > c0i = 0, ∀i ∈ {1, ..., n},

Since in metallurgy one often encounters cparti >> csoli > c0i ≈ 0, the solution that satisfies
the above mentioned constraints is referred to as a limit. From the inequalities we see that:

• −1 << c0i−csoli
cparti −csoli

< 0,

• c0i−csoli
cparti −csoli

≈ − csoli
cparti

.

From this and equation (4.4), one easily can write down the following recurrent relationship:

−csoli
cparti

·
√
Di ≈

−csoli+1

cparti+1

·
√
Di+1, ∀i ∈ {1, ..., n − 1}. (5.1)

Assuming an equality in equation (5.1) yields an approximate c̃soli :

c̃soli =
√
D1

Di
· c

part
i

cpart1

· c̃sol1 . (5.2)
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Substitution of equation (5.2) into the assumption that Πn
i=1(csoli )mi = K and defining µ :=

Σn
i=1(mi), one obtains:(√

D1

cpart1

)µ
·Πn

i=1

(
cparti√
Di

)mi
(c̃sol1 )µ = K. (5.3)

The solution to equation (5.3) is:

c̃sol1 =
cpart1√
D1
·K

1
µ · Πn

i=1

(√
Di

cparti

)mi
µ

(5.4)

We reject nonpositive solutions and solutions that are not real. Substitution of the unique
real, positive solution into equation (4.6), yields:

dS(t)
dt
≈ −

csoleff

cparteff

·
√
Deff
πt

, (5.5)

with csoleff , c
part
eff and Deff defined as:

csoleff := K
1
µ ,

cparteff := Πn
i=1(cparti )

mi
µ ,

Deff := Πn
i=1(Di)

mi
µ .

The symbols csoleff , cparteff , and Deff are referred to as respectively the effective solid solubility,
effective particle concentration and effective diffusion coefficient. We thus have approximated
the solution to a vector valued Stefan problem with a solution to a scalar Stefan problem. In
other words the dissolution of a multi-component particle can be described by the dissolution
of a particle in a quasi-binary alloy. One can integrate equation (5.5) in time to yield:

S(t) ≈ S0 − 2 ·
csoleff

cparteff

·
√
Deff t
π

. (5.6)

This case holds for the assumptions that the particle concentrations are much larger than the
concentration at the moving boundary. Moreover, the initial concentration in the primary
phase has to be equal to zero. Nevertheless, equation (5.5) gives a good insight into the
influence of the addition of an alloying element to the dissolution kinetics. The approximation
may be used to test the results from the more general numerical solution. For the case in
which the particle concentrations of all alloying elements are equal, i.e. cparti = cpart and
mi = 1, ∀i ∈ {1, ..., n}, one can simplify the effective quantities to yield for this very special
case:

csoleff := (K)
1
n , cparteff := cpart, Deff := (Πn

i=1Di)
1
n .

It can now be seen that the effective diffusion coefficient is equal to the geometric mean of all
the diffusion coefficients of the alloying elements.
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Figure 1: Two analytical approaches compared.

To clarify this quasi-binary approach we compare this approach to the more general approach
as described in Section 4. We take the following hypothetic quantities: c0i = 0, cparti =
33mol/m3,Di = i·10−3 and mi = 1 i ∈ {1, 2, 3} and S0 = 0.1. From the approach as described
in this section, one obtains for the effective values: Deff = 2.4495 ·10−3, cparteff = 33, csoleff = 1.
It can be seen that this yields: S(t) = S0− 0.15 · 10−2 ·

√
t. Using the more general approach

from section 4 and equations (4.2) and (4.3), one obtains as a solution: S(t) = S0 − 0.16 ·
10−2 ·

√
t. The difference between the two solutions is small. The approximate solution gives a

good order of magnitude for the dissolution kinetics. Figure 1 displays the dissolution curves
for both approaches.

