

Printed at the Mathematical Centre, 49, $2 e$ Boerhaavestraat, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.w.0), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.

ACM - Computing Reviews - category: 5.24
AMS (MOS) subject classification scheme (1970): 02J10, 68A05

The language $P L$ for first-order recursive program schemes with call-by-value as parameter mechanism is developed, using models for sequential and independent parallel computation. The language MU for binary relations over cartesian products which has minimal fixed point operators is formally defined and the validity of the monotonocity, continuity and substitutivity properties and Scott's induction rule is proved. An injection between PL and MU is specified together with the conditions subject to which this injection induces a translation. Then MU is axiomatized using a many-sorted generalization of Tarski's axioms for binary relations, Scott's induction rule and fixed point axiom, and new axioms to characterize projection functions, whence, by the translation result, a calculus for first-order recursive program schemes is obtained. Next we define an operator composing relations with predicates, the so-called "o"operator, relate the properties of this operator axiomatically to the structure of the relations and predicates composed, and demonstrate the relevance of this operator to correctness proofs of programs in general and proofs involving the call-by-value parameter mechanism in particular. Axiomatic proofs are given of numerous properties of recursive program schemes, some of which involve different modular decompositions of a program. Our calcuius is then applied to the axiomatic characterization of the natural numbers, lists, linear lists and ordered linear lists, and used to prove many properties relating the head, tail and append list-manipulation functions to each other. Finally both an informal and an axiomatic correctness proof is given of the well-known recursive solution of the Towers of Hanoi problem.

ACKNOWLEDGEMENTS

First of all I am grateful to J.W. de Bakker, Robin Milner, David Park and Dana Scott, who, by their respective works made my research in this direction possible.
I am deeply indebted to J.W. de Bakker for his continuous help, advice and criticism.

The original incentive which led to this work arose out of the lectures of E.W. Dijksta, C.A.R. Hoare and N. Wirth at the International Summer School on Program Structures and Fundamental Concepts of Programming, organized by F.L. Bauer, H.J. Helms and M. Paul in 1971.

I thank (in alphabetical order) P.C. Baayen, Peter van Emde Boas, Joost Engelfriet, Michael Gordon, Peter Hitchcock, Giles Kahn, Erik Krabbe, Robin Milner, Maurice Nivat, David Park and Paul Vitányi for their various suggestions, and Astrid Schuyt-Fasen for the Sisyphean labor of typing my arduous manuscript.
0. INTRODUCTION
0.1. Objectives I
0.2. Structure of the paper III
0.3. Related work V

1. A FRAMEWORK FOR PROGRAM CORRECTNESS
1.1. Introduction 1
1.2. A fromework for program correctness 4
1.3. The formulation of specific correctness properties of programs 7
2. THE PROGRAM SCHEME LANGUAGE PL
2.1. Definition of PL 10
2.2. The union theorem 16
3. THE CORRECTNESS LANGUAGE MUI
3.1. Definition of MU 24
3.2. Validity of Scott's induction rule and the translation theorem 29
3.3. Rebuttal to Manna and Vuizlemin on call-by-value 35
4. AXIOMATIZATION OF MU
4.1. Axiomatization of typed binary relations 36
4.2. Axiomatization of Boolean relation constants 38
4.3. Axiomatization of binary relations over cartesian products 40
4.4. Axiomatization of the " μ_{i} " operators 45
5. APPLICATIONS
5.1. An equivalence due to Morris 49
5.2. An equivalence involving nested while statements 51
5.3. Wright's regularization of linear procedures 52
5.4. Axiomatization of the natural numbers 53
5.5. The primitive recursion theorem 57
6. AXIOMATIC LIST PROCESSING
6.1. Lists, Iinear Iists and ordered Iinear Iists 59
6.2. Properties of head and tail 65
6.3. Correctness of the TOWERS OF HANOI 6.3.a. Informal part 68
6.3.b. An axiomatic correctness proof for the TOWERS OF HANOI 71
7. CONCLUSION 77
APPENDIX 1: SOME TOOLS FOR REASONING ABOUT COMPUTATION MODELS 79
APPENDIX 2: PROOFS OF MONOTONICITY, CONTINUITY AND SUBSTITUTIVITY 89
APPENDIX 3: PROOFS OF THE ITERATION AND MODULARITY PROPERTIES 96
REFERENCES 99

0. INTRODUCTION

0.1. Objectives

The objectives of the present paper are to provide a self-contained description of :

1. A conceptually attractive framework for studying the foundations of program correctness.
2. An expedient axiomatization of the properties of first-order recursive programs with call-by-value as parameter mechanism.

Ad 1.
In reasoning about programs and their properties one is always confronted with the following two aspects:
1.1 A program serves to describe a class of computations on a possibly idealized computer. In consequence, a programmer always conceptualizes its execution. Whether this conceptualization figures on the very concrete level of bit manipulation or on the very abstract level of an ALGOL 68 machine, it always uses some model of computation as vehicle for the process of understanding a program. (However, the level on which this conceptualization takes place does matter when considering the ease with which one reasons about the outcome of a program: the less the amount of detail necessary to understand the operation of a program, the better the insight as to whether a program serves its purpose).
1.2 If we abstract from this variety in understanding a program, we arrive at the relational structure which embodies the mathematical essence of that program: its properties.

This leads one to consider two notions of meaning:
operational and mathematical semantics.

How do these notions relate?

First one has to chose a language, whose operational semantics are defined by some interpreter. Then one decides which properties of the computations defined by this interpreter to investigate. Finally one gives an independent mathematical characteriztion of these properties.

Our choice has been in this paper
a. To introduce an idealized interpreter for a language for first-order recursive program schemes with call-by-value as parameter mechanism (first-order recursive programs manipulate neither labels nor procedures as values).
b. To consider the input-output behaviour of programs as property subject to investigation.
c. To use Scott's minimal fixed point characterization for the inputoutput behaviour of recursive procedures in the setting of binary relations and projection functions.

However, other choices are very well possible, e.g., Bekic [5], Blikle [6], Kahn [21] and Milner [32] incorporate also the intermediate stages of a computation into their mathematical semantics. *) This does not necessarily imply that then all properties of a computation have been taken into account (whence equivalence becomes equality). For instance, the two sequences $\left(A_{1}\left(A_{2} A_{3}\right)\right)$ and $\left(\left(A_{1} A_{2}\right) A_{3}\right)$ may be considered equivalent, as their execution amounts to executing the same elementary statements in the same order: first A_{1}, then A_{2} and finally A_{3}, although these elementary statements are differently grouped together.

Ad 2.
Once the appropriate mathematical semantics have been defined, a proper framework for proving properties of programs is obtained. As the proofs of these properties may be quite cumbersome and lengthy, one might wish to investigate into the possibilities of computer assisted proofs, cf. King [23], Milner [31] and Weyrauch and Milner [45]. One then has to caZculate

[^0]the correctness of a program, whence a formal system is needed. Our system is an extension of the one given in de Bakker and de Roever [2] in that we consider binary relations over cartesion products of domains, i.e., our domains are structured.
Other formal systems are considered in Milner [31], which axiomatizes higher order recursive functionals with call-by-name as parameter mechanism, and Scott [40], which contains an axiomatization of the universal λ-calculus model called "logical space".

0.2. Structure of the poper

Chapter 1

Expression of properties of programs as properties of relations. Introduction to the correctness operator "o" between relational terms and predicates: ξ satisfies Xop iff X terminates for input ξ with output η and output η satisfies p.

Chapter 2

Formal definition of $P L$, a language for first-order recursive program schemes with call-by-value as parameter mechanism, which allows for mutually dependent recursive declarations. Rigorous investigation of the inputoutput behaviour 0 of the program schemes of $P L$, consisting of proofs for (1) O is a homomorfism with respect to the algebraic structure of PL, (2) the main theorem, the union theorem, using monotonicity, substitutivity and transformation of a computation into a normal form, (3) the modularity property, using the minimal fixed point property; the modularity property relates to the modular design of program schemes and is applied to yield a two-line proof for the tree traversal result of section 4.5 of de Bakker and de Roever [2].
This chapter is a generalization of chapter 3 of de Bakker and Meertens [3].

Chapter 3

Formal definition of $M U$, a language for binary relations over cartesian products, which has "simultaneous" minimal fixed point operators. Rigorous investigation of the mathematical semantics of MU, consisting of proofs for (1) the monotonicity, substitutivity and continuity properties, (2) the union theorem (3) validity of Scott's induction rule (4) the transZation theorem, which relates the input-output behaviour of the recursive program schemes defined in chapter 2 to the mathematical interpretation of certain terms of MU. Rebuttal to Manna and Vuillemin [27] on the subject of call-by-value.

Chopter 4

Axiomatization of MU in four successive stages: (1) a many-sorted version of Tarski's axioms for binary relations; derivation of, amongst others, the fundamental lemma $\vdash \mathrm{R} ; \mathrm{S} \cap \mathrm{T}=\mathrm{R} ;(\breve{\mathrm{R}} ; \mathrm{T} \cap \mathrm{S}) \cap \mathrm{T}$, (2) axiomatization of boolean relation constants; derivation of the properties of the "o" operator, (3) axiomatization of projection functions; derivation of another characterization of the converse of a relation, involving the application of the conversion operator to projection functions, but not to that relation, (4) axiomatization of the minimal fixed point operators μ_{i}, resulting in a calculus for first-order recursive program schemes with call-by-value as parametermechanism; derivation of the monotonicity, fixed point, minimal fixed point, iteration and modularity properties; statement of a result on functionality of terms.
This chapter is a generalization of chapter 4 of de Bakker and de Roever [2].

Chapter 5

Application of the calculus for recursive program schemes developed in chapter 4 to the formal derivation of (1) an equivalence due to Morris [33], (2) a property involving nested while statements, contained in sec-
tion 5.1 of de Bakker and de Roever [2], using modular decomposition and simultaneous μ-terms, (3) the regularization of linear procedures following Wright [47]. An applied calculus for the natural numbers N featuring an improved axiom system for N and a derivation of the characterizing property of the equality relation between natural numbers.

Chopter 6

Formal list manipulation, applied calculi for lists, linear lists and ordered linear lists. Linear lists are a special case of ordered linear lists. Proofs for (1) a characterization of termination of and associativity of the concatenation function with ordered linear lists as arguments, (2) many properties relating the head, tail and concatenation functions with ordered linear lists as arguments to each other, (3) both informal and formal versions of correctness of the Towers of Hanoi program.

Chapter 7.

Conclusion consisting of (1) a listing of the four main (technical) accomplishments of this paper and (2) three open problems.

0.3. Related work

First we discuss the reiational approach to program correctness. Dominant in this approach is the minimal fixed point characterization, which is initiated by Scott and de Bakker in [41], elaborated by de Bakker in [1,48] and crossbred with Tarski's algebra of relations [43] in de Bakker and de Roever [2] to yield an axiomatic framework for proving equivalence, partial correctness and termination of first-order recursive program schemes with one variable. The present paper amplifies on the latter in that (1) the restriction to one variable is removed by considering arbitrary subdivisions of the state and (2) the distinction on the one hand and the connection on the other between operational and mathematical semantics has been clarified. In de Roever [36] relational calculi are developed for recursive procedures, of which each parameter may be either
called-by-value or called-by-name, with the restriction that at least one parameter is called-by-value; in case all parameters are called-by-name the λ-calculus oriented approach of Manna and Vuillemin [27] should be used. Subdivisions of the state are incorporated within the relational framework by considering relations over cartesian products of domains; these were introduced in unpublished work of Milner [30] and Park [35]. The connection between induction rules and termination proofs is described by Hitchcock and Park in [18] and elaborated in Hitchcock's dissertation [17], which also contains a correctness proof of a translation of recursive programs into flowcharts with stacks and clarifies the notion of representation of (recursive) data structures. .
Maximal fixed points, introduced by Park in [34], are applied in Mazurkiewicz [28] to obtain a mathematical characterization of divergent computations and may lead to the axiomatization of Hitchcock and Park's results within an extension of our framework.

In a different setting Blikle and Mazurkiewicz [7] also use an algebra of relations to investigate programs.

The equivalence between the method of inductive assertions and the minimal fixed point characterization is the subject of de Bakker and Meertens [3]. In general, the number of inductive assertions required to characterize a system of mutually dependent recursive procedures turns out to be infinite; however, in the regular case this number is finite, as proved in Fokkinga [50]. The completeness of the method of inductive assertions for general recursive procedures, as opposed to the merely regular ones, is the subject of de Bakker and Meertens [49].

The relation between the minimal fixed point characterization and various rules of computation is studied by Manna, Cadiou, Ness and Vuillemin in a number of papers: Manna and Cadiou [25], Manna, Ness and Vuillemin [26], Manna and Vuillemin [27], Cadiou [9] and Vuillemin [44]. In section 3.3 we demonstrate that Manna and Vuillemin are mistaken in their conclusion that call-by-value does not lead to the computation of minimal fixed points; de Roever [36] explains the reason why.

The distinction between operational and mathematical semantics and the need for mathematical semantics has been convincingly argued in Scott [38,39] and Scott and Strachey [42].

Rosen [37] studies conditions under which normal forms for computations exist; implicitly, normal forms are used in appendix 1 to derive the "difficult" half of the union theorem.

The works of Dijkstra [10,11], Hoare [19,20] and Wirth [46] re1ate to the present paper in that we provide a possible axiomatic basis for some techniques of structured programming; e.g., our correctness operator "o" is independently described in Dijkstra [12].

1. A FRAMEWORK FOR PROGRAM CORRECTNESS

1.1. Introduction

This report is devoted to a calculus for recursive programs written in a simple first-order programming language, i.e., a language in which neither procedures nor labels occur as values.
In order to express and prove properties of these programs such as equivalence, correctness and termination, one needs a more comprehensive language. We shall abstract in that language from the usual meaning of programs (characterized by sequences of computations) by considering only the inputoutput relationships established by their execution.

Thus we are interested only in the binary relation descmibed by a program, its input-output behaviour:
the collection of all pairs of an initial state of the memory, for which this program terminates, and its corresponding final state of the memory.

EXAMPLE 1.1. Let D be a domain of initial states, intermediate values and final states.
a. The undefined statement L : goto L describes the empty relation Ω over D.
b. The dummy statement describes the identity relation E over D.
c. Define the composition $R_{1} ; R_{2}$ of relations R_{1} and R_{2} by

$$
R_{1} ; R_{2}=\left\{\langle x, y\rangle \mid \exists z\langle x, z\rangle \in R_{1} \text { and }\langle z, y\rangle \in R_{2}\right\}
$$

In order to express the input-output behaviour of the conditional if p then S_{1} else S_{2} one first has to translitterate $p:$ Let D_{1} be p^{-1} (true) and D_{2} be p^{-1} (false) then the predicate p is uniquely determined by the pair $\left\langle p, p^{\prime}>\right.$ of disjoint subsets of the identity relation defined by: $\langle x, x\rangle \in p$ iff $x \in D_{1}$, and $\langle x, x\rangle \in p^{\prime}$ iff $x \in D_{2}$. This way of looking at predicates is attributed to Karp [22]. If R_{i} is the input-output behaviour of $S_{i}, i=1,2$, the relation described by the conditional above is $p ; R_{1} \cup p^{\prime} ; R_{2}$.
d. Let $\pi_{i}: D^{n} \rightarrow D$ be the projection function of D^{n} on its i-th component, $i=1, \ldots, n$, let the converse $\breve{\mathrm{R}}$ of a relation R be defined by $\breve{R}=\{\langle x, y\rangle \mid\langle y, x\rangle \in R\}$ and let R_{1}, \ldots, R_{n} be arbitrary relations over D. Consider

$$
\begin{equation*}
R_{1} ; \breve{\pi}_{1} \cap \ldots \cap R_{n} ; \breve{"}_{n} \tag{*}
\end{equation*}
$$

This relation consists exactly of those pairs $\left\langle x,\left\langle y_{1}, \ldots, y_{n}\right\rangle>\right.$ such that $\left\langle\mathrm{x}, \mathrm{y}_{\mathbf{i}}\right\rangle \in \mathrm{R}_{\mathbf{i}}$ for $\mathrm{i}=1, \ldots, \mathrm{n}$. Thus ($*$) terminates in x iff all its components R_{i}. terminate in x. Observe the analogy with the following: The evaluation of a list of parameters called-by-value terminates iff the evaluation of all its constituent actual parameters terminates. This suggests the possibility of describing the call-by-value parameter mechanism relationally, an idea which will be realized in chapters 2 and 3.

Note that the input-output behaviour of recursive procedures has not been expressed above; this will be catered for by extending the language for binary relations with minimal fixed point operators, introduced by Scott and de Bakker in [41].

Once the input-output behaviour of a program has been described in relational terms, its correctness properties should be proved within a relational framework, e.g., properties of conditionals such as listed in McCarthy [29] are proved as properties of $p ; R_{1} \cup p^{\prime} ; R_{2}$. Suitably rich programming- and relational languages, called PL and MU, and a precise formulation of the connections between the two by means of a tronslation will be specified in the next section and will justify that the axiomatization of MU results in a calculus for recursive programs.

