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ABSTRACT

In this report some smoothing processes, which are used in multigrid
methods, are analysed with the smoothing analysis of BRANDT. The smoothing
processes are applied to some model problems: The Poisson, anisotropic dif-
fusion and convection diffusion equations.

Furthermore, an estimate is given of the Galerkin coarse grid approx-—
imation.

Finally, some remarks are given about these and some other theoretical

results in comparison with experiments with multigrid methods.

KEY WORDS & PHRASES: multigrid methods, smoothing operator, coarse grid
operator, approximate inverse, incomplete LU-decom—
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1. INTRODUCTION

In a previous report MOL [6] some multigrid methods are proposed. Nu-
merical experiments have shown that these methods are efficient and robust,
in the sense that they do not need to be adapted to the problem at hand.

In this report more theoretical arguments will be given for the in-
complete LU-decomposition as smoothing operator and the Galerkin approxi-
mation as coarse grid operator.

In chapter 2 the smoothing processes which are used in the experiments
with multigrid methods are analysed with the smoothing analysis of BRANDT
C1].

In chapter 3 an estimate is given of the Galerkin coarse grid approxi-
mation in the context of the convergence proof of WESSELING [7,8].

In chapter 4 some remarks are given about theory and practice of

multigrid methods.

2. SMOOTHING ANALYSIS

2.1. Smoothing analysis in general

A computational grid Qk and a corresponding set of grid functions Uk

are defined by:

k - .
(2.1.1) Q = {(xl,xz)lxi =m,.2 k , m; = 0(1)2k ,1=1,21,

{uk: Qk > R1}.

(2.1.2) U

We consider a linear system of equations which originates from the discreti-
nation of a 2nd order elliptic boundary value problem on the given grid. Let

this system be denoted by:

(2.1.3) Ak ok = £k,

The system is solved by a stationary defect correction process:



(2.1.4) W) OrD 2 gk kO gk gk o,

with Bk the approximate inverse and Gk the amplification matrix:

(2.1.5) ck = 1% - gkak.

ky () _ gk gk (V)

The error (e satisfies:

(2.1.6) 5OV _ gk k™) _0.1,2,...

We will omit the grid number k and the iteration index v if no confusion

-k .
,1

is possible. The error in a point (i].2 .Z—k)eﬂkbefore application of a

2
smoothing step can be represented by a Fourier series as follows:

M
(2.1.7) e. . =) c exp{I(i,0 +i,0_ )},
i1, S .. = =M 8.8, 1 s 2 s,
1°°2
2s,-1 2s,-1
. 1 o _ 772 _ k-1
with Osl =i " e @SZ ol T and M = 2 .

If we have periodic boundary conditions and constant coefficients, the error

€ after application of the smoothing operator is:

: M
(2.1.8) 8, . =7 e exp{I(i,0  + i,0_)},
1112 s ,s. = -M SlSZ 1 s1 2 s2
1°°2
with
(2.1.9) e =u(0. ,0 dec .
$1%2 517 82 815

The smoothing factor y of BRANDT [1] is defined by:

(2.1.10) ¥ = sup luce;,0,)] ,

(@],Oz)eF

with

(2.1.11) F

v

{(0,,6,) -1 < 0,,0, < m,|0,]2 5 or |o,]
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Figure 2.1.1. Frequency region F

For convenience F is not restricted to the discrete set of wvalues @s’ OS
occurring in (2.1.7) and (2.1.8). b2

2.2. Smoothing analysis of the APINV-process

The APINV smoothing process is described in MOL [6]. The approximate

inverse B is such that

(2.2.1) BA =I1+C ,

with I the identity and C a rest matrix with a small norm. The amplification

matrix G is

]
I
(@]

(2.2.2) G

Suppose A is a 5-point Toeplitz-matrix. G is also a Toeplitz-matrix with

fficients v,. . Let J_ be th t (j,,3,) for which y,. ., #0-
coefficients Y(J e ¥ e the se (JI,JZ) or whic Y(J1’32) F 0

l,jz)



1-point APINV 5-point APINV 7-point APINV 9-point APINV
(Jacobi)

Figure 2.2.1. Difference molecules of G. JY is marked with

dots.