6. The numerical method for vector valued Stefan problems

Various numerical methods are known to solve Stefan problems: front-tracking, front-fixing,
and fixed-domain methods [10]. In a front-fixing method a transformation of coordinates is
used (a special case is the isotherm migration method (IMM)). Fixed domain methods are the
enthalpy method (EM) and the variational inequality method (VI). Various methods are com-
pared in [11]. The latter methods (IMM, EM, VI) are only applicable when the concentration
is constant at the interface. Since in our problem the concentration varies at the interface we
restrict ourselves to a front-tracking method. Front-tracking methods are described in [22],
[3], [17], [41], [4], [42], and [16]. Recently a number of promising methods are proposed for
multi-dimensional Stefan problems: phase field methods ([6], [7], [38]) and level set methods
([20], [27], [9]).

Our main interest is to give an accurate discretization of the boundary conditions for a one-
dimensional Stefan problem. Therefore we use the classical moving grid method of Murray
and Landis [22] to discretize the diffusion equations. First an outline of the numerical method
is given. In the present paper we generalise the method from [31] to a method which can be
used for vector valued Stefan problems.
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The equations are solved with a finite difference method in the r and t-direction. A char-
acteristic feature of a front-tracking method is that the interface positions are nodal points
in every time-step. So, the position of the grid-points depends on time. An outline of the
algorithm is:

1. Compute the concentration profiles solving the nonlinear problem given by (2.1),...,(2.6),(2.8),

2. Predict the positions of SL and SR at the new time-step: SL(t+ ∆t) and SR(t+ ∆t),

3. Redistribute the grid such that SL(t + ∆t) and SR(t + ∆t) are nodal points. Linear
interpolation is used to approximate the concentrations at the previous time-step on
the new grid-points,

4. Return to step 1.

6.1 Discretization of the interior region
In [31] the method is explained using an equidistant grid. For efficiency reasons we use
a non-equidistant grid to solve vector valued Stefan problems. The motivation for this is:
from theory and numerical experiments it appears that the absolute values of the concen-
tration gradients of the diffusing alloying elements are maximal at the moving boundaries.
As the displacement of a free boundary is proportional to the concentration gradient the
space discretization in the neighbourhood of this boundary should be very accurate. There-
fore a fine discretization grid is chosen near the free boundaries and a coarse grid farther
away. A geometrically distributed grid is chosen. As an example consider one free boundary
(SR(t) = MR, t ∈ [0, T ]). The grid is distributed such that ∆rj+1

l = β∆rj+1
l+1 , with β ≤ 1 and

∆rj+1
l := rj+1

l+1 − r
j+1
l . The resulting discretized equation for one alloying element is given by

(for ease of notation we omit here the index i):

cj+1
l

D∆t
+ {(rj+1

l+ 1
2

)a
cj+1
l+1 − c

j+1
l

∆rj+1
l

− (rj+1

l− 1
2

)a
cj+1
l − cj+1

l−1

∆rj+1
l−1

}/{(rj+1
l )a(∆rj+1

l /2 + ∆rj+1
l−1 /2)} =

1
D∆t

{cjl +
cjl+1 − c

j
l−1

∆rj+1
l + ∆rj+1

l−1

(rj+1
l − rjl )}, (6.1)

where cjl approximates the concentration c(rjl , j∆t). For more details we refer to [29] pp.
255-261.

6.2 Discrete boundary condition at a moving boundary
For the case of two moving boundaries, i.e. ML < SL(t) and SR(t) < MR, t ∈ [0, T ],
the solutions of the diffusion equations are formally determined by the concentrations of
all alloying elements at the boundaries SL and SR. So a change of a concentration at SL
influences the solution of the diffusion equations and hence the gradients of concentration at
SR (and vice versa). However, it has been shown in [31] that for ∆t sufficiently small the
concentrations at (j + 1)∆t in the vicinity of SL are not influenced by the concentrations at
(j + 1)∆t in the vicinity of SR. An explanation is given using the theory of penetration. In
most applications ∆t is already chosen less than this bound for accuracy reasons. So in this
section we assume that the boundary conditions on both moving boundaries are independent.
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The boundary conditions are discretized with virtual grid-points. The virtual concentrations
are eliminated by (6.1). For ease of notation we only consider SL and assume that ΦL =
{1, ..., n} and SR(t) = MR. All concentrations which satisfy (6.1) and the boundary conditions
on MR are functions of cj+1

