
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

R. KUIPER & W.P. DE ROEVER

IW 199/82 MEI

FAIRNESS ASSUMPTIONS FOR CSP IN A TEMPORAL LOGIC FRAMEWORK

Preprint

~
MC

kruislaan 413 1098 SJ amsterdam

Plvinted a:t .the Ma:themati.c.al Centll.e, 413 KICJ.U.6.iaa.n, Am&.teJul.am.

The Ma:thema.:tic.ai. Centll.e, 6ounded .the 11-.th 06 FeblU.I.a/l.y 1946, -i.J, a. non
p!LO 6U ,ln!,.tit,u,tio n <Wni.ng a:t .the pMmoUo n o 6 pWLe. ma:themati.C-6 and U:-6
a.ppU.catlon6. 1.t -i.1, .&pon6oJL.ed by .the Ne.theJli.a.nd6 GoveJL.nment .thJwugh .the
Ne.thellla.nd6 0Jtga.ru.zati.on 6oJL. .the Adva.nc.ement 06 PuJL.e Re.&ea.JL.c.h (Z.W.O.).

1980 Mathematics subject classification: 68B10, 68B20

ACM-Computing Reviews-category: D.2.4, F.3.1, F.3.2.

Fairness assumptions for CSP in a Temporal Logic Framework*)

by

. **) R. Kuiper & W.P. de Roever

ABSTRACT

Six fairness assumptions for the repetitive construct

*[••. □ b,e_ , c,e_ + S,e_ □ ...] in a subset of CSP are given and classified with

respect to the programs they cause to terminate. A total correctness proof

system for the subset of CSP is given, incorporating the different fairness

assumptions.

KEY 'WORDS & PHRASES CSP, aon~PPenay, aoPPeatness pPoofs, faiPness,

terrrpoPaZ logia

*) To appear in the Proceedings of the IFIP WG 2.2 Working Conference on
Fqrmal Description of Programming Concepts II (Ed. D. Bj~rner), North
Hd!land_.Pdhlishing Company (1982).

**) Department of Computer Science, University of Utrecht, Princetonplein 5,
Utrecht.

0. INTRODUCTION

The research in this paper originated from work by FRANCEZ AND DE ROEVER [F de R].
The aim of the paper is twofold, both cases having to do with temporal logic. On
the one hand, we consider six different fairness assumptions for a subset of CSP,
i.e. Communicating Sequential Processes, a language for distributed computing
without shared variables defined by HOARE in [HJ. These assumptions will be expres
sed using temporal logic, which enables us to formulate them at a level convenient
for intuitive understanding of their meaning as well as for use in formal proofs.
They will be compared with respect to the sets of programs they cause to terminate.
On the other hand we need a framework to reason about the effects of such fairness
assumptions. To do so we give a (low level) temporal logic proof system for this
subset of CSP. We use the idea of temporal semantics as developed for shared vari
able languages by PNUELI [P]. We have been helped by BEN ARI'S thesis [BA] , espe
cially by his way of reasoning with conditional invariants. It is shown here that
by this method also non-shared variables and synchronized communication as in CSP
can be modelled in a natural way.

The set up is as follows. Section I gives the preliminary facts of CSP, section 2
the temporal logic semantics and section 3 the fairness assumptions; section 4 in
dicates the temporal logic we use. In section 5 several examples are given. Final
ly section 6 contains discussion.

When this paper was being typed, we received a paper by SHOLKA [SJ dealing with re
lated matters.

I. PRELIMINARIES

The syntax of the subset of CSP we use is as follows.

DEFINITION

Statements:

Programs

s J
m

S: := skip Jx:=t j * [b 1 ,c 1 ➔ s 1 D ... Db ,c ➔
h . . . m m were tis an integer expression

b a boolean expression and
c either P. ! x or P.? y i, j E { I , ••• n}

l J

[P 1::S 1 II_. •• II Pn_::Sn]
where Pi,i EI= tJ, •.• ,n},is called a process.
Processes have no shared variables.