The smoothing factor g is in the APINV case

(2.2.3) n o= sup l Z'y

.. 1(j,0,+j,0
©,,0,)eF I G1232) P L1101+ 350,01
1’72 Y

2.3. Smoothing analysis of the ILU, SGS and SLGS - processes.

The incomplete LU process ILU has an approximate inverse

(2.3.1) B =)',

with L,U the ILU- decomposition of A. This decomposition is such that
(2.3.2) A=LU-R,

with R a rest matrix with a small norm. The amplification matrix G is:

(2.3.3) ¢ = @ ! R,

L and U are constructed by a standard LU-decomposition algorithm writing
zero outside a non-zero pattern. The rows of A, which correspond with points
of the grid Q, are arranged in lexicographic order.

Suppose A is a 5-point Toeplitz-matrix with coefficients Gj’ je JC =
= {(0,0),(1,0),(-1,0),(0,1),(0,-1)}. The rest matrix R has coefficients

.,jed .
DJ,J o



Figure 2.3.1. Difference molecules of R. Jp is marked with

dots.

An ILU-smoothing step is defined by:

(2.3.4) LUE& = (A+R)E = Re.

The smoothing factor § is in the ILU-case:

2.3.5 o, . 1(j.0,+j.0,)}
(2.3.5) lJ (5153 PG 107320 1
{I: sup — P
(O],OZ)EF‘Igoc(jl,jz)exp{I(J]61+3202)}+§ p(jl’jz)exp{I(Jl@1+3262)}‘

A symmetric Gauss Seidel (SGS) sweep consists of a Gauss Seidel sweep,
where the points (xl,x2)652 are taken in lexicographic order and another
Gauss Seidel sweep in reverse order. Suppose J; = {(1,0),(0,1)} and
J; = {(-1,0),(0,-1)}. The smoothing factor 1 of the SGS-process reads:

Z0o,. . 1(j,0,+j,0
(2.3.6) T sup .
C] F P i j
( ],@2)6 [ 0(0,0)+§_ o(Jl’Jz)exp{I(Jlelﬂzez)}l

I O(j ¥ )exp{I(31®l+3262)}I
JO 1°-2

|o ; )exp{I(jlol+j2®2)}|

+ I o,.
0,0 %+ 9,13,
o
Finally, we give the smoothing factor of symmetric line Gauss Seidel
(SLGS). One SLGS-sweep consists of 4 line Gauss Seidel sweeps: 2 xl—line
relaxations (1 upwards and | downwards) and 2 X2—1ine relaxations (1 to the

right and 1 to the left).



Suppose J; = {(03]),(-130)’(0’_1)}, Jg = {(]30),(_1,0)5(03—])}’

32 = £(1,0,(0,1),(0,-1)} and J§ = {(1,0),(0,1),(-1,0)}. The smoothing fac-

tor u reads:

19¢1,0) |
sup -

(2-3.7) o +Z . 3 N ~
(6,,0,)¢F | %(0,0) ‘]1O(jljz)exp{I(J191+Jz@2}l
g

=1
]

|9¢0,1) |

+I. 0o i i
70,07 55 7 (5,3 P00

Ic(-l,o)l
| 90,00" 33 Gl )exP{I(j191+jzez)}|
o} S ERY)
|0(09—1)|
MCON §4 O(J'l,J"?_)exP{I(jIOI"LJ'ZG)z)}|

2.4, Smoothing factor and efficiency for some model problems.

We consider the same problems as in the experiments in MOL [6]:

the Poisson equation:

(2.4.1) u__ +u = f,

the anisotropic diffusion equation (2 cases):
(2.4.2a) u, + g u = f,

(2.4.2b) eu + u = f,

the convection diffusion equation (4 cases):

(2.4-3) E:(u + u ) - Vlux _V2 ux =-f

2 1 2



n

with a) v, 1,v2=0 c) vl=1,v2=1

b)v1=0;,‘v2=1 d)v1=l,v2=-—1.

