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ABSTRACT

Analysis modules tend to be set up as one way flow of information, i.e a clear
distinction between cause and effect or input and output. However, as the
speed of analysis approaches real time (or faster than movie rate), it becomes
increasingly difficult for an external user to distinguish between cause and
effect because they are simultaneously available for visualization and can be
viewed in any desired order. This paper discusses some potential benefits of
setting up a Flipping Analytical Coin Tool (FACT) which closes the
information flow loop, thereby taking advantage of the apparent equivalence
between forward and reverse analysis. A simple and stable non-linear
algorithm is derived which uses the principle of dimensional similarity in each
independent dimension of the problem to efficiently calculate the reverse path
of high speed multidimensional functions or analysis modules. An example
application in the field of conceptual thermodynamic design of a turbofan
engine demonstrates the usefulness of this approach to interactive design
optimization of complex engineering systems. The method given here is
applicable to both well and ill-posed problems.

1991 Mathematics Subject Classification: 65K10, 90C29, 90C31, 93B51.
1991 Computing Reviews Classification System: B.5.2, C.4., D.4.7, F.1.2., J.6.
Keywords and Phrases: Inverse Design & Analysis, Modelling & Simulation, Computational 
Steering, Parameter Estimation, Dimensional Similarity.
Note: To appear in the Proceedings of the Second International Conference on Inverse Methods, 
Le Croisic, France, June 96. Work carried out under project SEN 1.3 Interactive Visualization 
Environments.

1.  INTRODUCTION

In recent years, there has been increased pressure for developing fast (or real time) analysis
modules from several scientific and engineering fields, e.g. High Speed Visualization, Anima-
tion, Computational Steering [ref. (4)] and Interactive (or Human-in-the-Loop) Optimization
[ref. (6)]. Fast computational models or analysis modules can be very advantageous because
they enable:

• interactive (or human in the loop) optimization;

• real time navigation in multi-dimensional parameter or design spaces [ref. (5)];

• the use of computationally intensive global optimization techniques;
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how can one exploit the above mentioned advantages of
real time analytical modules, where in majority of
fields, these are traditionally set-up as long iterative pro-
cedures? It is the goal of this paper to show that the
answer probably lies in the direction of information
flow in analysis. Suppose that for the special class of
high speed analytical modules, it is possible to construct
a high speed reverse path in the flow of information.

The resulting set up can be visualized as a flipping coin
(Figure 1) which has X and Y on two faces respectively.
To the external user, X and Y co-exist without any par-

ticular concern how this co-existence was achieved as long as the coin is flipping fast enough
and as long as the external user can interact with X or Y independently. Here interact is synon-
ymous to modify and observe. Once the general purpose reverse solver is available, the chal-
lenge of setting up the FACT for a specific application involves the definition of X, Y and the
Model Equations so that the forward path is high speed and X and Y are interesting or useful
for the current analytical activity. In general, if the original analytical module used in a particu-
lar application is high speed, then X and Y can retain their original definitions, i.e no compro-
mise. Otherwise a new definition of X and Y are necessary that use the Model Equations. The
apparent equivalence that exists between input and output (or cause and effect) in this setup
provides some freedom in setting up the analysis in a direction that is most convenient. Slug-
gish analysis modules which use long or complex iterative procedures require some sort of
compromise, e.g. by working with intermediate results (Y) since they are available at a much
faster rate. 

In inverse analysis it is very easy to come across ill-posed problems and solution techniques
[ref. (2)]. Current research in inverse methods seems to be weighted towards regularization

[ref. (1)] and combining existing algorithms with application specific inversion criteria. Con-
sider the 2D robot arm in Figure 2. Here the object of inverse analysis is to find the required

• guiding more accurate and sluggish calculation modules to reduce the number of itera-
tions or to ensure convergence.

