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ABSTRACT

Dissolution of stoichiometric multi-component particles in ternary alloys is an important process occurring

during the heat treatment of as-cast aluminium alloys prior to hot-extrusion. A mathematical model is proposed

to describe such a process. In this model an equation is given to determine the position of the particle interface

in time, using two di�usion equations which are coupled by nonlinear boundary conditions at the interface.

Moreover the well-posedness of the moving boundary problem is investigated using the maximum principle for

the parabolic partial di�erential equation. Furthermore, for an unbounded domain and planar co-ordinates an

analytical asymptotic approximation based on self-similarity is derived. This asymptotic approximation gives

insight into the well-posedness of the problem.

1991 Mathematics Subject Classi�cation: 35R35, 80A22

Keywords and Phrases: self-similar solution, vector valued Stefan problem, alloy homogenisation, planar geometry

Note: The paper will appear in the proceedings of the Nederlands Mathematisch Congres 1998.

1. Introduction

Heat treatment of metals is often necessary to optimise their mechanical properties both for

further processing and for �nal use. During the heat treatment the metallurgical state of the

alloy changes. This change can either involve the phases being present or the morphology of

the various phases. Whereas the equilibrium phases can be predicted quite accurately from

the thermodynamic models, until recently there are no general models for microstructural

changes nor general models for the kinetics of these changes. In the latter cases both initial

morphology and the transformation mechanisms have to be speci�ed explicitly. One of these

processes that is amenable to modelling is the dissolution of second phase particles in a matrix

with a uniform initial composition.

Particle dissolution is modelled as a Stefan Problem: a di�usion problem with a moving

boundary. The present work �rst covers an asymptotic solution of a Stefan problem of a binary

alloy. In a binary alloy only one alloying element di�uses and hence determines dissolution.

This solution is based on the class of self-similar solutions available for Stefan problems.

Using this asymptotic solution a rapid insight is gained into the behaviour of the solutions

and into the well-posedness of the model. Moreover, the well-posedness of the problem is

investigated using the maximum principle of the parabolic partial di�erential equation and

the overall mass-balance. Subsequently dissolution in ternary alloys is considered. Two
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chemical elements di�use simultaneously and hence determine the rate of the movement of

the moving boundary. The di�usion of both the alloying elements is coupled via an hyperbolic

relationship between the concentrations at the moving interface.

The mathematical model for the dissolution of second phases in ternary alloys is given in

Section 2. Some preliminaries of the well-posedness and a short derivation of a self-similar

solution are given in Section 3. For details about the numerical method, we refer to the work

of Vermolen and Vuik.

2. A model of dissolution in ternary alloys

Consider three chemical species denoted by A;B, and C. We investigate the dissolution of an

AlBmCn particle in an A�B�C alloy, where we assume that the concentrations of B and C

are small with respect to that of component A. The concentrations of B and C are written

as cB ; cC (mol/m3) respectively. At a given temperature the initial concentrations are equal

to c0B and c0C . The concentrations of B and C in the particle are denoted by c
part
B and c

part
C .

The interface concentrations (csolB and csolC ) are variant.

We consider a one-dimensional problem. In this paragraph the model is posed very generally.

In the other sections we will use a simpli�ed version of the model. The geometry is given by


(t) = fx 2 RjM1 � S1(t) � x � S2(t) � M2g, t 2 [0; T ] where T is an arbitrary positive

number. In some applications there is a time t1 and t2 such that respectively S1(t) =M1; t �
t1 and S2(t) = M2; t � t2. For the determination of cB ; cC we use the multi-component

version of Fick's Second Law (see [8], [3] p. 160):

@cp

@t
=

D p

ra
@

@r
(ra

@cp

@r
); r 2 
(t); t 2 (0; T ]; p 2 fB;Cg; (2.1)

where a is a geometric parameter, which equals 0; 1 or 2 for respectively a planar, cylindrical

or spherical geometry. All these geometries occur in metallurgical applications. Note that

M1 should be non-negative for a 6= 0. As initial conditions we use

cp(r; 0) = c0p(r); r 2 
(0); p 2 fB;Cg; (2.2)

where c0p are given non-negative functions. When a moving boundary becomes �xed, i.e.

