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ABSTRACT

The Boussinesq system arises in Fluid Mechanics when motion is governed by density gradients caused by

temperature or concentration di�erences. In the former case, and when thermodynamical coe�cients are

regarded as temperature dependent, the system consists of the Navier-Stokes equations and the non linear heat

equation coupled through the viscosity, bouyancy and convective terms.

According to the balance between speci�c heat and thermal conductivity the di�usion term in the heat

equation may lead to a singular or degenerate parabolic equation.

In this paper we prove the existence of solutions of the general problem as well as the uniqueness of solutions

when the spatial dimension is two.

1991 Mathematics Subject Classi�cation: 35K55, 35D05, 35B30, 76R10.
Keywords and Phrases: Free convection, existence and uniqueness of solutions.
Note: Work partially carried out under project MAS 1.3 "Partial Di�erential Equations in Porous
Media Research".

1. The model

The Boussinesq system of hydrodynamics equations [3], [26], arises from a zero order approximation to
the coupling between the Navier-Stokes equations and the thermodynamic equation [25]. The presence
of density gradients in a uid allows the conversion of gravitational potential energy into motion
through the action of buoyant forces. Density di�erences are induced, for instance, by gradients
of temperature arising by non uniform heating of the uid. In the Boussinesq approximation of a
large class of ow problems, thermodynamical coe�cients, such as viscosity, speci�c heat and thermal
conductivity, can be assumed constant leading to a coupled system with linear second order operators
in the Navier-Stokes and in heat equations (see, e.g., [11], [12], [17], [31]). However, there are some
uids, such as lubri�cants or some plasma ow, for which this is no longer an accurate assumption
(see, e.g., [15], [29]). In this paper we present results on the existence and uniqueness of weak solutions
of this problem. Results on some qualitative properties related with the spatial and time localization
of solutions will be published elsewhere ([14]). We start by considering the system derived in [25]

8<
:

ut + (u � r)u� div (�(�)D(u)) +rp = F(�);
divu =0;
C(�)t + u � rC(�)��'(�) = 0;

(1.1)
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where u is the velocity �eld of the uid, � its temperature, p the pressure, �(�) the viscosity of the
uid, F(�) the buoyancy force, D(u) :=ru+ruT ,

C(�) :=

Z �

�0

C(s)ds and '(�) :=

Z �

�0

�(s)ds

with C(�) and �(�) being the speci�c heat and the thermal conductivity of the uid, respectively.
Assuming, as usual, C > 0 then C is inversible, and so � = C�1(��) for some real argument ��. Then
we can de�ne the functions

�'(��) := ' � C�1(��); �F(��) := F � C�1(��); ��(��) := � � C�1(��):

Substituting these expressions in (1.1) and omitting the bars we get the following formulation of the
Boussinesq system

8<
:

ut + (u � r)u� div (�(�)D(u)) +rp = F(�);
divu = 0;
�t + u � r� ��'(�) = 0:

(1.2)

We briey comment some interesting features that characterize this model. There are two paradig-
matic situations: the fast and the slow heat di�usion. These cases mathematically correspond to
the singular or degenerate character of the heat equation which may occur according the relative
behavior of C and �. Indeed, since C and � are non negative, their primitives C and ' are non de-
creasing functions. Suppose that a perturbation of a constant temperature �0 causes a small gradient
of temperature between the boundary (higher temperature) and the interior (lower temperature) in a
neighborhood, and assume that the behavior of C and ' near �0 can be approximate as

C(s) � c1 (s� �0) + c2 (s� �0)
p
; '(s) � k1 (s� �0) + k2 (s� �0)

q
;

for s > �0, where p; q > 0. From (1) we have

�'0(C(s)) = '0(s)(C�1)0(C(s)) =
'0(s)

C0(s)
=
k1 + k2q(s� �0)

q�1

c1 + c2p(s� �0)p�1
:

So when s! �0 ( and therefore C(s)! 0 ) we get one of the following behaviors of �'0 close to zero:
(i) if p; q > 1 then �'0(0) = k1=c1;

(ii) if 1 > q > p either q > 1 > p then lim
C(s)!0

�'0(C(s)) = 0;

(iii) if p > 1 > q either 1 > p > q then lim
C(s)!0

�'0(C(s)) = +1:

In the �rst case both linear parts dominate: this case arises, for instance, when conductivity and
speci�c heat are taken as constants, leading to the classical heat equation with a linear di�usion term.
In the other two cases the non linear parts dominate and this leads to two di�erent behaviors:

if p < q the speci�c heat dominates over the conductivity, i.e., when temperature approaches �0 the
uid stores more heat and this is worstly conduced. It was proved in [6] (see also [14]) that a
front of temperature � = �0 arises. This type of phenomenon is known as slow di�usion : heat
spends a positive time to spread over the neighborhood,

if p > q the opposite e�ect arises: the conductivity dominates over the speci�c heat. In this case
the phenomenon is called fast di�usion. In [6] (and [14]) was proved that, in fact, � = �0 in the
whole domain when the time is large enough

The outline of the paper is the following. In section 2 we state the main assumptions on the data
that will hold through the article and introduce the usual Navier-Stokes functional setting consisting
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of the variational formulation of these equations introduced by Leray [23] under the framework of
functional spaces of free divergence. We also de�ne the notion of weak solution for the heat equation.
In section 3 we prove existence of solutions of (2.6) by introducing an iterative scheme to uncouple
the system and then we use a modi�cation of the proof of existence of solutions for the Navier-Stokes
equations due to J.L. Lions [24] and a regularization technique together with results in [1] to prove
the existence of weak solutions of the heat equation. Finally we pass to the limit in the iterative
scheme to �nd a solution of the coupled system. In section 4 we present two results on uniqueness of
solutions (in spatial dimension N = 2) corresponding to the fast and slow di�usion cases. Proofs of
both results are based in a duality technique.

2. Functional setting of the problem

We consider the system of equations given in (1.2) holding on a bounded domain 
 and satisfying the
following auxiliary conditions:

�
u = 0 and '(�) = �D on �T ;

u(x; 0) = u0(x) and �(x; 0) = �0(x) in 
;
(2.1)

with QT := 
 � (0; T ) and �T := @
 � (0; T ), T > 0. Before introducing the functional setting we
shall give some assumptions that will hold through the article:
Assumptions on the data.

