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On Periodic Cohort Solutions of a Size-Structured Population Model

Waltraud Huyer

Institut fiir Mathematik, Universitat Graz, HeinrichstraBe 36, A-8010 Graz, Austria

Abstract

We consider a size-structured population model with discontinuous reproduction and feedback through the
environmental variable “substrate”. The model admits solutions with finitely many cohorts and in that case the
problem is described by a system of ODEs involving a bifurcation parameter 3. Existence of nontrivial periodic
n-cohort solutions is investigated. Moreover, we discuss the question whether n cohorts (n > 2) with small
size differences will tend to a periodic one-cohort solution as t — oo.
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1. INTRODUCTION

Reproduction is an event in the life of individuals. When there is quite some variation in the individual
states at which such events occur, a formal appeal to the law of large numbers allows one to model
reproduction by rates at the population level. When reproduction occurs upon reaching a specified
individual state, one can still work with rates at the population level provided the distribution of
the population with respect to individual state is smooth (i.e. absolutely continuous). However, when
“giving birth” is restricted to specific individual states and, in addition, the population is concentrated
in some (moving) individual states, reproduction is an event even at the population level. The aim of
this paper is to initiate the study of models incorporating these two features.

We comnsider a size-structured population model of this type, i.e. the state of an individual is char-
acterised by its size. The individuals are born at size z,, and when they reach size z,, (z, > zo > 0),
they produce k offspring of size z, and die (or, equivalently, split into k parts). There is feedback
through the environment, i.e. the growth rate g depends on the food density S. The mortality rate
is assumed to be a positive constant.

We are interested in the special case that the population consists of finitely many cohorts. A
cohort refers to a group of individuals of exactly the same state (i.e. size in the present context) and
is mathematically described by a measure concentrated in a point, i.e. a Dirac measure. The full
problem is described by an integral equation with a measure on [z4, z,) as initial condition, but in
the case of finitely many cohorts it reduces to a system of coupled ordinary differential equations. If
we start with n cohorts, we shall have n cohorts all the time. Let N; denote the population number
of cohort i and z; the corresponding size. In the case of n cohorts the model equations read

dN; )

ot =—uN;, i=1,...,n,

dz; ]

o g(Sies) i=1ym,

d,St’ n (1.1)
— = h(S5,8) - S, zi)N;

+ initial conditions and jumps in N; and z; at times ¢ such that z;(t) = z,, for some 1.



The function h describes the dynamics of the unstructured variable S in the absence of a consumer,
and v is the consumption rate. We want to study the asymptotic behaviour and, in particular,
the existence and stability of periodic n-cohort solutions. This behaviour might change if certain
parameters in the model equations are varied. We assume that the function A also depends on a
scalar parameter 3 that will be the bifurcation parameter for our problem. The following assumptions
on the functions g, h and -y are used throughout this paper:

g € C([0,0) X [Za, Tw]; R), for each z € [z4, ] there exists an S; > 0
such that ¢g(S,z) > 0 for S > S, and ¢(S,2z) =0for 0 < S < S,

. . o L (Hyg)
g is decreasing in z, strictly increasing in S on [S;, 00) for all z € [z4, 2]
and twice continuously differentiable at those (S, z) for which ¢(S, z) > 0.
h € C*([0, 00) x (0,00);R), h is strictly increasing in 3, for each 8 > 0 (H)
there exists a unique S’ﬁ > 0 such that h(gﬁ,ﬁ) =0 and %(S’ﬁ,,ﬁ) =:—dg < 0. "
v € C*([0,00) X [Za, zo]; R), ¥(0,2) = 0 for = € [z, z,] and v > 0 elsewhere, (H,)
7 is increasing in S and z. K
Moreover, we consider only values of 3 for which
Sg > Sa.,- (Hp)

The typical growth rates we have in mind are the so-called growth rates of von Bertalanffy type (cf.
[2, p. 22] and [1], for example)

9(S,z) = c(£(5) — 2)*, (1.2)

where ¢ > 0, z* := max(0,z), f is a continuously differentiable, strictly increasing function of S
and z is of dimension “length”. The condition (Hj) implies that A(S,8) > 0 for 0 < S < 5’5,
h(S5,8) < 0 for S > S‘ﬁ and S’ﬁ is strictly increasing in . Typical examples are h(S,53) = f — S
(constant inflow of fresh, nonreproducing food particles combined with a constant food deterioration)
and h(S, 5) = S(1—5/B) (logistic growth). The condition (Hg) ensures that size z,, is reached under

the food conditions S = Sg; otherwise size z,, would never be reached for initial data S(0) < S’ﬁ and
the population would become extinct.

We consider n cohorts (that we assume to be arranged according to size; without loss of generality
we can also assume that the first cohort is a cohort of newborns) and associate a mapping (discrete
time dynamical system) with the ODE system. Let n € N, § > 0 with (Hg), 2o = 21,0 < 22,0 < -+ <
Tn,0 < Ty, 0< S £ S’ﬁ, N;o>0fori=1,...,n, and solve the equations

dz; )

dmt =g(S,2:), =zi(0)==zs0, 1=1,...,m, s
n 1.3

ds

— = h(5,8) - e N " y(S,2:)Nio, S(0) = So.

i=1

Remark 1.1. a) (Hp) implies that it is necessary to choose Sg € (0, S'ﬁ] in order to possibly obtain
a periodic solution.

b) We have to extend the mapping artificially to the case that the initial sizes can become z,, in order
to be able to deal with the degenerate case that z; o = ;41,0 for some 7. In this case, as well as in
the case where N; o = 0 for some %, we actually have less than n cohorts.



We define a mapping F, : R*™ — R* (Sg, N1,0,..., Nn,0,%2,0y--,Zn,0) — (Sh, Nior -1 Naos

m'z’o, cen, :cib’o) as follows. Let T'= T(So, N1,0,. .., Nn,0, 22,0, - - -1 Tn,0) > 0 be such that z,(T) = z.,,
zn(t) < 2, for 0 <t < T (if 2p,0 = %w, we have T' = 0), and set

Sy := S(T),
N{,o = anyoe_"T, 4
Nio:= Ni_10e7#T, i=2,...,n, :

fci,o =zi-1(T), 1=2,...,n.