Sk(t) =Mk, we assume that there is no ux through the boundary, so

@cp

@r
(Mk; t) = 0; for t � tk; p 2 fB;Cg; k 2 f1; 2g: (2.3)

On the moving boundaries the following de�nition is introduced:

cp(Sk(t); t) = csolp;k(t); t 2 [0; T ]; p 2 fB;Cg; k 2 f1; 2g: (2.4)

So, six unknown quantities remain: Sk(t); c
sol
B;k(t), and c

sol
C;k(t); k 2 f1; 2g. To obtain a unique

solution six boundary conditions are necessary. We assume that the particle is stoichiometric,

which means that c
part
A ; c

part
B ; and c

part
C are constant. Using the Gibbs free energy of the

stoichiometric compound we get the following coupled Dirichlet condition: [8]:

(csolB;k(t))
m � (csolC;k(t))

n = K; k 2 f1; 2g; (2.5)
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where the exponentsm;n correspond to the stoichiometric phase AlBmCn andK is a constant

depending on temperature. The balance of B and C atoms and the constant composition of

the particle lead to the following equations [5] for the moving boundary positions:

(cpartp � csolp;k(t))
dSk
dt

(t) = D p
@cp

@r
(Sk(t); t); t 2 (0; T ]; p 2 fB;Cg; k 2 f1; 2g: (2.6)

Condition (2.6) implies the following Neumann condition:

D B

c
part
B � csolB;k(t)

@cB

@r
(Sk(t); t) =

D C

c
part
C � csolC;k(t)

@cC

@r
(Sk(t); t); k 2 f1; 2g: (2.7)

The moving boundary problem given by equations (2.1),..., (2.6) is known as a Stefan problem

[2]. Due to the (non-linear) coupling of the di�usion equations, we refer to it as a vector valued

Stefan problem. There are some di�erences between the dissolution in a binary alloy ([8])

and in a ternary alloy. In the �rst place, two di�usion equations have to be solved, which are

coupled through the conditions (2.4), (2.5), and (2.7) on the moving boundaries. Secondly,

the problems are nonlinear due to the balance of atoms on S1; S2, both in the binary and the

ternary case. However, in the mathematical model for a ternary alloy an extra non-linearity

occurs in equation (2.5). These equations are numerically solved for the concentrations at the

interface, csolB ; csolC using a discrete Newton-Raphson scheme where the discretised gradients

are used [7]. For a recent book where Stefan problems are considered we refer to [9] (see for

instance p. 132 (2.5), (2.9)).

3. Properties of the Stefan problem

In this section �rst the maximum principle is formulated. Using this maximum principle

the well-posedness of the Stefan problem is discussed. It is proven that there are Stefan

problems for which no solution exists. Finally this section treats an asymptotic solution of

a planar Stefan problem in an unbounded domain (M2 = 1). The properties and solution

of the Stefan problem are �rst discussed for the case of one di�using element, therefore the

subscript for the index of the alloying element is omitted.

3.1 The maximum principle for the di�usion equation

The Stefan problem is formed by the di�usion equation and a displacement equation for one

or more moving boundaries. For the di�usion equation it can be proved that the solution

satis�es a maximum principle, which we present for completeness.

Maximum principle

Suppose c satis�es the inequality

@2c

@r2
� @c

@t
� 0; r 2 
(t); t 2 (0; T ]; (3.1)

then a local maximum has to occur at one or both of the sides S1; S2 (the moving boundaries),

or at t = 0 (the initial condition). Suppose that a local maximum occurs at the point P on

S1; or S2. If
@
@� denotes the derivative in an outward direction from 
(t), then @c

@� > 0 at P .