The problem which correctness properties of programs can be formulated within MU will be discussed in section 1.3 and is closely related to the expressiveness of this language itself.

EXAMPLE 1.2. With D as above, let the universal relation U be defined by $\mathrm{U}=\mathrm{D} \times \mathrm{D}$.
a. $R_{1} \subseteq R_{2}$ and $R_{2} \subseteq R_{1}$ together express equality of R_{1} and R_{2}, and will be
abbreviated by $R_{1}=R_{2}$. If programs S_{1} and S_{2} have input-output behaviour R_{1} and R_{2}, respectively, then S_{1} and S_{2} are called equivalent iff $R_{1}=R_{2}$.
b. $E \subseteq R ; \breve{R}$ and $E \subseteq R ; U$ both express totality of R.
c. $R ; R \subseteq R$ expresses transitivity of R.
d. $\breve{R} ; R \subseteq E$ expresses that R describes the graph of a function, i.e., functionality of R.
e. $R ; \breve{R} \cap E=\{\langle x, y\rangle \mid\langle x, y\rangle \in E$ and $\langle x, y\rangle \in R ; \breve{R}\}$

$$
\begin{aligned}
& =\{\langle\mathrm{x}, \mathrm{y}\rangle \mid \mathrm{x}=\mathrm{y} \text { and } \exists \mathrm{z}[\langle\mathrm{x}, \mathrm{z}\rangle \in \mathrm{R} \text { and }\langle\mathrm{z}, \mathrm{y}\rangle \in \check{\mathrm{R}}]\} \\
& =\{\langle\mathrm{x}, \mathrm{x}\rangle \mid \exists z[\langle\mathrm{x}, \mathrm{z}\rangle \in \mathrm{R}]\} .
\end{aligned}
$$

Hence $R ; \breve{R} \cap E$ determines that subset of E which consists of all pairs $\langle x, x\rangle$ such that there exists some z with $\langle x, z\rangle \in R$: this indicates a correspondence with a predicate expressing the domain of convergence of R. Note that $R ; \stackrel{L}{R} \cap E=R ; U \cap E$.
f. Let $p \subseteq E$. Then $p ; U \cap U ; p \subseteq p$ expresses that p contains one pair $<a, a>$ only. This can be understood by deriving a contradiction from the assumption that both $\langle a, a\rangle \in p$ and $\langle b, b\rangle \in p$ for different a and b : for that implies that both $\langle a, b\rangle \in p ; U$ and $\langle a, b\rangle \in U ; p$, whence $\langle a, b\rangle \in p ; U \cap U ; p$ and therefore $\langle a, b\rangle \in p$ for different a and b, contradicting $p \subseteq E$. This requirement therefore states the correspondence of p with the characteristic function of an atom. *)

The axiomatization of MU proceeds in several stages.
First a sublanguage for binary relations over cartesian products is axiomatized by adding the following two axioms to typed versions of Tarski's axioms for binary relations (see [43]):

$$
\begin{aligned}
& C_{1}: \pi_{1} ; \breve{\pi}_{1} \cap \ldots \cap \pi_{n} ; \breve{\pi}_{n}=E \\
& C_{2}: R_{1} ; S_{1} \cap \ldots \cap R_{n} ; S_{n}=\left(R_{1} ; \breve{\pi}_{1} \cap \ldots n R_{n} ; \breve{\pi}_{n}\right) ;\left(\pi_{1} ; S_{1} \cap \ldots n \pi_{n} ; S_{n}\right)
\end{aligned}
$$

[^1]with π_{i} denoting the projection function of an n-fold cartesian product on its $i-$ th component, $i=1, \ldots, n$, and E the identity relation over this product.
In the resulting formal system one can derive properties such as $R=(R ; \breve{R} \cap E) ; R$, obtained from example 1.2.e, and $R_{1} ; \breve{\pi}_{1} \cap R_{2} ; \breve{\pi}_{2}=$ $=\left(R_{1} ; \breve{R}_{1} \cap E\right) ;\left(R_{2} ; \breve{R}_{2} \cap E\right) ;\left(R_{1} ; \breve{\pi}_{1} \cap R_{2} ; \breve{\pi}_{2}\right)$, obtained by combining examples 1.1.d and 1.2.e.

Secondly we axiomatize the minimal fixed point operators by (1) Scott's induction mule and (2) an axiom stating essentially the fixed point property of terms containing these operators. Both of these were formulated for the first time in [41].

The addition of further axioms to the system for MU yields various opplied calculi, used, e.g., for the characterization of a number of special domains such as: finite domains with a fixed number of elements (axiomatized below), finite domains ([17]), natural numbers (chapter 5) and various kinds of lists (chapter 6).

EXAMPLE 1.3. Following example 1.2.f an atom a is characterized by

$$
a=E \quad \text { and } a ; U \cap U ; a \subseteq a .
$$

Now D contains precisely n elements iff $E \subseteq D \times D$ is the disjoint union of n atoms a_{1}, \ldots, a_{n}, i.e., iff

$$
\begin{equation*}
a_{i} ; U \cap U ; a_{i} \subseteq a_{i}, \quad i=1, \ldots, n, \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& a_{1} \cup a_{2} \cup \ldots \cup a_{n}=E \tag{2}\\
& a_{i} \cap a_{j}=\Omega, 1 \leq i<j \leq n . \tag{3}
\end{align*}
$$

1.2. A fromework for progrom correctness

In the previous section we discussed program correctness as follows: Starting with a scheme T, one considers its input-output behaviour and realizes that this is a relation, whence its properties should be expressed and deduced within a relational framework.

The present section presents an outline of the formalization of this point of view as contained in chapters 2 and 3.

In section 2.1 we define $P L$, a language for first-order recursive program schemata.

First-order recursive program schemata are abstractions of certain classes of programs. The statements contained in these programs operate upon a state whose components are isolated by projection functions; a new state is obtained by (1) execution of elementary statements, the dummy statement or projection functions (2) calls of previously declared and possibly recursive procedures (3) execution of conditional statements (4) the parallel and independent execution of statements S_{1}, \ldots, S_{n} in the call-by-value product $\left[S_{1}, \ldots, S_{n}\right]$, a novel construct which unifies properties of the assignment statement and the call-by-value parameter mechanism and allows for the expression of both of these concepts and (5) composition of statements by the ";" operator.

The definition of the operational semantics of these schemata involves an abstraction from the actual processes taking place within a computer by describing a model for the computations evoked by execution of a program. This leads to the characterization of the input-output behaviour or operational interpretation $O(T)$ of a program scheme T.

In section 3.1 we define $M U$, a language for binary relations over cartesian products which has minimal fixed point operators in order to characterize the input-output behaviour of recursive programs.

As the binary relations considered are subsets of the cartesian product of one domain or cartesian product of domains and another domain or cartesian product of domains, terms denoting these relations have to be typed for the definition of operations.

EZementary terms are individual relation constants, boolean relation constants, logical relation constants (for the empty, identity, and universal relations Ω, E, U and projection functions π_{i}) and relation variables. Compound terms are constructed by means of the operators ";" (relational or Peirce product), "u" (union), " n " (intersection), " \quad (converse) and "-" (complementation) and the minimal fixed point operators " μ_{i} ", which bind
for $i=1, \ldots, n, n$ different relation variables in n-tuples of terms provided none of these variables occurs in any complemented subterm, i.e., these terms are syntactically continuous in these variables.
Terms of MU are elementary or compound terms.
The well-formed formulae of MU are called assertions and are of the form $\Phi \vdash \Psi$, where Φ and Ψ are sets of inclusions between terms.
A mathematical interpretation m of $M U$ is defined by:
(1) providing arbitrary (type-consistent) interpretations for the individual relation constants and relation variables, interpreting pairs $\left\langle p, p^{\prime}\right\rangle$ of boolean relation constants as pairs $\left\langle m(p), m\left(p^{\prime}\right)\right\rangle$ of disjoint subsets of identity relations (cf. Karp [22]) and interpreting the logical relation constants as empty, identity and universal relations and projection functions,
(2) interpreting ";", "u", " \cap ", " $"$ ", "-" as usual,
(3) interpreting μ-terms $\mu_{i} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]$ as the i-th component of the minimal fixed point of the functional $\left\langle\sigma_{1}, \ldots, \sigma_{n}\right\rangle$ acting on n-tuples of relations.

An assertion $\Phi \vdash \Psi$ is valid provided for all m the following holds: If the inclusions contained in Φ are satisfied by m, then the inclusions contained in Ψ are satisfied by m.

The precise correspondence between the operational semantics of PL and the mathematical semantics of MU is specified by the translation theorem of chapter 3:
After defining an injection $t r$ between. schemes and terms we prove that $t r$ induces a meaning preserving mapping, i.e., a translation, provided the interpretation of the elementary statement constants and predicate symbols specified by o "agrees" with the interpretation of the individual relation constants and boolean relation constants specified by m. If these requirements are fulfilled the resulting correspondence between PL and MU is il1ustrated by

Thus we conclude that, in order to prove properties of T, it suffices to prove properties of $\operatorname{tr}(T)$, whence axiomatization of $M U$ leads to a calculus for first-order recursive program schemata.*)
1.3. The formulation of specific correctness properties of programs

Globally, in order to formulate the correctness of a program one has to state certain criteria which have to be satisfied in a specific environment. If these criteria depend on input-output behaviour only, one might hope to express them in the present formalism.
Sometimes this condition is not satisfied. Then these criteria concern intrinsic properties of the computation processes involved. As these are the very features we abstracted from, one cannot expect to formulate them in MU. For instance, when trying to formulate the correctness criteria for the TOWERS OF HANOI program discussed in chapter 6 , it turns out that the requirement of moving one disc at a time cannot be expressed in our language. Accordingly we restrict ourselves to criteria which can be formulated in terms of input-output behaviour only.
These may be subdivided as follows:
(a) Equivalence of or inclusions between programs.
(b) Termination provided some input condition is satisfied.
(c) Correctness in the sense of Hoare [19]:

Given partial predicates p and q and a relation $\operatorname{tr}(T)$ describing (the input-output behaviour of) a program T^{*}), this criterion is expressed by

$$
\forall x, y[p(x) \wedge x \operatorname{tr}(T) y \rightarrow q(y)]
$$

[^2]and amounts to
if x satisfies p and T terminates for x with output y , then y satisfies q.*)

These criteria can all be formulated as inclusion between terms:
For (a) this is evident. As to (b) : Let p be represented by <p, $\left.p^{\prime}\right\rangle$ satisfying $p \subseteq E, p^{\prime} \subseteq E$ and $p \cap p^{\prime}=\Omega$, and $\operatorname{tr}(T)$ describe program T, then

$$
\mathrm{p} \subseteq \operatorname{tr}(\mathrm{~T}) ; \overline{\operatorname{tr}(\mathrm{T})}
$$

or, equivalently,

$$
\mathrm{p} \subseteq \operatorname{tr}(\mathrm{~T}) ; \mathrm{U}
$$

both express (b) (note that $p \subseteq R ; \breve{R}$ is equivalent to $p \subseteq R ; U$). As to (c): Let p and q be represented by $\left\langle p, p^{\prime}\right\rangle$ and $\left\langle q, q^{\prime}\right\rangle$, then (c) is expressed by

$$
\mathrm{p} ; \operatorname{tr}(\mathrm{T}) \subseteq \operatorname{tr}(\mathrm{T}) ; q .
$$

It will be clear that the underlying supposition for the expression of these criteria is that we are able to express all the predicates involved indeed. This was not the case in the formalism described by Scott and de Bakker in [41] in which predicates were only expressible by primitive symbols, no operations on these symbols or other ways of constructing them being available.

Our main vehicle for the construction of new predicates is the "o" operator defined by

$$
\mathrm{Vx}[(\mathrm{X} \circ \mathrm{p})(\mathrm{x}) \longleftrightarrow \exists \mathrm{y}[\mathrm{xXy} \text { and } \mathrm{p}(\mathrm{y})]] . * *)
$$

[^3]Accordingly, if $X=\operatorname{tr}(T)$ then $(\operatorname{tr}(T) \otimes p)(x)$ is true iff T produces for input x some output y which satisfies p.

In the present formalism $X \circ p$ can be expressed by

$$
X \circ p=X ; p ; U \cap E .
$$

In example 1.2 we showed that $X ; \ddot{X} \cap E=X ; U \cap E=X \circ E$ describes the domain of convergence of X. Thus $X \circ E$ is the minimal predicate p satisfying $X=p ; X$.
In Chapter 4 we obtain the following characterization of Xop:

$$
X \circ p=n\{q \mid X ; p \subseteq q ; X\}
$$

Therefore $X \circ p$ is the minimal predicate q, sometimes called the weakest precondition, satisfying $X ; p \subseteq q ; X$.
This observation raises the following question:
When does

$$
\begin{equation*}
X ; p=X \circ p ; X \tag{*}
\end{equation*}
$$

hold?
We shall prove that (*) holds iff $\underset{X}{ } ; \mathbf{X} \subseteq E$, i.e., X denotes the graph of a function.
Therefore the translation theorem implies that
one is allowed to retract predicates occurring in between statements on input conditions provided these statements describe functions, i.e., are deterministic.

2. THE PROGRAM SCHEME LANGUAGE PL

2.1. Definition of $P L$

PL is a language for first-order recursive program schemes using call-by-value as parameter mechanism. A statement scheme of $P L$ is constructed from basic symbols using the sequencing, conditional, call-by-value product operations and recursion, and contains a type indication in the form of a superscript $\langle n, \xi\rangle$ in order to distinguish between input domain D_{η} and output domain D_{ξ}. The call-by-value product $\left[S_{1}, \ldots, S_{n}\right]$ expresses the independent parallel execution of statements S_{1}, \ldots, S_{n}, yielding for input x an output $\left\langle y_{1}, \ldots, y_{n}\right\rangle$ composed of the individual outputs of $S_{i}, i=1, \ldots, n$, and is used to describe the assignment statement and the call-by-value parameter mechanism as follows:

Assignment statement. An assignment statement $x_{i}:=f\left(x_{i 1}, \ldots, x_{i m}\right)$ occurring in an environment x_{1}, \ldots, x_{n} of variables is expressed by $\left[\pi_{1}, \ldots, \pi_{i-1},\left[\pi_{i 1}, \ldots, \pi_{i m}\right] ; S, \pi_{i+1}, \ldots, \pi_{n}\right]$, where S denotes f.
Call-by-value parameter mechanism. A procedure call
$\operatorname{proc}\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)$ with parameters which are called-byvalue is expressed by $\left[S_{1}, \ldots, S_{n}\right] ; P$, were S_{k} denotes f_{k}, for $k=1, \ldots, n$, and P declares proc.

A declaration scheme of PL is a possibly empty collection of pairs $P_{j} \Longleftarrow S_{j}$ which are indexed by some index set J; for each $j \in J$ such a pair contains a procedure symbol P_{j} and a statement scheme S_{j} of the same type as $\mathrm{P}_{\mathbf{j}}$.
A progrom scheme of $P L$ is a pair consisting of a declaration and a statement scheme.

The well-formed formulae of PL are called assertions.
DEFINITION 2.1 (Syntax of PL) *)
Types. Let G be the collection $\left\{\alpha, \alpha_{1}, \ldots, \beta, \beta_{1} \ldots\right\}$ of possibly subscripted
*) Sections 2.1 and 2.2 follow closely section 3 of de Bakker and Meertens [3] which deals, however, with schemes operating upon one variable.
greek letters. A domain type is (1) an element of G, (2) any string $\left(\xi_{1} \times \ldots \times \xi_{n}\right)$, where ξ_{1}, \ldots, ξ_{n} are domain types. A type is a pair $<n, \xi>$ of domain types.

Basic symbols. The class of basic symbols is the union of the classes of relation and procedure symbols.

Relation symbols. The class of relation symbols R is the union of the classes of elementary statement symbols, predicate symbols, constant symbols and variable symbols.
a. The class of elementary statement symbols A contains for all types $<\eta, \xi>$ the symbo1s $A^{n, \xi}, A_{1}^{\eta, \xi}, \ldots$.
b. The class of predicate symbols B contains for all η the symbols $p^{n, n}, p_{1}^{n, n}, \ldots, q^{n, n}, q_{1}^{n, n}, \ldots$.
c. The class of constant symbols C contains the symbols $\Omega^{\eta, \xi}$ for all types $<n, \xi\rangle, E^{n, \eta}$ for all n and $\pi_{1}^{\eta_{1} \times \ldots \times n_{n}, \eta_{1}}, \ldots, \pi_{n}^{n_{1} \times \ldots \times n_{n}, \eta_{n}}$ for all types n_{1}, \ldots, n_{n}.
d. The class of variable symbols X, introduced for purposes of substitution, contains for all types $\langle n, \xi\rangle$ the symbols $x^{n, \xi}, x_{1}^{\eta}, \xi, \ldots, Y^{n}, \xi, \ldots, z^{\eta}, \xi, \ldots$
Procedure symbols. The class of procedure symbols P contains for all types $<n, \xi>$ the symbols $P^{n, \xi}, P_{1}^{n, \xi}, \ldots$.

