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Abstract

Let H(p) be the set {x € X: h(z) < p}, where h is a real-valued lower semicontinuous function on
a locally compact second countable metric space X. A limit theorem is proved for the empirical
counterpart of H(p) obtained by replacing of h with its estimator.
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1. INTRODUCTION

Consider a certain lower semicontinuous real-valued function h defined on a locally com-
pact second countable metric space (X, p). Then the set

H(p) = {z € X: h(z) < p} (1.1)

is closed. The aim of this paper is to prove a limit theorem for the estimator H,(p) of
the set H(p) obtained by replacing A(x) in (1.1) with its estimator h,(x):

H,(z) ={zx € X: h,(z) <p} . (1.2)
A simple problem of this kind originates in classical statistics.

ExamMpPLE 1.1. Suppose that h(z) = F(z), x € R, is the distribution function of a
random variable v. Then H(p) = (—o0, z,], where z, is the p-quantile of v, and H,(p) is
related to the corresponding empirical quantile if h,, is the empirical distribution function.
A generalization for quantiles of random vectors and random closed sets was considered
by Eddy [2] and Molchanov [7].



If h is a density, then the level set H(p) appears in cluster analysis, see Hartigan [3].
An estimator of H(p) based on minimization of the so-called excess mass was considered
in [4, 9]. Similar problems appear also in the estimation of the support of a density, see [5].

Further we shall not discuss the nature of the estimator A,. We only suppose that the
estimator h,, is strongly consistent in the uniform metric and

Cn = an(hn - h) (13)

admits a weak limit ( as n — o0, i.e. each continuous in the uniform metric functional of
(» converges in distribution to its value on (. Here a, — oo as n — oo is a sequence of
norming constants.

Suppose also that each function A, is almost surely lower semicontinuous. Then H,(p)
is a random closed set as introduced in [6].

Space K of all compact subsets of X can be metrized by the Hausdorff distance:

pu(K,Ky)=inf{r >0: K C K{,K; C K"},

where K, K; € IC,
K" ={z: b(z,r) N K # 0}

is the r-parallel set to K and b(z,r) is the ball of radius r centered at z. For each
set M C X we shall write cl(M), Int M and OM for its closure, interior and boundary
respectively.

2. STRONG CONSISTENCY
The estimator H,(p) is said to be strongly consistent if
pu(Hp(p) N Ko, Hp) N Kg) = 0 as. as n— oo

for each compact Ky. The distance py(H,(p) N Ky, H(p)N Ky) is a random variable, since
H,(p) N Ky is a random closed set, and the function pg(-, K) is continuous.

Theorem 2.1. Suppose that, for each compact K,

N = sup |hp(xz) — h(z)] = 0 a.s. as n— oo. (2.1)
zeKy

The estimator H,(p) is strongly consistent if

H(p) Cc(H(p—)), (2.2)

where H(p—) = {x: h(z) < p}. If for each x there exists a sequence n(k) such that
hyy(z) > h(z) a.s., then (2.2) is also a necessary condition. Moreover, if (2.2) is valid
for each p € [c1, ¢s, then

sup pu(H,(p) N Ko, H(p)NKy) — 0 a.s. as n— 00. (2.3)

c1<p<ca



Proor. To simplify notations suppose that X is compact, and Ky = X.
Sufficiency. It is evident that the function

¢(e) = pu(H(p +¢), H(p))-

is right-continuous, non-increasing for ¢ < 0 and non-decreasing for ¢ > 0. Note that
¢(0) = 0. Moreover, (2.2) yields pu(H(p), H(p—)) = 0, that is ¢ is continuous at zero.
Evidently, H,(p) C {z: h(z) < p+ n,}. Similarly,

H(p) C H(p—n,)*"™) = U{b(z,d(n.)): h(z) <p—1.}
C Hn(p)¢("") )

Hence, (2.1) yields
ou(H,(p), H,) < é(n,) — 0 as.as n— o0.

Furthermore, (2.3) follows from the monotonicity of H and its estimator.

Necessity. Let H(p) ¢ cl(H(p—)). Then there exists a point z, such that h(z) = p
and p(z,cl(H(p—)) = 6 > 0. Then h,x)(z) > h(xz) = p by the condition of Theorem.
Therefore, x ¢ H,)(p), whence p(H,u (p), H(p)) > 6, contrary to the consistency of the
estimator H,(p). O

Heuristic, (2.2) for all p means that the function A is not constant on any open subset
of X.

3. LiMIT THEOREMS

Let us proceed to find the asymptotic distribution of the Hausdorff distance between
H,(p) and H(p). First, for any function f: X — R and a compact set K introduce the
functional

O(f) = pu(H(p; f) N Ko, H(p) N Ko), (3.1)
where
H(p; f) = {z: h(z) <p+ f(x)} .
Evidently, pg(H,(p), H(p)) = ®((.(-)/an). Let us put
K(p) = {z € Kq: h(z) =p}
K(p;e) = {xz € Ky: |h(z)—p| <e}, £>0.