H1. 
 � IRN ; N = 2; 3, denotes an open, bounded and connected set, with boundary @
 of class C1

and �nite (N � 1)-dimensional Haussdorf measure. We suppose that T > 0 is arbitrarily �xed.
H2. We assume

' 2 C([0;1)) \ C1((0;1)); '(0) = 0; ' non decreasing (2.2)

F 2 C0;1loc ([0;1); IRN ); (2.3)

� 2 C
0;1
loc ([0;1)) and satis�es (2.4)

m0 � �(s) � m1 8s 2 [0;1) (2.5)

for some constants m1 � m0 > 0.
H3. The data satisfy: u0 2 L

2
�(
); �0 2 L

1(
) and �0 � 0; �D 2 L2(0; T ;H1(
))\H1(0; T ;L2(
))\
L1(QT ):
H4: If �

0 6= 0 and F0 6= 0 we assume '�1 is H�older continuous of exponent �:
Notice that functions ';F and � applies on �. In the following, we shall show that � 2 L1(QT ) and,

therefore, that local and global Lipschitz continuity will be equivalent. Following [24] (see also [21]
and [32]), we introduce the usual Navier-Stokes functional setting by considering functional spaces of
free divergence and the variational formulation of these equations. More precisely, we consider

C1� (
) :=
�
u 2 C10 (
; IRN ) : divu = 0

	
;

Lp�(
) := closure of C1� (
) in the Lp(
; IRN ) norm;

W 1;p
� (
) :=W

1;p
0 (
; IRN ) \ Lp�(
);

Lp�(QT ) := Lp(0; T ;Lp�(
));

and the orthogonal projection

P� : L2(
; IRN )! L2�(
):
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Applying P� to both parts of the Navier-Stokes equation and taking into account that P�rp � 0 and
that u = P�u due to divu = 0 we get

8>>><
>>>:

ut + P�(u � r)u� P�div (�(�)D(u)) = P�F(�) in QT ;

�t + u � r� ��'(�) = 0 in QT ;

u = 0 and '(�) = �D on �T ;

u(x; 0) = u0(x) and �(x; 0) = �0(x) in 
;

(2.6)

which is the �nal formulation of the problem we shall study. We de�ne the usual bilinear and trilinear
forms

a�(u;v) :=
1

2

NX
i;j=1

Z



�(�)

�
@uj

@xi
+
@ui

@xj

�
@vj

@xi
:=

Z



�(�)D (u) : rv;

for all u;v 2 W 1;2
� (
) and with � 2 L1(QT ) and

b(u;v;w) :=

NX
i;j=1

Z



ui
@vj

@xi
wj :=

Z



(u � r)v �w; u;v 2W 1;2
� (
);

for all w 2 W 1;2
� (
) \ LN� (
): It is well known that a� is continuous and coercive in W 1;2

� (
) �
W 1;2

� (
) for a.e. t 2 [0; T ] and that b is anti-symmetric and continuous in W 1;2
� (
) � W 1;2

� (
) ��
W 1;2

� (
) \ LN� (
)
�
.

Remark 2.1 The main advantage of the formulation of the Navier-Stokes equations in free divergence
spaces is that the component pis eliminated. Thanks to De Rham's Lemma [28] this unknown can be
determined by means of the following property: if hq;wi = 0 for all w 2W 1;2

� (
) then there exists

p 2 L2(
) such that q = �rp:

We consider the following notion of solution:
Definition of weak solution. Assume H3. Then (u; �) is a weak solution of (2.6) if:
(i) u 2 L2(0; T ;W 1;2

� (
)) \ L1(0; T ;L2�(
)), '(�) 2 �D + L2(0; T ;H1
0 (
)), � 2 L

1(QT ):
(ii)

Z



(ut �w) dx + a�(u;v) + b(u;u;w) =

Z



F(�) �w a.e. t 2 (0; T ) ;

u(0) = u0;
(2.7)

for any test function w 2 W 1;2
� (
) \ LN� (
).

(iii) �t 2 L
2(0; T ;H�1(
)) ,

Z T

0

h�t; �i+

Z T

0

Z



(r'(�) � �u) � r� = 0; (2.8)

for any test function � 2 L2(0; T ;H1
0(
)) and

Z T

0

h�t;  i+

Z T

0

Z



(� � �0) t = 0; (2.9)

for any test function  2 L2(0; T ;H1
0 (
)) \W

1;1(0; T ;L2(
)) with  (T ) = 0:
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3. Existence of solutions

Existence of solutions of (2.6) is a consequence of results on Navier-Stokes and non linear di�usion
equations. We shall give a proof based on Galerkin's method although other strategies are also possible
(see, for instance, the formulation in [29] as a variational inequality in the context of stationary
Boussinesq-Stefan problem).

Theorem 3.1 Assume H1-H4. Then problem (2.6) has, at least, a weak solution with the following

additional regularity:

u 2 C([0; T ];W�1;2
� (
)) and � 2 C([0; T ]; H�1(
)):

Moreover, if the auxiliary data satisfy

k � �0 � m � 0 a.e. in 


and

'(ke�0t) � �D � '(me��1t) � 0 a.e. in �T

for some non negative constants k;m; �0; �1 then there exists a constant � � 0 independent of ' such

that

ke�t � � � me��t � 0 a.e. in QT :

Proof. We start by introducing the following iterative scheme to uncouple the system: for each
n 2 IN we set8>><

>>:

unt + (un � r)un � div (�(�n�1)D(un)) = F(�n�1) in QT ;

�nt + un�1 � r�n ��'(�n) = 0 in QT ;

un = 0 and '(�n) = �D on �T ;

un(x; 0) = u0(x) and �n(x; 0) = �0(x) in 
;

(3.1)

with �0(x; t) = �0(x) and u0(x; t) = u0(x). In (3.1) and in the sequel we suppress the symbol P� that
makes reference to the projection on free divergence spaces.

3.1 Navier-Stokes problem with non constant viscosity

Consider the problem

8><
>:

ut + (u � r)u� div
�
�(�̂)D(u)

�
= P�F(�̂) in QT ;

u = 0 on �T ;

u(x; 0) = u0(x) in 
;

(3.2)

where with have changed the notation from un, �n�1 to u, �̂, respectively. This is the usual Navier-
Stokes problem but with viscosity depending upon the spatial and time variables.