i,0 , i ∈ {1, ..., n}, which is the concentration of alloying element
Spi at SL. To determine these remaining unknowns one has to solve the following nonlinear
equations:

fi(c
j+1
i,0 , cj+1

i+1,0) := Di(cparti+1 − c
j+1
i+1,0)(cj+1

i,1 − c
j+1
i,−1)−Di+1(cparti − cj+1

i,0 )(cj+1
i+1,1 − c

j+1
i+1,−1) = 0,

(6.2)

for i ∈ {1, ..., n − 1} and

fn(cj+1
1,0 , ..., c

j+1
n,0 ) := Πn

i=1(cj+1
i,0 )mi −KL = 0. (6.3)

To approximate a root for the vector function (f1, ..., fn)T we use the Newton-Raphson
method: cj+1

1,0 (p+ 1)
...

cj+1
n,0 (p+ 1)

 =

 cj+1
1,0 (p)

...
cj+1
n,0 (p)

+ (J(p))−1 ·

 −f1(p)
...

−fn(p)

 , (6.4)

where J is the Jacobian and the p-th iterate of the concentration is denoted by cj+1
i,0 (p).

The matrix J is sparse. Only the matrix elements of the last row and the elements Ji,i and
Ji,i+1, i ∈ {1, ..., n − 1} are non-zero. In practice it is impossible to compute the first n− 1
rows of J . Therefore we use a discrete approximation Ĵ . The elements of Ĵ are obtained
from:

Ĵi,i = [fi(c
j+1
i,0 + ε, cj+1

i+1,0)− fi(cj+1
i,0 − ε, c

j+1
i+1,0)]/2ε, i ∈ {1, ..., n − 1},

Ĵi,i+1 = [fi(c
j+1
i,0 , cj+1

i+1,0 + ε)− fi(cj+1
i,0 , cj+1

i+1,0 − ε)]/2ε, i ∈ {1, ..., n − 1}.

Note that ε has to be sufficiently small, but larger than the accuracy of the numerical scheme
to evaluate the concentrations. The computation of Ĵ requires that in every Newton-Raphson
iteration the discretized equations have to be solved 2(n− 1) times (also when SR(t) < MR).

To start the Newton-Raphson procedure an initial guess has to be found. To prevent con-
vergence to an undesired root, the initial guess is chosen as close as possible to the root. For
time-steps j > 1, the boundary concentrations from the former time-step are chosen as initial
guesses. However, at time-step j = 1, the analytical approximations are used. We terminate
the iteration when

n∑
i=1

|cj+1
i,0 (p+ 1)− cj+1

i,0 (p)| < ε.

6.3 Adaptation of the moving boundaries
We have not used all boundary conditions given in (2.7) to determine the concentrations. The
remaining conditions are used to adapt the positions of the moving boundaries. In [31] the
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Euler Forward and Trapezium time integration methods are described to determine the mov-
ing boundary positions. The Trapezium method is preferred because the costs per iteration
are the same for both methods, but the results obtained with the Trapezium method are more
accurate [31]. For the solution of a vector valued Stefan problem we have implemented the
Trapezium integration method iteratively, simultaneously with the Newton-Raphson iteration
to obtain cj+1

i,0 . The iteration is terminated when

∑
i∈ΦL

|cj+1
i,0 (p+ 1)− cj+1

i,0 (p)|+ |S
j+1
L (p+ 1)− Sj+1

L (p)|
SjL −ML

< ε.

7. Numerical experiments

This section contains some numerical experiments. We, however, omitted experiments to
test the accuracy of the numerical calculations. Here we remark only that the accuracy of
the time-integration was order O(∆t) and the accuracy of the mesh-size was order O(∆r)2.
For stability reasons we took ∆t < 1000 ∆r2

max(Di) . We refer to [31] for more details. First we
compare the solutions obtained with the numerical method, as described in Section 6 with the
solutions from the analytical relations of Sections 4 and 5. We also show the behaviour of the
concentration profile of the alloying elements. Finally, we show an example of an application
of the model in aluminium industry.