T is well-defined because of assumptions (Hg), (Hz) and (H,), and we have S5 > 0, S € [S,,, gﬁ],
Nio>0fori=1,...,nand 2o <25 < - < 2y o < T

Remark 1.2. Since the size growth is not necessarily strictly monotonic, the mappings F, might
have discontinuities if S§ = Sz, > 0, S(T-) < 0. (If S(T) = Sz,, S(T—) = 0, then S(T-) =
pe T S 1 ¥(Sz.,, i) Nio > 0, i.e. S would have a local minimum at ¢ = T if there were no jumps,
and this case is all right.)

In Section 2 the mapping F} is investigated. We assume that the trivial fixed point (S’ﬁ, 0) becomes
unstable at 3 = 1, and existence of a stable nontrivial fixed point of F; (resp. a periodic one-cohort
solution of (1.1)) is proved for 1 < 8 < (3; for some B; > 1. In Section 3 a criterion is derived to
determine whether for 1 < 3 < 31, 3 sufficiently close to 1, the iterations of Fy will converge to the
fixed point (So(83), No(B)) of F; for (So, Ni,0+ Niy, z2,0) sufficiently close to (So(B), No(B), za), i-e.
whether the nontrivial fixed point of F; is stable with respect to splitting into two cohorts. The same
criterion applies to splitting into n cohorts for all n > 2. Moreover, local existence of nontrivial fixed
points of F, is proved for n > 2. In Section 4 we present some numerical examples that show that
both stability and instability of the fixed point of F; with respect to cohort splitting can occur in the
case of linear growth rates (1.2).

2. THE ONE-COHORT PROBLEM
We consider now the special case n = 1, F; =: F, and we drop the indices. Let 8 > 0 be such that
(Hp) is satisfied. We have to solve the coupled ODE system

d

d_m = g(Sa l'), JZ(O) = Lo,

dg (2.1)
dt - h(svﬁ) - Noe_p‘t’Y(Sa iL'), S(O) = So.

If T = T(So, No) > 0 is such that z(T') = z,, #(t) < z, for 0 <t < T, the mapping F : (So, Ng) —

(S§, N§) is given by

{ Sy = 8(T), 22)

N§ := kNge #T.
Remark 2.1. a) We have T'(So, No) > T(So,0) for all Sp € (0,55], No > 0, and Sg — T'(So,0) is
strictly decreasing on (0, Sg]. If
- ~ 1
T,B = T(SI@,O) Z —lnk,
L

we have lim;_, o N(¢) = 0 and lim;, o S(¢) = S’ﬁ for all choices of (Sg, No), and F' has only the
trivial fixed point (So, No) = (Sg,0). Note that T is strictly decreasing in S.



b) Remark 1.2 implies that discontinuities might occur if S(T) = S4 = S, > 0, S(T—) < 0, i.e.
h(Sz.,B) — Noe #T(Ss,,2u) < 0

or
erT

V(Sz.+ Tw)
Since T' > Tﬁ for Ng > 0, the mapping is in particular continuously differentiable (differentiability of

ODE solutions with respect to initial conditions and parameters) in the neighbourhood of (So, No)
with Sp € (0, Sg] and

No > h(Szw,IB)

T

0<No< —2" s
< No < m (Sz.,:8)-
At the points where F' is differentiable we have
05} as oT
T
55, ~ a5, 1) T (Mg,
oS,  0S oT
T TAG R GF
ON{§ oT
— —uT
85 = Fas,re Moo
ON{ oT T T
=— ke #* Ng + ke™#
ONg 'uBNo ¢ ot ke

We have to compute the eigenvalues of the Jacobi matrix of F' in order to determine the stability
of the trivial fixed point (0, Sg). To this end we first evaluate the derivatives of z and S with respect
to initial data and parameters at (Sp, No) = (S’ﬁ, 0).

Lemma 2.2. Let (z,S5) be the solution of (2.1), and let T be the solution of
dz _
= =9(55), 30 = za.

Then we have at (So, No) = (gﬁ, 0)

05
s =¢ (2.3)
(% :/exp / (8, 3( )gs(sﬁ, 5(r))e= % dr, (2.4)
;Tso(t):—e_dﬁt /0 el =17y (8p, 2(7)) dr, (2.5)
et = [ e ([ 32,20 do) 3G 2() g (1), (26)
8 1 6h e
551 = 3 35 A=) (27)
S—Z(t):/() exp i g—i(gﬁ,i(a))da)g—g(S*ﬁ,:z(T))g—Z(T)dT. (2.8)
Moreover we have at (Sg, No) = (55, 0)
o = (8, 2) 5 () (29)

for o = Sy, No and 3.



Proof. Application of theorems about differentiability of ODE solutions with respect to initial data
and parameters yields formulas (2.3)-(2.8), and by differentiating the relationship z(T) = =, we
obtain (2.9). O

The following lemma shows that the stability of the trivial fixed point of F is as we might expect
from Remark 2.1, a).
Lemma 2.3. The Jacobi matriz of F at the trivial fized point (Sg, No) = (S’ﬁ, 0) reads

e—dsTs 05
8N,

(DF)(35,0) = ( . ke_(fT};))

and has the two real positive eigenvalues Ay = e=%Ts < 1 and Ay = ke—#Te. The trivial fized point is
stable if Ao < 1 or

~ 1
Ts > —Ink
.
and unstable if Ay > 1 or
~ 1
Ts < —Ink.
P

We want to discuss the existence of nontrivial fixed points of F' for Tﬁ < Ylnk. The mapping F
can be extended to Sp > Sg and Np < 0, but the case Ny < 0 has no biological meaning. If 8o > 0 is
such that (Hg) is satisfied for 8 > (o, we can define a mapping G : (0, 00) x (—00, 00) X (Bo, 00) — R?
by

{Gl(so, No, B) := S(T) — So, (2.10)

G1(So, No, B) := ke ™#T — 1,
where S is the solution of the second equation of (2.1) and T' = T(So, No, B) is defined as before.

By (2.2) we must have G(So, No,3) = 0 if (So, No) is a nontrivial fixed point of F pertaining to the
parameter value 3, and in particular

- 1
T(So, No,B) =T := —Ink. (2.11)
I
Without loss of generality we assume that the trivial fixed point becomes unstable at 3 = 1, i.e.

.1
Ty = ~Ink. (2.12)
m

Moreover, we assume henceforth
d; =1, (2.13)

which can be achieved by scaling the time variable and serves to simplify notation.