Schemes.

a. Statement schemes. The class of statement schemes SS (arbitrary elements $\mathrm{s}^{n, \xi}, \mathrm{~s}_{1}^{n, \xi}, \ldots, \mathrm{v}^{n, \xi}, \ldots, \mathrm{~W}^{n}, \xi, \ldots$) is defined as follows:

1. $A \cup C \cup X \cup P \subseteq S S$.*)
2. If $S_{1}^{n, \theta}, S_{2}^{\theta, \xi} \in S S$ then $\left(S_{1} ; S_{2}\right)^{\eta, \xi} \in S S$. ${ }^{* *)}$
3. If $p^{\eta, \eta} \in B$ and $S_{1}^{\eta, \xi}, S_{2}^{\eta, \xi} \in S S$ then $\left(p \rightarrow S_{1}, S_{2}\right)^{\eta, \xi} \in S S$.
4. If $s_{1}^{n, \xi_{1}}, \ldots, s_{n}^{n, \xi_{n}} \in S S$ then $\left[s_{1}, \ldots, S_{n}\right]^{n_{0} \xi_{1} x_{0} \ldots \times \xi_{n}} \in S S$.
*) Hence, a predicate symbol is no statement scheme.
**) These parentheses will be often deleted, using the following conventions: (1) the outer pair of parentheses is suppressed, (2) right preferent parenthesis insertion in case of adjacent occurrences of the ";" operator. E. $\mathrm{g}, \mathrm{S}_{1} ; \mathrm{S}_{2}$ stands for $\left(\mathrm{S}_{1} ; \mathrm{S}_{2}\right)$ and $\mathrm{S}_{1} ; \mathrm{S}_{2} ; \mathrm{S}_{3}$ stands for $\mathrm{S}_{1} ;\left(\mathrm{S}_{2} ; \mathrm{S}_{3}\right)$ which stands on its turn for ($\mathrm{S}_{1} ;\left(\mathrm{S}_{2} ; \mathrm{S}_{3}\right)$).
b. Declaration schemes. The class of declaration schemes DS (arbitrary elements D, D_{1}, \ldots) contains all sets $\left\{P_{j}^{\eta}{ }_{j}^{\xi} \Longleftarrow S_{j}^{\eta, \xi}\right\} \quad j \in J$ with J any index set, and, for each $j \in J, P_{j} \in P$ and $S_{j} \in S S$, such that no S_{j} contains any $X \in X$.
c. Program schemes. The class of program schemes DS (arbitrary elements T, T_{1}, \ldots) contains all pairs $\langle D, S\rangle$ with $D \in D S$ and $S \in S S$. If $D=\emptyset$, <D,S> will be written as S.

Assertions. An atomic formula is of the form $T_{1} \subseteq T_{2}$ with $T_{1}, T_{2} \in P S$. A formula is a set of atomic formulae $\left\{T_{1,1} \subseteq T_{2,1}\right\}_{1 \in L}$ with L any index set. An assertion is of the form $\Phi \mid \Psi$ with Φ and Ψ formulae.

Remarks. 1. $\mathrm{T}_{1}=\mathrm{T}_{2}$ will be used as abbreviation for $\mathrm{T}_{1} \subseteq \mathrm{~T}_{2}, \mathrm{~T}_{2} \subseteq \mathrm{~T}_{1}$.
2. Any type indication will be omitted if no confusion arises.

DEFINITION 2.2. (Substitution)

Substitution operator. Let $S \in S S$ and J be any nonempty index set such that, for $j \in J, R_{j} \in X \cup P$ and $V_{j} \in S S$ are of the same type, then $S\left[V_{j} / R_{j}\right]_{j \in J}$ is defined as follows:
a. If $S=R_{j}$ for some $j \in J$, then $S\left[V_{j} / R_{j}\right]_{j \in J}=V_{j}$.
b. If $S=R$ and, for $a 11 j \in J, R \neq R_{j}$, then $S\left[V_{j} / R_{j}\right]_{j \in J}=R$.
c. If $S=S_{1} ; S_{2},\left(p \rightarrow S_{1}, S_{2}\right)$ or $\left[S_{1}, \ldots, S_{n}\right]$, then $S\left[V_{j} / R_{j}\right]_{j \in J}=$
$=S_{1}\left[V_{j} / R_{j}\right]_{j \in J} ; S_{2}\left[V_{j} / R_{j}\right]_{j \in J},\left(p \rightarrow S_{1}\left[V_{j} / R_{j}\right]_{j \in J}, S_{2}\left[V_{j} / R_{j}\right]_{j \in J}\right)$ or $\left[S_{1}\left[V_{j} / R_{j}\right]_{j \in J}, \ldots, S_{n}\left[V_{j} / R_{j}\right]_{j \in J}\right]$, respectively.
官. \tilde{S} is defined as $S\left[X_{j} / P_{j}\right]_{j \in J^{*}}$
Closed. If no $X \in X$ occurs in $S \in S S, S$ is called closed.
Remarks. 1. From now on the substitution operator is used in the following forms: taking for J the index set of some declaration scheme, we (a) restrict ourselves to $R_{j} \in X$, for $j \in J$, and (b) reserve the "~" operator for substitution with $R_{j} \in P$ and $V_{j} \in X$, for $j \in J$. Hence, explicit substitution in S is performed as in (a). This explains our notion of closed statement scheme.
2. The substitution operator can be generalized to formulae by writing
$\left\{V_{1,1} \subseteq V_{2,1}\right\}_{1 \in L}\left[V_{j} / X_{j}\right]_{j \in J}$ for $\left\{V_{1,1}\left[V_{j} / X_{j}\right]_{j \in J} \subseteq V_{2,1}\left[V_{j} / X_{j}\right]{ }_{j \in J}\right\}_{1 \in L^{3}}$, restricting ourselves as above.
3. If $J=\{1, \ldots, n\}, S\left[V_{j} / X_{j}\right]_{j \in J}$ is written as $S\left[V_{j} / X_{j}\right] \quad j=1, \ldots, n$ or $S\left(V_{1}, \ldots, V_{n}\right)$. If $J=\{1\}$ we also use $S[V / X]$.
4. $S\left[V_{j} / X_{j}\right]_{j \in J}$ is defined according to the complexity of S. Therefore properties such as the chain rule, $S\left[V_{j} / X_{j}\right]_{j \in J}\left[W_{j} / X_{j}\right]_{j \in J}=$ $=S\left[V_{j}\left[W_{j} / X_{j}\right]_{j \in J} / X_{j}\right]_{j \in J}$ can be proved by induction on the complexity of S.

An interpretation of the schemes of PL is determined by an initial interpretation o_{0} which extends to an operational interpretation of program schemes using models for sequential and independent parallel (to characterize the call-by-value product) computation.

DEFINITION 2.3. (Initial interpretation). An initial interpretation is a function O_{0}, such that
a. For each $\eta \in G, O_{0}(\eta)$ is a set denoted by D_{η}, and for each compound domain type $\left(\eta_{1} \times \ldots \times \eta_{n}\right), o_{0}\left(\eta_{1} \times \ldots \times \eta_{n}\right)$ is the cartesian product of $o_{0}\left(\eta_{1}\right), \ldots, o_{0}\left(\eta_{n}\right)$.
b. For $A^{\eta, \xi} \in A$ and $X^{n, \xi} \in X, o_{0}\left(A^{\eta, \xi}\right)$ and $o_{0}\left(X^{n, \xi}\right)$ are subsets of $o_{0}(\eta) \times o_{0}(\xi)$.
c. For $p^{\eta, \eta} \in B, o_{0}\left(p^{\eta, \eta}\right)$ is a partial predicate with arguments in $o_{0}(\eta)$.
d. For each projection function symbol $\pi_{i}^{\eta_{1} \times \ldots \times n_{n}, \eta_{i}}, o_{0}\left(\pi_{i}{ }_{i} \times \ldots \times n_{n}, \eta_{i}\right)$ is the projection function of $o_{0}\left(\eta_{1}\right) \times \ldots \times o_{0}\left(\eta_{n}\right)$ on its $i-t h$ constituent coordinate.
e. For all constants $\Omega^{\eta, \xi}$ and $E^{\eta, \eta}, o_{0}\left(\Omega^{\eta, \xi}\right)$ and $o_{0}\left(E^{\eta, \eta}\right)$ are the empty subset of $o_{0}(\eta) \times o_{0}(\xi)$ and the identity relation over $o_{0}(\eta)$, respectively.

The main problem in defining the semantics of a program scheme operationally is the fact that the resulting computation cannot be represented serially in any natural fashion: factors S_{1}, \ldots, S_{n} of a product $\left[S_{1}, \ldots, S_{n}\right]$ first all have to be executed independent of another, before the computation can continue. Therefore the computations involved are described as a paralle1 and sequentially structured hierarchy of actions, a computation model.

At the first level of such a hierarchy any execution of a factor of a product is delegated to the second level; assuming this results in an output, this output becomes available as a component of the input for the still-to-be-executed part of the original scheme, if present. When all these components have been computed, the remaining computation at the first level, if present, is initiated on the resulting vector. The same holds, mutatis mutandis, for the relative dependency between computations on any n-th and n+1-st level of this hierarchy, if present.
Provided one has a finite computation, this delegating will end on a certain level. On that level the execution (of a factor of a product on a previous level) does not anymore involve the computation of any product on a state, whence this computation can be characterized by a sequence of, in our model, atomic actions of the following forms: (1) computation of a by-some-initial-interpretation-interpreted relation symbol (2) replacing a procedure symbol by its body, without changing the current state and (3) making a choice between two possible continuations of a computation, depending on whether a by-some-initial-interpretation-interpreted predicate symbol is true or false on the current state.

The extension of an initial interpretation O_{0} to an operational interpretation 0 is defined in

DEFINITION 2.4. (Computation model). *)

Relative to an initial interpretation O_{0} and a declaration scheme D, a computation model for $x S y$ is pair $\left\langle x_{1} S_{1} x_{2} \ldots x_{n} S_{n} x_{n+1}, C M\right\rangle$ with $S_{i} \in S S$ for $i=1, \ldots, n, S_{1}=S, x_{1}=x$ and $x_{n+1}=y$, consisting of a computation sequence and a set of computation models relative to O_{0} and D, called associated computation models, satisfying the following conditions:
a. If $S_{i}=R$ or $S_{i}=R ; V$ with $R \in A \cup \mathcal{C} \cup X,\left\langle x_{i}, x_{i+1}\right\rangle \in o_{0}(R)$ and $i=n$ or $S_{i+1}=V$.

[^4]b. If $S_{i}=P_{j}$ or $S_{i}=P_{j} ; V$ and $P_{j} \Longleftarrow S_{j} \in D$, then $x_{i+1}=x_{i}$ and $S_{i+1}=S_{j}$ or $S_{i+1}=S_{j} ; V$.
c. If $S_{i}=\left(V_{1} ; V_{2}\right) ; V_{3}$ then $C M$ contains a computation model for $x_{i} V_{1} ; V_{2} x_{i+1}$ and $S_{i+1}=V_{2}$.
d. If $S_{i}=\left(p \rightarrow \nabla_{1}, V_{2}\right)$ or $S_{i}=\left(p \rightarrow V_{1}, V_{2}\right) ; V_{3}$ and $o_{0}(p)\left(x_{i}\right)$ is either true or false, then $x_{i+1}=x_{i}$ and, if $o_{0}(p)\left(x_{i}\right)=$ true then $S_{i+1}=v_{1}$ or $S_{i+1}=V_{1} ; V_{3}$, and, if $o_{0}(p)\left(x_{i}\right)=$ fa1se then $S_{i+1}=V_{2}$ or $S_{i+1}=V_{2} ; V_{3}$.
e. If $S_{i}=\left[\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{k}}\right]$ or $\mathrm{S}_{\mathrm{i}}=\left[\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{k}}\right] ; \mathrm{V}, \mathrm{x}_{\mathrm{i}+1}=\left\langle\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right\rangle$ such that $C M$ contains computation models for $x_{i} V_{i} y_{1}$, for $1=1, \ldots, k$, and $i=n$ or $S_{i+1}=v$.

Remark. A computation model represents the entire computation of program $<D, S>$ on input $x\left(=x_{1}\right.$) resulting in output $y\left(=x_{n+1}\right.$, for some n). At each step of its constituent computation sequence, S_{i} is the statement which remains to be executed on the current state x_{i}. Clause a describes the execution of elementary statements, clause b reflects the copy ruly for procedures, clause c describes preference in execution order, clause d describes the conditional and clause e describes the independent execution of statements, terminating iff all its constituent statements have terminated. The meaning of ";" is expressed by clause c and the second part of clauses a, b, d and e, and expresses continuation of a computation with appointed successor.

Suppose one defines a computation model as a set of computation sequences such that each "delegated" computation sequence occurs in this set. This leads to undesirable results, as demonstrated by the program scheme $T=\left\langle P \Longleftarrow[P, P] ; \pi_{1}, P\right\rangle$. Clearly, T defines Ω. However the set $\left\{x P x[P, P] ; \pi_{1}<x, x>\pi_{1} x\right\}$ is a computation model for $x T x$ in the sense of this definition (P. van Emde Boas).

DEFINITION 2.5.
Operational interpretation. Let $T=\left\langle D, S^{n, \xi}\right\rangle$ be a program scheme and O_{0} be an initial interpretation. Then the operational interpretation of this scheme is the relation $O(T)$ defined as follows: for each $\langle x, y\rangle \in O_{0}(\eta) \times$ $\times O_{0}(\xi),\langle x, y\rangle \in O(T)$ iff there exists a computation model w.r.t. o_{0} and D for xSy .

Validity.
a. $\mathrm{T}_{1} \subseteq \mathrm{~T}_{2}$ satisfies 0 iff $o\left(\mathrm{~T}_{1}\right) \subseteq o\left(\mathrm{~T}_{2}\right)$ holds. If $\mathrm{T}_{1} \subseteq \mathrm{~T}_{2}$ satisfies all 0 , it is called valid.
b. Φ satisfies O (is valid) iff all its inclusions satisfy o (are valid).
c. An assertion $\Phi \vdash \Psi$ such that, for all 0 , if Φ satisfies 0 , then Ψ satisfies O, is called valid.

2.2. The union theorem

First we mention properties of the operational interpretation 0 such as $o\left(\mathrm{~S}_{1} ; \mathrm{S}_{2}\right)=o\left(\mathrm{~S}_{1}\right) ; o\left(\mathrm{~S}_{2}\right), o\left(\mathrm{p} \rightarrow \mathrm{S}_{1}, \mathrm{~S}_{2}\right)=m(\mathrm{p}) ; o\left(\mathrm{~S}_{1}\right) \cup m\left(\mathrm{p}^{\prime}\right) ; o\left(\mathrm{~S}_{2}\right)$, $o\left(\left[S_{1}, \ldots, S_{n}\right]\right)=o\left(S_{1}\right) ; \sigma\left(\pi_{1}\right) \cap \ldots \cap o\left(S_{n}\right) ; \overline{o\left(\pi_{n}\right)}$, the fixed point property $\sigma\left(\mathrm{P}_{\mathrm{j}}\right)=\sigma\left(\mathrm{S}_{\mathrm{j}}\right)$ and the monotonicity property. Then the union theorem is proved as a culmination of these results. Finally we establish the minimal fixed point property, which is a generalization of McCarthy's induction rule (cf. [29]), and prove a lemma legitimating the modular design of program schemes.

LEMMA 2.1.

a. If $\mathrm{S} \in \mathrm{A} \cup \mathcal{C} \cup X$ then $0_{0}(\mathrm{~S})=O(\mathrm{~S})$.
b. $o\left(\mathrm{~S}_{1} ; \mathrm{S}_{2}\right)=o\left(\mathrm{~S}_{1}\right) ; o\left(\mathrm{~S}_{2}\right)$.
c. $o\left(p \rightarrow S_{1}, S_{2}\right)=m(p) ; o\left(S_{1}\right) \cup m\left(p^{\prime}\right) ; o\left(S_{2}\right)$, with $m(p)$ and $m\left(p^{\prime}\right)$ defined as follows: $\langle x, x\rangle \in m(p)$ iff $o_{0}(p)(x)=$ true and $\langle x, x\rangle \in m\left(p^{\prime}\right)$ iff $o_{0}(p)(x)=$ false.
d. $O\left(\left[S_{1}, \ldots, S_{n}\right]\right)=O\left(S_{1}\right) ; \overline{O\left(\pi_{1}\right)} \cap \ldots n o\left(S_{n}\right) ; \overline{O\left(\pi_{n}\right)}$.
e. (Fixed point property, fop) $o\left(\mathrm{P}_{\mathrm{j}}\right)=O\left(\mathrm{~S}_{\mathrm{j}}\right)$, for each $\mathrm{j} \in \mathrm{J}$.

Proof. By induction on the complexity of the statement schemes concerned.

COROLLARY 2.1. $o\left(\left(\mathrm{~S}_{1} ; \mathrm{S}_{2}\right) ; \mathrm{S}_{3}\right)=o\left(\mathrm{~S}_{1} ;\left(\mathrm{S}_{2} ; \mathrm{S}_{3}\right)\right)$.
Remarks. 1. From the definitions and parts a, b, c and d of lemma 2.1 the validity of standard properties of program schemes, such as the validity
of $\Omega \subseteq S$ and $E ; S=S$ easily follows. These and similar properties will be used without explicit mentioning.
2. As execution of $\left[S_{1}, \ldots, S_{n}\right]$ corresponds to computation of a list of a actual parameters which are called-by-value, part d of lemma 2.1 implies the relational description of the call-by-value parameter mechanism.