If sup,cx |/(@)] = e, then H(p; f) = H(p; f|.), where

_ ) f®) , zeK(pe)
fle(@) = { 0 , otherwise
Therefore, in this case ®(f) = O(f|).

Following Borovkov [1] and Molchanov [7] a functional ® (in general not necessarily
defined by (3.1)) is said to be continuously differentiable if there exists a functional @'



such that for each continuous function f and each sequence {fs}, such that fs converges
uniformly on Ky to fasé | 0

§TIB(5f5) — ®'(f) as 610, (3.2)
d'(fs) — ®(f) as 610, (3.3)
(fl.) — @(flo) as €10, (3.4)

Theorem 3.1. Let the random field (1.3) converge weakly to a continuous random field (.
Suppose that the functional (3.1) is continuously differentiable. Then a,pu(H,(p), H(p))
converges in distribution to ®'((|o).

Proor. Evidently, a,pu(H,(p), H(p)) = a,®((a,*(,)l,,.), where 1, has been defined in
(2.1). Tt is easy to show that the random variable a,®((a,;'(,)|s) converges in distribution
to ®'((|s) for each sufficiently small . Now the statement of Theorem follows from (3.2)-
(3.4). O

Let us now find a representation for the derivative ®' of the functional (3.1). For this,
define
wi(z,t) = inf {h(y) — h(z): p(z,y) <t, y € Ko}, z€ K. (3.5)

Theorem 3.2. Suppose that the following conditions are valid:

(i) For each x, wp(x,t) is continuous for ¢ belonging to a certain neighborhood of the
origin;
(i1) Function wp(x,t) is differentiable at t = 0 uniformly for x € K(p;¢) and its derivative

L(z) = wy(z,0) is upper semicontinuous and non-vanishing on K(p;e).

Then the functional ® is continuously differentiable,

'(f) = sup |f(z)/L(z)], (3.6)

z€K (p)

and anpu(H,(p) N Ko, H(p) N Ky) converges in distribution to sup,ex ) [((z)/L(z)|.

Proor. Let us verify the differentiability of ® and find its derivative. Let M, (§) =
{z € Ky: fs >0}and M_(6) = {x € Ko: fs <0}, where f5 is the function from (3.2) and
(3.3). Furthermore, put

S(8) = {z € M (6): h(z) € (p,p+ 6fs(2)]} U {z € M_(6): h(z) € (p+ 8fs(x).p]} .
Then
O(6fs) = pu(H(p;6fs) N Ko, H(p) N Ky)

_ max( sip pla HG)NK),  sup p(x,H(p;6fa)ﬂKo))-
*€M4(8)NS(6) 2EM_(8)NS(6)

Put for any v < 0
wp(z,y) = inf {t > 0: wp(x,t) =~} .



If z € M. (6) N S(6), then p = h(x) — 6fs(z)rs(z), where 0 < rs < 1. Furthermore,
rs(z) = 0 for z € K(p).
Then, for z € M, (6) N S(6),
ple,H(p) = inf{t>0:z € (H(p)NKo)'}
= inf{t >0: z€b(y,t), h(y) <p, y € Ko}
= inf {6 >0: wp(z,0) < =6fs(x)rs(z)}
= wp(z,—0fs(x)rs(x)).

Similarly, for each z € M_(6) N S(6),
p(z, H(p; 6 fs) N Ko) = &n-s,(, 0 fs(x)rs(x)) -

Thus, ®(6f5) = max(¢4(6), p—(06)), where

¢+(5) = sup G)h(x,—éfg(x)rg(x)),
2€ M4 (6)NS(6)
¢-(6) = sup  Wn-sg,(z,0fs(z)rs(z)) -

z€M_(8)NS(5)

Let us show that the function ¢ (6) is differentiable at zero and find ¢/ (0). It follows
from (i) and (ii) that w,(z,~) is differentiable at v = 0 uniformly for z € K(p;¢), and
wy(z,0) = 1/L(z). Since the functions f and rs are bounded and fs converges to f
uniformly, we get

on(z, =6 fs(x)rs(z)) = @), (x, 0)[=6 fs(x)rs(z)] + Ok(z, ),
where Sup e (pe) 5(2,6) — 0 as 6 — 0. Therefore,

¢4(0) = lim sup  &y(z,0)[~fs(z)rs(z)]
2€M4(5)NS(8)
= lim sup |f(z)/L(z)|.
610 ze M, (6)NS(5)
Note that {z: f(z) > as} C M (6) C {z: f(z) > —as}, where

as = sup |f(z) = fs(z)| = 0.
z€Kp

The continuity of f and (ii) yield the upper semicontinuity of the function |f(x)/L(x)|.
Hence