Lemma 3.1 Assume that

�̂

L1(QT )

� �. Then there exists a weak solution of (3.2) in the sense of

(2.7). Moreover, it holds

u 2 C([0; T ];W�1;2
� (
));

and the norms of u in L2(0; T ;W 1;2
� (
)); L1(0; T ;L2�(
)) and L

2(0; T ;W�s;2
� (
)) are bounded only

in terms of ku0kL2
�(
)

, m0 and �.
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Remark 3.1 The following result is a consequence of Sobolev's theorem (see, e.g., [14]): the imbed-
ding Lr(QT ) � L2(0; T ;H1(
)) \ L1(0; T ;L2(
)) is continuous for

r := 4(1�
1

2�
) =

�
4� " if N = 2, for all " > 0;
10=3 if N = 3:

(3.3)

Proof of Lemma 3.1. The proof consists of two steps:
(i) We consider an approximation of (3.2) in a sequence of �nite dimensional spaces (Vm) �W s;2

� (
)
and prove that the system of ordinary di�erential equations obtained from (3.2) in each of these spaces
has a unique solution um.
(ii) Thanks to a priori estimates on (3.2) we pass to the limit m ! 1 and identify lim

m!1
um as a

solution of (3.2).
We start with (i). The spectral problem

hv;wiW s;2
� (
)

= � hv;wiL2
�(
)

; for all w 2 W s;2
� (
)

has a sequence of solutions fvmgm2IN �W s;2
� (
) satisfying

hvm;wiW s;2
� (
)

= �m hvm;wiL2
�(
)

; for all w 2W s;2
� (
);

with �m > 0; which span W s;2
� (
) (see [24], Corollaire 6.1). Then, for each m; functions v1; :::;vm

are a base for a m-dimensional space Vm: Consider the vector um given by

um(t) =

mX
j=1

hj(t)v
j ; (3.4)

and set the problem of �nding um(t) 2 Vm such that8><
>:

umt + (um � r)um � div
�
�(�̂)D(um)

�
= P�F(�̂) in QT ;

um = 0 on �T ;

um(x; 0) = u0(x) in 
;

(3.5)

is satis�ed in the following sense8<
:
Z



(umt �w) dx+ a�̂(um;w) + b(um;um;w) =

Z



F(�̂) �w 8w 2 Vm;

um(0) = um0 :=
Pm

j=1 uj0 � v
j ;

(3.6)

with uj0 :=

Z



u0 � v
j ; and fum0g satisfying

lim
m!1

kum0 � u0kL2
�(
)

= 0: (3.7)

Introducing in (3.6) the expression of um given in (3.4) we get, for all w 2 Vm

Pm
j=1 h

0

j(t)

Z



vj �w�
Pm

i;j=1 hi(t)hj(t)

Z



vj � (vi � r)w

+
Pm

j=1 hj(t)

Z



�(�̂)D(vj) : rw =

Z



F(�̂) �w;

and taking w = vk ; k = 1; :::m we obtain the following system of ordinary di�erential equations:

mX
j=1



vj ;vk

�
L2
�(
)

h0j(t) +

mX
i;j=1

b(vj ;vi;vk)hi(t)hj(t)�

mX
j=1

a�̂(v
j ;vk)(t)hj(t) = f(vk)(t); (3.8)
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with f(vk)(t) :=
D
F(�̂(t));vk

E
L2
�(
)

, to which we impose the initial condition

hk(0) =

Z



u0v
k: (3.9)

Since we assumed that �̂ 2 L1(QT ) and that both � and F are locally Lipschitz continuous functions
we deduce a�̂(v

j ;vk)(t) and f(vk)(t) 2 L1(0; T ) for all j; k with 1 � j; k � m: Therefore, we can
express (3.8) in the form

�
h0(t) = g(t;h(t)) t > 0;
h(0) = h0;

where g(t;y) is measurable in the �rst variable and Lipschitz continuous in the second. Hence, we
can ensure the existence and uniqueness of a continuous solution of (3.8) in a maximal interval (0; Tm)
with Tm > 0.
In the second part of the proof we shall show that from the a priori estimates on the approximate

problems we can deduce Tm = T for all m 2 IN and that the passing to the limit is justi�ed and
de�nes lim

m!1
um as a solution of (3.2). Since um(t) 2 V

m we may take w = um(t) in (3.6), obtaining,

due to the anti-symmetry of b that

1

2

d

dt

Z



u2m(t) + a�̂(um;um) =

Z



F(�̂(t)) � um(t)

for all t 2 (0; Tm). Using that �(s) � m0 > 0, that a�̂(um;um) is a norm in L2(0; T ;W 1;2
� (
)) and

H�older and Young's inequalities we get

1

2

d

dt

Z



u2m(t) +m0 kumk
2

W
1;2
� (
)

�
4

m0

F(�̂(t))
2
W
�1;2
� (
)

;

and, integrating in (0; t) we obtain

kumkL1(0;T ;L2
�(
))

+ kumkL2(0;T ;W
1;2
� (
))

� c

�F(�̂)2
L2(0;T ;W

�1;2
� (
))

+ kum0kL2
�(
)

�
; (3.10)

with c independent of m. Using that F is Lipschitz continuous, that
�̂

L1(QT )

� � and (3.7) we

deduce fumg is bounded in L1(0; T ;L2�(
)) \ L
2(0; T ;W 1;2

� (
)) with continuity with respect to T .
So we can take Tm = T . On the other hand, if we denote by Pm to the orthogonal projection of L2�(
)
in Vm, from (3.8) we obtain

umt = �Pm(B(um))� PmA�̂(t)um + PmF;

where A�̂(t) and B are de�ned by

a�(v1;v2)(t) =

Z



A�(t)v1 � v2 y b(v1;v1;v2) =

Z



B(v1) � v2;

which are continuous from W 1;2
� (
) in W�1;2

� (
) and from W s;2
� (
) in W�s;2

� (
); s = N=2, respec-
tively, as a consequence of the continuity properties of a� and b (see, e.g., [24], Lemme 6.5). From
the estimate (3.10) we deduce A�(t)um is bounded in L2(0; T ;W�1;2

� (
)) and that B(um) is bounded

in L2(0; T ;W�s;2
� (
)), and since F(�̂) 2 L1� (QT ) � L2(0; T ;W�1;2

� (
)) (remind that we are denoting
P�F by F) we conclude, taking into account that kPmkL(W�s;2

� ;W
�s;2
� )