This statement is referred to as the maximum principle and has been proved by Protter and

Weinberger for a general parabolic operator (see [4] p. 168, p. 170). This principle can also be

applied for local minima (and @c
@�

< 0) when the inequality in (3.1) is reversed. The principle
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thus requires the global extremes of a solution to the di�usion equation to occur either at the

boundaries S1; S2, or at t = 0.

In [7] some limitations of the vector valued Stefan problem (2.1)....(2.6) are summarised.

It appears that the model breaks down when the concentration at the interface equals the

concentration in the particle. Moreover in [7] the monotonicity properties are described as

well.

3.2 Well and Ill-posed one-dimensional Stefan problems describing particle dissolution or

growth

In this subsection it is proven that for some one-dimensional Stefan problems no solutions

exist. We consider a planar Stefan problem in an unbounded domain. For a bounded problem

the proofs have been given in [6]:appendix 2. The velocity of the interface is given by equation

(2.6) and based on mass conservation. With mass conservation we here mean that the total

mass is constant. Here we take the quantities csol, cpart and c0 constant. The integral form

of the Stefan condition, in an unbounded domain, is given by:

Z 1

0

(c(r; t) � c0)dr =
�
cpart � c0

�
S(t) +

Z 1

S(t)

(c(r; t) � c0)dr =
�
cpart � c0

�
S0 (3.2)

The above equation states that the total mass is constant. It can be proven easily by

di�erentiation that equation (3.2) and equation (2.6) are equivalent for the case that the total

mass is constant. For this case the concentration at in�nity is constant and the concentration

gradient is equal to zero there. For the case that the total mass is constant the Stefan problem

is well-posed.

If we de�ne @c
@�

as the spatial derivative in the direction of the outward normal from 
(t), it

follows from the maximum principle that (csol � c0) � @c
@� > 0. From equation (2.6), it then

follows that

vn(t) �
�
cpart � csol

�
� @c
@�

> 0: (3.3)

In which we de�ne vn(t) as the velocity of the moving boundary in the outward normal from


(t). In the remaining part of this subsection it will be shown by contradiction that for some

Stefan-problems no solutions, satisfying the total mass balance, exist. The following propo-

sition formulates the existence of the solution for the case of a one-dimensional unbounded

domain:

Proposition 1 The problem as constituted as the Stefan problem has no solution if

�
cpart � c0

�
�
�
cpart � csol

�
< 0:

Proof

Suppose that a solution exists for the Stefan problem with
�
cpart � c0

�
�
�
cpart � csol

�
< 0:

We then have
�
c0 < cpart < csol

�
or
�
csol < cpart < c0

�
.
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First we consider the case that c0 < cpart < csol. From equation (3.3) and (csol� c0) � @c
@� > 0,

follows that vn(t) < 0 and thus
dS(t)
dt > 0. Considering t = 0, we have for the global mass

di�erence:

Z 1

0

(c(r; 0) � c0)dr = S0(c
part � c0):

For t > 0, we have for the global mass di�erence:

Z 1

0

(c(r; t) � c0)dr = S(t) � (cpart � c0) +

Z 1

S(t)

(c(r; t) � c0)dr =

= S0(c
part � c0) + (S(t)� S0) (c

part � c0) +

Z 1

S(t)

(c(r; t) � c0)dr =

= S0(c
part � c0) +

Z 1

S0

(c(r; t) � c0)dr:

From the maximum principle, it follows that c(r; t) > c0, it is then clear that

S0(c
part � c0) +

Z 1

S0

(c(r; t) � c0)dr > S0(c
part � c0):

This implies that equations (2.6) and (3.2) are not equivalent. The Stefan problem with

(c0 < cpart < csol) does not have a solution and is therefore ill-posed.