Theorem 2.4. Assume that (2.12) and (2.13) are satisfied. Then there ezist a neighbourhood U of
1 in (0,00) and a neighbourhood V of (§1,0) in R? such that for each B € U there exists a unique
(So, No) € V with G(So, No,3) = 0. Moreover, for B € U with 8 < 1 we have Sp > 5’5, Ng < 0,
and for B € U with B > 1 we have So < S’ﬁ, Ng > 0, i.e. only the second case yields a biologically
meaningful nontrivial fized point of F resp. a periodic one-cohort solution of (1.1).



Proof. By (2.12) we have T(S’l, 0,1) = T and G(S’l, 0,1) = 0, and there exists a neighbourhood W of
(51, 0,1) such that G is continuously differentiable on W. Let y := (So, Ng). Then we have

as T) + S(T) 8T 1 as (T) + S(T) aT
D.G , — 850( ~ Sy B8Ny . ANy ,
(DyG)(y, B) ( —pike ,Lng; — ke #T;I%"D

and in particular

. vE o1 25 (F
(DyG)(51,0,1) = (_ o B_NDET))-
K35, Hang

The determinant of this matrix is

oT _1 oT 0S -
—#m(l—k “)‘H‘Em( )

which is positive by Lemma 2.2 and assumptions (Hy) and (H,). The Implicit Function Theorem
implies that there exist neighbourhoods U of 1 and V' of (5’1, 0) and a C'-function H : U — V such
that V x U C W and G(H(B),8) = 0 for all 3 € U. Moreover, for 8 € U the equation G(y,53) = 0

possesses one and only one solution y = H(3) in V.

A := det(D,G)(51,0,1) (2.14)

Only three kinds of choices for (So, No) are possible such that S might return to its initial value:
a) So > Sﬁ, Ny < 05 b) So = Sﬁ, No = 0; C) So < Sﬁ, Nog > 0. Let 8 > 1. Then T(So,No) < Tﬁ <
iln k for So > Sg, Nog <0, i.e. we must have case ¢). Analogously, case a) applies to 8 < 1. O

The principle of exchange of stability (cf. [3, p. 93, Theorem 5.1], for example) implies

Theorem 2.5. Let the assumptions of Theorem 2.4 be satisfied. If U is chosen sufficiently small, the
biologically meaningful nontrivial fized point of F for B € U N (1,00) is stable.

We assume in the following that U is chosen sufficiently small such that the conclusion of Theorem

2.5 holds.

3. THE n-COHORT PROBLEM FOR 1 > 2

In this section we address the following question: If we start with n > 2 cohorts with small size
differences, will these differences be larger after all n cohorts have reproduced, or will they be smaller
and eventually tend to zero? Will the solution of the n-cohort problem converge to a periodic solution
of the one-cohort problem? This phenomenon cannot occur in the case of a constant food density or
if the growth rate is independent of S since then the size differences always stay the same. First we
consider the case n = 2, i.e. for (Sg, N1, N2, zq) € (O,S'ﬁ] x [0, 00) x [0, 00) X [Za, Zw], B > 0, we solve

d

= =9(S21), @(0) =z,

d

=2 =9(S,32), 2a(0) = 2o, (3.1)
ds e

r = h(S,ﬁ) —e # (ley(S,:cl) + Nz"}’(S,CCz)), S(O) = So,

where we again assume that (Hg), (2.12) and (2.13) are satisfied. The mapping F; : (So, N1, N3, o)
— (5§, N1, N3, zg) is defined by

S := S(T),
N :=kNye #T,
NI = Nye T (3.2)

zg := z1(T),



where T' = T(So, N1, N3, zg) > 0 is such that z2(T) = z,,, z2(t) < @, for 0 < ¢ < T.

For 8 € U we use the abbreviations

Fo(8) := Ha(B), (3:3)

where H is defined by Theorem 2.4 (see the proof). The nontrivial fixed point (So(8), No(B)) o
Fy for B € UN(1,00) can be viewed as a periodic point (So, N1, N2, zo) of period two of F, w1th

So = So(,B) Ni+ Ny, = No(,B), Lo = o (0r N1+ kN, = No(,B), To = @), i.e. the artificial splitting
of one cohort into two cohorts is not unique and instead of a fixed point of F; we obtain a family of

{wm:mw,

periodic points of period two of F;. In order to investigate the “stability” of these periodic points
of period two, we have to consider the second iterate FZ =: K : (So, N1, N2, zo) — (S§, Ny, N, z3).
If Ty := T(So, Nl,Nz,mo) and T2 := T(F3(So, N1, N2, o)), we have NJ = kNye #T1+T2) and N =
kNye #(T1+T2) j e the quotient 3 —1 or %—j remains invariant under K if the denominator is not zero.
This allows us to restrict K to any set Ny = nN1, n a positive constant, and thus to reduce the

problem by one dimension. Let K, : (So, No, zo) — (S{, N§, zi) be defined by

1 1
Ny 7 Nélv 1"6’) : (507

[y —— No,
(0’1+ 1419 147 1+

NO,"L'O)

The nontrivial fixed point (S, ( ) No(,B)) of Fy for B8 € U N (1, 00) corresponds to the fixed point
(So(B), No(B), za) (ot (So(B), 1+an0(ﬁ) z,)) of K,. The Jacobi matrix of K, at the point (So(8),

No(B), z4) is

(DKH)(S’O(ﬁ)vNO(IB)vwa) = A 8:” , (3.4)
0 0 Fr
where
A := (DF1)(50(B), No(B)) (3.5)

is the (2 x 2)-Jacobi matrix of F; evaluated at its stable fixed point (So(3), No(3)) and “x” denotes a
not so interesting number. Note that z{(So, No, £o) = x4 for all Sg, Ng, which accounts for the two
zeros in the third row of the matrix (3.4). Thus the eigenvalues of the Jacobi matrix (3.4) are given
by the eigenvalues of A and

"
dzg
BCUO

(50(8), = No(8), 2= Fo(B), 20), (3.6)

A=

where z(§ now again denotes the fourth component of the mapping K. The former are of absolute
value < 1 by assumption, and the stability of the fixed point (So(8), No(8), z«) of K, depends on the
absolute value of A.