LEMMA 2.2. (Monotonicity).

$$
\left\{v_{1, j} \subseteq v_{2, j}\right\}_{j \in J} \vdash S\left[v_{1, j} / x_{j}\right]_{j \in J} \subseteq s\left[v_{2, j} / x_{j}\right]_{j \in J^{\circ}}
$$

Proof. By induction on the complexity of S.
a. $S=X_{j}$, then $o\left(S\left[V_{1, j} / X_{j}\right]_{j \in J}\right)=o\left(V_{1, j}\right) \subseteq o\left(V_{2, j}\right)=o\left(S\left[V_{2, j} / X_{j}\right]_{j \in J}\right.$.
b. $S=(R \cup P)-\left\{X_{\mathbf{j}}\right\}_{j \in J}$, then $o\left(S\left[V_{1, j} / X_{j}\right]_{j \in J}\right)=o\left(S\left[V_{2, j} / X_{j}\right]_{j \in J}\right)$.
c. $S=S_{1} ; S_{2}$, then $O\left(\left(S_{1} ; S_{2}\right)\left[V_{1, j} / X_{j}\right] \quad j \in J\right)=$
$\left.=o\left(S_{1}\left[V_{1, j} / X_{j}\right]_{j \in J} S_{2}{ }^{\left[V_{1, j}\right.} / X_{j}\right]_{j \in J}\right)=(1$ emma 2.1)
$\left.o\left(S_{1}\left[V_{1, j} / X_{j}\right]_{j \in J}\right) ; O\left(S_{2}{ }^{\left[V_{1, j}\right.}{ }^{\prime} X_{j}\right]_{j \in J}\right) \subseteq$ (induction hypothesis)
$\sigma\left(S_{1}\left[V_{2, j} / X_{j}\right]_{j \in J}\right) ; o\left(S_{2}\left[V_{2, j} / X_{j}\right]_{j \in J}\right)=(1$ emma 2.1)
$\left.o\left(S_{1}\left[V_{2, j} / X_{j}\right]_{j \in J}^{j} S_{2}\left[V_{2, j} / X_{j}\right]_{j \in J}\right)=o\left(S_{1} ; S_{2}\right)\left[V_{2, j} / X_{j}\right] j \in J\right)$.
d. $S=\left(p \rightarrow S_{1}, S_{2}\right)$ or $S=\left[S_{1}, \ldots, S_{n}\right]$, similar to c.

COROLLARY 2.2. (Substitutivity rule).

$$
\left\{V_{1, j}=V_{2, j}\right\}_{j \in J} \vdash S\left[V_{1, j} / x_{j}\right]_{j \in J}=S\left[V_{2, j} / X_{j}\right]_{j \in J}
$$

Next we state a technical result concerning substitution.

LEMMA 2.3.
a. For closed $S, \tilde{S}\left[P_{j} / X_{j}\right]_{j \in J}=S$.
b. For arbitrary $S,\left\{V_{j} \subseteq P_{j}\right\}_{j \in J} \mid \overparen{S\left[P_{j} / X_{j}\right]_{j \in J}\left[V_{j} / X_{j}\right]}{ }_{j \in J} \subseteq S\left[V_{j} / X_{j}\right]_{j \in J}$.
c. For arbitrary $\left.S, \widetilde{S T V}_{j} / X_{j}\right]_{j \in J}=\widetilde{S}\left[\tilde{V}_{j} / X_{j}\right]_{j \in J}$.

Proof. Follows from the definitions, properties of substitution and monotonicity, by induction on the complexity of S.

Informally, if a recursive procedure $P^{\eta, \xi}$ terminates for a given argument, this happens after a finite number of "inner calls" of this procedure. We may think of these calls as being nested (where a call on a deeper level is invoked by a call on a previous level). By the recursion depth of the original call we mean the depth of this nesting. At the innermost level, calls of $\mathrm{P}^{\eta, \xi}$ are not executed again, whence they may be replaced by $\Omega^{n, \xi}$ without affecting the computation.
This process of replacement can be generalized to calls of simultoneously declared recursive procedures: Let $\mathrm{S}^{\theta, \zeta}$ be a statement scheme. Then $\mathrm{S}^{(\mathrm{n})}$ is obtained from S by uniformly replacing calls of $\mathrm{P}_{\mathrm{j}}^{\eta, \xi}$ at level n by $\Omega^{n, \xi}$ for $j \in J$ with $S^{(0)}$ defined as $\Omega^{\theta, \zeta}$. We may think of $o\left(S^{(n)}\right.$) as restricting $O(S)$ to those arguments which during execution of S cause execution of calls of P_{j} with recursion depth less than n.
Thus we conclude that

$$
\mathrm{x} o(\mathrm{~S}) \mathrm{y} \text { iff } \exists \mathrm{n}\left[\mathrm{x} o\left(\mathrm{~S}^{(\mathrm{n})}\right) \mathrm{y}\right] \text {. }
$$

THEOREM 2.1. (Union theorem). Let S be a closed statement scheme. Then, for all operational interpretations 0 ,

$$
\sigma(S)={\underset{n=0}{\infty} O\left(S^{(n)}\right)}^{n}
$$

In order to prove the union theorem we need some auxiliary definitions characterizing (1) which occurrences of procedure symbols are executed in a computation model, (2) the relation between occurrences of the same procedure symbol in proceeding computations, (3) statement schemes obtained by successive uniform replacement of procedure calls by their bodies and (4) $\mathrm{S}^{(\mathrm{n})}$.

DEFINITION 2.6.

Executable occurrence. A procedure symbol P_{j} occurs executable in a computation model CM if it occurs in some computation sequence $\mathrm{x}_{1} \mathrm{~S}_{1} \mathrm{x}_{2} \ldots$ $\ldots x_{n} S_{n} x_{n+1}$ contained in $C M$, such that for some $i, 1 \leq i \leq n, S_{i}=P_{j}$ or $S_{i}=P_{j} ; S$.

To identify. Let $C M$ be a computation model with constituent sequence $x_{1} S_{1} x_{2} \ldots x_{n} S_{n} x_{n+1}$. Consider an occurrence of P_{j} in some S, with S occurring in $S_{i} \cdot 1 \leq i \leq n$. This occurrence directly identifies the corresponding occurrence of P_{j} in S occurring in S_{i+1} or S_{1}^{\prime} below, in each of the following cases:
(a) $S_{i}=R ; S$ and $S_{i+1}=S$ with $R \in A \cup C \cup X$,
(b) $S_{i}=P_{k} ; S$ and $S_{i+1}=S_{k} ; S, k \in J$,
(cl) $S_{i}=(S) ; V_{3}$ and S occurs as first statement S_{1}^{\prime} of the associated computation model for $\mathrm{x}_{\mathrm{i}} \mathrm{Sx}_{\mathrm{i}+1}$, **)
(c2) $\mathrm{S}_{\mathrm{i}}=\left(\mathrm{V}_{1} ; \mathrm{V}_{2}\right) ; \mathrm{S}$ and $\mathrm{S}_{\mathrm{i}+1}=\mathrm{S}$,
(d1) $s_{i}=(p \rightarrow s, v)$ or $s_{i}=(p \rightarrow v, s)$, and $S_{i+1}=s$,
(d2) $\mathrm{S}_{\mathrm{i}}=\left(\mathrm{p} \rightarrow \mathrm{S}, \mathrm{V}_{1}\right) ; \mathrm{V}_{2}$ or $\mathrm{S}_{\mathrm{i}}=\left(\mathrm{p} \rightarrow \mathrm{V}_{1}, \mathrm{~S}\right) ; \mathrm{V}_{2}$, and $\mathrm{S}_{\mathrm{i}+1}=\mathrm{S} ; \mathrm{V}_{2}$,
(d3) $S_{i}=\left(p \rightarrow V_{1}, V_{2}\right) ; S$ and $S_{i+1}=V_{1} ; S$ or $S_{i+1}=V_{2} ; S$,
(e1) $\mathrm{s}_{\mathrm{i}}=\left[\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}}\right]$ or $\mathrm{S}_{\mathrm{i}}=\left[\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}}\right] ; \mathrm{V}$, and $\mathrm{S}=\mathrm{V}_{\mathrm{k}}$ for some k , $1 \leq \mathrm{k} \leq \mathrm{m}, \mathrm{CM}$ contains an associated computation mode1 CM^{\prime} for $x_{i} S x_{i+1, k}$, and S occurs as first statement S_{1}^{\prime} of the constituent computation sequence of CM^{1},
(e2) $S_{i}=\left[V_{1}, \ldots, V_{m}\right]$; S and $S_{i+1}=S$.
The relationship to identify is defined as the reflexive and transitive closure of the relationship to identify directly, defined above. *)
$S^{[n]}, S^{[0]}=S, S^{[k+1]}=\tilde{S}\left[S_{j}^{[k]} / X_{j}\right] \quad$ foJ $k=0,1,2, \ldots$.
$S^{(n)} \cdot S^{(0)}=\Omega, S^{(k+1)}=\tilde{S}\left[S_{j}^{(k)} / X_{j}\right]{ }_{j \in J}$ for $k=0,1,2, \ldots$.
The connections between $P^{(n+1)}, S^{(n)}$ and $S^{[n]}$ are established in
LEMMA 2.4. Let n be a natural number. Then $\mathrm{p}_{\mathrm{j}}^{(\mathrm{n}+1)}=\mathrm{S}_{\mathrm{j}}^{(\mathrm{n})}, \mathrm{s}^{(\mathrm{n}+1)}=$
$=\mathrm{S}^{[\mathrm{n}]}\left[\Omega_{\mathrm{j}} / \mathrm{X}_{\mathrm{j}}\right]{ }_{\mathrm{j} \in \mathrm{J}}$ and $\mathrm{s}^{[\mathrm{k}+1]}=\mathrm{s}^{[\mathrm{k}][1]}$.
Proof. We prove the second result only. Use induction on n.

1. $\left.k=0 . S^{(1)}=\widetilde{S}_{\left[\Omega_{j}\right.} / X_{j}\right]_{j \in J}=\widetilde{S}^{[0]}\left[\Omega_{j} / X_{j}\right]_{j \in J}$.

[^5]2. Assume the result for $n=k$. We have
\[

$$
\begin{aligned}
& S^{[k+1]} \\
& \left.\tilde{S}\left[\Omega_{j} / X_{j}\right]_{j \in J}^{[k]} / X_{j}\right]_{j \in J}^{\left[\Omega_{j} / X_{j}\right]_{j \in J}\left[S_{j}^{[k]} / X_{j}\right]_{j \in J}^{\left[\Omega_{j} / X_{j}\right]_{j \in J}}=\left(\text { (chain rule) } \tilde{S}_{\left[S_{j}^{[k]}\right.}^{\left[\Omega_{j} / X_{j}\right]}{ }_{j \in J} / X_{j}\right]{ }_{j \in J}=} \\
& =\text { (induction hypothesis) } \tilde{S}\left[S_{j}^{(k+1)} / X_{j}\right]_{j \in J}=S^{(k+2)} .
\end{aligned}
$$
\]

In order to prove $\sigma(S) \subseteq \stackrel{\bigcup}{\cup}_{n}^{\infty} \sigma\left(S^{(n)}\right)$ we shall transform a computation model for $x S y$ for some n into a computation model for $x S^{(n)} y$. Let S be closed and $C M$ be a computation model for $x S y$ with constituent sequence $x_{1} S_{1} x_{2} \ldots x_{n} S_{n+1} x_{n+1}$. If no occurrences of P_{j} in S are executed to compute y, all occurrences of P_{j} identified by occurrences of P_{j} in S_{1} may be replaced by arbitrary statements of appropriate type for all $\mathbf{j} \in J$ without affecting the computation of y :

LEMMA 2.5. Let CM and S be as stated above. If CM contains no executable occurrences of P_{j}, the following holds: If statement schemes V_{j} are of the same type as P_{j} for $a l Z j \in J$, there exists a computation mode \mathcal{Z} for $x \widetilde{S}\left[V_{j} / X_{j}\right]{ }_{j \in J^{y}}$

Observe as a corollary that by choosing Ω for V_{j} one obtains a computation model for $x S^{(1)} y$. If P_{j} is executed in $C M$, there exists at least one occurrence of P_{j} identifying an earliest executable occurrence of P_{j} with respect to a certain order. CM can then be transformed into a computation model in which all occurrences of P_{j} in $C M$ identified by such an occurrence are replaced by S_{j}, except the executable one, which is deleted together with the $x_{i} S_{i}$ part in which it is contained. The resulting model still computes the same output as $C M$, but contains at least one executable occurrence of some P_{j} less than $C M$, as at least one application of the copy-rule has been dealt with:

LEMMA 2.6. (van Emde Boas). Let CM and S be as stated above. If for some $j \in J$ an occurrence of P_{j} in S_{1} identifies an executable occurrence of P_{j}, there exists a computation model for $\mathrm{xS}^{[1]} \mathrm{y}$ which contains at least one executable occurrence of P_{j} less thon CM .

As $S^{[k][1]}=S^{[k+1]}$ by 1 emma 2.4 , repeated application of 1 emma 2.6 leads finally to a computation model for $\mathrm{xS}^{[\mathrm{n}]} \mathrm{y}$ in which all executable occurrences of P_{j}, have been removed for all $j \in J$. Therefore lemma 2.5 applies, yielding a computation model for $x S^{[n]}\left[\Omega_{j} / P_{j}\right]{ }_{j \in J}{ }^{y}$ and hence, by lemma 2.4, for $x S^{(n+1)} y$:

LEMMA 2.7. Let CM and S be as stated above. Then there exists for some n a computation model for $x S^{(n)} y$.

The proofs of these three lemmas are contained in appendix 1 .

Next we prove $\bigcup_{n=0}^{\infty} o\left(S^{(n)}\right) \subseteq o(S):$
First we show that for each $j \in J$ and each $k, P_{j}^{(k)} \subseteq P_{j}$. Use induction on k。

1. $k=0$. Clear.
2. Assume the result for $k \cdot P_{j}^{(k+1)}=(1$ emma 2.4$) S_{j}^{(k)}=\widetilde{S}_{j}\left[S_{j}^{(k-1)} / X_{j}\right] j \in J=$ $=\tilde{S}_{j}\left[P_{j}^{(k)} / X_{j}\right]_{j \in J} \subseteq$ (induction hypothesis and lemma 2.2) $\widetilde{S}_{j}\left[P_{j} / X_{j}\right]_{j \in J}=$ $=S_{j}=\left(1\right.$ emma 2.1) P_{j}.
Next we show that $S^{(k)} \subseteq S: S^{(k)}=\widetilde{S}\left[S_{j}^{(k-1)} / X_{j}\right]_{j \in J}=\widetilde{S}\left[P_{j}^{(k)} / X_{j}\right] j \in J \subseteq$ $\subseteq\left(1\right.$ emma 2.2) $\widetilde{S}\left[P_{j} / X_{j}\right]_{j \in J}=(1$ emma 2.3) S.
Thus $\bigcup_{n=0}^{\infty} S^{(n)} \subseteq S$ follows.
 $S=\bigcup_{n=0}^{\infty} S^{(n)}$.

As a corollary to theorem 2.1 we immediately obtain the minimal fixed point property (called mfpp) of procedures:

COROLLARY 2.3. $\left\{\tilde{S}_{j}\left[V_{j} / X_{j}\right]_{j \in J} \subseteq V_{j}\right\}_{j \in J} \vdash\left\{P_{j} \subseteq V_{j}\right\}$
Proof: Use $P_{j}=\bigcup_{k=0}^{\infty} P_{j}^{(k)}$ and induction on k.

1. $\mathrm{P}_{\mathrm{j}}^{(0)} \subseteq \mathrm{V}_{\mathrm{j}}$ is clear.
2. Assume the result for k, then $P_{j}^{(k+1)}=s_{j}^{(k)}=\tilde{S}_{j}\left[P_{j}^{(k)} / X_{j}\right]{ }_{j \in J} \subseteq$ \subseteq (induction hypothesis) $\tilde{\mathrm{s}}_{\mathrm{j}}\left[\mathrm{V}_{\mathrm{j}} / \mathrm{X}_{\mathrm{j}}\right]{ }_{\mathbf{j} \in \mathrm{J}} \subseteq \mathrm{V}_{\mathrm{j}}$.

Remark. Combination of the fixed point and minimal fixed point properties yields, for all i $\in J$,

$$
o\left(P_{i}\right)=\left(n\left\{\left\langle o\left(V_{k}\right)\right\rangle_{k \in J} \mid o\left(S_{k}\left[V_{j} / X_{j}\right]_{j \in J}\right) \subseteq o\left(V_{k}\right), \text { for all } k \in J\right\}\right)_{i} \text {, }
$$

where $\left\langle o\left(V_{k}\right)\right\rangle_{k \in J}$ denotes the sequence with elements $o\left(V_{k}\right), k \in J$, and $\left(\left\langle\theta\left(V_{k}\right)\right\rangle_{k \in J}\right)_{i}$ denotes the i-th component $\theta\left(V_{i}\right)$ of this sequence. This characterization of $o\left(P_{i}\right)$ is the key to the definition of the mathematical interpretation of μ-terms in the next section.