A similar proof can be given to show that for the case (csol < cpart < c0) no solution exists

either. We then can show that

S(t)(cpart � c0) +

Z 1

S(t)

(c(r; t) � c0)dr < S0(c
part � c0): 2

This proposition can also be given and proven in the same way for a similar more-dimensional

Stefan-problem.

If we have
�
cpart � c0

�
�
�
cpart � csol

�
> 0, we either have (cpart < c0) ^(cpart < csol) or

(cpart > c0) ^(cpart > csol). Then it can be proven in a similar way that it is possible to

conserve the mass and the Stefan problem is well posed. Furthermore, it appears that we will

have dissolution, i.e.
dS(t)
dt < 0, if

�
csol � c0

� �
csol � cpart

�
< 0 and contrarily for the other

well-posed problems, we will have growth.

The above mentioned concepts of well- and ill-posedness of the Stefan-problem will be used in

the next sections when the solution of the vector valued Stefan-problem may not be unique.
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3.3 An asymptotic solution to a planar Stefan problem

Consider a planar particle that is dissolving in an in�nite matrix. The di�usion is then given

by:

@c

@t
= D

@2c

@x2
:

The condition at the interface is given by:

c(S(t); t) = csol:

At in�nity and for t = 0:

c(r; 0) = c0; c(1; t) = c0; S(0) = S0;

where csol and c0 are given constants.

We look for a self-similar solution given by [10]:

~c(r; t) = � � erfc
�
r � S0

2
p
D t

�
+ �: (3.4)

It can be seen that this function satis�es the di�usion equation. We look for solutions of the

moving boundary problem with the following form:

S(t) = S0 + k
p
t:

To satisfy the boundary conditions, we obtain for � and �:

� =
c0 � csol

erfc
�

k

2
p
D

� ; � = c0:

Combination of (3.4) with (2.6) and the square-root like solutions of the free boundary

position S(t), yields the following equation to be solved for k:

k

2
p
D

=

�
c0 � csol

�
(cpart � csol)

1p
�
�
exp

�
� k2

4D

�

erfc
�

k

2
p
D

� : (3.5)

In the above equation it can be seen that both sides are functions of the parameter �

:= k

2
p
D
. For the right hand side, we have the following two limits: lim�!0

e��
2

erfc(�)
= 1 and

lim�!1
e��

2

erfc(�)�� =
p
�. De�ning A := c0�csol

cpart�csol
1p
�
, we can re-arrange equation (3.5) into:

�

A
=

exp(��2)
erfc(�)

: (3.6)
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Figure 1: A graph of both sides of equation (3.6).

Solutions of this equation can be found numerically. Figure 1 displays the graph of both

sides of equation (3.6). The solution is given by the intersection of the curve and the straight

line from respectively the right- and left hand side of equation (3.6). The most right straight

line corresponds to the asymptote f(�) =
p
� � �. It can be observed that for A � 0, the

solution is �
A
� 1. From the limit to 1, it can be observed that for 0 < 1

A
<
p
�, or A > 1p

�

no solution exists. A > 1p
�
corresponds to c0�csol

cpart�csol > 1, it can be seen that this exactly

corresponds to the condition (cpart � c0) � (cpart � csol) < 0 (see proposition).

From this may also be observed that if a solution of this planar unbounded Stefan problem

exists, the self-similar solution is unique.

Using �
A � 1, it can be seen that k can be approximated by, for j (c0�csol)

(cpart�csol)
j su�ciently

small:

k = 2

�
c0 � csol

�
(cpart � csol)

�
r

D

�
(3.7)

Equation (3.7) is the same solution as we would obtain from a (inverse) Laplace transform of

the di�usion equation [11], [1]. The velocity of the moving boundary can then be approximated

by:

dS(t)

dt
= �

�
csol � c0

�
(cpart � csol)

�
r

D

�t
(3.8)

This (approximate) solution will be used in the remainder of the present paper as a fast

approximate solution of the vector valued Stefan problem. It is also noted that this solution

would be obtained if the interface would be stationary, i.e. not moving.
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4. Solutions of the vector-valued Stefan problem