� 1 due to the choice of the
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base (see [24], p. 76), that umt is also bounded in L
2(0; T ;W�s;2

� (
)). These bounds allow us to apply
Lion's Theorem (see [24], Th�eor�eme 5.1) and deduce the existence of a subsequence of um such that

um * u weakly in L2(0; T ;W 1;2
� (
)); (3.11)

um * u weakly � weakly in L1(0; T ;L2�(
));

um ! u strongly in L2(0; T ;L2�(
)) and a.e. in QT ; and (3.12)

umt * ut weakly in L2(0; T ;W�s;2
� (
)): (3.13)

From (3.11) and (3.13) we deduce um(0)* u(0) in W�s;2
� (
) and, therefore, that u(0) = u0. Thanks

to Remark 3.1 we have that the product of components(ui)m (uj)m is bounded in Lr=2(QT ), so there
exists a element vij in this space such that

(ui)m(uj)m * vij ;

but, due to (3.12) it must be vij = uiuj . Then we deduce

(um � r)um * (u � r)u in Lr=2(QT ):

Also, from (3.11) and �̂ 2 L1QT we deduce

div
�
�(�̂)D(um)

�
* div

�
�(�̂)D(u)

�
in L2(0; T ;W�1;2

� (
));

and therefore that u satis�es(3.2) in the weak sense. Finally, since B(u) 2

L1(0; T ;W�1;2
� ) (see [32], Lemma 3.1), then

ut = F(�̂)�B(u)�A�̂u 2 L
1(0; T ;W�1;2

� )

and therefore we obtain u 2 C([0; T ];W�1;2
� (
)).

3.2 The nonlinear di�usion equation with prescribed convection

We pass to analyze the second problem that arise from the uncoupling of (3.1). We shall again use
the notation (û;�) instead of (un�1; �n), so the problem is written as

8<
:

�t + û � r� ��'(�) = 0 in QT ;

'(�) = �D on �T ;

�(x; 0) = �0(x) in 
:
(3.14)

Lemma 3.2 Assume H1-H3 and that û 2 Lr�(QT ), with r given by (3.3). Then problem (3.14) has
a weak solution in the sense of (2.8) and (2.9) such that

� 2 C([0; T ]; H�1(
)):

Moreover, if the auxiliary data satisfy

k � �0 � m � 0 a.e. in 


and

'(ke�0t) � �D � '(me��1t) � 0 a.e. on �T

for some non negative constants k;m; �0; �1 then there exists a constant � � 0 independent of ' such

that

ke�t � � � me��t � 0 a.e. in QT : (3.15)
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Proof. We proceed by approximation. First we prove the existence of solutions of a sequence of
problems in which the convection term is regularized, obtaining solutions with the regularity stated in
the above lemma. Then, thanks to the a priori estimates, we shall see that this sequence of solutions
converges to a solution of problem (3.14) with the properties stated in the lemma. Consider the
problem8<

:
�t + ûm � r� ��'(�) = 0 in QT ;

'(�) = �D on �T ;

�(x; 0) = �0(x) in 
;
(3.16)

with ûm 2 Lr�(QT ) satisfying

kûmkL1� (QT )
� m and ûm ! û in Lr�(QT ):

It is a consequence of [1], Theorem 1.7, the existence of a weak solution �m of problem (3.16) with
�m 2 L1(QT ) and '(�) 2 �D + L2(0; T ;H1

0 (
)) and that satis�es a maximum principle, from where
(3.15) is deduced. Moreover, using '(�)� �D as a test function we obtain the estimate:

k�(�m)kL1(0;T ;L1(QT ))
+ kr'(�m)kL2(QT )

� �; (3.17)

where �(s) =

Z s

0

'(�)d� and � is a constant depending only on the auxiliary data. Therefore, since

r > 2 we have uniform estimate for ûm in L2(QT ) and therefore, by using (3.17) we can estimate
k�mtkL2(0;T ;H�1(
)) uniformely in m. Hence we can extract subsequences '(�m) and �m such that

�m * � weakly � in L1(QT );

'(�m)*  weakly in L2(0; T ;H1
0 (
));

�mt * �t weakly in L2(0; T ;H�1(
)):

From the compact imbedding L1(
) � H�1(
) and Corollary 4 (p. 85) of [30] we have

�m ! � in C([0; T ]; H�1(
)):

Since ' is continuous and non decreasing we have��'(�) is a maximummonotone graph in L2(0; T ;H�1(
)),
and therefore, it is strongly weakly closed in such space, from where we deduce  = '(�).
Finally, since um ! u in Lr�(QT ) and r > 2 we get

ûm � r�m * û � r� in L2�(QT );

from where we conclude that � is a weak solution of problem (3.16) with the additional regularity
stated.
Continuation of the proof of Theorem 3.1 We again consider the problem (3.1). Thanks to Lemmas
3.1 and 3.2 we have that, for each n 2 IN there exist functions un; �n, solutions of (3.1), such that

un is bounded in L1(0; T ;L2�(
)) \ L
2(0; T ;W 1;2

� (
)); (3.18)

unt is bounded in L2(0; T ;W�s;2
� (
)); (3.19)

�n is bounded in L1(QT ); and (3.20)

'(�n) is bounded in L1(QT ) \ L
2(0; T ;H1

0 (
)); (3.21)

with bounds that only depend on the auxiliary data and on the Lipschitz continuity constants of �
and F. We can, then, extract subsequences such that

un * u weakly in L2(0; T ;W 1;2
� (
));

un ! u strongly in L2(0; T ;L2�(
)) and a.e. in QT ;

unt * ut weakly in L2(0; T ;W�s;2
� (
))
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and

�n * � weakly � in L1(QT );

'(�n) *  weakly in L2(0; T ;H1
0 (
));

�nt * �t weakly in L2(0; T ;H�1(
)):

As in the above proof we conclude that �m ! � in C([0; T ]; H�1(
)) and that  = '(�): Assume,
now, that �0 6= 0 and F0 6= 0. In order to pass to the limit on �(�n) and F(�n) we shall prove that
�n ! � in Lp(QT ) for all p <1: To do that we use a modi�cation of the arguments given in [10], [24]
(see also [13]). De�ning the space

H = f� 2 L2=�(0; T ;W�;2=�(
)); �t 2 L
2(0; T ;H�1(
))g;

it is easy to see that �n is uniformly bounded in H: Then, from the compact imbedding H � L2=�(QT )
we conclude that there exists a subsequence of �n such that

�n ! � strongly in L2=�(QT ) and a.e. in QT :

This fact together with the weak � convergence of �n to � in L1(QT ) implies that �n ! � in Lp(QT )
for all p <1. Then, since � is locally Lipschitz continuous

�(�n)! �(�) strongly in Lq(QT ); for all q <1;

and thereforeZ
QT

�(�n)D(un) : r� !