Neither [... II •••] nor*[...] is allowed to be used in nested fashion.

2. TEMPORAL SEMANTICS

We introduce control locations l.,-C ,i E I,as follows. l-(or l!) can be at Sor
after S for Sin P. defined in t~e katural way (cf.[0],[0tJ).Obiious identifica
tions like: "for P~::S 1;s 2 holds after s 1 = at s2 and at P1 = at s 1 ; s2 = at S/
are made. The guarded command case needs some further clarification:
I) For Sl in*[... Db,e_c,e_ ➔ S,e_D ... J, after S,e_ =at*[...].
2) There are no control locations concerning the b,e,c,e_ construct, as, when control
is active at a guarded command*[], all guards are evaluated at the same time
instant, after which control is still at the same point or resides either at one
of the guarded statements or after the whole command.

States Sare tuples S = <l,s> = <<l ,a 1> , ••• ,<l ,a>> such
is one of the above .s!_efinei control \ocations in fi .nControl
used as predicates ,l.(or l~) being true ins= (l,o) iff l.
l~=l~) l l l

that for each i EI l.

l l

Auxiliary notation:

locations are also
= {.(respectively

l

all *[i] in P." assume
l

a guarded command

l

*[i] denotes a guarded command in P.; constructs like "for
implicit indexing of the *[i]. g.l ~ b.,e_,c·,e_ is a guard in
*[... Db.~,ci 0 ➔ S. 0 D ...] belokging !o t!e process P ..

l-L. -L l-Ld . 11 h. 1 . . d c. l ~ cjm iff q,e_ an Cjm are syntactica y mate ing communication comman s
(tg.: P.!x in P. and P.?y in P.). g.l in the guarded command *[i] is true in the
state s tff therJ is a ~rocess P1. sucfi that lj = at *[j] and *[j] contains at least
one g• such that c. 0 m c· Ab. 0 JAb· . Notation g. 0 mg• . This indicates semanti-Jf'l . . 0 l-L .- Jl)l l-L Jill . l.-L -]111 , •
cal matching. a [l-L £. Jm J is a changed according to the et feet of the communication
between c· and c; 111 (e.g.:g.l = P.!x and g. = P.? y will lead to
CT [il £. jn~] = a [x)yJ) . l J Jm l

Finally, to enable us to include the distributed termination convention we define:
t(g.l) holds ins iff the process named (as target) in cil is terminated
(e.~. lj = after Pj and gil = bi_e_ ,Pj7x)

Now we define the temporal semantics as follows. The meaning of a program is the
set of computation sequences satisfying the following axioms. 0 is the next time
operator from temporal logic.

Exclusivity Axiom (E)
7(liA l i) for all i E I and ,fi =f li .

The Exclusivity Axiom describes that control in each process always is at just one
place at the :same time.

Local Semantics Axiom (LS)
(i) at skip A CT = -o :::, 0 (at skip) v O (after skip A CT = CT)

(ii) at x:= t A a = a :::i O (at x:=t) v O (after x:=t A a= a [t/x])
(iii)Let *[i] = *[bi] cil ➔ Sil D ... Db, ,cin• ➔ Sin·] , lni l l

2

at *[i] 110 =a:::, 0 (at *[il)

at S. 11 0 = o [il ~jm])))
Jm

v t (gi{)) 11 0 (after * [i] 11 a =a))

The l.ncal Semantics.Axiom describes what is usually known (in papers not dealing
with fairness) as operational semantics of these constructs. Note, that synchroni
zation and the termination convention of CSP come to the fore in (iii).