The following lemma legitimates the modular approach to programming and is a simple consequence of fpp (1emma 2.1.e), the substitutivity rule (corollary 2.2) and mfpp (corollary 2.3).

LEMMA 2.8. (Modularity lemma). Let J and K be disjoint index sets, let S for all $j \in J$ be a closed statement scheme of which the procedure symbols are indexed by K , and let S and, for $a l l\langle\mathrm{j}, \mathrm{k}\rangle \in \mathrm{J} \times \mathrm{K}, \mathrm{S}_{\mathrm{j}, \mathrm{k}}$ be closed statement schemes the procedure symbols of which are indexed by J , then
$\left\langle\left\{P_{j} \Longleftarrow \tilde{S}_{j}\left[S_{j, k} / X_{k}\right]_{k \in K}\right\}_{j \in J}, S>=\right.$
$=\left\langle\left\{P_{j, k} \Longleftarrow \widetilde{s}_{j, k}\left[\widetilde{s}_{j}\left[P_{j, k} / X_{k}\right]_{k \in K} / X_{j}\right]_{j \in J}\right\}_{<j, k>\in J \times K}, \widetilde{S}_{[}\left[\widetilde{S}_{j}\left[P_{j, k} / X_{k}\right]_{k \in K} / X_{j}\right]_{j \in J}{ }^{>}\right.$ is valid.

PROOF. The case $J=\{0\}$ and $K=\{1,2\}$ is considered to be representative. Then one has to prove $\left\langle\mathrm{P}_{0} \Longleftarrow \mathrm{~S}_{0}\left(\mathrm{~S}_{1}\left(\mathrm{P}_{0}\right), \mathrm{S}_{2}\left(\mathrm{P}_{0}\right)\right), \mathrm{P}_{0}>=\right.$
$=\left\langle\mathrm{P}_{1} \Longleftarrow \mathrm{~S}_{1}\left(\mathrm{~S}_{0}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)\right), \mathrm{P}_{2} \Longleftarrow \mathrm{~S}_{2}\left(\mathrm{~S}_{0}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)\right), \mathrm{S}_{0}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)\right\rangle$.
Consider the following declaration scheme:
$\left\{\mathrm{P}_{0} \Longleftarrow \mathrm{~S}_{0}\left(\mathrm{~S}_{1}\left(\mathrm{P}_{0}\right), \mathrm{S}_{2}\left(\mathrm{P}_{0}\right)\right), \mathrm{P}_{1} \Leftarrow \mathrm{~S}_{1}\left(\mathrm{~S}_{0}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)\right), \mathrm{P}_{2} \Longleftarrow \mathrm{~S}_{2}\left(\mathrm{~S}_{0}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)\right)\right.$,
$\left.\mathrm{P}_{3} \Longleftarrow \mathrm{~S}_{0}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right), \mathrm{P}_{4} \Leftarrow \mathrm{~S}_{1}\left(\mathrm{P}_{0}\right), \mathrm{P}_{5} \Leftarrow \mathrm{~S}_{2}\left(\mathrm{P}_{0}\right)\right\}$.
With respect to this declaration scheme one proves $P_{0}=P_{3}$ by applying mfpp on $\left\{\mathrm{P}_{0} \subseteq \mathrm{P}_{3}, \mathrm{P}_{1} \subseteq \mathrm{P}_{4}, \mathrm{P}_{2} \subseteq \mathrm{P}_{5}, \mathrm{P}_{3} \subseteq \mathrm{P}_{0}, \mathrm{P}_{4} \subseteq \mathrm{P}_{1}, \mathrm{P}_{5} \subseteq \mathrm{P}_{2}\right\}$.
E.g., $S_{0}\left(S_{1}\left(P_{3}\right), S_{2}\left(P_{3}\right)\right) \subseteq P_{3}$ is derived by $S_{0}\left(S_{1}\left(P_{3}\right), S_{2}\left(P_{3}\right)\right)=$
$=(f p p$ and substitution rule $) \mathrm{S}_{0}\left(\mathrm{~S}_{1}\left(\mathrm{~S}_{0}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)\right), \mathrm{S}_{2}\left(\mathrm{~S}_{0}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)\right)\right.$) $=$ (similarly) $\mathrm{S}_{0}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)=(\mathrm{fpp}) \mathrm{P}_{3}$.
As $P_{3}=(f p p) S_{0}\left(P_{1}, P_{2}\right)$, the desired result is obtained by deleting declarations for uncalled procedures.

First the following convention is introduced: Calls of recursive procedures P , with P declared by $\mathrm{P} \Longleftarrow(\mathrm{p} \rightarrow \mathrm{S} ; \mathrm{P}, \mathrm{E})$, are written as $\mathrm{p} * \mathrm{~S}$. Hence declarations of such P are omitted.

Next we demonstrate how to apply this lemma to obtain a simple proof for a tree-traversal result in de Bakker and de Roever [2], section 4.5, and mention that the equivalences between certain procedures which do not have the form of while statements and nested while statements, contained in the same paper, section 5.1, can be proved as simple application of modularity, too. We quote, mutatis mutandis:
"The following problem, which at first sight appeared to be a problem of tree searching, was suggested to us ... by J.D. Alanen.
Suppose one wishes to perform a certain action A in all nodes of all trees of a forest (in the sense of Knuth [24], pp. 305-307). Let, for x any node, $s(x)$ be interpreted as "has x a son?", and $b(x)$ as "has x a brother?". Let $S(x)$ be: "Visit the first son of x ", $B(x)$ be: "Visit the first brother of x ", and $F(x)$: "Visit the father of x ". The problem posed to us can then be formulated as:

```
<P \Longleftarrow A;(s }->\textrm{S};\textrm{P};\textrm{F},\textrm{E});(\textrm{b}->\textrm{B};\textrm{P},\textrm{E}),\textrm{P}>
```


This equivalence can be obtained from lemma 2.8 by taking $P_{1} ; P_{2}$ for S_{0}, $A ;\left(s \rightarrow S ; P_{0} ; F, E\right)$ for S_{1} and $\left(b \rightarrow B ; P_{0}, E\right)$ for S_{2}.
3. the correctness language mu

3.1. Definition of MU

$M U$ is a formal language for binary relations over cartesian products which has minimal fixed point operators in order to characterize the inputoutput behaviour of recursive program schemes. Its semantics will be described using elementary model-theoretic concepts. This involves a mathematical, as opposed to operational, characterization of its semantics, and results in a rigorous definition of its interpretations m, which will be axiomatized in the next chapter.

DEFINITION 3.1. (Syntax of MU)
Basic symbols. The class of basic symbols is the union of the classes of symbols for individual relation constants, boolean relation constants, logical relation constants and relation variables.
a. The class of individual relation constont symbols A contains for all types $\langle n, \xi\rangle$ the symbols $A^{n, \xi}, A_{1}^{n, \xi}, \ldots, A_{i}^{n, \xi}, \ldots$.
b. The class of boolean relation constant symbols B contains for all n the symbols $p^{n, n}, p_{1}^{n, n}, \ldots, q^{n, n}, \ldots$ and $p^{n, n}, p_{1}^{n, n}, \ldots, q^{n, n}, \ldots$.
c. The class of logical relation constant symbols C contains for all types concerned the symbols $\Omega^{n_{,}, \xi}, U^{n, \xi}, E^{n, n}, \pi_{i}^{\eta_{1} \times \ldots \times n_{n}, \eta_{i}}, i=1, \ldots, n$.
d. The class of relation variable symbols X contains for all types $\langle\eta, \xi>$ the symbols $x^{n, \xi}, x_{1}^{n, \xi}, \ldots, x^{n, \xi}, \ldots, z^{n, \xi}, \ldots$.
Terms. The class of terms T, with arbitrary elements $\sigma^{n, \xi}, \sigma_{1}^{n, \xi}, \ldots, \tau^{\eta, \xi}, \ldots$ is defined as follows:
a. $A \cup B \cup C \cup X \subseteq T$
b. If $\sigma^{n, \xi} \in T$, then $\breve{\sigma}^{\xi, n}$ and $\bar{\sigma}^{n, \xi} \in T$.
c. If $\sigma^{\eta, \xi}, \tau^{\xi, \theta} \in T$ then $(\sigma ; \tau)^{\eta, \theta} \in T$, and if $\sigma^{\eta, \xi}, \tau^{\eta, \xi} \in T$ then $\left.(\sigma \cup \tau)^{\eta, \xi},(\sigma \cap \tau)^{\eta, \xi} \in T .{ }^{*}\right)$
*)
In accordance with the convention, that ";" binds stronger than " n " and " n " binds stronger than " u ", the parentheses around $\sigma ; \tau, \sigma \cap \tau$ and $\sigma \cup \tau$ will be often deleted. If the reader so wishes, he may stipulate any convention for parenthesis insertion in case the same binary operators occur adjacently. However, by associativity of these operators, the need for this is limited.
d. If $\sigma_{1}^{\eta_{1}, \xi_{1}}, \ldots, \sigma_{n}^{n_{n}, \xi_{n}} \in T$ and $x_{1}^{\eta_{1}, \xi_{1}}, \ldots, x_{n}^{n_{n}, \xi_{n}} \in T$ then

$$
\mu_{i} x_{1} \ldots x_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]^{\eta_{i}, \xi_{i}} \in T \text {, for } i=1, \ldots, n
$$

Free variables. An occurrence of a relation variable X is free in σ iff it occurs in no subterm of σ of the form $\mu_{i} \ldots$ X [....].
Syntactically continuous. A term σ is syntactically continuous in X if no free occurrence of X in σ lies within any subterm $\bar{\tau}$ or within any subterm $\mu_{i} X_{1} \ldots X_{n}\left[\tau_{1}, \ldots, \tau_{n}\right]$ with some τ_{j} not syntactically continuous in X_{k}, $\mathrm{k}=1, \ldots, \mathrm{n}$.

Well-formed terms. A term σ is well-formed if, for all terms $\mu_{i} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]$ occurring as subterms of $\dot{\sigma}$, each σ_{j} is syntactically continuous in each $X_{k}, j, k=1, \ldots, n$.
Assertions. An atomic formula is of the form $\sigma_{1} \subseteq \sigma_{2}$ with $\sigma_{1}, \sigma_{2} \in T$. A formula is a set of atomic formulae $\left\{\sigma_{1,1} \subseteq \sigma_{2,1}\right\}$ 1 L with L any index set. An assertion is of the form $\Phi \vdash \Psi$ with Φ and ψ formulae.

Remarks. 1. $\sigma_{1}=\sigma_{2}$ is an abbreviation for $\sigma_{1} \subseteq \sigma_{2}, \sigma_{2} \subseteq \sigma_{1}$ and $\mu_{1} X_{1}\left[\sigma_{1}\right]$ is written as $\mu \mathrm{X}[\sigma]$.
2. For empty $\Phi, \Phi \vdash \Psi$ is written as $\vdash \Psi$ 。

DEFINITION 3.2. (Substitution)

Let $\sigma \in T$ and J be any index set such that, for $j \in J, X_{j} \in X$ and $\tau_{j} \in T$ are of the same type, then $\sigma\left[\tau_{j} / X_{j}\right]{ }_{j \in J}$ is defined as follows:
a. If $\sigma=X_{j}$ for some $j \in J$ then $\sigma\left[\tau_{j} / X_{j}\right]=\tau_{j}$.
b. If $J=\emptyset$ or $\sigma \in A \cup B \cup C \cup\left(X-\left\{X_{j}\right\} \quad{ }_{\mathbf{j} \in \mathrm{J}}\right)$ then $\sigma\left[\tau_{\mathbf{j}} / \mathrm{X}_{\mathbf{j}}\right]_{\mathbf{j} \in \mathrm{J}}=\sigma$.
c. If $\sigma=\breve{\sigma}_{1}$ or $\bar{\sigma}_{1}$ then $\sigma\left[\tau_{\mathbf{j}} / X_{\mathbf{j}}\right]_{\mathbf{j} \in J}=\sigma_{1}\left[\tau_{\mathbf{j}} / \mathrm{X}_{\mathbf{j}}\right]_{\mathbf{j} \in J}$ or $\frac{\sigma_{1}\left[\tau_{\mathbf{j}} / \mathrm{X}_{\mathbf{j}}\right]_{\mathbf{j} \in J}}{}$, respectively.
d. If $\sigma=\sigma_{1} ; \sigma_{2}, \sigma_{1} \cup \sigma_{2}$ or $\sigma_{1} \cap \sigma_{2}$ then $\sigma\left[\tau_{j} / x_{j}\right]{ }_{\mathbf{j} \in \mathrm{J}}=$ $\left.=\sigma_{1}\left[\tau_{j} / X_{j}\right]_{j \in J} ; \sigma_{2}{ }^{[\tau} \tau_{j} / X_{j}\right]_{j \in J}, \sigma_{1}\left[\tau_{j} / X_{j}\right]{ }_{\mathbf{j} \in J} \cup \sigma_{2}\left[\tau_{j} / X_{j}\right]{ }_{j \in J}$ or $\sigma_{1}\left[\tau_{j} / X_{j}\right]_{j \in J} \cap \sigma_{2}\left[\tau_{j} / X_{j}\right]_{j \in J}$, respectively.
e. If $\sigma=\mu_{i} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]$ then $\sigma\left[\tau_{j} / X_{j}\right]_{j \in J}=\mu_{i} Y_{1} \ldots Y_{n}\left[\sigma_{1}\left[Y_{1} / X_{1}\right]_{1 \in\{1, \ldots, n\}}{ }^{\left[\tau_{j}\right.} / X_{j}\right] \quad{ }_{j \in J^{*}}, \ldots$ $\left.\left.\ldots, \sigma_{n}\left[Y_{1} / X_{1}\right]_{1 \in\{1, \ldots, n\}}{ }^{[\tau}{ }_{j} / X_{j}\right]{ }_{j \in J *}\right]$, for $i=1, \ldots, n$, where $J^{*}=J-\{1, \ldots, n\}$, whence $\left\{x_{j}\right\}{ }_{j \in J^{*}}=$ $=\left\{X_{j}\right\}_{j \in J}-\left\{X, \ldots, X_{n}\right\}$, and Y_{1}, \ldots, Y_{n} are any relation variables different from any $X_{j}, j \in J$, and which do not occur in any $\sigma_{k}, k=1, \ldots, n$, or $\tau_{j}, j \in J^{*}$.

Remarks. 1. Thus $\sigma\left[\tau_{\mathbf{j}} / \mathrm{X}_{\mathbf{j}}\right]_{\mathbf{j} \in \mathrm{J}}$ is obtained from σ by simultaneous substitution of τ_{j} for X_{j}, replacing bound variables whenever necessary in order to prevent binding of free occurrences of X_{k} in any substituted τ_{j}, and omitting substitution for bound variables (cf. Hindley, Rogers and Seldin [16], definition 1.4), for $j \in J$.
2. Definition 3.2 is extended to formulae by writing $\left\{\sigma_{1,1} \subseteq \sigma_{2,1}\right\}_{1 \in L}\left[\tau_{j} / X_{j}\right]_{j \in J}$ for $\left\{\sigma_{1,1}\left[\tau_{j} / X_{j}\right]_{\mathbf{j} \in J} \subseteq \sigma_{2,1}\left[\tau_{j} / X_{j}\right]{ }_{\mathbf{j} \in J}\right\}_{1 \in L}$.
3. Properties involving the substitution operator such as the chain rule can be proved by induction on the complexity of σ.
4. If $J=\{1, \ldots, n\}, \sigma\left[\tau_{j} / x_{j}\right]_{j \in J}$ is written as $\sigma\left[\tau_{j} / x_{j}\right]_{j=1, \ldots, n}$ or $\sigma\left(\tau_{1}, \ldots, \tau_{n}\right)$. If $J=\{1\}$ we also use $\sigma[\tau / X]$.