Z
QT

�(�)D(u) : r�;

and since F is locally Lipschitz continuous we get

F(�n)! F(�) in Lq(QT ):

Finally, un ! u in L2�(QT ) and �n * � weakly � in L1(QT ) impliesZ
QT

�nun � r� !

Z
QT

�u � r�;

from where the passing to the limit is justi�ed in all the coupling terms of the system. The justi�cation
of the convegence for the remaining terms as well as the additional regularity of solutions is analogous
as in Lemmas 3.1 and 3.2.

Remark 3.2 In the case of spatial dimension N = 2 and � = const it is possible to deduce further
regularity of the velocity �eld. In particular, using �u as test function we get

u 2 L1(0; T ;W 1;2
� (
)) \ L2(0; T ;W 2;2

� (
));

obtaining then from the Sobolev's Theorem that u 2 L1(QT ):We also point out that the assumption
H4 could be removed by using time discretization arguments as in [1].

4. Uniqueness of solutions

As it is well known, uniqueness of solutions for Navier-Stokes equations in spatial dimension N = 3
is an open problem. We shall, therefore, restrict ourselves to the study of uniqueness of solutions for
the Boussinesq system in spatial dimension N = 2. When the di�usion term of the heat equation is
linear, it has been proved that uniqueness hold in the same class of functions ensured by the existence
theorems (see, e.g., [12]). These proofs relies strongly in the fact that natural energy spaces for both
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unknowns are the same (L2) and therefore the interchange of information between momentum and
heat equations is performable. However, when the di�usion of heat is no longer linear, and specially
when it is degenerate, the problem turns to be more involved: natural estimates for the heat equation
are obtained in L1 but proving the well posedness of Navier-Stokes equation in this space seems to
be a di�cult task. This fact makes di�cult to use the L1 techniques developed in the last years, and
still in progress, that have been successfully used to prove uniqueness for degenerate scalar equations
as well as for certain systems of equations where comparison principles still hold (see [20], [5], [13],
[8], [27]). In this paper we shall approach the problem from a duality technique, i.e., from the search
of suitable test functions (perturbations of the sign function) that allows to conclude the uniqueness
property. It is worth strengthen here that no comparison principle will hold for the Boussinesq system
and this is probably one of the main sources of complexity for the problem.
In this section we shall consider the case when the second order coupling in the viscosity term of

the Navier-Stokes equations is no longer present. In the case of fast di�usion, this coupling is not
di�cult to deal with when suitable assumptions on the regularity of the velocity �eld are made. In the
slow di�usion case, the most interesting feature of the model is the parabolic degeneracy of the heat
equation, and the di�culties introduced by the coupling in the viscosity term are no longer tractable
without unrealistic assumptions on the regularity of the velocity �eld. We shall therefore study the
following problem

8>>><
>>>:

ut + (u � r)u��u = F(�) in QT ;

�t + u � r� ��'(�) = 0 in QT ;

u = 0 and '(�) = �D on �T ;

u(x; 0) = u0(x) and �(x; 0) = �0(x) in 
;

(4.1)

We �rst present the result on the fast reaction case:

Theorem 4.1 Let N = 2 and �(�) � 1. Assume '�1 2 C0;1(IR). Then, under conditions of Theorem
3.1 there exists a unique weak solution of (4.1).

Proof. Suppose there exist two weak solutions (u1; �1); (u2; �2) and de�ne (u;�) := (u1 � u2; � := �1 � �2)
and Fi := F(�i): Then (u; �) satis�es:

8>>><
>>>:

ut + (u1 � r)u+ (u � r)u2 ��u = F1 �F2 in QT ;

�t + u1 � r� + u � r�2 ��('(�1)� '(�2)) = 0 in QT ;

u = 0 and '(�1)� '(�2) = 0 on �T ;

u(x; 0) = 0 and �(x; 0) = 0 in 
:

Consider smooth test functions w(t); �, with divw = 0 and w(T ) = 0. Integrating by parts and
adding the resulting integral identities we getZ




�(T )�(T ) =

Z
QT

u� [wt + (u1 � r)w +�w] +

Z
QT

u2 � (u � r)w +

+

Z
QT

(F1 �F2) �w +

Z
QT

� (�t + u1 � r�)�

Z
QT

�u � r�2 +

+

Z
QT

('(�1)� '(�2))��: (4.2)

We de�ne the di�erential operator L : L2(0; T ;W 1;2
� (
))! L2(0; T ;L2�(
)) by

u � (Lw : u2) := u2 � (u � r)w =u � (
@w

@x
� u2;

@w

@y
� u2); (4.3)
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where x := (x; y). It is straightforward to check that L is linear and continuous. Adding and
substracting in (4.2) the term �hL, where, for L > 0 we de�ne

hL(x; t) :=

�
h(x; t) if h(x; t) � L;

L if h(x; t) > L;

and

h(x; t) :=

8<
:

'(�1(x; t)) � '(�2(x; t))

�(x; t)
if �(x; t) 6= 0;

0 if �(x; t) = 0;

and using (4.3) we obtainZ



�(T )�(T ) =

Z
QT

u� [wt + (u1 � r)w + Lw : u2 � �r�2 +�w] +

+

Z
QT

� (�t + u1 � r� + f �w + hL��) +

Z
QT

(h� hL) ��� (4.4)

with

f(x; t) :=

8<
:

F(�1(x; t)) �F(�2(x; t))

�(x; t)
if �(x; t) 6= 0;

0 if �(x; t) = 0:

Notice that since F and '�1 are Lipschitz continuous then f 2 L1(QT ) and there exist a h0 > 0 such
that

h(x; t) > h0 a.e. (x; t) 2 QT : (4.5)

We set the following problem to choose the test functions:

8>>><
>>>:

L1(w; �) := wt + (u1 � r)w + Lw : u2 � �r�2 +�w = 0 in QT ;

L2(w; �) := �t + u1 � r� + f �w + hL�� = 0 in QT ;

w = 0 and � = 0 on �T ;

w(x; T ) = 0 and �(x; T ) = �m(x; T ) in 
;

(4.6)

with �m 2 L1(0; T ;H1
0 (
)) satisfying

�m ! � strongly in L1(0; T ;L2(QT )): (4.7)

We state here the result on existence, uniqueness and regularity of solutions of problem (4.6) and
prove it at the end of this section.