Despite the above advantages, by far the majority of models and solvers aim for numerical
accuracy with little or no consideration for the trade-off between accuracy and computational
speed. While the improvement in technology and algorithms result in better computational per-
formance, the gain is not likely to be sufficient to obtain real time for majority of applications.
In some particular applications, it might be fruitful to pursue analytical shortcuts at some small
expense to accuracy. For example it was possible to obtain a closed form solution (i.e. non-iter-
ative, high speed and 99.9% accurate) for calculation of the steady state off-design perfor-
mance of gas turbine engines which is traditionally an iterative procedure and several orders of
magnitude slower to compute [ref. (6)]. However finding analytical short-cuts is a highly intu-
itive process and hence becomes more unlikely as the problem becomes more complex. So

Figure 1.  The Flipping Analytical 
Coin Tool (FACT).

Input X Model Equations Output Y

Solver

Reverse Solver
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lengths and angles that result in a given change in the
end position (Px,Py). Nakamura [ref. (3)] views the
solution of this ill-posed problem as a constrained opti-
mization problem and uses the kinetic energy as merit
function (to minimize for a particular trajectory of end
point) and transversality condition as constraint.

Finding the correct constraint and merit functions to
solve specific inverse problems is in general not a sim-
ple task and it can always be argued whether a given
specification gives the best results. The inverse method

of this paper adopts a similar view of inversion as a constrained optimization problem but
attempts to make a general purpose specification by making use of the concept of dimensional
similarity. A justification for this is that many physical quantities in proper dimensionless
form, tend to retain their value to first or second order accuracy within some significant range,
a property which is often exploited in engineering. For example the aerodynamic drag coeffi-
cient (a dimensionless parameter) of a car remains nearly constant in the normal speed range.
Once this drag coefficient is measured at one speed, it can be used to estimate the drag at other
speeds. A general specification of the inversion criteria is useful for cases where it is difficult
to specify sensible constraint and merit functions. Alternatively it can serve as a benchmark for
augmentation or comparison of application dependent specifications.

The following sections first state the 1-d inverse problem as a constrained optimization prob-
lem. The derivation of the constraint is based on the assumption that the dimensionless partial
derivative (or log derivative)  varies linearly with x. Two solution proce-
dures are then presented for the 1-d problem followed by extension to multiple dimensions
with weighted variables. The resulting technique is very efficient and can be used to construct
the reverse path of a high speed analytical module in order to set up the FACT as shown in Fig-
ure 1. The potential of the FACT is then shown by way of a example in the following areas:

• Navigation in a hyperspace;

• Parameter Estimation, fitting models to experimental data or fitting less rigorous models
to their rigorous counterpart;

• Interactive Optimization (or human in loop) of gas turbine thermodynamic performance.

2.  ALGORITHM TO SET UP A HIGH SPEED REVERSE PATH

The strict computational speed requirement of the FACT, forces the design of a suitable
algorithm towards repeated application of a high speed one dimensional result. Other more
obvious requirements are stability and immunity to scaling.

This section first treats the 1-d inverse problem followed by a fast solution technique. For clar-
ity only a minimum of information is included to illustrate the main points. The actual imple-
mentation also includes some numerical tricks to make sure that the algorithm is stable. For
example the definition of ratios where the denominator is zero, maximum and minimum con-
straint on the allowable values for dimensionless sensitivities etc.

yln∂( ) xln∂( )⁄

Figure 2.  2D Robot Arm. 
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2.1.  Problem Statement 

Given a 1-d transfer function  (where ), a current point 

and a new output , find  which minimizes the merit function or figure of merit (fom),

, (EQ 1)

subject to a constraint based on dimensional similarity, .

2.2.  Derivation of Similarity Constraint

The dimensionless sensitivity (or the log derivative) of y with respect to x is:

. (EQ 2)

Integrating the above relation from A to B:

. (EQ 3)

Assuming a linear variation of the log derivative, i.e. assuming:

, (EQ 4)

and substituting for  and solving the integral yields:

. (EQ 5)

The above relation assumes that the dimensionless sensitivity (or log derivative) of y varies lin-
early from A to B. Simplifying the above relation by setting  and introducing offset O1

(to correct for this setting) yields the 1-d forward and reverse relations that we are seeking:

, (EQ 6)

or expressed in functional form:

y f x( )= x IR∈ xA yA, f xA( )=

yB xB
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 –=

g x( )

y∂ y⁄( ) x∂ x⁄( )⁄ t x( )=

y∂ y⁄
A

B

∫ t x( ) x∂ x⁄( )
A

B

∫=

t x( ) tA

tB tA–

xB xA–------------------ x xA– 
 +=

t x( )

yB

yA
------

 
 