Lemma 3.1. The eigenvalue A defined by (3.6) is independent of n and given by

%exp( i gj(sa 1), 3 ()) dt), (3.7)

where (Zg, Sg) is the solution of (2.1) corresponding to So = So(B), No = No(B), B € U, and T is
defined by (2.11). In particular, for a growth rate of the form (1.2) A reads

F(G(B) — o _or _ F(GolB) — 20,
f(So(B)) — zw f(S0(B)) — zw

AB) =

®[o

AB) = (3-8)



Proof. In order to compute A, we first have to solve the following ODE system:

1 g(S21), 22(0) = 7w
% = g(S,:L'z), 1’2(0) = Zo, (3'9)
95 _pis,8) - NoB) ot (5, 21) + my(S,22)), S(0) = 5olB).

dt ' 1479

Let T1 > 0 be such that 22(T1) = Zw, 22(t) < z, for 0 < ¢ < T1. We set S := S(Th), =z := z1(Th),
N} = e=#T1 Ny() and solve

dz ~

— =9(8,8), £(0) = za,

dz ~

d_t2 =g(S,%2), %2(0) =z,

ds < N - . .
= hE.8) - e (S0 +1(5 ), 5(0) =

Let T, > 0 be such that #2(T2) = z4, 2(t) < @, for 0 <t < T3, and define z§ := £1(7%). Then

dzo ~ 2 e T agr T gy T o B gy 4 h(T) T 2’

where all derivatives exist for 0 < zo —z4 < €, € > 0 suitably chosen, and the derivatives with respect

to zg are replaced by the right-hand derivatives at zo = z. For zg = z4 we have T; = 0, S§ = So(5)

and . . .
(9131 . (9:(:1 8151

oz, = 55,0 = 5z ()

Differentiation of the relationship #3(T2) = z,, with respect to zo yields

=0, 50"1(0) = g(go(,B), Ta)

dT2 8@2 dCUO 852 dSO 852 dNé _
£2(T) oo+ gt ) goe + 50 1) e + g () gy =0
and for z¢o = z, we obtain
dT2 1 d:co
ry) = ———
d:co( ) g(So(,B) z,) d:co za)
e : (So(8), a) da!
dz 9(So(B), o) dzg
A= %z, B e To)-
d:co( ) 9(S0(B), ) d:co( )
We have o 5
Zg $1
_ T 7 il
doo ( 1) + @1 1)

and for zg = x4 we obtain similarly as above, using the deﬁnltlon of T} and the fact that T1(zs) = T,
dz{) 0z, - 0zs , -
—(zq) = —(T) — —(T).

d:(:o (JZ (9130 att!o ( )

If we differentiate the solutions of system (3.9) with respect to the initial condition zg at zg = z4, we
obtain the differential equations

d 0z;  Og dz, 0Og a5 0z B
dt dzo Oz 9z (58026 )a as(sﬁ’ ””ﬁ)amo’ Bzco(o) =0,
d Bmg ag Bmg Bg 85 0z,



which implies that z(¢) := g—;’:s(t) - g—zé(t) is the solution of the equation

dz 09,5 _ B
%= a—m(sﬁ,:cﬁ)z, z(0) = 1.

From this we infer
(91132 ¢ (9:61
a$0 a$0

and formulas (3.7) and (3.8) follow. [

The equations dd;tﬁ = g(Ss,%p), 25(0) = 2o and z5(T) = z,, yield

9(5(B),za) Td. o B T g 9(35(t), Z5(t))
m = exp(—/o —1Ing(So(B), Z5(t)) dt) = exp(— = —=(So(B), Zp(t ))% dt),

and we obtain the useful representation
T & _
B dg - . _ 9(5p(t), 75(t))
A(B) = exp( / (52(S5(8), 36(t) — 5(50(8), ap(t) S22 A2E 5N at). (3.10)
For 3 = 1 we have by assumption (2.12) S;(t) = So(1) = Sy, and (3.10) immediately implies
A1) = 1.

In particular we obtain for a linear growth rate from (3.8)

HS) ey (3.11)
f(S1) — 2w
Corollary 3.2. ¢) If in addition to (Hy) we have
S —(ln g(S,z)) is strictly increasing in S for S > Sz, © € [z, Tu], (3.12)
and
50(8) = max (1 (3.13)

for a B € UN(1,00), then the nontrivial fized point (So(B), No(B), zo) of Ky is stable for all n > 0.

b) In case of a linear growth rate (1.2) the nontrivial fized point (So(B), No(B), za) of Ky, is stable for
allnp > 0 for a B € UN(1,00) if and only if So(B) > 5.

Proof. The assertion a) follows from the representation (3.10) and the assumptions (Hg), (3.12) and
(3.13).

In the case of a linear growth rate (1.2), egs. (3.8) and (3.11) and the strict monotonicity of f imply
that A(8) < 1if and only if So(3) > S1, which proves statement b). O

Remark 3.3. In numerical computations of nontrivial periodic one-cohort solutions for linear growth
rates (1.2), linear h, consumption rates as in Section 4 and conservation of mass (cf. Section 4) S did
attain its maximum at the instants of reproduction. However, we do not know if the property (3.13)
was a just a peculiarity of our examples or if it may also occur for growth rates that satisfy (3.12) but
are not of type (1.2).
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We have sign()\(ﬁ) — 1) = sign A'(1) for B > 1 sufficiently close to 1, and the stability of the fixed
point (So(8), No(B), za) of K, depends on the sign of A’(1). In order to compute A'(1), we need the
following lemma.

Lemma 3.4. Let (z,5) be the solution of (2.1), let T be defined as in Section 2, and let So0(B) and
No(B) be defined by (3.3). Then the derivatives with respect to 3 at 3 =1 are given by

_1,0h - or 0T 0S -
55 = & (- DG - 50 7)) (3.14)
and
d - _1,/0h 4 T oT
%No(l):—%(l—k n)(%(sl,1)ﬁ+%), (3.15)

where A is defined by (2.14), T is defined by (2.11) and all partial derivatives are evaluated at
(507 NOaﬁ) = (Sla 07 1)

Proof. If G is given by (2.10) and H and U are defined as in the proof of Theorem 2.4, differentiation
of the relationship G(H(3),8) =0, 8 € U, with respect to 3 yields

dH 0G

(DyG)H(B), B) 57 (B) + 55 (H(B),A) =0, BeU.