Now to state our last axiom we have to refine our notation such that each state
ment in the program has a unique name.
Enumerate the control locations in process Pi of form at Sk where Sk = skip or

3

Sk = x:= t by aik, i EI, K E Ki. Let a' ik denote the corresponding after Sk location.
Likewise enumerate the control locations of form
a~ *[... □biq{,ciq{ ➔ Siq{ □ ...] in process Pi by Yiq•i E I,qEQi with correspon
ding sets of locafions

r. = V 0 at S. 0 v after*[...], ,e_ EL. iq ,(_, iq,c_, iq

Then define

aik II O a'ik

Y· II O f. iq iq
.A (after P.
iEl i

for i E I, k EK.
i

for i EI, q E Qi

v (at *[i] 11 [\{ 7gi{ 117 I\ { (7bie t (gi{))))

Notice, that A-k and Ciq describe that a statement is activated, whereas T indi
cates that a situation is finished or blocked.
Now let b=O (respectively I) denote that bis false (respectively true). Then
LiEI = I indicates that exactly one of the bi is true. Moreover, the execution of
a guarded command by selecting a guard containing only the boolean part should be
seen as a self-communication between two identical processes.
Then finally we state the

Multiprogramming Axiom (M)

I I A-+½I- 1 1 c. +T
iEI kEk. ik i E qEQi iq

i

The Multiprogramming Axiom describes that either the program is terminated or
blocked (i.e.T=l) or exactly one action changing the state takes place at each
time instant. Note, that communication between two processes is viewed as one ac
tion (cf.the factor½ in M).

REMARK. Above we require that, in not terminated or blocked situations, exactly
one action is performed at each time instant. Concurrency then is described by
considering all sequences of such actions allowed by the semantics; this is the
usual treatment in case of concurrent shared variable languages, However, as in
CSP the processes have no shared variables, it is more natural to allow atomic ac
tions in different processes to be executed at the same time instant; the same
also holds for communications between disjunct pairs of processes. The system can
be adapted to this as follows. We now use thats is an n-tuple
<<l1a 1> , ••• , <l ,a>> where each process Pi only affects ({i,ai). Contrary to the
situation above,nwencannot assume anymore that only the active process determines
the state at the next instant. Therefore we explicitly denote that if a process is
not activated, it does not change its part of the state.
We now have:

Local Semantics Axiom* (Ls*)

(i) at skip Ao= a => 0 (at skip /\ 0i = Oi) v0(after skip Aoi =
for skip i~ Pi

(ii) at x:=t A o = o => 0 (at x:=t "oi = oi) v 0 (after n:=t "oi =
for n:=t in P.

(iii) Let * [i J = * [b. 1 , c. 1 ➔ S. 1 D ... Db. , c. 1 1 1 1n. 1n.
- -1 1

at *[i] Ao= o=> 0(at *[i] Ao.= o.)
1 1

➔ s. J 1
in.

1

n n· n. 1 J
v(V V V (at * [j J " g_il Ill g. " j=I l=I rn= I - Jill

0(at Sil " at s. " a. o. [il C jrn]
Jill 1 1 -

" a. o. [ilc jm])))
ni J J - -

v(i1 !\ (7b. 0 vt(g. 0)) A0(after *[i] A oi= o.)) .{_.= I 1.{... 1.{... 1

o.)
1

Note, that the ExclusivityAxiom prevents
choices in case of a guarded command.

executing more than one of the possible

Multiprogramming Axiom* (M*)

+ l l Ci + T 2
iEl qEQ. q

1

The further material in this paper can without change (up to *'s) be taken as based
on either one of these alternatives.

3. FAIRNESS ASSUMPTIONS

Our aim is to define in the context of CSP a variety of intuitively reasonable
fairness assumptions depending on different implementations of the guarded command
construction (cf.[D]) as well as on synchronized communication, both being specific
CSP features. We compare the different assumptions with respect to the programs
they cause to terminate.