The problems (2.4.1),(2.4.2) and the 2nd derivatives in (2.4.3) are discreti-
zed by central differences, the first derivatives in (2.4.3) with Il'in's

method. The Il'in coefficients are:

V1h 2¢e
(2.4.4) a = — coth ( 2€) + vlh
v,h 2e
B=—coth(2€)+ "
2
The coefficients o,. . »(3;53,)€ J_ are given in the following table.
(37535) > 17727 Yo
o]
Problem 90,1 | %¢-1,00 | %0,0) | °@1,0) (0,1)
Poisson _ _ _ -
(2.4.1) ‘ ‘ 4 ! :
An. Diffusion a - -1 2+2¢ -1 -€
(2.4.2) b -1 -€ 2+2¢ -£ -1
Conv.Diffusion a -€ —{e+(1-a)h} 4e-ah |-{e—(1+a)h} -€
2 2
(2.4.3) b-{e+(1-B8)h} ~€ 4e-Bh -€ -{e-(1+B)h}
2 2
cl-{e+(1-B)h}|-{e+(1-a)h}| 4e-oh-Bh|-{e~(1+a)h}fF{e=(1+B)h}
2 2 2 2
d1—{e-(1—6)h} —{e+(1-a)h}{ 4e-oh+Bh|-{e-(1+a)h}—-{e+(1+R)h}
2 2 2 2
Table 2.4.1., Coefficients o,. . ,for the model problems.

In figure 2.4.1 we look at the matrix structures of A for small e.



(2.4.1) (2.4.2a) (2.4.2b) (2.4.3a) (2.4.3b) (2.4.3c) (2.4.3d)

Figure 2.4.1. Matrix structures of A for the model problems

0(1) coefficients

0(e) coefficients

essesessesess O(e_I/E) coefficients

In table 2.4.2 we list the smoothing factor u for the smoothing processes
and the model problems. The perturbation parameter & varies up to 10_4.

Mesh size h is 1/16.

The smoothing factor of SGS for the Poisson equation is well-known.
Furthermore, we recognize the smoothing factor of SLGS for the anisotropic
diffusion equations (see BRANDT [1]). Some results (5p—ILU and SGS for
Poisson, anisotropic diffusion case b and convection diffusion equation)
are the same as in HEMKER [3].

Remark that Jacobi and 5p—-APINV are bad smoothers. It can be proved
that § | Y(i1,32)= 1. Therefore ;y = 1 for (01,09) = (m,m) for all possible
combinations of Y(jl’jZ) in case of Jacobi and 5p- APINV.

5p— ILU and SGS coincidence asymptotically for anisotropic and con-
vection diffusion equations.

Note that 7p- ILU has different y for the cases a and b of the aniso-
tropic and convection diffusion equation.

We see that j; » 0 for € +0 in the following cases:

Anisotropic diffusion equation case b : 7p~ ILU

Convection diffusion equation case a : SLGS
case b : 7p-ILU, SLGS
case c¢ : 5p—- ILU, 7p - ILU, SGS, SLGS
case d : SLGS

In order to judge which method is the best, we have to compare the
efficiencies of the methods. In MOL [6] the number of operations per grid
point of a smoothing method ag is calculated for the general 5-point A matrix

case when the coefficients are variable.