Since the matrix (DyG)(S’l, 0, 1) is invertible, we obtain in particular

9B

_ 1 /‘591%1., az}ru v (T) (T)
A /Lgi Emr —1 /‘aﬁ ’

where all derivatives are evaluated at (Sg, No,B) = (,§1,0, 1). From (2.7) we obtain 23(T) =

—(1)=(ﬁff(11))) ~((D,6)(52,0, 1) 25 (71 (1), 1)

98

%(5’1, 1)(1 - k_%), which finishes the proof. []
Lemma 3.5. )(1) is given by

iy B (BT Ok s 0T\ (0S o (T 5E(S1a()

A1) =- <35+ 5(5? )850><6No T/O 9(51,71(t)) @t (3.16)

B,
and
' 95 - [T 555, a() _,
sign A'(1) = 51gn<aN0( )/0 g(gl,:ﬁl(t)) e "t dt 1
+(1—k—%)/0 ?g‘fh&itg;) <BBJ€0 (t) + —ﬂt7(5‘1,:51(t))) dt),

where all partial derivatives are evaluated at (So, No,B) = (5’1, 0,1).
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Proof. We differentiate (3.10) at 5 = 1, and by integration by parts we obtain

v = [ (285m0 - L6 nm EOBO) (@) )

9(S1,z1(t)) 7/ \ dB lp=1 dp
T d (55(51,51(2))\ (d5 d.
- [3 dt (m) (d—IBﬁ ﬁ:l(t) - %50(1)) dt (3.18)
_ [ 25(S1,21(1) d (d5p
- /0 (51, 71(t)) dt(dﬁ ﬁ:l(t)> dt,

where we have used the fact that A(1) = 1. We have

dSs 89S . 9S 95
o]0 =550+ 5o (058D + S () 7o

where all partial derivatives are evaluated at (So, No,3) = (5’1, 0,1), and (2.3), (2.5) and (2.7) yield

No(1),

(dsﬁ()) (82(51,) %5‘0(1))e—t—%1v (1)(88]50()+e_” 1(3na(0)). (3.19)

Eq. (3.14) and the definition of A (cf. (2.14)) imply

oh , (Bh ~ oT BT) as (3.20)

%(S )——550() %(Sh )E‘F% m( ),

and by using (3.19), (3.20) and (3.15) in (3.18) we obtain formula (3.16).
Egs. (2.4) and (2.7)—(2.9) and assumptions (Hy) and (Hp) yield

T ok oT . oh - T T 8g - 8g . -
55+ 35S s = g(Sl,xw)_lﬁ(Sl,l)/; exp(/t 20 (81, 21(r)) dr) %51, a(8)) it < 0,

from which assertion (3.17) follows. [

Remark 3.6. The sign of A’'(1) does not depend on the particular shape of » but only on the value
of its positive zero at § = 1.

Lemma 3.7. In the special case of a linear growth rate (1.2) we have sign A'(1) = —sign i 4 So(1) and

2 5o(1) = %(f(s‘l)—mw)—lf'(él)gﬁ(sl, 1k~ ((1_k—%)/0 e(c_l)t/; =Ry (81, 3y(r)) dr dt

dp
1 T T 3
ey
0 0

and consequently

signx(1):sign(k—%/ (1—e? )dt/ e(=mty(§,,21(t)) dt
(1—k u)/ ele~ 1>t/ A=y (S1, &1(7)) dr dt).



Proof. Eq. (3.8) and the monotonicity of f imply sign A’(1) = — sign %5’0(1), and we have g—Z(S, z) =
3

—c and ZZ(S,z) = cf'(S) at those (S,z) for which f(S) > z. From (2.5)-(2.9) we obtain at

oT f'(gl) - TfT (—1)t/t A-m)r (G 3
= —= ¢ ¢ Ty(S1, drdt
NG f(Sl)—:cwe ; e ; e v(51, Z1(7)) dr

and

a_T__a_h a f’(’gl) —cT T ct(1 _ —t
a8 - aﬁ(slal)f(s;l)_mw—e /; e (1 e )dt,

and (3.14), (2.5) and the assumptions on f and h yield the assertions. [

We consider now the case n > 3. The nontrivial fixed point (So(83), No(83)) of Fy for B € UN(1,00)
corresponds to a family of periodic points (So, N1,0, - - -5 Nn,0, 22,05 - - -5 Zn,0), So = So(B), S Nio=
No(B), zi0 = 2o for ¢ = 2,...,n, of period n of F,. Let F : (So,N1,0,..+,Nn,0,22,0-+,%n,0) —

(S, N, N e, ,(1"3) and T} := T(F:~Y(S0, N1,0,+ -+, N0, 22,01« - 1 Zn0))y i = 1,y
Then N(n) = kN; e #EJ t J, it = 1,...,n, so the quotients N;o/N; ¢ remain invariant under F,’
if the denommators are not zero. For a vector 7= M2..,7m), s > 0 for ¢ = 2,...,n, we define
,7 . (So,No,mg’o,...,J!n’o) (S(()n),Nén) m(no), .y 1(1113) by
n 1 n n n n n n n
(S(() ),ZN(S ),nC—ZNé ),,%Né ),:cg’o),...,:c,(l’g) —Fn(So, CNQ, ZNo,...,%No,icg’o,...,lin’o),

where ( := 1+ Y7, 7;. The Jacobi matrix of K,, at the nontrivial fixed point (So(8), No(8), za; - - -,
z4) is given by

A .
*
o)

0 0 ‘ZIZZ 0 on i 0

L ol . .

(DKﬂ)(SO(IB)aNO(IB)a Lay - .,Ct:a) =" - 0 8z3,0 ) ' , (321)

0

az(n,)]

00 0 PR e X

where the (2 x 2)-matrix 4 is again defined by (3.5) and the zeros in the last (n — 1) rows are due to
the fact that :c(%) = z, for z;0 = ©, independent of Sp, No and z;0, j # 4, fort =2,...,n

The following lemma is a generalisation of Lemma 3.1 to the case n > 3.
Lemma 3.8. We have
oy
(SO( )7N0(/B)afcav---awa):)\(5), 1=2,...,n,

Bm, 0

where A is given by (3.7).
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Proof. Let n > 3. The quantities :c( ™) for So = So(B), No = No(B) are obtained by solving the
following recursive ODE systems. Flrst solve the system

dai” W a0
gt :g(S y Ly ), T (O)Ima’
(1)
dflt g(8M,2M), 2(0) = zi0, i=2,...,n,
ds® ) B . n 0 1 )
T = (5, 8) = Fo()c e 3 (8D, 2, 5(0) = 5o(8),
=1

where 7; := 1 and { := E?:1 7; as before. Let 77 > 0 be such that :c%l)(Tl) =2z, T n (t) < z, for
0 <t < Ty, and set S(()l) = S(Ty), Nél) := No(B)e #T* and m(l) = mgl)l( Ty),1=2,.