We start by considering what kind of fairness is induced by the temporal semantics
so far. Note, that the multi-programming axiom (M) ensures that no unnecessary
idling occurs; only a blocked or terminal state can (and always will) be repeated
unchanged. (M) also ensures that as long as somewhere action is possible, some ac
tion will be taken, i.e. the temporal semantics so far imposes minimal liveness
(cf.[0L]). So

Minimal Liveness Axiom: -
Next, as in the presence of one process looping all the time this allows starvation
of all other processes, it seems reasonable to impose a stronger liveness require
ment. The usual one chosen is fundamental liveness (cf.[0L])ensuring that if a pro
cess is continuously enabled to proceed, it eventually will. To express this, we
first give the usual axiom for atomic statements, using the temporal operators 0
(eventually) and □ (always).

Atomic Statement Liveness Axiom (ASL)

□ at S => ◊ after S for S = skip or S = x := t

We now are faced with treating the guarded command in the same way. If all boolean
guards are false the axiom is obvious.

Guarded Command Skip Axiom (GCS)

□ (at *[J A f\l (7bl vt (gl))-::, ◊ after *[]

Now to deal with enabled guarded commands there are various possibilities, depen
ding on two parameters. Firstly, we consider two fairness assumptions: weak (res
pectively strong) fairness, stating that those moves which are eventually contin
uously (respectively eventually infinitely often) enabled are eventually taken
(cf.,e.g.,[GPSS]). Secondly, in CSP we can distinguish three varieties of these two

4

assumptions, depending on what is taken to be a move in the case of executing
guarded commands. As will become clear from the assumptions to follow, we can dis
tinguish a move with respect to a process, a guard or a pair of semantically
matching guards, i.e. a channel. Hence the concept of fundamental liveness is cap
tured by requiring the following.

Fundamental Liveness Axiom
(i) Atomic Statement Liveness Axiom
(ii) Guarded Command Skip Axiom
(iii) □ at*[] " ◊ D (at*[] :::, V,e_g,e_):::, ◊ V,e_ at S,e_

As will be seen below, we shall concentrate on different possibilities for (iii),
having the above one as the weakest possibility.

5

REMARK. In the axioms we use constructs like D ◊ at *[...] :::, ◊ at S,e_ and D at *[... J
:::, ◊ at S,e_, which seem self-contradictory. As to the first one, this can eventual
ly happen: D <> at *[true ➔ S,e_]:::, ◊ at S,e_, even D ◊ at S,e_ is possible. As to the
second one, the axiom is there to exclude all computation sequences for which D at
*[...] holds, so logically there is no contradiction: the axiom might be replaced
by 7 D at*[...]. We have chosen the above representation as it covers all cases
in a uniform way and indicates the next control location to be reached, thus pro
viding intuition for the design of proofs.

We now formulate
When requiering
and the Guarded
obvious.

the fairness assumptions for the*[... Dg,e_ ➔ S,e_ D ...] construct.
one of the fairness assumptions the Atomic Statement Liveness Axiom
Command Skip Axiom are presupposed. The abbreviations should be

Weak Process Fairness

Weak Guard Fairness

D ◊at*[] "◊ D (at*[] :::, g,e_) :::, ◊ at

Weak Channel Fairness

(WPF)

(WGF)
S,e_

(WCF)

[]◊(at*[J A at*[]')" ◊D (at*[J "at*[J':::,gl~ git):::,

::,◊(at S,e_" at S',e_•)

Strong Process Fairness

IJ at *[J " D ◊ V,e_ gl ::, ◊ V,e_ at S,e_

Strong Guard Fairness

IJ ◊ (at *[] " g,e_) :::, ◊ at S,e_

(SPF)

(SGF)

Strong Channel Fairness (SCF)

D ◊(at*[J "at*[J'" gl ~ g',e_r) :::,◊ (at S,e_" at s',e_,)

We now compare the various fairness assumptions with respect to the sets of pro
grams they cause to terminate.

DEFINITION. T(f), where f is one of the above fairness assumptions, is the set of
CSP programs for which, when executed under the fairness assumption fin any ini
tial states, all execution sequences contain a states for which l. = after P. for

l l
all i E { 1, ... ,n} (i.e., the program terminates).