 

ln tA⁄
xB

xA
------ln

tB
tA
----- 1–

 
 
 

2 O2+ 
  ,+=

where O2

xA

xB xA–------------------
xB

xA
------

 
 
 

1or O2 O2 xB xA, 
 =–ln=

tB tA=

xB

xA
------

yB

yA
------

 
 
 

ln tA⁄ O1+
 
 
 

 or O1 xB xA⁄ 
 

yB

yA
------

 
 
 

ln tA⁄–ln=exp=



5

. (EQ 7)

2.3.  General Solution

A general solution to the 1-d problem can be obtained by substituting the similarity constraint
into the definition of fom. Substituting for  from (EQ 6) into (EQ 1) gives:

, (EQ 8)

which transforms the original 1-d constrained optimization problem into an unconstrained
optimization problem to determine , which can be solved by a variety of numerical

optimization algorithms.

2.4.  Efficient Solution

The general solution above transforms a 1-d problem into a 2-d problem. A more efficient
solution is possible in the form of a predictor-corrector method which terminates when the
magnitude of the error does not reduce any further. The error is defined by:

, (EQ 9)

where subscript P denotes a predicted value. The iterative procedure of the 1-d reverse path is
shown in Figure 3. The iteration starts with zero offset ( ) as shown, which roughly

locates the solution in the first iteration. Thereafter  is allowed to have a value (i.e. relaxed)

to refine the solution. In practice, for functions which are not too erratic, convergence is very
fast, i.e. only a few iterations are needed (circa 5) to reach termination.

xB reverse_1d xA yA yB tA O1, , , ,( )=

O1 forward_1d xA xB y,
A

yB tA, , ,( )=

yB

fom yA tA xB xA⁄ 
  O1+ln 

 { }exp f xB( )–=

O1 and xB

ε
yP yB–

yB
------------------

 
 
 

or ε epsilon yP yB,( )==

O1 0=

O1

2.5.  Extension to Multiple Dimensions 
with Weights

In this section a weights tensor is used
to reduce the M-dimensional problem (i.e.
input is M-dimensional vector) to a series
of separate one-dimensional problems
such that the one dimensional reverse path
result of the previous section can be used.

2.5.1  Problem Statement

Given a high speed transfer function

, a weights vectorY F X( )=

Figure 3.  The 1-d Reverse Path Algorithm.

while (  and reducing){

O1 0=

ε 0>

xB reverse_1d xA yA yB tA O1, , , , 
 =

yP f xB( )=

O1 forward_1d xA xB y,
A

yP tA, , , 
 =
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, a current state , a new output state  and a

dimensionless sensitivity tensor , where  is the M-dimensional input

vector,  is the output,  is the dimensionless sensitivity vector whose element

, find  which minimizes

, subject to a similarity constraint in each dimension.

2.5.2  Decomposition and Solution

The weights vector determines the relative influence of each input dimension in achieving
the required output . The contribution of  to Y is denoted  which is calculated as fol-

lows:

W w1 w2 …, , wM= X
A

YA, f X
A

( ) K
A

,= Y
B

K X x1 x2 … xM, , ,=

Y K

Ki Yln∂ xiln∂⁄ Y∂ Y⁄ xi∂ xi⁄⁄ Yδ Y⁄ xiδ xi⁄⁄≈= = X
B

fom YB f X
B

( )–=

YB xi Yiδ

. (EQ 10)

The multidimensional minimization problem can now be decomposed into M one dimensional
optimizations as follows:

For each dimension, minimize , such that similarity criteria is satisfied,

where .

In each minimization, the elements of the input vector  are the same as the initial input vector

 except the ith element  which is the result of the minimization. The calculation procedure

of the multi-dimensional reverse path then makes use of the 1-d reverse path as shown in
Figure 4.