Jacobi - — - -
Problem e Sz;INV ZSINV igle iiv ;EU ses SGLS
Poisson 1. [0.8063 | 0.5313 | 0.2035 | 0.1259 | 0.2500 | 0.0222
An.Diff 0.1 1. [0.9261 | 0.9548 | 0.4775 | 0.2734 | 0.6970 | 0.1389
0.01 1. [0.9902 | 0.9993 | 0.7676 | 0.5959 | 0.9612 | 0.1922
a 0.001 1. [0.9990 | 1. 0.9162 | 0.7407 | 0.9960 | 0.1992
0.0001 1. |0.9999 | I. 0.9723 | 0.7622 | 0.9996 | 0.1999
0.1 1. [0.9261 | 0.9548 | 0.4775| 0.1648 | 0.6970 | 0.1389
0.01 1. 10.9902 | 0.9993 | 0.7676 | 0.1226 | 0.9612 | 0.1922
b 0.001 1. [0.9990 | 1. 0.9162 | 0.0242 | 0.9960 | 0.1992
0.0001 1.]0.9999 | 1. 0.9723 | 0.0026 | 0.9996 | 0.1999
Conv.Diff 1. 1. ]0.8060 | 0.5320 | 0.2034 | 0.1258 | 0.2497 | 0.0222
0.1 1.(0.7994 | 0.6497 | 0.2295| 0.1579 | 0.2389 | 0.0165
a 0.01 1. /0.9404 | 0.9793 | 0.4532 | 0.4157 | 0.4393 | 0.
0.001 1. ]0.9931 | 0.9997 | 0.4948 | 0.4904 | 0.4933 | 0.
0.0001] 1. |1. 1. 0.4995 | 0.4990 | 0.4993 | 0.
1. 1. ]0.8060 | 0.5320 | 0.2034 | 0.1252 | 0.2497 | 0.0222
0.1 1. [0.7994 | 0.6497 | 0.2295 | 0.0955 | 0.2389 | 0.0165
. 0.01 1. (0.9404 | 0.9793 | 0.4532 | 0.0246 | 0.4349 | 0.
0.001 1. [0.9931 | 0.9997 | 0.4948 | 0.0029 | 0.4933 | 0.
0.0001 1. |I. . 0.4995 | 0.0003 | 0.4993 | O.
1. I. |0.8083 | 0.5332 | 0.2015 | 0.1232 | 0.2478 | 0.0222
0.1 1. [0.9183 | 0.6449 | 0.0905 | 0.0374 | 0.1197 | 0.0054
. 0.01 1|1, 0.7373 | 0. 0. 0. 0.
0.001 1.1 0.7373 | 0. 0. 0. 0.
0.0001 1. [1. 0.7373 | o. 0. 0. 0.
1. 1.]0.8032 | 0.5332 | 0.2047 | 0.1271 | 0.2505 | 0.0222
0.1 1. |0.6534 | 0.6449 | 0.3540 | 0.1978 | 0.3158 | 0.0054
q 0.01 1. [0.7373 | 0.7373 | 0.4473 | 0.2535 | 0.4473 | O.
0.001 1. [0.7373 | 0.7373 | 0.4473 | 0.2535 | 0.4473 | 0.
0.0001 1. |0.7373 | 0.7373 | 0.4473 | 0.2535 | 0.4473 | O.

Table 2.4.2. Smoothing factors for the model problems.
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Method

Jacobi

5p-APINV

7p-APINV

9p—APINV

5p~ILU

7p-ILU

SGS

SLGS

20

24

28

13

17

18

56

Table 2.4.3. Number of operations per gridpoint for the

smoothing methods (A has variable coefficients).

Because the test problems have constant coefficients, this operation count
can be improved for these special cases. The efficiency Tlo(number of oper-

ations per grid point for 0.1 reduction of the error) is defined as

a
s

(2.4.5) T]O= ]logﬁl
In table 2.4.4 we consider the efficiencies of the methods for the Poisson,
anisotropic diffusion (¢ = 0.01) and convection diffusion equation
(e =0.001).
Problem Jacobi | 5p—-APINV| 7p—APINV| 9p-APINV| 5p-ILU| 7p-ILU| SGS |SLGS
Poisson © © 256 102 19 19 30 34
An. Diff. a] © 5611 92071 113 76 1047] 78
(e=0.01) b| = © 5611 92071 113 19 1047 78
Conv. Diff a] = © 7981 214870 43 55 59 0
(e=0.001) b © o 7981 214870 43 59 0

© © © 212 0 0 0 0

© © 181 212 37 29 52 0

Table 2.4.4. Efficiency T10

On the basis of this table 5p-ILU, 7p-ILU and SLGS are more efficient than
the other methods. For the Poisson case 5p—ILU and 7p-ILU have small Ti0°
7p-ILU is the best method for the anisotropic diffusion equation and SLGS

the most efficient method for the convection diffusion equation.
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Furthermore, it can be concluded that 5p-ILU, 7p-ILU and SLGS

are robust: they are efficient for all problems. This is not true for the

other smoothing methods.
3. COARSE GRID APPROXIMATION ANALYSIS

In WESSELING [7] a convergence proof is given of a multigrid method

for a 2nd order linear elliptic partial differential equation (not necessary

self adjoint) with variable coefficients in a rectangle. In WESSELING [8]

a simplified proof is given for the self-adjoint and positive definite case.
The most difficult part of the proof is to estimate how well the coarse

grid operator Ak~l approximates AF i.e. to estimate uf- pk o ¥71 with

Akuk = fk and Akn1 uk_] = Rk fk. Pk and Rk are the prolongation and the

restriction operators respectively.