7.1 A comparison between the numerical and analytical approaches
The first example treats a system in which the analytical approaches do not differ very much.
We have set: cparti = 100, c0i = 0,Di = i · 10−13, i ∈ {1, 2, 3},K = 1, S0 = 0.1 · 10−6m. For
the finite difference, we set MR = 0.1 · 10−4m. Where we imposed a homogeneous Neumann
condition. The position of the moving boundary, S(t), has been sketched as a function of
time in Figure 2.

In Figure 2 we sketched three analytical approaches: the formal analytical approach from
equations (4.2,4.3) and both the upper- and lower bounds for the dissolution kinetics as given
in equation (4.5). It can be seen that the analytical approaches hardly differ. This is because
cparti >> csoli . It can also be seen that the results from the numerical approach matches
perfectly with the results from the analytical approaches at the early stages. However, at
the later stages, from t > 150, the approaches start to differ significantly. This is due to the
fact that the primary phase, in which we have diffusion, starts to saturate: the concentration
profiles start to flatten. To illustrate this behaviour, the concentration profiles of all the
alloying elements have been sketched at t = 50 and t = 200, respectively in Figures 3 and 4.

It is clear that at t = 50 the concentration of the chemical elements is hardly influenced yet.
Up to then, the numerical- and analytical approaches match perfectly (see Figure 2). It can be
seen that at t = 200 the concentration of the alloying elements at MR starts to increase. The
profiles flatten and the dissolution kinetics are delayed compared to the analytical approaches
for the unbounded domain. This agrees well with Proposition 4.1. in section 4.

In the second example we maintained the settings of the first example except for the particle
concentrations: cparti = 20, i ∈ {1, 2, 3} and MR = 0.2 · 10−5. The results have been sketched
in Figure 5.

It can be seen in Figure 5 that the analytical approaches differ more than in the preceeding
example. The lower and upper limit correspond to respectively curves 1 and 3. These repre-
sent the limits given in equation (4.5). The exact analytical approach, represented by curve
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2, falls just within the limits and so does the numerical approach. The numerical approach is
given by curve 4. It can however, be seen that the numerical approach and exact analytical
approach for the unbounded domain differ a little. This is attributed to the numerical inac-
curacy. The numerical solution is between the limits. At the later stages it can be seen that
the numerical and analytical approach start to deviate significantly. This is again attributed
to the saturation of the primary phase. From the experiments it may be seen that the ana-
lytical approaches provide a good order of magnitude for the dissolution kinetics as long as
the concentration at the fixed boundary does not change significantly. In other words, if the
overall concentration is low enough, then the overall dissolution times as predicted from the
analytical approaches give a good order of magnitude for the dissolution rate and time. These
limits may then be well used for engineering purposes.

7.2 The quasi-binary and multicomponent approach compared
For the same two configurations as in the preceeding subsection, we look at the quasi-binary
and multicomponent approach. With the quasi-binary approach, we mean the Finite Differ-
ence calculations, in which we incorporate the effects of the finite cell dimensions, done with
the so-called effective diffusion coefficient, effective interface and particle concentration.

Figure 6 presents the calculations done for the first case of the preceeding subsection, i.e.
the particle concentration is 100 for all chemical elements. It can be seen that the difference
between the quasi-binary and multi-component approach is negligible. The same calculations
have been done for the case that the particle concentration is 20 for all chemical elements.
The results are shown in Figure 7. As can be expected from the theory, the difference between
the calculations is larger now. Nevertheless, the calculations, still do provide a good order
of magnitude. This quasi-binary approach may be used to test the numerical calculations
for the multi-component algorithm for cases in which the cell radius is not large. Moreover,
the quasi-binary approach can be used well as an engineering solution for the case that no
multi-component algorithm is available.

For completeness it is noted that all the theory about the quasi-binary approach is only valid
for the case that the geometry is planar, although we expect that it is also a suitable approach
for other geometries.

7.3 A spherical example with 5 alloying elements
An example of an application of the model to 5 alloying elements is given in Figure 8. Figure
8 displays the interface position as a function of time for a spherical geometry. We chose
cparti = 20, S0 = 1 · 10−6,MR = 5 · 10−6 and Di = i · 10−13, i ∈ {1, ..., 5}. It can be seen
that the shape of the curve differs from the planar geometry. This difference is due to the
curvature of the moving boundary: during dissolution the moving boundary area decreases,
whereas this area remains constant for the planar case. It may also be noted that the interface
position does not assume a square-root like behaviour as in the case of a planar particle. This
characteristic can be observed for cylindrical and spherical geometries.