For 7 = 2,...,n we solve recursively the ODE systems
dd—i) =g(89,2(), 2(0) = .,
dd—i) g(59,20), <PN0) =P, i=2,...,n,
d,zij) = h(8Y),B) — N(J De-1g-nt (k Z’?n+z i417(89), (J) )+ E"’ i+17(89), (J)))
i=1
s6)(0) = S(()j—l)_ N

Let T; > 0 be such that m,(f)( T;) = zu, :c,(f)( t) < z, for 0 < t < T}, and define S(()j) = SUN(Ty),

N(J) N(J 2 _“TJ,:UEJO) .:mgj)l( T;),i=2,...,n
For (22,0,...1%n,0) = (Zay...,Ta) We have T} = T and T; = 0 for j = 2,...,n. Moreover, for

j=1,...,n we have 5”50) =24,1=2,...,7, and m(Jg =z,,t=J5+1,...,n. We shall in the following

often use the fact that

9z
—-(0)=1, i=2,...,n, (3.22)
-1
B:cl(.fo )
and
oz (J) 9z 9z
(0) = L _(0)=——==(0)=0, k#3i i=1,...,n, (3.23)
1 -1 —_1
BN(’ ) asy~" 25"
forj=2,...,n
For the remainder of the proof we assume that all partial derivatives are taken at (z2,0,...,%n,0) =

(Tay---1%a). By dlﬁ'erentlatmg the equations :c(J)( Tj) = 2w, J = 1,...,n, and by using (3.22) and
(3.23) we obtain for : = 2,.

o, 1 Bm(l)(T)
0zi0  9(So(B), w) Ozi0

and

aT; 1 Rk

0zio  9(S0(B),zn) Oio
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For j =2,...,n,i=2,...,n we have
(9) G (5-1)
0z3 0 _ 1.:(1]')(0) oT; _ _9(5_’0(5)7 Za) 92,0 (3.24)
0z 0 0z;0 9(So(B), zw) Omio
and
0z;} o1y | Om 95T a(50(B), 2 y) dals

,0 — (]) 0 A P _
afci,o mk_l( )Bcci,o + Bici,o (913i,0 g( 0(5),%) Ba:i,o
1 B .
0oi 0 o(So(B)we) O2iis” L (3.25)
81:?’0 9(50(5), ww) al‘i’o ) yeooy sy
9z ) 0algY

al‘i,o (9:(:,"0

, k=7+1,...,n.

The derivatives of 1:21()) are given by

ascil’())

or, 02, 82V, 920
k=l = T —
0z 0

— mgcl_)l(j’)am_m+ FI (1), k,i=2,...,n. (3.26)

From (3.24)-(3.26) we obtain recursively

023 9(5(8), 2a) (356(11) 7y _ 0z 7)), i=2
ami,o g(SO(ﬁ)a ww) ’

0z 0 0z 0
Similarly as in the proof of Lemma 3.1 we have

ozt _ ozl _ T og . .
T (1) - 24 (T):exp(— i B—Z(Sﬁ(t),:ﬁﬁ(t))dt>, i=2,...,m,

(91:,"0 B:c,-,o

which finishes the proof. [

Thus the eigenvalues of the Jacobi matrix (3.21) are the eigenvalues of the matrix 4 and the
(n — 1)-fold eigenvalue X, and we obtain the following result.

Theorem 3.9. Let 3 € U N (1,00). Then the iterations of F, converge to the stable fized point
(,5_'0(,3), 1\70(5)) of F1 for initial values (So, Ni,o,-.., Nu0,%2,0y---,%n,0) such that (So,> i, Nio,
2,05+ -+, Tn,0) 18 sufficiently close to (So(B), No(B),ZTay---,2a) for all n > 2 if and only if this is
the case for n = 2.

We summarise our results in

Theorem 8.10. Let M'(1) < 0. Then there exists a 31 > 1 such that for each B € (1,1) there ezist a
neighbourhood Vg of (So(B), No(B)) and an eg > 0 such that limy_ oo F7*(So, N1,0,- -, Nn o, 22,0, - -

mnyo) = (go(ﬁ), %;NDW) IR anﬁu(ﬁ),ma, .. -vma) for (So, E?:l Ni,O) € Vﬁ, 0< Ti0 — Ta < €8 for

ioq Nivo Nio
1=2,...,n and alln > 2.

i=1

No general statement can be made about sign A’'(1); cf. Section 4.

We conclude this section with an investigation of fixed points of F,, for n > 2. For a fixed point
(Soy N1,0y.+.y Npy0y 2,05+ - -3 Tn,0) of F, we must have Ny = ke“‘TNnyo and N;o = e_“TNi_l,o,
1 =2,...,n, which implies that either N;o =0for:=1,...,n or

7="Lit (3.27)
nu
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and
Nio=k=CV"N o i=2,...,n (3.28)

For values of 8 such that (Hg) is satisfied we define the function Pj : [z4,z.,] — R by

T do
P, = — = € ayTw]-
5(2) /;ag(sﬁ,a) o € [ta, 2.