(3.1) R Ll B S ko, ook, &t

and Ak_1 is the Galerkin approximation

Ak—l kT Ak Pk.

(3.2) = (P)

An important step in getting this estimate is to find a C,, as small as

2
possible, for the following inequality:

(3.3) R A P T I v oKl eyk!
k k
u €V
with
(3.4) vE = df o r WK ek=0)
and the following inner product and norms:
2 2k -k
(u,v) = h z u. . V. . h=2"
11, 1,1, s

1,1, = 0
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2
2 _ . 2 _ 2
(3.5) HuHO = (u,u) ; llull1 = .z HAi_u "0
i=1
2
2 2
HuU2 ; jzl "Aivj uﬂo .

Ai an Viare forward and backward difference operators in x:; direction. The

index k is omitted where there is no confusion.

k~1 k-1 . .. .
Because all v eV are possible in inequality (3.3) we

try
(3.6) &1 ogk K

with Rk injection. Pk is the 7-point prolongation. Therefore we have

(PRu) .. . = u,. . 3 (PRu) ... . _ b(u,. . +u,. . )
21],212 211,212 21]+1,212 = 21]+1,212 211,212
(3.7) (PRu) .. . = i(u .. . +u,. .
2i,,2i,+1 2 21 ,2i,+1 21],212)
(PRW oz w1,2i 1 = 1QUp5 4y 05 +Uop 95 4
1 ) 1 772 12772
Define
(3.8) z = u - PRu
and
(3.9) K = A] v] + A2 v2 - Al Vz - A2 v1
The grid function z is :
h2
Zn . . =03 z,. ., == —(A,V . .
2i,,2i, *T2d) 41,24, 7 (44 1u)211+1,212
(3.10)
295 L2041 = L (BVoudos 24 41 5 %25 41,21 +1 =
o Rl 2 1124t Ll ely
2

2 211+1,212+]
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The forward differences of z are:

(3.11)

h
1225 21, 7 (4 Vl'u)Zil‘ﬂ,Ziz
h .
Az).. = b
( 12)211+},212 2 (Alvlu)2i1+1,2i2
h h
Az).. .. . =_D_ _h
1225 21,41 7 (8575W a5 2141 =2 ®ag 41,24 41
h h
(Alz)zi]+1,212+1 = —7(A2V2U)2i1+2,211+1+ 2 (K“)211+1,212+1
(B2) 55 95 =~ %—(AZV?u)Zi 21 +1
B Rl 1°%%2
h h
Az),. s = - (Ku),. .
( 2 )21]+1,212 ) (Alvlu)zil+l,2i2 2 ( )211+1,212+1
(A,z) . o =;E_(A V.u)
2721521541 2 V272 2,21

__h h
= 7(A1V1“)211+1,212+2 o (Ku)os 41,21 +1.

(Asz).,. . .
2 211+1,212+] 1 2

By using the inequality:

(3.12)

we find

2 2
D T DY PIIIL B S OV PR TP PR R
i1, 1 2 1,51, 2

1

_ 2 2
S S I Lel@,v,w,

+32(§u5.

. ]
11+1,212+1

1],212-+1
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2 2. )
(3.13) iz ; (4,2) 2841,2i, ~ DEERCE 2i +1,24,+1 =
1°72 1121y
b2 1 4 2 2 2 -~
(= + =) L Doty g gy * BT 4y o 4]
4 o B8 i1, 1 2 1 2
(Ku) = {(AV. W2 + (AV.w)2 + (A, V.u)2
2i]+1,212+1 11 22 12
+ (AV u)Z} .
21 211+l,212+1
With (3.11) and (3.13) the l-norm of z can be estimated by
I H2 < Jl_. y [ (4+8 1Li){(A v u)2
217 % 2 171% 21 +1,2i
B 1 2
1> 2
(3.14)
4% | =
+(8,v u) 21,2141 0 FU6F =5 ) (RWoy g oy 4]
1 2 1 2
Choose a=yB. From 4+8'y = 16 + g we find v = 1.33. Then
Y
4
2 h )
Izl s 5= 18.25 % . [ (s Vu)21+1 pp (B, Vw7 2ie1t
) 2 2
(3.15)
+ (Ku), ] < 4.57 b2 lal?
i,+1,21i, +1 - ) 2"