Another characteristic that can be observed for curvilinear geometries is the dependency
of the interface concentrations on time (see Figure 9). The increase of the interface concen-
trations is physically interpreted as an accumulation of the slower alloying elements on the
interface. These slower alloying elements diffuse at a slower rate from the interface deeper
into the primary phase.
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7.4 An industrial example with a three-component system
As an industrial example of the mathematical model, we look at a three phase system. We
consider the simultaneous dissolution of a Si-particle and a Mg2Si-particle in an Al-alloy.
The silicon-particle is in the center of the spherical cell in which we consider the dissolution.
The Si-particle is enclosed by the aluminium-rich phase (primary phase), which is enclosed
by a Mg2Si-phase. We also have incorporated a temperature-time profile, which is common
in aluminium industry. The alloy is heated from 300 K up to 823 K with a heat-up rate of
0.05 K/s. The initial concentration in the primary phase is: c0Si = 0, c0Mg = 0.04, whereas
the particle concentrations are given by:cpartSi,L = 100, cpartSi,R = 35 and cpartMg,R = 65. For the
diffusion coefficients of silicon and magnesium, we respectively have: DSi = 2.02 · 10−4 and
DMg = 0.49 · 10−4. Then for the solubility product of silicon and magnesium in aluminium,
we have K = 4.03 · 10−5 · exp(74488

8.3·τ ), in which τ is the temperature. For the solubility of
silicon in aluminium, we have used the discrete data from [21].

We here are dealing with three components. We assume that no magnesium diffuses into
the silicon-particle, i.e. we impose a homogeneous Neumann-condition for magnesium at
boundary SL. Due to the homogeneous Neumann condition at SL, magnesium accumulates at
this boundary. For the case that the concentration of magnesium at the boundary of the silicon
particle (SL) is low enough, one can use the solubility of silicon in pure aluminium, given by
binary phase diagrams. If, however, magnesium accumulates up to a certain threshold value,
the concentration of silicon at the boundary SL has to satisfy the hyperbolic relationship of
the solubility of silicon and magnesium in aluminium. In a more mathematical notation, we
thus write for the silicon concentration at the boundary SL:

csolSi =
KMg2Si

cMg(SL(t), t)2 ·H(cMg(SL(t), t)− C̃) +KSi ·H(C̃ − cMg(SL(t), t)). (7.1)

In which H represents the heavy-side function and the threshold concentration C̃ follows
from the continuity of the above relation (7.1), i.e.:

C̃ =
√
KMg2Si

KSi
.

Note that KMg2Si and KSi are functions of temperature and hence so is C̃. The results of
the experiments with the simultaneous dissolution of a Si- and Mg2Si-particle are shown in
Figure 7.4 and 7.4.

It can be seen from Figure 7.4 that both the silicon and magnesium concentration at
the boundary SR increase with time. This is due to the temperature increase. When the
temperature is constant (833 K, t = 2.05 · 104), the concentrations at the boundary SR stay
approximately constant. It can also be seen that the silicon concentration at SL starts to
increase very rapidly after approximately 1.6 · 104 seconds. Once the temperature is fixed,
the Si-concentration at SL is fixed as well, until the magnesium concentration has passed the
so-called threshold concentration C̃ (at t = 2.7 · 104). The Si-concentration then starts to
decrease according to equation (7.1). We only have shown the most interesting part of the
calculation (t ∈ (0, 3.1 · 104]). The evolution of the moving boundary positions is shown in
Figure 7.4. Note that due to the jump in the functional dependency in equation (7.1), the
SL(t) may have a discontinuous time derivative.