Then Pg is strictly increasing on (24, %], Ps(za) = 0, Pg(z.) = Tﬁ, which implies that Pﬁ_1 :
[0, Tﬁ] — [Zq, ©y] exists. The point (S’ﬁ, 0,...,0,22,0,...,%n,0) is a periodic point of period < n for
all choices of z; 0, ¢ = 2,...,n. It is a fixed point of F, if and only if

zio = PN (5 Tp), i=2,...,n,

and in that case we have T' = %Tﬁ We define the function G : W C R**t! — R™, W an appropriately
chosen neighbourhood of (5’1, 0,Z2,0,-.-y%n,0, 1), where
Zio:= Pl nk), i=2,...,n, (3.29)

as follows. For (So, No, 2,0, .,%n,0,8) € W we solve the ODE system

d
%:g(s’ml)’ 21(0) = zq,
d:c,- .
o = I(Sw), 2i(0) =2, =21, (3.30)
ds _ut < —(i—-1)/n
= = h(S,8) — Noe ™™ Yk ¥(S,2:),  S(0) = So.

i=1

Let T > 0 be such that z,(T) = z,,, z.(t) < 2, for 0 < ¢t < T, and define

Gl(SO, No, mg’o, ey Jln,o,ﬁ) = S(T) — 50,
Gz(So,No,CCg’o,...,Ccn’o,ﬁ) = ke—nuT — 1, (331)
Gi(SO, No, 132’0, ey Ccn,o,ﬁ) = l‘i_g(T) — :c,-_l’o, 1= 3, ey, N
If W is chosen sufficiently small, G is continuously differentiable in W, and (2.12) and (3.29) imply
G(51,0,%Z2,0,..+Zn,0,1) = 0. In view of (3.27) and (3.28) (So, N1,05- .., Nn,0, 22,0, - - -, Tn,0) is @ non-

trivial fixed point of F, if and only if N; o = E-C-V/"Ny i =1,...,n, and G(So, No, 2,0y +rTn,0,5)
=0.

We want to apply the Implicit Function Theorem to the mapping G. To this end we first compute
the derivatives of the solutions of the ODE system (3.30) with respect to initial data and parameters.

Lemma 3.11. Let (z1,...,2n,S) be the solution of (3.30), let T be defined as above and let
z;(t) := Pt izl n—itl _
Z;(t) := Py (t—}—nﬂ Ink), 0<t< oy Ink, i=1,...,n.

Then the partial derivatives at (So, No, 2,0, .-+, Zn,0,8) = (,§1, 0,Z2,0,...,%n,0,1) are given by

98 .

Oz; t t9g, - _ dg , ~ _ . .
aso(t)_/o exp(/r a—m(Sl,mi(a'))da)%(Sl,mi(ﬂ)e dr, i=1,...,n, (3.33)
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as
t)=20 =2,.
a$j,0() ’ J 3 y Ty
Oz; . .
ajo(t)zo, t=1,...,n, j=2,...,n, J#4,
]’

Bas,» t ag _ .
awi’o(t) = exp(/o a—w(Sl,:ci(T))dT>, i=2,...,n,

s ~ : ¢ ~
—(t) = et k_(’_l)/"/ e(=mTy(8,, Zi(7)) dr
==Y [ (51, 5:(r)

Oz; ¢ Y89, ~ _ dg , ~ _ 08 .

N, (t) = /0 exp([ a—m(Sl,azi(a)) do) ﬁ(sl,mi(T))m(T) dr, i=1,...
oT ~ 0T .

o —g(S1, :cw)_laia(T) for a = So, No and z;0, t =2,...,n,

and in particular

orT
a:cj’o

=0, j=2,...,n—1

The following theorem is an analogue to Theorem 2.4 for F,,, n > 2.

7n7

(3.34)

(3.35)
(3.36)

(3.37)

(3.38)
(3.39)

(3.40)

Theorem 3.12. Let n > 2. There ezists a B1 > 1 such that for each B € (1,51) there ezists a fized

pOiTLt (So, Nl’o, e

— —(i—-1 .
7Nn,07m2,07--'7mn,0); Ni,O =k @ )/nNO; 1= 17-'-7

n, of F, with Ng > 0.

Proof. We apply the Implicit Function Theorem to the function G defined by (3.31).

(Soy No, 22,0, - -, Zn,0) and §:= (S1,0,Z2,0,...,%n,0). Then we have
G, G, 0
850 BN,
8G, G, 0 0 G,
850 BN, Bzn.0
850 BN, 1 0 0 8% n,0
0G4 G, 5G4 1
EEN 8Ny 8z30
| ees 2Gs 8Gs
(DyG)(y, 1) = 850 8N, 0 8z3,0
G n_1
0 azn,ﬂ
G,
-1 8T n,0
8Gn41 0G4 Y | AL T M U )
850 3N, BZTn_10 OTno
i 3.31), (3.34), (3.35) and (3.40) imply - = 0, 2,. 5Ga — 0,4 = 2
since ( ), ( ), ( ) and ( )1mpyaz 1= oMy Gy = 0,1 =2,
2a; _
azful——lz_2 —1, and aG‘—O z_3 an,j#£1—2,i—1,nat (y,8) = (7,

tedious but elementary computatlon we obtain

det(D,G)(y,1)

K66, 160G, 0G;
(_1) Z;(BSO <8N0 aa:n’o B

an aG,) _ 6G1 (an BGi
aicn’o aNo aNo 850 aicn,o

e fe) T

Let y :=

n—1,

1). After a

9Gj+2.
ail:] 0
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Differentiation of (3.31) at (y,5) = (¥, 1) yields

0G, 0G; 0Gy 0G; oT 0T Oz;_2 -
_ = np( ——6; . T
aNo an,o an,o BNO #<(9N0 mtl t Prn s an 0 BNO ( )>

and

0G2 0G; _anaa _n<g£& 0T Oz 2(7,))
850 (95071’0 atcn’o 850 = " 850 l’n+1 al‘no 850 "

for ¢ = 3,...,n+ 1, where we have used (2.12), T, = ﬁlnk and 6;; denotes the Kronecker delta,
and further

4et(D,6)(5,1) = (~1"mp(~ (1= 5o (To)) ga- = o (Ta) 52

SO ) - ) T )

From (3.32), (3.33) and (3.36)—(3.39) and assumptions (H,) and (H,) we infer 2 (T y< 1,2 N S (T,) <
0, 25 < 0, = > 0, 322 <0, BEX(T) > 0, 2 (Tn) < 0,0 =3, n+1am_Mwﬂg>m
j = 2,...,n, which implies det(D,G)(y,1) # 0 and sign(det(D,G)(¥, 1)) = (-1)"~. Thus we can

apply the Implicit Function Theorem to G and obtain a nontrivial biological meaningful fixed point

of F, for 5 € (1,51), B1 > 1 suitably chosen. O

4. NUMERICAL RESULTS
In the first example we investigate sign A'(1) numerically for the case of a linear growth rate (1.2) and
a particular kind of consumption rate 7.