Lemma 4.1 Problem (4.6) has a unique weak solution with the regularity of test functions of (4.1)
(see (2.7), (2.8), (2.9)). Moreover,

w 2 H1(0; T ;L2�(
)) \ L
1(0; T ;W 1;2

� (
)) \ L2(0; T ;W 2;2
� (
));

� 2 H1(0; T ;L2(
)) \ L1(0; T ;H1
0 (
)) \ L

2(0; T ;H2(
))

and there exists a positive constant k independent of L and m such that

Z
QT

j��j
2
� ekT

�Z



u2(T ) +

Z



jr�m(T )j
2

�
: (4.8)
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Continuation of the proof of Theorem 4.1. Using these test functions we get from (4.4) that

Z



�(T )�m(T ) =

Z
QT

(h� hL) ���: (4.9)

Now we shall pass to the limit �rst in L and afterwards in m: since hL converges pointwise to h and
j�(h� hL)j � 2 j'(�1) + '(�2)j � const.;we get from the Theorem of Lebesgue that k(h� hL)�kL2(QT )

!

0 as L!1; and due to the uniform estimate (4.8) we deduce

Z
QT

�(h� hL)�� ! 0 as L!1;

and therefore, from (4.9)

Z



�(T )�m(T )! 0 as L!1:

Letting m! 1 and using (4.7) we get k�(T )kL2(
) = 0; and since T is arbritarily �xed we conclude

�1 = �2 a.e. in QT . Finally, F(�1) = F(�2) a.e. in QT and standard arguments for the Navier-Stokes
equations in space dimension two (see [32]) implies u1 = u2 a.e. in QT :

Our second result uses a method due to Kalashnikov [18] which consists on making a comparison
between an arbitrary weak solution of (4.1) and the weak solution constructed as the limit of a
sequence of solutions of regularized problems. Our result is strongly based on the technique introduced
by D��az and Kersner [7] to study a one dimensional scalar equation and, to achieve it, we generalized
a comparison argument introduced in [7] to handle some singular boundary integrals. See also [16]
for some improvements to [7].

Theorem 4.2 Let N = 2 and �(�) � 1. Suppose that ' 2 C2(IR), '0(0) = 0, '0(s) > 0 and '00(s) > 0
if s > 0. Then, under the conditions of Theorem 3.1 there exist a unique solution of (4.1) in the class

of weak solutions such that r� 2 L2(QT ):

Proof. Consider the sequence of problems (4.1)" in which we approximate solutions of the degenerate
problem (4.1) by perturbing the initial and boundary data of � in the following way:

�
'(�D") = �D + '("e��1t) on �T ;

�0" = �0 + " in 
;

for some �1 > 0: Applying Theorem 3.1 we have that for each " > 0 problem (4.1)" has, at least, one
solution (�";u") satisfying �" � "e��t a.e. in QT ; with � > 0 independent of ' and ". Following
the same scheme than in subsection 3.2 it is possible to prove that (u"; �") ! (u; �) strongly en
L2(QT ) � L2�(QT ) where (�;u) is a weak solution of (4.1). Now let us suppose that there exists
another weak solution (�2;u2) of (4.1) and let us de�ne (U";�") := (u" � u2; �" � �2) : Then (U";�")
satis�es8>>><

>>>:

U"t + (u" � r)U" + (U" � r)u2 ��U" = F(�")�F(�2) in QT ;

�"t + u" � r�" +U" � r�2 ��('(�")� '(�2)) = 0 in QT ;

U" = 0 and '(�") = �D + '("e��1t); '(�2) = �D on �T ;

U"(x; 0) = 0 and �"(x; 0) = " in 
:

(4.10)

Taking smooth test functions w(t); �; with divw = 0 and w(T ) = 0, integrating by parts and adding
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the resulting integral identities we getZ



�"(T )�(T ) =

Z
QT

U"� [wt + (u" � r)w + Lw : u2 � �r�2 +�w] +

+

Z
QT

�" (�t + u" � r� + f" �w + h"��)�

�

Z
�T

('(�")� '(�2))r� � � + "

Z



�(0) (4.11)

with L de�ned in (4.3),

h" :=

8<
:

'(�")� '(�2)

�"

if �" 6= 0;

0 if �" = 0;
and f" :=

8<
:

F(�")�F(�2)

�"

if �" 6= 0;

0 if �" = 0:

Since F is Lipschitz continuous, ' is convex and �" � "e��T there exist positive constants k0 and

k(") := "�1e�T'("e��T ) (4.12)

such that

0 < k(") � h" � k0 and jf"j � k0: (4.13)

We consider regularizing sequences in C1(QT ) and C
1(0; T ; C1� (
)) for the coe�cients of equations

in (4.10):

hn" ! h" and �n2 ! �2 strongly in L2(QT );
un" ! u" and un2 ! u2 strongly in L2�(QT );
fn" ! f" strongly in L2(0; T ;L2(
)N )

where hn" is taken monotone increasing. From (4.13) and the regularity u";u2 2 L1� (QT ) and �2 2
L1(QT ) we deduce (for a new constant k0)

0 < k(") � h" � k0 and max fjfn" j ; ju
n
" j ; ju

n
2 j ; j�

n
2 jg � k0:

We rewrite (4.11) asZ



�"(T )�(T ) =

Z
QT

U"� [wt + (un" � r)w + Lw : un2 � �r�n2 +�w] +

+

Z
QT

U"� [((u" � un" ) � r)w + Lw : (u2 � un2 )� �r (�2 � �n2 )] +

+

Z
QT

�" (�t + un" � r� + fn" �w + hn"��) +

+

Z
QT

�" ((u" � un" ) � r� + (f" � fn" ) �w + (h" � hn" )��)�

�

Z
�T

('(�")� '(�2))r� � � + "

Z



�(0); (4.14)

and choose the test functions as solutions of8>>>>><
>>>>>:

L1(w; �) := wt + (un" � r)w + Lw : un2 � �r�n2 +�w = 0 in QT ;

L2(w; �) := �t + un" � r� + fn" �w + hn"�� = 0 in QT ;

divw = 0 in QT ;

w = 0 and � = 0 on �T ;

w(x; T ) = 0 and �(x; T ) = ��(T ) in 
;

(4.15)
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with �� 2 C
1

0 (
) satisfying dist f�D; sop(��)g � � and

�� * sign+ f'(�(T )) � '(�2(T ))g weakly in L1(
) as � ! 0:

Notice the similarity between problems (4.15) and (4.6). We again state the result on existence,
uniqueness and regularity of (4.15) and prove it at the end of this section (together with Lemma 4.1).