22

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

co
nc

en
tr

at
io

n 
at

 b
ou

nd
ar

y

Si at S
L
(t)

Si at S
R

(t)

Si at S
R

(t)

Mg at S
R

(t)

Mg at S
R

(t)

Mg at S
L
(t)

Figure 10: The concentrations at the moving bound-
ary as a function of time.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time (s)

(S
i (

t)
−

M
i )

/(
S

i (
0)

−
M

i )

S
L
(t)/S

L
(0)

(S
R

 (t)−M
R

 )/(S
R

 (0)−M
R

 )

Figure 11: The moving boundary positions as a func-
tion of time.



23

8. Conclusions

A mathematical model is presented to describe the dissolution of stoichiometric multi-component
particles in multi-component alloys. Some results concerning existence and uniqueness are
given.

A definition is introduced about mass-conserving solutions to Stefan problems. It is proven
in Rd for the scalar Stefan problem that no solution exists if:

(cpart − c0)(cpart − csol) ≤ 0, csol 6= c0 and c0, csol, cpart ∈ R+ ∪ {0}.

For a planar particle dissolving in an unbounded domain, a self-similar solution is used for
the scalar Stefan problem. This exact self-similar solution is extended to the dissolution of
a multi-component particle. From the exact similarity solution two limits have been derived
for the dissolution of a planar particle in an unbounded domain. The limits are easy to
calculate and provide good insight into the dissolution kinetics and can therefore be used for
engineering purposes as well.

For the case of initial concentrations equal to zero, a simple expression is derived for the
dissolution in terms of an effective diffusion coefficient. It turns out that the effective diffusion
coefficient is equal to a geometric mean of all diffusion coefficients involved. The weight-factors
come from the particle concentrations.
Furthermore, a numerical method is presented to deal with more general cases: curvilinear
co-ordinates and two boundaries. It has been shown that the results of the numerical method
agree well with the results obtained from the analytical approaches for the planar case as long
as the solution at the fixed boundary did not change significantly from the initial condition.

Still, a number of open questions remain:

• For the vector valued Stefan problem, multiple solutions may exist [32], further research
is needed at this point,

• Is the model valid when blow up occurs?

9. Appendix 1: The maximum principle for a discontinuity at the boundary

Below we give a generalisation of the maximum principle given in [25]. This generalisation
is done for the case that we have S(t) and M respectively as the left and right boundaries.
Moreover, we only consider the one-dimensional case because this reasoning can be extended
easily to the d-dimensional case.

Theorem (maximum principle)

Suppose S ∈ C[0, T ] and Ω(t) = {r ∈ R|S(t) < r < M}. Consider the bounded function
c ∈ C2,1(Q) ∩ C(Q̄), where expression (2) holds in points where the boundary functions are
discontinuous. Note that Ω(t) may be an unbounded domain (M =∞). When c satisfies:

∂c

∂t
− ∂2c

∂r2
= 0, r ∈ (S(t),M), t ∈ (0, T ]

then

min{infr∈Ω(0) c(r, 0), inft∈[0,T ] c(S(t), t)} ≤ c(r, t) ≤
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max{supr∈Ω(0) c(r, 0), supt∈[0,T ] c(S(t), t)} for (r, t) ∈ (Q̄).

Proof

The maximum principle is first proved for a discontinuous function c and thereafter gener-
alised to unbounded domains.

We first consider the second inequality for a bounded domain (M < ∞). Define µ =
max{supr∈Ω(0) c(r, 0), supt∈[0,T ] c(S(t), t)}. Suppose there is a point (ξ, τ) ∈ Q such that
µ1 := c(ξ, τ) > µ. Take a neighbourhood B of (S(0), 0) such that c(r, t) ≤ µ+ 1

2(µ1 − µ) for
(r, t) ∈ B, which is always possible because expression (2) is valid in (S(0), 0). Furthermore
B is such that (ξ, τ) ∈ Q\B. Since c is a continuous function in Q\B the maximum principle
given by [25] can be applied. From this it follows that c(r, t) ≤ µ+ 1

2(µ1−µ), for (r, t) ∈ Q\B
which leads to a contradiction. The first inequality can be proved in a similar way. This
proves the theorem for a discontinuous function c. 2

It is easy to generalise the maximum principle on a bounded domain to an unbounded domain
when the function c is bounded (compare the proof of Lemma 2.4, p. 18 in [37]).
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