THEOREM. T(WPF) C T(SPF)
ii-- n 'f "il---n

T(WGF) C T(SGF)

-»-n 'f
-Jh. n

T(WCF) C T(SCF)
f

PROOF. The inclusions and inequalities between the corresponding weak and strong
cases are evident. An example for the inequality for the most interesting case,
T(WCF) + T(SCF) is the following.

y :=-y □ y=J,P2 !y ➔ skip] II
v :=-v □ v =t,P 1? v ➔ skip]]

[Pi:: x: = 0; y:= I; *[x=O,P2! x ➔
P2 •• u. = O; vi= I; *[u=O,P 1? u ➔

The inclusions and l.n.equalities
teresting strong cases as follows.

for the weak cases are easy; for the more in-

T(SPF) c T(SGF)
By the weal Semantics Axiom, D at*[] AD◊ Vl gp is equivalent to
□ ◊ (at* [] A v g) , as this is the only way in wbich control can proceed. As
gl => Vl gl and al fl:::, Vl at sl , this gives T(SPF) c T(SGF)

T(SPF) + T(SGF) by

b:= true; * [b ➔ skip Db ➔ b:= false]

T(SGF) c T(SCF)
This follows from the fact that .there are only finitely many guards, whence
□ ◊ gl implies that there is a g'l 1 such that D _◊ gl ~ g't•
T(SGF) + T(SCF) follows from the first example in this proof. D

4. TEMPORAL LOGIC

We assume as given a temporal logic axiom system and rules for linear time like
DUX as presented in, e.g, [P]; to handle assignment we assume extension of this
system to predicate logic as outlined in, e.g., [HC] .
In proofs we make use of derived rules as presented in [BA] . E.g.: if
1-Dp A q => 0 q then □ ,PA'l::> □ «3_,the conditional invariant rule.

5. EXAMPLES. We start by giving a very easy example, (i), in all detail. In (ii)
we show how synchronization is treated.In practice most of the elementary steps
in a proof can be left out, as (iii) shows. As the examples will show, the Local
Semantics Axiom and the conditional invariant rule are crucial to enable applica
tion of the fairness assumptions; namely to obtain the left hand side of the stat
ed implication,

(i) Under the assumption of WGF a simple CSP program can model mutual exclusion
and infinitely often access for two critical sections CS~ and cs 2 consisting
of sequentially composed atomic statements. Note, that WPF is not sufficient
to guarantee access.

P::*[true ➔ cs 1 D true ➔ CS 2]

PROOF. Mutual exclusion holds by the Exclusivity Axiom. Proving mutual access
amounts, by s~et:y, to proving I: a; * [...] => ◊ at cs,1
As follows: (in S = at S v V , at S ,S substatement of S) s .
I) I- at*[...]~ D (at*[J v in cs 1 v in cs2) • (LS)

I:=
2) I- at*[, ..]=> I A at*[...] (1,T.L.,i.e.by temporal logic)

3)

4)

5)

I-

I-
I-

at

I

I

*[...]

A ◊ at

A ◊ at

:::, I A ◊ at *[...] (T .L.)

*[... J => O(◊ at *[...]) (LS,ASL)

*[... J :::, D ◊ at *[...]) (4,T.L.:cond.invariant rule)

6

Now the fairness assumption is used;

6) I- D ◊ at *[...] :o ◊ at CS 1
7) I- at * [...] :o ◊ at CS 1

(WGF)

(3,5,6,T.L.)

(ii) Termination of a program with synchronization under the assumption of WCF
shall be proved. Again we give the proof in much detail.

Let band c be initially~ and not depend on x and y. Then the following pro
gram terminates under WCF,

[PI:: *[b,P 2 1'. X ➔ skip 1 Db,P2 ?x ➔ b:= false] II

P2:: *[c,P 1? y ➔ skip2 D c, PI ! y ➔ c:= false J]

Note,that WGF is not sufficient to guarantee termination,

PROOF. Proving termination amounts, by symmetry, to proving

I- at *[I]/\ at *[2] /\ b /\ c :o ◊ after *[I]

As follows:

but SGF is.