Lemma 4.2 Problem (4.15) has a unique solution with the regularity of test functions of (4.1) (see
(2.7), (2.8), (2.9)). Moreover,

w 2 H1(0; T ;L2�(
)) \ L
1(0; T ;W 1;2

� (
)) \ L2(0; T ;W 2;2
� (
)) \ L1� (QT );

� 2 L1(0; T ;H1
0 (
)) \ L

2(0; T ;H2(
)) \ L1(QT );

with estimates in the norms of these spaces that are independent of n. Finally, there exists a C > 0
independent of " and n such that

max
n
kwkL1� (QT )

; k�kL1(QT )

o
� C: (4.16)

Continuation of the proof of Theorem 4.2. Using these test functions we get from (4.14) thatZ



�"(T )��(T ) = "

Z



�(0)�

Z
�T

('(�")� '(�2))r� � � +

+

Z
QT

U"� [((u" � un" ) � r)w + Lw : (u2 � un2 ) + (�2 � �n2 )r�] +

+

Z
QT

�" ((u" � un" ) � r� + (f" � fn" ) �w + (h" � hn" )��) :

Letting n!1 and taking into account the uniform (in n) estimates for the test functions we get

Z



�"(T )��(T ) = "

Z



�(0)�

Z
�T

'("e��1t)r� � �: (4.17)

The following lemma (that will be proved at the end of this section) will allow us to control the
boundary integral when "! 0.

Lemma 4.3 Let A", B", g" 2 L
1(QT ) with

k(") < A";

where k(") is given by (4.12). Consider the problem

8>><
>>:

 t +A"� +B" � r + g" = 0 in QT ;

 = 0 on �DT ;

r � � = 0 on �NT ;

 (T; x) = ��(x) in 
;

with � > 0. Then, there exist a �(") > 0 and a positive constant c, independent of ", such that if

� < �(") then

r � � � �c
kB"kL1(QT )

k kL1(QT )

k(")
a.e. in �DT :
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Continuation of the proof of Theorem 4.2. Applying Lemma 4.3 with A" := h", B" := u" and
g" := f" �w, and using (4.13) and the regularity u" 2 L

1(0; T ;L1� (
)) together with (4.16) we obtain

r� � � � �
c

k(")
a.e. in �T ;

and by (4.12) we get
'("e��1t)

k(")
� ĉ" for some ĉ > 0. Then from (4.17) we deduce

�

Z
�T

'("e��1t)r� � � � c"! 0 as "! 0:

We also have that (4.16) implies

"

Z



�(0)! 0;

and therefore, letting "; � ! 0 in (4.17) we get

Z



j�(T )j = lim
"!0

Z



(U"(T ) �U(T ) + �"(T )��(T ))! 0;

and the assertion follows.
Proof of Lemmas 4.1 and 4.2. The proofs of existence and uniqueness of solutions for problems (4.6)
and (4.15) are identical. The only di�erence between both problems is estimate (4.8). We shall
therefore prove existence and uniqueness of solutions of (4.15) and comment whether (4.8) necessarily
holds or not.
1. A priori estimates. Multiplying �rst equation of (4.15) by wt and using H�older and Young's
inequalities we get

kwtkL2
�(QT )

� c1 krwkL2
�(QT )

+ k�kL1(QT )
kr�n2 kL2(QT )

; (4.18)

with c1 depending only on kun2kL1(QT )
and kun" kL1(QT )

. De�ning v : = we��t, with � > 0 large

enough (and only depending on kun2kL1(QT )
) and multiplying now �rst equation of (4.15) by �v we

obtain

� krwkL1(0;T ;L2
�(
))

+ k�wkL2
�(QT )

� e�T k�kL1(QT )
kr�n2 kL2(QT )

: (4.19)

Adding (4.18) to (4.19), using the continuous imbedding L1(0; T ;L2�(
)) � L2�(QT ) and �xing � :=
max f1; 2(c1 + c2)g we get

kwtkL2
�(QT )

+ krwkL2(0;T ;L2
�(
))

+ k�wkL2
�(QT )

� C(T ) k�kL1(QT )
(4.20)

with C(T ) :=
�
1 + e�T

�
kr�n2 kL2(QT )

. Notice that C(T ) does not depend on n or " because the regular-

ity u2;u" 2 L
1

� (QT ) and r�2 2 L
2(QT ) implies uniform estimates for kun2kL1� (QT )

and kr�n2 kL2(QT )
.

Moreover, C(T )! 0 as T ! 0. Due to the space dimension N = 2 and to the Sobolev's theorem we
have

kwkL1� (QT )
� C(T ) k�kL1(QT )

: (4.21)

Now we proceed to get a priori estimates for �. We use the notation h0 := infQT
hn" . Notice that

in the case of problem (4.6) (with the obvious changes in notation) h0 > 0 (see (4.5)) meanwhile for
problem (4.15) it only holds h0 � k(") (see (4.13)). These facts together with estimate (4.23) below
allow us to ensure that estimate (4.8) holds for problem (4.6) but, in general, it does not hold for
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problem (4.15). Multiplying the second equation of (4.15) by e��(T�t)��, with � > 0 large enough
and proceeding as for the estimates of w we �nd

kr�kL1(0;T ;L2(
)) �
~C(T )

�
k��kL2(
) + h�10 kfukL1� (QT )

kwkL2
�(QT )

�
(4.22)

and

h0 k��kL2(QT )
� ~C(T )

�
k��kL2(
) + h�10 kfukL1� (QT )

kwkL2
�(QT )

�
: (4.23)

Finally, by the Alexandrov's Maximum Principle (see [19]) we get

k�kL1(QT )
� c kwkL1� (QT )

; (4.24)

with c independent of " and n (notice that this estimate can be obtained also as a consequence of the
Sobolev's Theorem due to the space dimension N = 2, (4.22) and (4.23)).
2. Existence of solutions. De�ne