Compared with the everyday relational language the μ-terms
$\mu_{i} X_{1} \ldots X_{n}\left[\tau_{1}, \ldots, \tau_{n}\right]$ represent the only new feature of $M U$ and its predecessors (cf. Scott and de Bakker [41], de Bakker [1] and de Bakker and de Roever [2]). In order to explain their interpretation we first describe the concept of continuity.
A term τ induces upon interpretation of its constants a functional of tuples of relations to relations by selecting a fixed component of these tuples as interpretation for each free variable occurring in τ. Therefore interpretations of variables, called variable valuations v, have to be separated from interpretations of constants, called initial interpretations i. Thus a pair $\langle\tau, 1\rangle$ determines a functional; this functional is called model function and denoted by $\phi_{1}\langle\tau\rangle$. Continuity of $\phi_{2}\langle\tau\rangle$ in X_{1}, \ldots, X_{n} can now be defined as follows: Let τ be a term, X_{1}, \ldots, X_{n} be variables, i be an initial interpretation and v and, for
each $j \in N, v_{j}$, be variable valuations satisfying, for $i=1, \ldots, n$, $v\left(X_{i}\right)={ }_{j=0}^{\infty} v_{j}\left(X_{i}\right), v_{j}\left(X_{i}\right) \subseteq v_{j+1}\left(X_{i}\right)$ and $v(X)=v_{j}(X)$ for X different from X_{i}, for a11 j. Then $\phi_{i}\langle\tau\rangle$ is continuous in X_{1}, \ldots, X_{n} iff $\phi_{i}\langle\tau\rangle(v)=$ $={ }_{j=0}^{\infty} \phi_{i}\langle\tau\rangle\left(v_{j}\right)$ for $a 11 v$ and $\left\langle v_{j}\right\rangle{ }_{j=0}^{\infty}$ considered above and all \imath. This concept derives its importance from the fact that only if $\phi_{1}<\tau_{1}>, \ldots, \phi_{1}<\tau_{n}>$ are continuous in X_{1}, \ldots, X_{n}, Scott's induction rule for establishing properties of $\phi_{1}<\mu_{i} X_{1} \ldots X_{n}\left[\tau_{1}, \ldots, \tau_{n}\right]>(v)$ is valid. A syntactically sufficient, although not necessary condition for continuity of $\phi_{1}\langle\tau\rangle$ in X_{1}, \ldots, X_{n}, is the following one: free occurrences of X_{1}, \ldots, X_{n} are not contained in complemented subterms of τ, i.e., τ is syntactically continuous in X_{1}, \ldots, X_{n}.
We therefore define the interpretation of $\mu_{i} X_{1} \ldots X_{n}\left[\tau_{1}, \ldots, \tau_{n}\right]$ only if $\tau_{1}, \ldots, \tau_{n}$ are syntactically continuous in X_{1}, \ldots, X_{n}, and refer to Hitchcock and Park [18] for more general considerations.

DEFINITION 3.3. (Semantics of MC)

Assignment of types. An initial assignment of types is a function $t_{0}: G \rightarrow D$, where G is the collection of possibly subscripted greek letters and D is a class of domains. An assignment of types, relative to a given initial assignment of types t_{0}, is a function t defined by (1) for $\eta \in G$, $t(\eta)=t_{0}(\eta)$, and (2) for any compound (domain type, cf. definition 2.1) $\left(\eta_{1} \times \ldots \times \eta_{n}\right), t(\eta)=t\left(\eta_{1}\right) \times \ldots \times t\left(\eta_{n}\right)$. For $\eta \in G, t(n)$ will be referred to as D_{n}, and for $\eta=\left(\eta_{1} \times \ldots \times \eta_{n}\right)$ with $\eta_{i} \in G, i=1, \ldots, n, t(\eta)$ will be referred to as $D_{\eta_{1}} \times \ldots \times D_{\eta_{n}}$.
Initial interpretation. Relative to a given assignment of types t, an initial interpretation is a function $1: A \cup B \cup C \rightarrow D_{1}, D_{2} \in D$
for all types involved. for all types involved.
a. $t\left(A^{\eta, \xi}\right) \subseteq t(\eta) \times t(\xi)$.
b. For $p^{\eta, \eta}, p^{\eta, \eta} \in B, l\left(p^{\eta, \eta}\right)$ and $l\left(p^{\eta, \eta}\right)$ are disjoint subsets of the identity relation over $t(n)$.
c. $l\left(\Omega^{\eta, \xi}\right)$ is the empty subset of $t(\eta) \times t(\xi), l\left(E^{\eta, \eta}\right)$ is the identity relation over $t(n), i\left(U^{\eta, \xi}\right)$ is $t(\eta) \times t(\xi)$ itself and $i\left(\pi_{i} i^{\times} \ldots \times \eta_{n}, \eta_{i}\right.$)
is the projection function of $t\left(\eta_{1}\right) \times \ldots \times t\left(\eta_{n}\right)$ on its i-th constituent component.

Variable valuation. Relative to a given assignment of types t, the class of variable valuations V contains the functions $v: X \rightarrow \underset{D_{1}, D_{2} \in \mathcal{D}}{U} 2_{1}^{D_{1} \times D_{2}}$, satis-
fying $v\left(X^{n, \xi}\right) \subseteq t(n) \times t(\xi)$ for all $x^{n, \xi} \in X$.

Model function. Relative to a given assignment of types t and an initial interpretation i, the model function $\phi_{1}\left\langle\sigma^{n, \xi_{\rangle}}: V \rightarrow 2{ }^{D_{n} \times D_{\xi}}\right.$ is defined as follows for well-formed terms $\sigma^{n, \xi}$:
a. $\phi_{i}\langle R\rangle(v)=\imath(R), R \in A \cup B \cup C$.
b. $\phi_{1}<X>(v)=v(X), X \in X$.
c. $\phi_{2}<\sigma_{1} ; \sigma_{2}>(v)=\phi_{1}<\sigma_{1}>(v) ; \phi_{2}<\sigma_{2}>(v), \phi_{2}<\sigma_{1} \cup \sigma_{2}>(v)=\phi_{1}<\sigma_{1}>(v) \cup \phi_{1}<\sigma_{2}>(v)$,
$\phi_{1}<\sigma_{1} \cap \sigma_{2}>(v)=\phi_{i}<\sigma_{1}>(v) \cap \phi_{1}<\sigma_{2}>(v), \phi_{1}<\breve{\sigma}>(v)=\phi_{i}<\sigma>(v)$,
$\phi_{2}\langle\bar{\sigma}\rangle(v)=\overline{\phi_{2}\langle\sigma\rangle(v)}$.
d. $\phi_{1}<\mu_{i} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]>(v)=$
$\left(n\left\{<v^{\prime}\left(X_{k}\right)>{ }_{k=1}^{n}\left|\phi_{i}<\sigma_{k}\right\rangle\left(v^{\prime}\right) \subseteq v^{\prime}\left(X_{k}\right), k=1, \ldots, n\right.\right.$, and $v^{\prime}(X)=v(X)$ for $\left.\left.X \in X-\left\{x_{1}, \ldots, X_{n}\right\}\right\}\right)_{i}$.

Interpretation of terms. An interpretation of terms is a triple $\left\langle\mathrm{t}_{0}, \mathrm{l}, \mathrm{v}\right\rangle$ where each term σ is interpreted as $\phi_{i}\langle\sigma\rangle(v)$. This triple will often be referred to as m. Then $\phi_{1}<\sigma>(v)$ is abbreviated by $m(\sigma)$.*)

Satisfoction. An atomic formula $\sigma_{1} \subseteq \sigma_{2}$ satisfies an interpretation of terms m iff $m\left(\sigma_{1}\right) \subseteq m\left(\sigma_{2}\right)$. A formula $\left\{\sigma_{1,1} \subseteq \sigma_{2,1}\right\}_{1}$ L satisfies an interpretation of terms m iff $\sigma_{1,1} \subseteq \sigma_{2,1}$ satisfies m for all $1 \in \mathrm{~L}$. Validity. An assertion $\Phi \mid \Psi$ is valid iff for every interpretation of terms m such that Φ satisfies m, Ψ satisfies m.

Remark. The definition of μ-terms can be straightforwardly generalized to the case where the μ-operators bind an infinite number of variables in an infinite sequence of terms.
The results of the next section are formulated and proved in such a way that they still apply if this generalization is effected.

[^6]
3.2. Validity of Scott's induction mule and the translation theorem.

First the union theorem for $M U$ is proved. This theorem is then applied to proving (1) validity of Scott's induction rule and (2) the translation theorem.

The reader who has followed the technical development of the previous chapter will observe a certain analogy between the results contained therein and the results of the present section. Notably, monotonicity is used in both chapters in proving union theorems. The substitutivity property, however, plays a more important role in this section and the continuity property is only defined in section 3.1. We state these properties in the following lemmas and refer to appendix 2 for proofs.

LEMMA 3.1. (Monotonicity).*) Let J be any index set, $\left\{X_{j}\right\}_{j \in J} \subseteq X, \sigma \in T$ be syntactically continuous in $X_{j}, j \in J$, and vamable valuations v_{1} and v_{2} satisfy (1) $\mathrm{v}_{1}\left(\mathrm{X}_{\mathrm{j}}\right) \subseteq \mathrm{v}_{2}\left(\mathrm{X}_{\mathrm{j}}\right)$ for $\mathrm{j} \in \mathrm{J}$ and (2) $\mathrm{v}_{1}(\mathrm{X})=\mathrm{v}_{2}(\mathrm{X})$ for $X \in X-\left\{X_{j}\right\} \quad j \in J$. Then the following holds:

$$
\phi<\sigma>\left(v_{1}\right) \subseteq \phi<\sigma>\left(v_{2}\right) .
$$

LEMMA 3.2. (Continuity). Let J be any index set, $\left\{X_{j}\right\}_{j \in J} \subseteq X, \sigma \in T$ be syntactically continuous in $X_{j}, j \in J$, and v and, for $i \in N, v_{i}$, be variable valuations which satisfy, for $i \in N$ and $j \in J,(1) v\left(X_{j}\right)={ }_{i=0} v_{i}\left(X_{j}\right)$, (2) $v_{i}\left(X_{j}\right) \subseteq v_{i+1}\left(X_{j}\right)$ and (3) $v(X)=v_{i}(X)$ for $X \in X-\left\{X_{j}\right\}{ }_{j \in J}$. Then the following holds:

$$
\phi<\sigma>(v)=u_{i=0}^{\infty} \phi<\sigma>\left(v_{i}\right) .
$$

LEMMA 3.3. (Substitutivity). Let J be any index set, $\sigma \in T, X_{j} \in X$ and $\tau_{j} \in T$ for $j \in J$, and variable valuations v_{1} and v_{2} satisfy (1) $v_{1}\left(X_{j}\right)=$ $\phi<\tau_{j}>\left(v_{2}\right)$ for $j \in J$ and (2) $v_{1}(X)=v_{2}(X)$ for $X \in X-\left\{X_{j}\right\}_{j \in J}$. Then the following holds:

$$
\phi<\sigma>\left(v_{1}\right)=\phi<\sigma\left[\tau_{j} / X_{j}\right]_{j \in J}>\left(v_{2}\right) .
$$

[^7]COROLLARY 3.1. (Change of bound variables). If Y_{1}, \ldots, Y_{n} do not occur free in $\sigma_{1}, \ldots, \sigma_{n}$,

$$
\begin{aligned}
& \phi<\mu_{i} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]>(v)= \\
& =\phi<\mu_{i} Y_{1} \ldots Y_{n}\left[\sigma_{1}\left[Y_{1} / X_{1}\right]{ }_{1=1}, \ldots, n, \ldots, \sigma_{n}\left[Y_{1} / X_{1}\right]{ }_{1=1}, \ldots, n\right]>(v) .
\end{aligned}
$$

Proof. Follows by definition 3.2 from lemma 3.3.

The union theorem for $M U$ states that minimal fixed points $\left\langle\phi<\mu_{1} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]>(v), \ldots, \phi<\mu_{n} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]>(v)>\right.$ of continuous functionals $\lambda v<\phi<\sigma_{1}>(v), \ldots, \phi<\sigma_{n}>(v)>$ can be obtained as unions of sequences of finite approximations $\left\langle\phi<\sigma_{1}^{i}>(v), \ldots, \phi<\sigma_{n}^{i}>(v)>, i=0,1, \ldots\right.$, with σ_{k}^{i} similarly defined as $\mathrm{S}_{\mathrm{k}}^{(\mathrm{i})}, \mathrm{k}=1, \ldots, \mathrm{n}$, cf. definition 2.6. DEFINITION 3.4. σ_{k}^{i}. Let $x_{1}^{\eta_{1}, \xi_{1}}, \ldots, x_{n}^{n_{n}, \xi_{n}} \in X$ be the free variables in $\sigma_{1}^{\eta_{1}, \xi_{1}}, \ldots, \sigma_{n}^{\eta_{n}, \xi_{n}} \in T$, then σ_{k}^{i} is defined by (1) $\sigma_{k}^{0}=\Omega^{\eta_{k}, \xi_{k}}$ and (2) $\left.\sigma_{k}^{i+1}=\sigma_{k}\left[\sigma_{1}^{i} / x_{1}\right]\right]_{1=1, \ldots, n}$, for $k=1, \ldots, n$.

THEOREM 3.1. (Union theorem for MU). Let $\sigma_{1}, \ldots, \sigma_{n} \in T$ be syntactically continuous in $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} \in \mathrm{X}$. Then the following holds for all vamable valuations v :

$$
\phi<\mu_{k} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]>(v)=\bigcup_{i=0}^{\infty} \phi<\sigma_{k}^{i}>(v), \quad k=1, \ldots, n .
$$

Proof. The proof splits into three parts. In the first part we prove $\phi<\sigma_{k}^{i}>(v) \subseteq \phi<\sigma_{k}^{i+1}>(v)$ for $i \in N$, in the second part $\phi<\mu_{k} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]>(v) \subseteq{ }_{i=0}^{\infty} \phi<\sigma_{k}^{i}>(v)$, and in the third part $\phi<\mu_{k} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]>(v) \geq{ }_{i=0}^{\infty} \phi<\sigma_{k}^{i}>(v)$ (the reverse inclusion).
Part 1. By induction on i. Obviously, $\phi<\sigma_{k}^{0}>(v) \subset \phi<\sigma_{k}^{1}>(v)$. Assume by hypothesis $\phi<\sigma_{k}^{i-1}>(v) \subseteq \phi<\sigma_{k}^{i}>(v)$ and prove $\phi<\sigma_{k}^{i}>(v) \subseteq \phi<\sigma_{k}^{i+1}>(v)$, $k=1, \ldots, n$. Define variable valuation v_{1} by $v_{1}\left(X_{k}\right)=\phi_{\phi<\sigma_{k}^{i}>}>(v)$ for
$k=1, \ldots, n$ and $v_{1}(X)=v(X)$, otherwise.
Then $\phi<\sigma_{k}^{i+1}>(v)=\phi<\sigma_{k}\left[\sigma_{1}^{i} / X_{1}\right]_{1=1, \ldots, n}>(v)=$ (substitutivity) $\phi<\sigma_{k}>\left(v_{1}\right)$. Similarly, $\phi<\sigma_{k}^{i}>(v)=\phi<\sigma_{k}>\left(v_{2}\right)$ with v_{2} defined by $v_{2}\left(X_{k}\right)=\phi<\sigma_{k}^{i-1}>(v)$ for $k=1, \ldots, n$ and $v_{2}(X)=v(X)$, otherwise.
As $\sigma_{1}, \ldots, \sigma_{n}$ are syntactically continuous, $\phi<\sigma_{k}^{i}>(v)=\phi<\sigma_{k}>\left(v_{2}\right) \subseteq$
\subseteq (monotonicity and hypothesis) $\phi<\sigma_{k}>\left(v_{1}\right)=\phi<\sigma_{k} i+1>(v)$, for $k=1, \ldots, n$.