I) I- at * [I] /\ at * [2] /\ b /\ c :o ◊ (at b : = kill /\ at c : = ~)

v □((at *[I J v at skip 1) /\ (at *[2] v at skip 2) Ab Ac), (LS)

I:=

Case I

2) I- at b: 0= false /\ at C .- false :o ◊(at*[J /\ 7b) (LS ,ASL)

3) I- at *[I]/\ 7b :o ◊ after *[I] (GCS)

Case 2

4) I- I I\ at *[I]/\ at *[2] :o I/\◊ (at *[I]/\ at *[2]) (T .L.)

5) I- I I\ ◊ (at *[I]/\ at *[2]):o O(◊ (at *[I J /\ at *[2])) (LS,ASL,M)

7

6) I- I I\ ◊ (at *[I] II at *[2]):o D ◊ (at *[I] I\ at *[2]) (T.L.:cond.inv.rule)

7) I- I I\ ◊ (at *[I J I\ at *[2]):o D ◊ (at *[I] I\ at *[2] /\ I) (T. L.)

Now the fairness assumption is used

8) 1- I /\ □ ◊ (at *[I J /\ at *[2]) :o ◊ (at b := false /\ at c := false) (I,WCF)

9) I- at b := false :o ◊ after *[I] (2,3)

10) 1- at *[I] /\ at *[2] Ab Ac :o ◊ after *[I] (1,3,9,T.L.)

□
(iii) Termination of a program consisting of three processes under WGF shall be

proved. We now leave out some straightforward detail to show how in practice
proofs are not difficult to handle.

Let a,b and c be initially true and not depend on x,y and z. Then the following
program terminates under WGF.

[PI:: *Cb,P 2 ! x ➔

p2:: *[c,P 1? y

p 3:: *[d,P2? z

PROOF. To prove

As follows:

➔

➔

skip 1 Db ➔ b ·= false]II

skip2 D c,P3 ! y ➔ C := false]

d:= false] J

1- ~ at *[i] Ab /\ c /\ d :o ◊ I). after *[i]
i i

I) \- A at *[i] Ab Ac Ad ::::, ◊ A after [i]
i l.

v D ((at *[I] vat skip 1)

A at *[3] Ab Ac Ad)

Analoge6us to (ii) this leads to

2) \- I A I; at *[i] ::::, I AD ◊ I; at *[i]
l. l.

Now the fairness assumption is used

3) \- I AD •~ I; at *[i] ::::, ◊(at C := false A at d := false)
l.

A D (in *[I] v after *[I])

4) \- at C ::= false ::::, ◊ after *[2] ::::, ◊ D after *[2]

5) I- at d := false ::::, ◊ after *[3] ::::, ◊ D after *[3]

6) I- D (after *[2] A after *[3] A (in *[I] v after *[I]))::::,◊

7) ~ A at *[i] Ab Ac Ad::::,◊ A after *[i] (1,2,3,4,5,6,T.L.)
i i

(iv) Changing in example (iii) P2 to

Pz :: *[cl,Pl?y ->-CZ:= 7c2 Dcz,P3 ! y ➔ cl:= Cz := false J

(WGF)

(LS)

(ASL,GCS,M)

(ASL,GCS,M)

after *[I]
(ASL,WGF,GCS)

8

D

gives an example of a program for which SGF is, but WGF is not sufficient to en
sure termination. The termination proof is analogeous to the one for example (iii),
employing an invariant I' changed accordingly to the change in P2 .

6. DISCUSSION

The above system enables us to study termination and other liveness properties of
CSP programs under various fairness assumptions.
As to future goals the following:

I) Extending the system to full CSP is expected to be more or less straight for
ward, but careful and simple notation should be used 1.n order not to obscure
the intuition behind the axioms.