2.5.3  Further Extensions

The multi-dimensional inverse problem is in general a M by N problem. It should be easy to
see that the above approach can be extended in a similar way to decompose the M by N problem
into N, M-dimensional minimizations which requires repetitive application of the above result.
In this case the weight and sensitivity tensors become M by N tensors. Note that the weights and

Yiδ YB YA– 
  wi wi

i 1=

M

∑⁄=

 YA Yiδ+ f X
p

( )–

X
p

xA1
xA2

… xBi
… xAM

, , , , ,{ }=

X
p

X
A

xBi

Figure 4.  The multi-dimensional reverse path.

for each  {

}

i 1 2 … M, , ,{ }∈

XBi
1d reverse XAi

YA YA Yiδ+ KAi
f x( ), , , ,( )=
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Figure 5.  Simple Model Matching Application.
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Figure 6.  The DynHist Program 

sensitivity tensors are not inverted so that M and N are not forced to be related, e.g. M can be
greater than N or vice versa.

Another extension is by not using the tA =  tB simplification of section 2.2. in which case extra
parameters O2 and tB are also included in the iterative solution, which can be useful for some
particular applications. For example, if the output Y represents some error, then making tB
equal zero or a given fraction of tA pushes or launches the solution towards a minimum error
without actually requesting YB =  0 .

3.  APPLICATIONS

This section first describes a simple model matching application in order to clarify the con-
cept followed by a complex application in the field of conceptual design of gas turbine
engines. Figure 5 illustrate the simple example and is a snapshot of the CSE (Computational
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Steering Environment [ref. (4)]). The CSE allows the user to graphically interact with, control
and monitor a simulation. The solid curve in the 2-d plot represents the 7-dimensional model

 whose independent variables are mapped

onto the 6 sliders on the left (the X dimension is included in the curve). The dashed curve is
formed by the connection of the experimental points or independent observations of X and Y.
The gray curve represents the error, i.e. the difference between the dashed and solid curves.

3.1.  Navigation in a Hyperspace by Modifying Features

The features of the model (e.g. the solid and dashed curves) occupy a multi-dimensional
space. The user can explore this space by graphically moving the sliders and observing the
resulting change in the shape of these features in real time. As dimensions of the model
increase however (i.e. many sliders), it becomes increasingly difficult for the user to imagine
or remember how to obtain a desired effect in the model features.

Here the FACT set up allows the user to modify the shape of the features by directly dragging
the points that define them. The FACT algorithm then ensures that the corresponding new posi-
tions of the sliders are calculated and displayed in real time. Now since the sliders have moved,
the whole shape of the features have changed, i.e. simple local interaction at one point, affects
the feature globally, not just locally. In other words, the FACT enables the user to simply navi-
gate in a hyperspace (e.g. design, solution or parameter space) by interacting with a graphical
feature, as well as direct independent movements.

3.2.  Parameter Estimation

The idea here is to match the model (solid curve) to experimental observations (dashed
curve). In other words the user is searching for the position of the sliders which give the best
match. The starting point (i.e. the initial position of sliders) is the result of a fully automatic
matching technique (e.g. the non-linear regression routine RNLIN of IMSL library). In practi-
cal model matching, the user may not be satisfied with the usual least square fit criteria, used in
such routines. For example some points may be more important than others or the model fea-
ture must exhibit certain characteristics near some points. Furthermore, it may not be possible
to exactly specify the matching criteria in a mathematical expression.

The FACT set up allows the user to combine the following in order to reach a satisfactory
match:

• direct and continuous interaction with graphical features of the model (e.g. modifying
the shape of the solid or gray curves);

• direct and continuous interaction with the independent parameters of the model (e.g.
moving the sliders).

3.3.  Interactive or Human-in-the-Loop Optimization

The previous matching example is also a toy example of interactive optimization because
the user continuously tries to optimize the match. This section however gives a more involved
example in the field of conceptual design optimization of gas turbine engines.

Interactive optimization is a very attractive alternative to fully automatic numerical optimiza-
tion, when it is difficult to exactly specify a merit function in a mathematical expression. This

y c1 c2 x c3–{ } c4 c5 x c6–{ }exp+exp=
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situation occurs in a significant number of optimization activities. For example, even the most
experienced aircraft designers have difficulty in defining a merit function or a mathematical
criteria that describes or leads to the optimum aircraft. This is particularly true in the concep-
tual design phase where much of the details of the final configuration becomes incrementally
available, as the design optimization proceeds.