Part 2. $\subseteq:$ Define variable valuations v^{\prime} and, for $i \in N, v_{i}$, as follows: $v^{\prime}\left(X_{k}\right)=\stackrel{U}{i}_{i=0}^{\infty} \phi<\sigma_{k}^{i}>(v)$ for $k=1, \ldots, n$, and $v^{\prime}(X)=v(X)$, otherwise, and similarly $v_{i}\left(X_{k}\right)=\phi\left\langle\sigma_{k}^{i}\right\rangle(v)$ for $k=1, \ldots, n$, and $v_{i}(X)=v(X)$, otherwise. Then $v^{\prime}\left(X_{k}\right)={ }_{i=0}^{\infty}{ }_{0} v_{i}\left(X_{k}\right)$ for $k=1, \ldots, n$ and $v^{\prime}(X)=v_{i}(X)$, otherwise. In part 1 we proved $\phi<\sigma_{k}^{i}>(v) \subseteq \phi<\sigma_{k}^{i+1}>(v)$, whence $v_{i}\left(X_{k}\right) \subseteq v_{i+1}\left(X_{k}\right)$. As σ_{k} is syntactically continuous in X_{1}, \ldots, X_{n}, the assumptions for continuity are

$i \stackrel{\infty}{\stackrel{\infty}{=}} \phi<\sigma_{k}^{i+1}>(v)=\bigcup_{i=0}^{\infty} \phi<\sigma_{k}^{i}>(v)=v^{\prime}\left(X_{k}\right)$. Thus v^{\prime} satisfies $\phi<\sigma_{k}>\left(v^{\prime}\right) \subseteq v^{\prime}\left(X_{k}\right)$ for $k=1, \ldots, n$ and $v^{\prime}(X)=v(X)$, otherwise, whence
$\left(n\left\{\left\langle v^{\prime \prime}\left(X_{1}\right)\right\rangle_{1=1}^{n}\left|\phi<\sigma_{1}\right\rangle\left(v^{\prime \prime}\right) \subseteq v^{\prime \prime}\left(X_{1}\right), 1=1, \ldots, n\right.\right.$, and $v^{\prime \prime}(X)=v(X)$ for $\left.\left.x \in X-\left\{X_{1}, \ldots, X_{n}\right\}\right\}\right)_{k} \subseteq$

Part 3. 2 : Let v^{\prime} satisfy $\phi<\sigma_{k}>\left(v^{\prime}\right) \subseteq v^{\prime}\left(X_{k}\right)$ for $k=1, \ldots, n$ and $v^{\prime}(X)=$ $=v(X)$, otherwise.
Then we prove $\phi<\sigma_{k}^{\mathbf{i}}>\left(v^{\prime}\right) \subseteq v^{\prime}\left(X_{k}\right)$ for $i \in N$ by induction on i. Obviously, $\phi<\sigma_{k}^{0}>\left(v^{\prime}\right) \subseteq v^{\prime}\left(X_{k}\right)$ 。
Assume by hypothesis $\phi<\sigma_{k}^{i}>\left(v^{\prime}\right) \subseteq v^{\prime}\left(X_{k}\right)$ and prove $\phi<\sigma_{k}^{i+1}>\left(v^{\prime}\right) \subseteq v^{\prime}\left(X_{k}\right)$, $k=1, \ldots, n$.
Define variable valuation $v^{\prime \prime}$ by $v^{\prime \prime}\left(X_{k}\right)=\phi<\sigma_{k}^{i}>\left(v^{\prime}\right)$ for $k=1, \ldots, n$ and $v^{\prime \prime}(X)=v^{\prime}(X)$, otherwise.
Then $\phi<\sigma_{k}^{i+1}>\left(v^{\prime}\right)=\phi<\sigma_{k}\left[\sigma_{1}^{i} / X_{1}\right] 1=1, \ldots, n^{>}\left(v^{\prime}\right)=$ (substitutivity) $\phi<\sigma_{k}>\left(v^{\prime \prime}\right) \subseteq$ \subseteq (monotonicity, as $v^{\prime \prime}\left(X_{k}\right)=\phi\left\langle\sigma_{k}^{i}\right\rangle\left(v^{\prime}\right) \subseteq v^{\prime}\left(X_{k}\right)$ by hypothesis and $v^{\prime \prime}(X)=$ $=v^{\prime}(X)$, otherwise $) \phi<\sigma_{k}>\left(v^{\prime}\right) \subseteq v^{\prime}\left(X_{k}\right)$. Thus ${ }_{i=0}^{\infty} \phi<\sigma_{k}^{i}>(v)=\left(X_{1}, \ldots, X_{n}\right.$ not occurring in σ_{k}^{i}) $i=0 \quad \phi<\sigma_{k}^{i}>\left(v^{\prime}\right) \subseteq v^{\prime}\left(X_{k}\right)$. As this holds for all v^{\prime} considered above,

$$
\begin{aligned}
& \bigcup_{i=0}^{\infty} \phi<\sigma_{k}^{i}>(v) \subseteq \\
& \left(n \left\{<v^{\prime}\left(X_{1}\right) \gg_{1=1}^{n} \mid \phi<\sigma_{1}>\left(v^{\prime}\right) \subseteq v^{\prime}\left(X_{1}\right), 1=1, \ldots, n,\right.\right.
\end{aligned} \quad \text { and } v^{\prime}(X)=v(X) .
$$

Scott's induction rule is the main innovation of Scott and de Bakker [41], represents a general formulation for inductive arguments which does not assume any knowledge of the integers, and unifies methods for proof by induction such as recursion induction (McCarthy [29]), structural induction (Burstall [8]) and computational induction (Manna and Vuillemin [27]). Its formulation is given by

$$
\begin{aligned}
& I: \Phi \vdash \Psi\left[\Omega{ }^{n_{k}, \xi_{k}} / x_{k}^{n_{k}, \xi_{k}}\right]_{k=1, \ldots, n} \\
& \Phi, \Psi \vdash \Psi\left[\sigma^{n_{k}, \xi_{k}} / \mathrm{X}_{\mathrm{k}}^{n_{k}, \xi_{k}}\right]_{k=1, \ldots, n} \\
& \Phi \vdash \Psi\left[\mu_{k} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right] / x_{k}^{n_{k}, \xi_{k}}\right]_{k=1, \ldots, n^{0}}
\end{aligned}
$$

with Φ only containing occurrences of X_{i} which are bound (i.e., not free) and Ψ only containing occurrences of X_{i} which are not complemented.

THEOREM 3.2. (Validity of Scott's induction rule, I). If Φ and Ψ are formulae such that Φ does not contain any free occurrence of $X_{k}, k=1, \ldots, n$, and all terms contained in Ψ are syntactically continuous in X_{k}, $\mathrm{k}=1, \ldots, \mathrm{n}$, then I is valid.

Proof. Let v be any variable valuation satisfying Φ, let v^{\prime} be defined by $v^{\prime}\left(X_{k}\right)=\phi<\mu_{k} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]>(v)$ for $k=1, \ldots, n$ and $v^{\prime}(X)=v(X)$, otherwise, and let $\tau_{1,1} \subseteq \tau_{2,1}$ be any atomic formula contained in $\Psi=\left\{^{\tau_{1,1}} \subseteq \tau_{2,1}\right\}_{1 \in L}$.
We prove $\phi<\tau_{1,1}\left[\mu_{k} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right] / X_{k}\right]_{k=1, \ldots, n}>(v) \subseteq$ $\subseteq \phi<\tau 2,1\left[\mu_{k} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right] / X_{k}\right]_{k=1, \ldots, n}>(v)$ 。
By substituvity, $\phi<\tau{ }_{j, 1}\left[\mu_{k} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right] / X_{k}\right]_{k=1, \ldots, n}>(v)=\phi<\tau j, 1>\left(v^{\prime}\right)$, j $=1,2$.

By the union theorem for $M U, v^{\prime}\left(X_{k}\right)=\phi \leqslant \mu_{k} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]>(v)=$ $=\stackrel{\infty}{i=0} \phi<\sigma_{k}^{i}>(v)$.
Let variable valuations v_{i} be defined by $v_{i}\left(X_{k}\right)=\phi<\sigma_{k}^{i}>(v)$ for $k=1, \ldots, n$, and $v_{i}(X)=v(X)$, otherwise, $i \in N$.
Then $\phi<\tau_{j, 1}>\left(v^{\gamma}\right)={ }_{i=0}^{\infty} \phi<\tau_{j, 1}>\left(v_{i}\right), j=1,2$, by continuity.
Therefore we must prove $\underset{i=0}{\infty} \phi<\tau_{1,1}>\left(v_{i}\right) \subseteq \stackrel{\bigcup}{i=0}_{\infty}^{\|} \phi<\tau_{2,1}>\left(v_{i}\right)$ in order to obtain the desired result.
It is sufficient to prove $\phi<\tau_{1,1}>\left(v_{i}\right) \subseteq \phi<\tau_{2,1}>\left(v_{i}\right)$ by induction on i. For $i=0, \sigma_{k}^{i}=\Omega^{\eta_{k}, \xi_{k}}$, whence $\phi<\tau_{1,1}>\left(v_{0}\right) \subseteq \phi<\tau_{2,1}>\left(v_{0}\right)$ follows by substitutivity from validity of $\Phi \vdash \Psi\left[\Omega{ }^{\eta_{k}}, \xi_{k} / X_{k}\right]_{k=1, \ldots, n}$, as (1) v and v_{0} differ only in their assignments of relations to X_{1}, \ldots, X_{n}, (2) Φ satisfies v and $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ do not occur free within Φ, whence (3) Φ satisfies v_{0}. Assume by hypothesis $\phi<\tau_{1,1}>\left(v_{i}\right) \subseteq \phi<\tau 2,1>\left(v_{i}\right)$ and prove $\phi<\tau_{1,1}>\left(v_{i+1}\right) \subseteq$ $\phi<\tau_{2,1}>\left(v_{i+1}\right), 1 \in L$.
Validity of $\Phi, \Psi \vdash \Psi\left[\sigma_{k} / X_{k}\right]_{k=1, \ldots, n}$ implies in particular that if Φ and Ψ satisfy $v_{i}, \Psi\left[\sigma_{k} / X_{k}\right]_{k=1, \ldots, n}$ satisfies v_{i}. Now Φ satisfies v_{i} by an argument similar to the one above for $i=0$. By hypothesis, Ψ satisfies v_{i}. Therefore we conclude that $\Psi\left[\sigma_{k} / X_{k}\right]_{k=1, \ldots, n}$ satisfies v_{i} and in particular $\phi<\tau_{1,1}\left[\sigma_{k} / X_{k}\right]_{k=1, \ldots, n}>\left(v_{i}\right) \subseteq \phi<\tau \tau_{2,1}\left[\sigma_{k} / X_{k}\right]_{k=1, \ldots, n}>\left(v_{i}\right)$. By definitions of v_{i+1} and $\sigma_{k}^{i}, \phi<\sigma_{k}>\left(v_{i}\right)=\phi<X_{k}>\left(v_{i+1}\right)$ follows by substitutivity, whence $\phi<\tau_{j, 1}\left[\sigma_{k} / X_{k}\right]_{k=1, \ldots, n}>\left(v_{i}\right)=\phi<\tau_{j, 1}>\left(v_{i+1}\right), j=1,2$, by substitutivity, too.
Thus we conclude $\phi<\tau_{1,1}>\left(v_{i+1}\right) \subseteq \phi<\tau_{2,1}>\left(v_{i+1}\right)$ for $1 \in \mathrm{~L}$.
Finally we define the mapping tr : $P L \rightarrow M U$ (compare section 1.2) and prove the translation theorem.

DEFINITION 3.5. (tr). The mapping tr of program schemes of PL into terms of MU is defined as follows: consider a program scheme $T=\left\langle\left\{P_{k} \Leftarrow S_{k}\right\}_{k=1, \ldots, n}, S\right\rangle$, then $\operatorname{tr}(T)$ is inductively defined by a. $\operatorname{tr}(R)=R$, for $R \in A \cup C \cup X$.
b, $\operatorname{tr}\left(P_{i}\right)=\mu_{i} X_{1} \ldots X_{n}\left[\operatorname{tr}\left(\tilde{S}_{1}\right), \ldots, \operatorname{tr}\left(\tilde{S}_{n}\right)\right], i=1, \ldots, n$.
c. $\operatorname{tr}\left(\mathrm{S}_{1} ; \mathrm{S}_{2}\right)=\operatorname{tr}\left(\mathrm{S}_{1}\right) ; \operatorname{tr}\left(\mathrm{S}_{2}\right), \operatorname{tr}\left(\mathrm{p} \rightarrow \mathrm{S}_{1}, \mathrm{~S}_{2}\right)=\mathrm{p} ; \operatorname{tr}\left(\mathrm{S}_{1}\right) \cup \mathrm{p}^{\prime} ; \operatorname{tr}\left(\mathrm{S}_{2}\right)$ and $\operatorname{tr}\left(\left[S_{1}, \ldots, S_{n}\right]^{n, \xi_{1} \times \ldots \times \xi_{n}}\right)=\operatorname{tr}\left(S_{1}\right) ; \breve{\pi}_{1} \cap \ldots \cap \operatorname{tr}\left(S_{n}\right) ; \breve{\pi}_{n}$, with π_{i} of type $\left\langle\xi_{1} \times \ldots \times \xi_{n}, \xi_{i}\right\rangle, i=1, \ldots, n$.

COROLLARY 3.2: $\operatorname{tr}\left(S\left[V_{j} / X_{j}\right]_{j \in J}\right)=\operatorname{tr}(S)\left[\operatorname{tr}\left(V_{j}\right) / X_{j}\right]_{\mathbf{j} \in J^{*}}$

THEOREM 3.3. (Translation theorem). Let o be an operational interpretation of PL, m be a mathematical interpretation of $M U$, and a and m satisfy (1) if $R \in A \cup C \cup X$ then $O(R)=m(R)$ and (2) if $p \in B$ then $O(p)(x)=$ true iff $\langle x, x\rangle \in m(p)$ and $\sigma(p)(x)=$ false iff $\langle x, x\rangle \in \dot{m}\left(p^{\prime}\right)$. Then $\sigma(T)=m(t r(T))$ for all $\mathrm{T} \in P S$, i.e., tr is meaning preserving relative to a and m.

Proof. By induction on the values under a certain measure of the complexities of the program schemes concerned and relative to some declaration scheme $D=\left\{P_{j} \Leftarrow S_{j}\right\}=1, \ldots, n$. Let $N \cup N \times\{0\}$ be well-ordered by \propto, with α defined by:
$\mathrm{x} \propto \mathrm{y}$ iff (1) $\mathrm{x} \in N$ and $\mathrm{y} \in N$ and $\mathrm{x} \leq \mathrm{y}$, or (2) $\mathrm{x} \in N$ and $\mathrm{y} \in N \times\{0\}$, or (3) $\mathrm{x}=\langle\mathrm{u}, 0\rangle$ and $\mathrm{y}=\langle\mathrm{v}, 0\rangle$ and $\mathrm{u} \leq \mathrm{v}$.

Then this measure of complexity is the function $c: P S \rightarrow N \cup N \times\{0\}$, defined by
a. If $S \in A \cup C \cup X$ then $c(S)=1$.
b. If $S \in P$, then $c(P)=\langle 0,0\rangle$.
c. If $S=S_{1} ; S_{2}, S=\left(p \rightarrow S_{1}, S_{2}\right)$, let x or $\langle x, 0\rangle$ be the maximum of $c\left(S_{1}\right)$ and $c\left(S_{2}\right)$ under the well-order. Then $c\left(S_{1} ; S_{2}\right)$ and $c\left(p \rightarrow S_{1}, S_{2}\right)$ are defined as $\mathrm{x}+1$ or $\langle\mathrm{x}+1,0\rangle$.
d. If $S=\left[S_{1}, \ldots, S_{n}\right]$ let x or $\langle x, 0\rangle$ be the maximum of $c\left(S_{1}\right), \ldots, c\left(S_{n}\right)$ under the wel1-order α. Then $c\left(S_{1}, \ldots, S_{n}\right)$ is defined as $x+1$ or $\langle x+1,0\rangle$.
Thus $c\left(S_{i}\right) \not \approx c\left(S_{1} ; S_{2}\right)$ and $c\left(S_{i}\right) \not \approx c\left(p \rightarrow S_{1}, S_{2}\right)$ for $i=1,2$, $c\left(S_{i}\right) \not \approx c\left(\left[S_{1}, \ldots, S_{n}\right]\right), i=1, \ldots, n$, and $c\left(S_{j}^{(k)}\right) \not{ }_{f}^{\neq} c\left(P_{j}\right)$ for $k \in N$ and $j=1, \ldots, n$.

Hence c provides the basis for the inductive proof of the translation theorem below:
a. If $\mathrm{S} \in \mathrm{A} \cup \mathrm{C} \cup \mathrm{X}$ then $\sigma(\mathrm{S})=m(\operatorname{tr}(\mathrm{~S}))$ is obvious.
b. If $\mathrm{S}=\mathrm{S}_{1} ; \mathrm{S}_{2}$ then $O\left(\mathrm{~S}_{1} ; \mathrm{S}_{2}\right)=\left(1\right.$ emma 2.1) $O\left(\mathrm{~S}_{1}\right) ; O\left(\mathrm{~S}_{2}\right)=$ (induction hypothesis) $m\left(\operatorname{tr}\left(S_{1}\right)\right) ; m\left(\operatorname{tr}\left(S_{2}\right)\right)=m\left(\operatorname{tr}\left(S_{1}\right) ; \operatorname{tr}\left(S_{2}\right)\right)=m\left(\operatorname{tr}\left(S_{1} ; S_{2}\right)\right)$.
c. If $\mathrm{S}=\left(\mathrm{p} \rightarrow \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ then $\sigma\left(\mathrm{p} \rightarrow \mathrm{S}_{1}, \mathrm{~S}_{2}\right)=\left(\right.$ lemma 2.1) $\mathrm{m}(\mathrm{p}) ; o\left(\mathrm{~S}_{1}\right) \cup$ $u m\left(p^{\prime}\right) ; o\left(S_{2}\right)=$ (induction hypothesis) $m(p) ; m\left(\operatorname{tr}\left(\mathrm{~S}_{1}\right)\right) u$ $u m\left(p^{\prime}\right) ; m\left(\operatorname{tr}\left(S_{2}\right)\right)=m\left(p ; \operatorname{tr}\left(S_{1}\right) \cup p^{\prime} ; \operatorname{tr}\left(S_{2}\right)\right)=m\left(\operatorname{tr}\left(p \rightarrow S_{1}, S_{2}\right)\right)$.
d. If $\mathrm{S}=\left[\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}\right]$ then $o(\mathrm{~S})=(1 \mathrm{emma} 2.1) o\left(\mathrm{~S}_{1}\right) ; \overline{o\left(\pi_{1}\right)} \cap \ldots n$ $n o\left(S_{n}\right) ; \sigma\left(\pi_{\mathrm{n}}\right)=$ (induction hypothesis) $m\left(\operatorname{tr}\left(\mathrm{~S}_{1}\right)\right) ; \overline{m\left(\pi_{1}\right)} \cap \ldots n$ $n m\left(\operatorname{tr}\left(S_{n}\right)\right) ; \overline{m\left(\pi_{n}\right)}=m\left(\operatorname{tr}\left(S_{1}\right) ; \breve{\pi}_{1} \cap \ldots n \operatorname{tr}\left(S_{n}\right) ; \breve{\pi}_{n}\right)=m\left(\operatorname{tr}\left(\left[S_{1}, \ldots, S_{n}\right]\right)\right)$.
e. If $S=P_{j}$ then $O\left(P_{j}\right)=$ (union theorem for $P L$) ${ }_{i=0}^{U} O\left(P_{j}^{(i)}\right)=(1$ emma 2.4) $\mathrm{i}_{\mathrm{=}}^{\infty} 00\left(\mathrm{~S}_{\mathrm{j}}^{(\mathrm{i})}\right)=$ (induction hypothesis) $\underset{i=0}{\stackrel{\omega}{=}} m\left(\operatorname{tr}\left(\mathrm{~S}_{\mathrm{j}}^{(\mathrm{i})}\right)\right.$). Using corollary 3.2, $\operatorname{tr}\left(\mathrm{S}_{\mathrm{j}}^{(\mathrm{i})}\right)=\operatorname{tr}\left(\tilde{\mathrm{S}}_{\mathrm{j}}\right)^{(\mathrm{i})}$ is easily proved by induction on i . Hence, ${ }_{i=0}^{\infty} m\left(\operatorname{tr}\left(S_{j}^{(i)}\right)\right)={ }_{i=0}^{\infty} m\left(\operatorname{tr}\left(\tilde{S}_{j}\right)^{(i)}\right)=$ (union theorem for $M U$)
$m\left(\mu_{j} X_{1} \ldots X_{n}\left[\operatorname{tr}\left(\tilde{S}_{1}\right), \ldots, \operatorname{tr}\left(\tilde{S}_{n}\right)\right]=m\left(\operatorname{tr}\left(P_{j}\right)\right), j=1, \ldots, n\right.$.