2) Termination due to properties of the natural numbers might be described by ad-
ding a well-foundednesslike rule to DUX, like

if \- 3n E lN P(n)

and I- VuE lN Au::::>OP(u) ::::>◊P(u-1)

then \- ◊ P (0) .

3) Abstracting to a higher level axiom system might be facilitated by studying
examples using the low level system; it is expected that invariants used in the
proofs may indicate more general proof principles.

4) Developing a notion of completeness for the system might be helped by comparing
it to other total correctness systems for CSP, like given in [A]

5) P. van Emde Boas suggested that using branching time it might be possible to
formulate fairness assumptions not defined as a restriction on one computation
sequence, but involving several. It then might be possible to enforce, say, ter
mination of programs not terminating under any of the fairness assumptions in
this paper
We consider as an example, starting with b = c = d = e = true,

[P 1: :*[b,P2!x ➔ skip □ b,P3!x ➔ b:= false] II

P2 : :*[c,P 1 ?y ➔ skip □ c,P4!Y ➔ c:= false] 11

P3 ::*[d,P4!z ➔ skip □ d,P I ?z ➔ d:= false] II

P4 ::*[e,P3?u ➔ skip □ e,P2?u ➔ e:= false] J
which is not guaranteed to terminate under any of the above fairness assumptions,
but should terminate under the, intuitively formulated, assumption that if there
always is a terminating branch in the future, then such branch will eventually be
chosen.

ACKNOWLEDGEMENT. We are very grateful to Amir Pnueli, who gave an outline of CSP
semantics as worked out for a subset in this paper.
We wish to thank Nissim Francez for both directly and indirectly contributing to
this paper. Leslie Lamport we thank for illuminating discussions.

The 1•esearch reported in this paper o-Piginated from work by Francez and de Roever.
Francez' stay at the University of Utrecht was supported by the Netherlands Or
ganization for the advancement of Pure Research (Z.W.O), as was part of the re
search of de Roever in the form of numerous travel grants for collaborating with
Francez at the Technion and Pnueli at the Weizmann Institute, both in Israel.
De Roever's collaboration with Pnueli was partly supported by the Department of
Applied Mathematics of the Weizmann Institute of Science.

9

10

REFERENCES

[A] Apt, K.R., Justification of a proof system for communicating se
quential processes, Erasmus Universi~y, Rotterdam (1981).

[AFdeR] Apt, K.R., Francez N. and De Roever, W.P., A proof syst~m for com
municating sequential processes, ACM Trans. on Programming Languages
and Systems 2(3), 359-385 (1980).

[BA] Ben Ari, M., Complexity of proofs and models in progrannning logics,
Thesis, Tel Aviv University, Tel Aviv (1981).

[DJ Dijkstra, E.W., Guarded connnands, nondeterminacy and formal
derivation of programs, CACM_!!, 453-457 (1975).

[FdeR] Francez, N. and De Roever W.P., Fairness in connnunicating sequential
processes, Unpublished Extended Abstract, University of Utrecht, (1980)

[GPSS] Gabbay, D. Pnueli, A. Shelah S. and Stavi, J., On the Temporal
Analysis of Fairness, Proc. 7th ACM Conf. on Principles of Program
ming Languages, Las Vegas (1980).

[HC] Hughes, G.E. and Cresswell, M.J., An introduction to modal logic,
Methinen & Co Ltd (1971).

[HJ Hoare, C.A.R., Communicating Sequential Processes; CACM,~' 666-
677 (1978).

[OJ Owicki, S., Axiomatic Proof Techniques for Parallel Programs. Diss.
Cornell University (Comp. Sc.) TR 251 (1975).

[OL] Owicki, s. and Lamport, L., Proving liveness properties of concurrent
programs, Unpublished Report (1980).

[P] Pnueli, A., The temporal semantics of concurrent programs, Theoret
ical Computer Science _!1, 45-60 (1981).

[SJ Smolka, S.A., A Deductive-Operational Semantics for Distributed
Programs, Technical Report No. CS-64, Brown University, Rhode Island
(1980).