K :=
n
h 2 L2(QT�) : khkL1(QT�)

< R
o

with R and T � < T to be �xed and the operator Q : K ! L2(QT�) by

Q(�̂) := �;

with � solution of
8<
:

L2(ŵ; �) = 0 in QT� ;

� = 0 on �T� ;

�(0) = ��(T
�) in 
:

(4.25)

and ŵ solution of8<
:

L1(ŵ; �̂) = 0 in QT� ;

ŵ = 0 on �T� ;

ŵ(0) = U(T ) in 
;

(4.26)

Since �̂ 2 L1(QT�) we can justify the a priori estimates (4.18), (4.19), (4.20) and (4.21) for solutions
of problem (4.26) (that does exist, see e.g., [22], Theorems 4.1 and 5.2), obtaining the regularity
stated in Lemma 4.2 for w. Due to this regularity we can justify the a priori estimates (4.22), (4.23)
and (4.24) for solutions of (4.25) (that again are proved to exist by applying the results in [22]) and
therefore also the regularity stated in Lemma 4.2 for �. We shall deduce the existence of a �xed point
of Q (that will be a solution of (4.15) with the regularity inherenced from solutions of problems (4.25)
and (4.26)) by applying a version of the �xed point theorem given in [2]. For this purpose we must
show that K is convex and weakly compact in L2(QT�), which is a straightforward consequence of
the de�nition of K, that Q(K) � K and that Q is weakly-weakly sequentially continuous in L2(QT�).

Let us �rst prove that Q(K) � K: given �̂ 2 K (independent of " and n) we have by (4.21) that the
solution of (4.26) satis�es

kŵkL1� (QT� )
� C(T �)

�̂

L1(QT� )

; (4.27)

and for this ŵ we get, by (4.24), that the solution of (4.25) veri�es

Q(�̂)

L1(QT� )

:= k�kL1(QT� )
� c kŵkL1� (QT� )

; (4.28)
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and then, since C(t) ! 0 when t ! 0, it su�ces to choose T � small enough to get cC(T �) � 1 and
then from (4.27) and (4.28) and the de�nition of K

Q(�̂)

L1(QT� )

� R:

Notice that these estimates are independent of " and n.
To show the continuity we take a sequence �̂j 2 K with �̂j * �̂ in L2(QT�) and prove that

Q(�̂) * Q(�) in L2(QT�). Since �̂j is bounded in L1(QT�) it follows from (4.20) and (4.21) that
the sequence of solutions ŵj of (4.26) associated to ŵj is bounded in L1� (QT�) \ L

2(0; T �;W 2;2
� (
))

and therefore there exists a subsequence and a ŵ in such space with ŵj * ŵ weakly � in L1� (QT�),
strongly in L2(0; T �;W 1;2

� (
)) and a.e. in QT� . Linearity of the problem and smoothness of the

coe�cients allows us to identify ŵ as the weak solution of (4.26) associated to �̂. On the other
hand, since ŵj is bounded in L1� (QT�) \ L

2(0; T �;W 1;2
� (
)) it follows from (4.24) and (4.23) that

the sequence of solutions �̂j of (4.25) associated to wj (that, by de�nition, is Q(�̂j)) is bounded in
L1(QT�)\L

2(0; T �;H1
0 (
)) and therefore converges weakly in L2(QT�) to an element � of K. Again

the linearity allows us to identify the limit as the solution of problem (4.25) associated to ŵ. Hence,
the continuity of Q is established. Notice that all a priori estimates are continuous with respect to
time so we can take T � = T . Finally, uniqueness of solutions is a consequence of the linearity of
problem (4.15) and the regularity of solutions.
Proof of Lemma 4.3. Since @
 is regular, 
 has the property of the exterior sphere, i.e., for all x0 2 @

there exists a R1 > 0 and a x1 2 IR

Nn�
 such that

B(x1; R1) \ �
 = fx0g ;

where B(x1; R1) :=
�
x 2 IRN : jx� x1j < R1

	
: Consider � > 0 small enough such that, by de�ning

R2 := � + R1, it holds B(x1; R2) \ @
 6= ;: Since dist(@
; sop(��)) � � we have �� � 0 in ! :=


 \ B(x1; R2): We shall use the notation k0(") := kgkL1(QT )
, k1(") :=

�
N�1
R1

+ 1
�
kBkL1(QT )

and

k2(") := k kL1(QT )
: We de�ne

L( ) :=  t +A"� +B � r and w(x; t) :=  (x; t) + �(r);

where (x; t) 2 !� (0; t), r := jx� x0j and � 2 C
2([R1; R2]) will be chosen such that the maximum of

w in �! � [0; T ] is attained in fx0g � [0; T ], and such that �00(r) � 0 and �0(r) � 0. Assuming these
properties we get, due to (4.3), that w satis�es

L(w) = �g +A"�� +B � r� � k(")�00(r) + k1(")�
0(r)� k0("):

Choosing �(r) :=
k0(")

k1(")
r + C2e

�
k1(")

k(")
r
; with C2 an arbitrary constant, we obtain

k(")�00(r) + k1(")�
0(r) � k0(") = 0; �00(r) � 0 and

if C2 � k(")
k0(")

k21(")
e
k1(")

k(")
R2 then �0(r) � 0: (4.29)

Taking C2 with this restriction we have L(w) � 0 in �! � [0; T ] and therefore, by the Maximum
Principle we deduce w attains its maximum on the parabolic boundary of !� [0; T ] : In this boundary
the values of w may be estimated as follows:8>><

>>:

w(x; t) = �(r) � �(R1) on (�D \ @!)� [0; T ] ;
w(x; t) =  (x; t) + �(r) � k2(") + �(R2) on (@B(x1; R2) \ @!)� [0; T ] ;
w(x0; t) = �(R1) on [0; T ] ;
w(x; T ) = �(r) + ��(x) � �(R1) in !;



4. Uniqueness of solutions 19

where we have used that �� � 0 in !. It is a straightforward computation to see that we can choose
C2 (by making � small enough) such that (4.29) and �(R1) = k2(") + �(R2) hold. As a consequence
we obtain rw(x0; t) � � � 0 and by the de�nition of w and taking � suitably we obtain

r (x0; t) � � � �c
k1(")k2(")

k(")
in [0; T ] :
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