l 2
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The constant Cz in (3.3) 1is

(3.16) C2 = 2.14

We have tried also other restrictions in (3.6), but they do not give better

results.

4, FINAL REMARKS

In this chapter the theoretical results of chapter 2 and some other
results from HEMKER [4] are compared with the experiments of MOL [6].

The smoothing methods, which are used in [6], are 7p-ILU, 7p—-APINV
and SGS. The average reduction factor T is used as a measure for the

speed of convergence of the multigrid process. Ty is defined as follows:

(V)
4. 1) r - (Hf Au® 0 nbl/v

Sihe , vy # 0
av Yy eop, (0 0

.l is the Euclidian norm and Vo is the smallest integer such that

™n) _
%y < 1078,

(4.2) lf-Au
In table 4.1 a comparison is made between L and u. The multigrid method
from which L. is computed has 1 coarse grid correction, no smoothing step
before correction, 1 smoothing step after correction, 7 point restriction
and prolongation and Galerkin coarse grid approximation.
We remark that Ty is smaller than u. The smoothing factor is however the
result of one-level analysis of the multigrid algorithm, while oy is based
on all levels of the algorithm. It is possible to generalize the smoothing
analysis for more than 1 level (see FOERSTER, STBBEN and TROTTENBERG [2],
HEMKER [5] ).

Furthermore, it should be noted that the smoothing analysis applies
to Toeplitz-matrices without considering the boundaries. In the experiments
Dirichlet boundary conditions are used. This can also be a reason for the

difference between L. and u.
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Problem 7p—APINV 7p—ILU SGS
Tav u Tay z Tav i
Poisson 0.29 0.8063 0.020 0.1259 6.071 0.2500
An. Diff a 0.70 0.9902 0.014 0.5959 0.61 0.9612
(e= 0.01) b 0.70 0.9902 1E-4 0.1226 0.61 0.9612
Conv. Diff a 0.47 0.9931 0.003 0.4904 0.0056 0.4933
(e=0.001) b 0.47 0.9931 7E-5 0.0029 0.0043 0.4933
0.47 1. 3E-9 0. 4E-9 0.
d 0.47 0.7373 0.040 0.2535 0.25 0.4473

Table 4.1. Comparison between r of the multigrid process

and p of the smoothing process.

From the experiments it appears that 7p—ILU as smoothing method is
superior to SGS and 7p—APINV for all model problems. This can also be con-
cluded from the smoothing analysis.

The smoothing analysis says that 7p—ILU is better in case of the
Poisson and anisotropic diffusion equations, SLGS in case of the convection
diffusion equations. In [6] no results are available for the multigrid
method with SLGS as smoothing method. Therefore, it is not quite clear which
smoothing method is the best: 7p-ILU or SLGS.

Another conclusion in [6] is that a multigrid method with Galerkin
approximation is at least as fast as a multigrid method with finite differ-
ences as coarse grid operator. This fact corresponds with results in
HEMKER [4]. He studies the effect of one coarse grid correction step on the

Fourier components of the error and residual. He finds the following scheme:

* > Smooth cemponents error

7

Unsmooth components error — Unsmooth components error

Smooth components error




17

Smooth components residual ____Ji___ﬁ> Smooth components residual

Unsmooth components residual._______‘%> Unsmooth components residual.

He shows that the arrows marked with * disappear when a Galerkin coarse
grid operator is used.

The scheme also shows that for the error it is better to smooth before
coarse grid correction, while for the residual smoothing after coarse grid
correction is preferable. So far as the residual is concerned, this fact

corresponds with the experiments in [6].
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