¢4 (0)= sup |f(z)/L(z)]. (3.7)

z€K (p),f(2)>0

Let us proceed to find the derivative ¢’ (0). Clearly,

8 wn-ss, (2, 1) — wi(z, t)| < sup{|fs(z) — fo()|: plz,y) < 1}

Thus,
|wh—sfs (@, 1) — wy(z,0)t] < hA(z,6) +0(6) +0(t) as t—0,



where A(z,8) — 0 as 6 — 0 uniformly for z € X. For v = § fs(x)rs(x) we get

§'on_sp,(z,y) = & Ninf {t > 0: wh_sp,(z,t) =7}

inf {¢t > 0: wy_sp,(z,t0) =}

inf {t > 0: wy,(z,0)t6 = v+ 6A(z,6) + o(6) + o(td)}
inf {t > 0: wy(z,0)t = fs(x)rs(z) +c(6)} ,

IN A

where ¢(§) — 0 as 6 — 0.
A similar bound from below is also true. From (ii) we get
¢ (0) = lim sup  fs(x)rs(z)/L(x)
810 zeM_(5)NS(6)
= sup | f(z)/L(z)|.

z€K(p),f(z)<0
From this and (3.7) it follows that the derivative ®'(f) is determined by (3.6). The
functional @’ satisfies the conditions (3.3) and (3.4). Now the limit theorem for the
Hausdorff distance follows directly from Theorem 3.1. O

If X = R? and & is continuously differentiable, then it is possible to find the corre-
sponding derivative L(x).

Theorem 3.3. Suppose that Ky = cl(Int Ky) (Ky is regular closed) and K, has C*
boundary 0Ky. Let n(z) be the unit outer normal vector to Ky at ¢ € 0K,. Furthermore,
let h be continuously differentiable at a neighborhood of K(p). Put

oh oh
V(IE) = —grad h(.’]}') = — (8—1}1, ey 8—;1;(1) .

Then the conditions (i) and (ii) are valid and

[v(z)]| , « € Int Ky
M@={Hﬂ@l , z € 0K, ¢(z) > T
[v(z)|lsing(z) , = € Ko, ¢(z) < %

where ¢(z) is the angle between v(z) and n(x).
PRroor follows from the Taylor expansion of h(y) — h(x) in (3.5).

In the analogous way also a system of inequalities {z: hi(z) < p1,..., hpn(2) < P}t
with p; > 0 can be considered. This case can be reduced to the case (1.1) for the function
h(.’L‘) = MaXi<i<m hz(.T)/pz

It is possible also to consider analogs of the Hausdorft distance by

pB(K,K))=inf{r>0:. KC K;®rB, K, C K®rB},

where & is the Minkowski addition and B is a convex set containing the origin as its
interior point. In the usual definition of the Hausdorff distance B is the unit ball. Then
Theorem 3.2 is valid after replacing in (3.5) p(z,y) < é by y € z + 6 B.



4. EXAMPLES

In the simplest case h is a monotone (say increasing) function on the line. Then the esti-
mator H,(p) is strongly consistent if & is continuous at the point z, = sup{z: h(z) < p}.
Furthermore, a,pu(H,(p), H(p)) converges weakly to |((z,)/L(z,)|. If h(z) = z, then
L(z) = =1 for z € (0,1). Thus, for p € (0,1), the limit is distributed as |{(p)].
If h(z) = z?, then L(z) = —2|z|, and a,pu(H,.(p), H(p)) converges in distribution to

max(|¢(y/)|, [¢(=vB)|)/2v5.

Furthermore, in R? put h(z) = ||z||*, @ > 0. Then L(z) = —a||z||*7! inside Int Ko,
and the weak limit of anpu(Hn(p), H(p)) is equal to sup,—, [¢(2)]/(ap®~).

Y

Let us consider also another example related to the theory of random closed sets. Let
£(z) be the support function of a random compact set A, that is

{(z) =sup{(u-2z): ue A},

where (u - ) denotes the scalar product. We suppose that ||A|| = sup{||z||: z € A} has a
finite expectation. Then h(z) = E£(z) is the support function of the Aumann expectation
(mean body) EA of A, see [12, 11]. For p = 1, the corresponding set H(1) defined by
(1.1) is a so-called polar set (EA)° of EA, see [10]. Suppose that EA contains the origin
as an interior point.

Let &, ..., &, be the support functions of iid copies of A. Then the set

) = {& h() = - T e@) s v} =p(F(i 0w 4,)

is a strongly consistent estimator of H(p) = p(EA)°. Note that h,, is the support function
of (A1 @ A,)/n.

Pick compact Ky such that (EA)° C Int K. If the boundary of EA is smooth (C!),
then the function (3.5) satisfies the conditions of Theorem 3.2 with L(z) = ||z||~*h(z). Tt
follows from Theorem 3.2 and the central limit theorem for Minkowski sums of random
sets [12] that

Vnpu(Ha(1) N Ko, H(1)) = vVrpu((A1 & -+ & Aq)/n)° N Ko, (EA)°)

converges weakly to
sup{¢(z)|lz[|: = € O(EA)},

where ( is the centered Gaussian random field on R? with the same covariance as the
support function ¢ of A.

A solution of inequality was used in [8] to estimate the shape of a deterministic grain in
a Boolean model. For this, the function h is determined through the covariance function
of the Boolean model. To avoid technicalities, we mention only that Theorem 3.2 can be
applied to establish a limit theorem for the corresponding set-valued estimator.
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