Combination of both components to full�ll the requirement as stated by equation (2.7), and

using (3.8) it follows that:

ĉsolB � c0B

c
part
B � ĉsolB

�
r

D B

�t
=

ĉsolC � c0C

c
part
C � ĉsolC

�
r

D C

�t
: (4.1)

Using equation (2.5) as the relation between the concentrations at the interface S and sub-

stitution this into equation (4.1), one obtains:

ĉsolB � c0B

c
part
B � ĉsolB

�
r

D B

D C
=

(K=(̂csolB )n)1=m � c0C

c
part
C � (K=(̂csolB )n)1=m

: (4.2)

This approximation gives rapid insight. It can be shown that equation (4.2) holds for all K

as long as j c0�csol
cpart�csol j is small enough (see Figure 1).

However, we formally have to solve the following non-linear system (using the de�nitions

�p :=
k

2
p
Dp

, and Ap :=
c0p�csolp

c
part
p �csolp

1p
�
; p 2 fB;Cg:

�B

AB
=

exp(��2B)
erfc(�B)

;
�C

AC
=

exp(��2C)
erfc(�C)

; (csolB )n(csolC )m = K: (4.3)

The solution of this system gives then values for k, csolB and csolC . The solutions for (csolB ; csolC )

from equations (4.2) and (4.3) are respectively referred to as the approximate and exact

solution of the vector valued Stefan problem. It turns out that the interfacial concentration

is constant in time. This is a characteristic property of the planar Stefan-problem. It is

shown in [8] that the interfacial concentration is not constant in time for di�erent, curved

geometries. The variation of the interfacial concentration with time is then most signi�cant

at the early stages.

For the case of a particle stoichiometry BC, i.e. n = m, equation (4.2) results into a simple

quadratic equation. If (c0C�c
part
C �

q
DB

DC
)�(cpartB �c0B�

q
DB

DC
) < 0 then there is only one root for

which the inequality ĉB;sol > 0 holds. If however, (c0C � c
part
C �

q
DB

DC
) � (cpartB � c0B �

q
DB

DC
) > 0

and the discriminant is positive then we have to keep in mind that the roots have to meet the

requirement that the Stefan problem is not ill-posed, i.e. we may not have 0 � c0p < c
part
p < csolp

or 0 < csolp < c
part
p < c0p; p 2 fB;Cg. A root that does not satisfy this requirement is rejected.

It should be noted that the system (equation (4.3)) does not admit solutions that are not mass-

conserving. In the next section the accuracy of the approximate solution is investigated.

It appeared from numerical experiments that one of the solutions may be unstable. This

instability depends on the formulation of the numerical problem and is hence a numerical

instability [7]. For higher orders (di�erent stoichiometries) it is very hard to state any general

remarks about the solution. For the practical cases considered so far, it was found that there

was only one real solution larger than zero.

5. An example of non-uniqueness of the vector-valued Stefan problem

To get some insight into the non-uniqueness of the solution of the vector-value Stefan prob-

lem and of the accuracy of the approximate solution, we consider the following example:
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Figure 2: Interface velocity for various values of K.

�
c
part
B ; c

part
C

�
= (50; 1)

�
c0B ; c

0
C

�
= (2; 30) and D C = 2 � D B = 2 � 10�13m2=s and the value of

K is varied. The interface conditions have been calculated using equation (4.2). Subsequently,

the interface velocity is computed using equation (2.6).

Figure 2 shows the interface velocity coe�cient
dS(t)
dt

�
q

t
DB

as a function of K for K 2
(300; 650) for the approximate and exact solution of the vector valued Stefan problem. It

can be seen that there is a fast and a slow solution. The solution above and beneath are

respectively referred to the slow and the fast solution.