Example 4.1. We consider a linear growth rate (1.2) and scale the size variable such that z, = 1.
Let the consumption rate be given by (cf. [2, p. 21])

¥(S, z) = f1(S)z?, (4.1)

where f is a strictly increasing function of S with f1(0) = 0, and assume that the conditions (2.12)
and (2.13) are satisfied, i.e.

Tpe g fS)-1
K ¢ f(Sl)_fcw
or .
- krz, —1
S = — .
f&) =75
Then we have . .
_ krz, —1 k(e —1)
Fi(t) = —=2— — et ¥ 7
0= kE—1

By Lemma 3.7 the stability of the nontrivial fixed point of the one-cohort problem within the set of
n-cohort solutions depends on the sign of the function

Link Link < <

W M krz, — 1 ke (z, —1)\2
/ eCt(l—e_t)dt/ e(l_“)t<7;c —e_Cti(f )> dt
0 0 kx —1 ke —

Link t : i
. m ku w — 1 k& w
-(1- k_;)/ e(c—l)t/ e (fi - M) drdt,
0 0 k= —1 kr —

lm

q(c, Hy ka a’w) =k
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where ¢ > 0, u > 0, £ > 1 and =, > 1 and these parameters are in general not connected by any
condition and cannot be normalised by any additional scaling.

First we considered the case kz2 = k = 2 (conservation of mass). The function ¢ was computed
numerically for a grid of (e, y, z,,) € [0.001, 100] x [0.001, 100] x [1.25,4.65] (i.e. the cases k = 2 up to
k = 100 are included in this set) and the function ¢ was always negative, which means that the fixed
point of the one-cohort problem is stable for F,, n > 2.

Next we let &k = 2 fixed (division into two parts) and computed g for a grid of (c,u,z,) €
[0.001, 100] x [0.001, 100] x [¥/2, 10] (i-e. k23 < z2). There exists an increasing function y; : [0.001, 100]
— [0.001, 10] such that for (c, 1) € [0.001, 100] x [0.001, 100] with & > p1(c) there exists an z1(c, u) €
[v/2, 10] such that g(c, u, z,) > 0 for z1(c, u) < =, < 10 and ¢ negative elsewhere on [0.001, 100] x
[0.001, 100] x [¥/2,10]. The function ; is decreasing in y and increasing in c. For other values of &
we obtained similar results, i.e. positive values of ¢ could only occur for kz3 < z3.

The mapping F,, n < 10, was iterated numerically for linear growth rates (1.2) and consumption
rates (4.1) with

c15
c2S + 1,

(:35

— 4.2
C25—|— 1, ( )

f(8) = f(8) =
where c1, ¢z and c3 are positive constants (Holling type II functional response, cf. [2]), and linear or
logistic h for kz3 = z3 (i.e. we considered cases where A’(1) < 1 according to Example 4.1), 8 > 1 and
different values of the initial data and the parameters. In all of our examples the iterations converged
to a nontrivial fixed point of F; even if the initial data were not chosen close to this fixed point.

In the following example we investigate the asymptotic behaviour numerically for a case where the
fixed point of the one-cohort problem is not stable for F,, n > 2.

Example 4.2. We consider a linear growth rate (1.2) and a consumption rate (4.1) with (4.2), where
c=15¢1=c3=1,¢c2=04,and let u =05k =2,24 =1, z, =2 and h(S,8) = 156 — S. The

trivial fixed point of F; becomes unstable at 3 = 1 and we have ¢(1.5,0.5,2,2) > 0 (i.e. we chose the

parameters such that g is positive). The nontrivial fixed point of F; was computed for 8 = %, i—g, %,

22 and 3 (cf. Table 1). The function S is strictly decreasing on [1, 3].

B_| So(B) | No(B)

16 1 14.97 | 0.2392

111 14.94 | 0.4782

§ | 14.92 | 0.7170

12 | 14.89 | 0.9556

2 | 14.86 | 1.1939
Table 1

For B = % we investigated the asymptotic behaviour of F,, numerically for n = 2,3,4. Note that
the quotients N; o/N; o remain invariant under F;'. For n = 2 we have after one application of F,
Nio/Nzo = kNz2o/Nio. We iterated F; for different start values and the iterations converged to
different periodic points of period two, depending on the start value of Nqi,/N3,0. In the case that
we started with Nqo/Nao = Vk the periodic point of period two degenerated to the fixed point
(14.95,0.4847,0.3427,1.739) of F,. In Table 2 we show some periodic points of period two of F,.
Similarly periodic points of period n were found by iterating F,, for n = 3, 4, and these periodic points
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can again degenerate to fixed points. By replacing h by h(S,8) = S(1 — ) we obtained similar

S
158
results.

So Nio N3 T2,0
15.09 | 0.0814 | 0.8145 | 1.222
14.89 | 0.8748 | 0.0437 | 1.966
15.07 | 0.2960 | 0.5921 | 1.330
14.88 | 0.6632 | 0.1658 | 1.942
15.06 | 0.3534 | 0.5301 | 1.383
14.88 | 0.6074 | 0.2025 | 1.928
15.03 | 0.4345 | 0.4345 | 1.515
14.89 | 0.5304 | 0.2652 | 1.883

Table 2

Example 4.2 suggests that in the “unstable” case (A’(1) > 1) there exist families of periodic points
of period n of F,, n > 2, for 1 < 8 < (3; that can be “degenerate” (i.e. periodic points of period m,
1 < m < n, m a divisor of n) and belong to the domain of attraction of F,.

5. CONCLUDING REMARKS

This simple population model exhibits the feature that cohorts “synchronise” in the course of time
at least for particular choices of the functions, parameters and initial values. This behaviour is well-
documented by numerical results. It still remains to determine the domains of attraction in the
“unstable” case (A’'(1) > 0). We conjecture that in that case there are families of periodic points of
period n (that can be “degenerate”, i.e. periodic points of period m, m a divisor of n) of F, for all
n belonging to the domain of attraction of F,. Moreover, the results we obtained are only local in
nature. Since the mappings F,, might have discontinuities and it is not easy to quantify where they
occur, it is difficult to make global statements about the existence and stability of periodic points.
However, if S; = 0 for all = € [z, z,] in the condition (H), there are no discontinuities.
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