Figure 6 is a snapshot of the Dynamic Histograms program (DynHist) [ref. (5)]. DynHist is a
module of the Computer Aided General Engine Design system(CAGED). Briefly CAGED gen-
erates high speed performance models for a visually defined engine network followed by inter-
active navigation and optimization with DynHist or DynCarp (Dynamic Carpet Plots).
DynHist comprises of three windows which display design variables(input), dependent vari-
ables(output) and dimensionless sensitivities. In the upper two windows,  indi-
cate an increase, decrease and no change in value respectively. The design variables shown are
fan pressure ratio (fpr), overall pressure ratio (opr), bypass ratio (byp), and flight Mach (M)
and altitude (h). The dependent variables are overall efficiency (etaov), propulsive efficiency
(etaprop), specific thrust (fs) etcetera.

The original version of DynHist allowed forward analysis only. Here the user could continu-
ously interact with the design variables (top window) and observe the resulting change in the
performance parameters and sensitivities (the lower two windows) in real time. DynHist and
DynCarp, in their original form, showed that including the human designer in the high speed
design loop was beneficial for design optimization of complex engineering systems.

In actual design exercises the number of design variables may be as high as 50 or more. It soon
became interesting therefore to also interact in the middle window with the performance vari-
ables, i.e. inverse design. Here it was very difficult to find a meaningful engine specific con-
strained optimization specification which enables the calculation of the reverse path. The
FACT proved to be very useful for this purpose as it already contains a general specification
based on dimensional similarity. Using the reverse algorithms of this paper, the user can now
directly increase say the overall efficiency of the engine (left most  in the middle window of

Figure 6), and observe the resulting motion in the design variables (top window) and sensitivi-
ties (bottom window) in real time.

4.  DISCUSSION and CONCLUSIONS

A Flipping Analytical Coin Tool (Figure 1) has been proposed which closes the information
flow loop in high speed analysis, thereby taking advantage of the apparent equivalence
between cause and effect or input and output in high speed (or real time systems).

A non-linear reverse algorithm has been derived (section 2.) which allows the calculation of
the reverse path of a high speed forward analysis module. The algorithm treats each indepen-
dent dimension of the problem as a constrained optimization problem. 

The specification of the constraints is general (i.e. not application dependent) and is derived in

section 2.2. based on the assumption of dimensional similarity of sensitivities in each indepen-
dent dimension of the problem. This is a purely local assumption so that it involves the tenden-

∆ ∇ and ,

∆
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cies only at a single point. Hence the technique is fundamentally different to non-linear
regression analysis which requires a multitude of points in some range. 

The formulation as a constrained optimization problem ensures that there is always a best pos-
sible solution regardless of the degree of redundancy of the problem. The algorithm is very
efficient and fast as it combines non-linearity with decomposition of independent dimensions.
The efficient solution scheme of section 2.4. assumes zero offset (i.e. ) to start the cal-

culation which roughly locates the solution in the first iteration. This is then relaxed in the fol-
lowing iterations, i.e.  is allowed to take a value to refine the solution. In practise a

maximum of 5 iterations was found to be sufficient for functions which do not behave too
erratically.

Two examples in the domain of interactive systems have been included which demonstrate the
benefits of the FACT in multi-dimensional navigation, parameter estimation and human-in-the-
loop optimization. The second example describes the application to interactive optimization of
a turbofan engine in the conceptual design phase, i.e. a complex engineering system. In this
phase it is very difficult to define a good engine specific constraint or strategy which enables
the calculation of the reverse path. The FACT however can calculate the reverse path as it uses
a general purpose constraint based on dimensional similarity. Using this it is possible for the
user to directly interact with the performance of the engine (e.g. directly increasing the overall
efficiency or the specific thrust) and observe the result in the design variables (e.g. fan pressure
ratio or the bypass ratio). The FACT is therefore suitable as a general purpose interactive
inverse design tool or as an augmentation or aid to existing specific inverse design tools.
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