For 0 < K < 50, it can be seen that the discriminant, resulting from equation (4.2) is positive

and hence two solutions are obtained. This is observed for both the approximate- and exact

solution. It is also observed that for lower values of K the slow solution of the approximate

and exact solution converge to each other. This is due to the fact that for this case Ap

is small enough (typically of the order (0.01,0.1)). The fast approximate solution gives an

ill-posed Stefan problem. Whereas the fast exact solution diverges to �1, corresponding

to csolp > 100, for some p 2 fB;Cg. For this case the fast solution is rejected, the solution

can then be regarded as unique. For K = 50, it may be seen that one obtains one root

corresponding to a division by zero. For K > 50 two positive roots for csolB are obtained.

Both solutions then have a negative velocity, so the particle dissolves. It can be observed

that for K > 350 the approximate and exact solution start to deviate signi�cantly for the

slow solution as well. We then obtain larger values of the parameters AB and AC for the

slow solution too. The values of AB and AC for the fast solution are already very large

(typically in the order of (-1,-200)). This analysis gives some insight into uniqueness of the

solution of the vector valued Stefan problem and on the accuracy of the approximate solution.
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6. Conclusions

A mathematical model is given to describe the dissolution of particles of constant composi-

tion and consisting of two alloying elements. Some results of existence and uniqueness of the

solution is given. Moreover, it is shown that some Stefan-problems are ill-posed since their

solutions may satisfy the Stefan-problem, but they do not satisfy the condition that the total

mass is constant.

The solution proposed here is only valid in an unbounded domain, but gives a rapid esti-

mate of the dissolution time of plate-like particles. The solution for the plate in an unbounded

domain can be used as a starting solution in the discrete Newton iteration scheme necessary

for the computation of the free boundary concentrations.

The accuracy of an approximate solution is analysed. It has turned out that the approximate

solution can be used reliably if j c0p�csolp

c
part
p �csolp

j << 1, p 2 fB;Cg.

An open question remains concerning a generalisation to di�erent stoichiometries (i.e. m 6=
n). More research is needed at this point.

ACKNOWLEDGEMENT

Part of the work done for this paper by the �rst author, was at the Delft University of

Technology at the laboratory for Materials Science in the group of prof.dr.ir. S. Van der

Zwaag.



11

References

1. H.B. Aaron and G.R. Kotler. Second phase dissolution. Metallurgical Transactions,

2:393{407, 1971.

2. J. Crank. Free and Moving Boundary Problems. Clarendon Press, Oxford, 1984.

3. R.L. Parker. Crystal growth mechanisms: energetics, kinetics and transport. Solid State

Physics, 25:152{298, 1970.

4. M.H. Protter and H.F. Weinberger. Maximum Principles in Di�erential Equations.

Prentice-Hall, Englewood Cli�s, 1967.

5. Guus Segal, Kees Vuik, and Fred Vermolen. A conserving discretization for the free

boundary in a two-dimensional Stefan problem. J. Comp. Phys., 141:1{21, 1998.

6. Fred Vermolen. Mathematical models for particle dissolution in extrudable aluminium

alloys. Delft University Press, Delft, May 1998. Thesis.

7. Fred Vermolen and Kees Vuik. A numerical method to compute the dissolution of second

phases in ternary alloys. Journal of computational and applied mathematics, accepted, to

appear, 1998.

8. Fred Vermolen, Kees Vuik, and Sybrand van der Zwaag. The dissolution of a stoichio-

metric second phase in ternary alloys: a numerical analysis. Materials Science and Engi-

neering A, A246:93{103, 1998.

9. A. Visintin. Models of Phase Transitions. Progress in Nonlinear Di�erential Equations

and Their Application: 28. Birkh�auser, Boston, 1996.

10. H. Weber. Die partiellen Di�erential-Gleichungen de mathematischen Physik II. Vieweg,

Braunschweig, 1901.

11. M.J. Whelan. On the kinetics of particle dissolution. Metal Science Journal, 3:95{97,

1969.