3.3. Rebuttal of Manna and Vuillemin on call-by-value

In [27] Manna and Vuillemin discard call-by-value as a computation rule, because, in their opinion, it does not lead to computation of the minimal fixed point. Clearly, our translation theorem invalidates their conclusion. As it happens, they work with a formal system in which minimal fixed points coincide with recursive solutions computed with call-by-nome as rule of computation; this has been demonstrated in de Roever [36]. Quite correctly they observe that within such a system call-by-value does not necessarily lead to computation of minimal fixed points. We may point out that observations like this one hardly justify discarding call-by-value as rule of computation in general.
For more remarks on the topic of parameter mechanisms (or rules of computation) and minimal fixed point operators we refer to de Roever [36].
4. AXIOMATIZATION OF MU

The axiomatization of MU proceeds in four successive stages:

1. In section 4.1 we develop the axiomatization of typed binary relations.
2. This axiomatization is extended in section 4.2 to boolean constants.
3. The axiomatization of projection functions in section 4.3 then results in the axiomatization of binary relations over cartesian products.
4. The additional axiomatization of μ-terms in section 4.4 completes the axiomatization of MU.

4.1. Axiomatization of typed binary relations.

Consider the following sublanguage of $M U$, called $M U_{0}$:
The elementary terms of $M U_{0}$ are restricted to the individual relation constants, relation variables and logical constants $\Omega^{\eta, \xi}, E^{\eta, \eta}$ and $U^{\eta, \xi}$ of $M U$, i.e., boolean constants and projection functions are excluded.
The compound terms of $M U_{0}$ are those terms of $M U$ which are constructed using these basic terms and the ";", "u", "n", "し" and "-" operators, $i . e .$, the " μ_{i} " operators are excluded.
The assertions of $M U_{0}$ are those assertions of $M U$ whose atomic formulae are inclusions between terms of $M U_{0}$.
$M U_{0}$ is axiomatized by the following axioms and rules:

1. The typed versions of the axioms and rules of boolean algebra.
2. The typed versions of Tarski's axioms for binary relations (cf. [43]):

$$
\begin{aligned}
& T_{1}: F\left(X^{n, \theta} ; Y^{\theta, \zeta}\right) ; Z^{\zeta, \xi}=X^{\eta, \theta} ;\left(Y^{\theta, \zeta} ; Z^{\zeta, \xi}\right) \\
& T_{2}: \vdash \breve{x}^{n, \xi}=x^{n, \xi} \\
& T_{3}: F\left(X^{\eta, \theta} ; Y^{\theta, \xi}\right)^{\smile}=\breve{Y}^{\theta}, \xi ; \check{X}^{n, \theta} \\
& T_{4}: \mid-x^{n, \xi_{;}} E^{\xi, \xi}=x^{n, \xi} \\
& T_{5}:\left(X^{\eta, \theta} ; Y^{\theta, \xi}\right) \cap Z^{\eta, \xi}=\Omega^{\eta, \xi} F\left(Y^{\theta, \xi} ; \breve{Z}^{\eta, \xi}\right) \cap \breve{X}^{\eta, \theta}=\Omega^{\theta, \eta}
\end{aligned}
$$

3. $U: \mid-U^{n, \xi} \subseteq U^{\eta, \theta} ; U^{\theta, \xi}$

In the sequel we omit parentheses in our formulae，based on the asso－ ciativity of binary operators and on the convention that＂；＂has priority over＂n＂，which has in turn priority over＂u＂。

LEMMA 4．1．
a． $\mathrm{X}^{\eta, \xi} \subseteq \mathrm{Y}^{\eta, \xi} \mid-\breve{X}^{\eta, \xi} \subseteq \breve{Y}^{\eta, \xi}, \mathrm{X}^{\eta, \xi} ; \mathrm{Z}^{\xi, \theta} \subseteq \mathrm{Y}^{\eta, \xi} ; \mathrm{z}^{\xi, \theta}, \mathrm{z}^{\theta, \eta} ; \mathrm{X}^{\eta, \xi} \subseteq \mathrm{z}^{\theta, \eta} ; \mathrm{Y}^{\eta, \xi}$
b．$F \Omega^{\eta, \xi} ; X^{\xi, \theta}=\Omega^{\eta, \theta}, x^{\eta, \xi} ; \Omega^{\xi, \theta}=\Omega^{n, \theta}$
c．$F E^{n, \eta} ; x^{n, \xi}=x^{n, \xi}$
d．$F U^{\eta, \xi} ; U^{\xi, \theta}=U^{\eta, \theta}$
e． $\mathcal{F} \breve{\Omega}^{\eta, \xi}=\Omega^{\xi, \eta}, \breve{E}^{\eta, \eta}=E^{\eta, \eta}, \breve{U}^{\eta, \xi}=U^{\xi, \eta}$
f． $\mid-X^{\eta, \xi} ;\left(Y^{\xi, \theta} \cup Z^{\xi, \theta}\right)=X^{\eta, \xi} ; Y^{\xi, \theta} \cup X^{\eta, \xi} ; Z^{\xi, \theta},\left(X^{\xi, \theta} \cup Y^{\xi, \theta}\right) ; Z^{\theta, \eta}=$ $=X^{\xi, \theta} ; \mathrm{Z}^{\theta, \eta} \cup \mathrm{Y}^{\xi, \theta} ; \mathrm{Z}^{\theta, \eta}$
g．$F\left(X^{\eta, \xi} \cup Y^{\eta, \xi}\right)^{\smile}=\breve{X}^{n, \xi} \cup \breve{Y}^{n, \xi},\left(X^{\eta, \xi} \cap Y^{\eta, \xi}\right)^{\sim}=\breve{X}^{n, \xi} \cap \breve{Y}^{n}, \xi, \breve{\bar{X}}^{n}, \xi=\bar{X}^{n}, \xi$

Proof．Except for the proof of lemma 4．1．d which is obtained using U and a law of boolean algebra，the proofs for the typed case are similar to the proofs for the untyped case as contained in Tarski［43］．

Lemma 4．1．a expresses monotonicity of＂几＂and＂；＂．Together with the obvious monotonicity of＂u＂and＂n＂，this will be used in lemma 4.9 to establish monotonicity of syntactically continuous terms in general．

Remarks．1．Henceforward the laws of boolean algebra are used without ex－ plicit reference．

2．Type indications are omitted provided no confusion arises．

LEMMA 4．2．$-\mathrm{X} ; \mathrm{Y} \cap \mathrm{Z}=\mathrm{X} ;(\underset{\mathrm{X}}{\mathrm{X}} \mathrm{Z} \cap \mathrm{Y}) \cap \mathrm{Z}$ 。
Proof．$X ; Y \cap Z=X ;(U \cap Y) \cap Z=X ;((\bar{X} ; Z \cup \bar{X} ; Z) \cap Y) \cap Z=$ $=\{X ;(\bar{X} ; Z \cap Y) \cap Z\} \cup\{X ;(\breve{X} ; Z \cap Y) \cap Z\}$ ．Also $\bar{Z} ; X \cap \bar{Z} ; X=\Omega$ ，whence by T_{5} ， $\mathrm{X} ;(\overline{\mathrm{Z}} ; \mathrm{X})^{\vee} \cap \breve{Z}=\Omega$ ，thus by T_{2}, T_{3} and lemma $4.1,(\mathrm{X} ; \overline{\mathrm{X}} ; \mathrm{Z}) \cap \mathrm{Z}=\Omega$ ． Therefore，$X ;(\breve{X} ; Z \cap Y) \cap Z=\Omega$ ，whence $X ; Y \cap Z=X ;(\breve{X} ; Z \cap Y) \cap Z$ follows．

The first applications of lemma 4.2 follow in the proof of lemma 4.3, in which a number of useful properties of relations and functions are formally derived. Remember that $X \circ E$ has been defined as $X ; U \cap E$ (section 1.3). By convention the "。" operator has a higher priority than the ";" operator.

LEMMA 4.3.
a. $\check{X} ; X \subseteq E \mid X ;(Y \cap Z)=X ; Y \cap X ; Z$
b. $X \subseteq E F X=\check{X}$
c. $F X=X \circ E ; X, X=X ; \quad \breve{X} \circ E, X \circ E=X ; \bar{X} \cap E, X ; U=X \circ E ; U$
d. $X \subseteq Y, \breve{Y} ; Y \subseteq E F X \circ E ; Y=X$
e. $F \prod_{i=1}^{n} X_{i} ; Y_{i}=X_{1} \circ E ; \ldots ; X_{n} \circ E ;\left(\sum_{i=1}^{n} X_{i} ; Y_{i}\right) ; \check{Y}_{1} \circ E ; \ldots ; \breve{Y}_{n} \circ E$.

Proof. a. ㄷ. Clear.
ㄱ. $X ; Y \cap X ; Z=($ lemma 4.2$) X ;(\breve{X} ; X ; Z \cap Y) \cap X ; Z \subseteq$ (assumption) $X ;(Y \cap Z)$.
b. $X=X \cap E=(1$ emma 4.2) $X ;(\breve{X} ; E \cap E) \cap E \subseteq X ; \breve{X} \subseteq \breve{X}$. Thus $X \subseteq \breve{X}$, whence $\breve{X} \subseteq \check{X}=X$.
c. $X=X \circ E ; X: \breve{X}=\breve{X} \cap U=(1$ emma 4.2) $\breve{X} ;(X ; U \cap E) \cap U=\breve{X} ;(X ; U \cap E)$.

Thus, by $T_{3}, X=(X ; U \cap E)^{\circ} ; X=($ part $b) X \circ E ; X$.
$X \circ E=X ; \check{X} \cap E:$ Direct from 1emma 4.2.
$X ; U=X \circ E ; U: X ; U=($ from above $)(X ; U ; U \cap E) ; X ; U \subseteq(1$ emma 4.1) $X \circ E ; U \subseteq$ $\subseteq X ; U ; U=X ; U$.
d. $\supseteq . X \subseteq Y$ implies $\breve{Y} ; X \subseteq \breve{Y} ; Y \subseteq$ (assumption) $E, X ; \breve{X} ; Y \subseteq$ (part b and T_{3}) X and $(X ; \breve{X} \cap E) ; Y \subseteq X ; \breve{X} ; Y \subseteq X$.
C. Immediate from part c.

ㄷ. $X ; Y \cap Z=$ (part c) $X \circ E ; X ; Y \cap Z=$ (part b and lemma 4.2)
$X \circ E ;(X \circ E ; Z \cap X ; Y) \cap Z \subseteq X \circ E ;(X ; Y \cap Z)$ 。

4.2. Axiomatization of boolean relation constants

Partial predicates are represented within $M U$ by pairs $\left\langle p, n, p^{\wedge}, n, n\right.$
whose interpretation is restricted to pairs of disjoint subsets of the identity relation corresponding to inverse images of true and false. $M U_{0}$ is extended to $M U_{1}$ by adding the boolean relation constants of $M U$ to the basic terms of $M U_{0} . M U_{1}$ is axiomatized by adding the following two axioms to those of $M U_{0}$:

$$
\begin{aligned}
& P_{1}: \vdash p^{n, n} \subseteq e^{n, n}, p^{\prime n, n} \subseteq e^{n, n} \\
& P_{2}: \vdash p^{n, n} \cap p^{, n, n}=\Omega^{n, \eta} .
\end{aligned}
$$

The translation theorem implies $o\left(p \rightarrow S_{1}, S_{2}\right)=m\left(p ; \operatorname{tr}\left(S_{1}\right) \cup p ; \operatorname{tr}\left(S_{2}\right)\right)$, provided $O\left(S_{i}\right)=m\left(\operatorname{tr}\left(S_{i}\right)\right), \mathbf{i}=1,2$, and $O(p)$ is. represented by $\left\langle m(p), m\left(p^{\prime}\right)\right\rangle$. Thus leads axiomatization of $M U_{1}$ to a theory of conditionals. This will be demonstrated by deriving the usual axioms for conditionals, cf. McCarthy [29], as a corollary from

LEMMA 4.4. $\mid-\breve{\mathrm{p}}=\mathrm{p}, \mathrm{p} ; \mathrm{q}=\mathrm{p} \cap \mathrm{q}$.
Proof. $\breve{\mathrm{p}}=\mathrm{p}$: Follows from lemma 4.3.b, and axiom P_{1}.
$p ; q=p \cap q: \subseteq$. Since $\vdash p \subseteq E, q \subseteq E$, monotonicity implies
$\vdash p ; q \subseteq q, p ; q \subseteq p$. Thus $\vdash p ; q \subseteq p \cap q$.
2. $卜 \mathrm{p} \cap \mathrm{q}=(1 \mathrm{emma} 4.2) \mathrm{p} ;(\breve{\mathrm{p}} ; \mathrm{q} \cap \mathrm{E}) \cap \mathrm{q} \subseteq \mathrm{p} ;(\breve{\mathrm{p}} ; \mathrm{q} \cap \mathrm{E}) \subseteq \mathrm{p} ; \mathrm{p} ; \mathrm{q} \subseteq \mathrm{p} ; \mathrm{q}$.

COROLLARY 4.1. Using the notation $(p \rightarrow X, Y)=p ; X \cup p ; Y$, we have
F $(p \rightarrow(p \rightarrow X, Y), Z)=(p \rightarrow X, Z),(p \rightarrow X,(p \rightarrow Y, Z))=$
$=(p \rightarrow X, Z),\left(p \rightarrow\left(q \rightarrow X_{1}, X_{2}\right),\left(q \rightarrow Y_{1}, Y_{2}\right)\right)=\left(q \rightarrow\left(p \rightarrow X_{1}, Y_{1}\right),\left(p \rightarrow X_{2}, Y_{2}\right)\right)$.
Proof. Immediate from lema 4.4 , using P_{1} and P_{2}.

COROLLARY 4.2. $-\mathrm{p} ; \mathrm{X} \cap \mathrm{Y}=\mathrm{p} ;(\mathrm{X} \cap \mathrm{Y})$.
Proof. $\mathrm{p} ; \mathrm{X} \cap \mathrm{Y}=(\mathrm{lemma} 4.2) \mathrm{p} ;(\mathrm{p} ; \mathrm{Y} \cap \mathrm{X}) \cap \mathrm{Y}=(1$ emmas 4.3.a and 4.4) $\mathrm{p} ; \mathrm{Y} \cap \mathrm{p} ; \mathrm{X}=(1 \mathrm{emma} 4.3 . a) \mathrm{p} ;(\mathrm{X} \cap \mathrm{Y})$.

In section 1.3 we already mentioned the "o" operator, defined by $X \circ p=X ; p ; U \cap E$. The basic properties of this operator are collected in ${ }^{*}$)

[^8]LEMMA 4.5.
a. $\mathcal{F}(X ; Y) \circ p=X \circ(Y \circ p)$
b. $F(X \cup Y) \circ p=X \circ p \cup Y \circ p$
c. $\mathcal{F}(X \cap Y) \circ p=X ; p ; \check{Y} \cap E$
d. $F X ; p \subseteq X \circ p ; x$
e. $\check{X} ; X \subseteq E F X ; p=X \circ p ; X$
f. $X ; p \subseteq q ; X \vdash X \circ p \subseteq q$

Proof. a. By definition, $(X ; Y) \circ p=X ; Y ; p ; U \cap E$ and $X \circ(Y \circ p)=$ $=X ;(Y ; P ; U \cap E) ; U \cap E$. Since by 1emma 4.3.c $\mathcal{C} \cap X ; p ; U=(X ; P ; U \cap E) ; U$, the result follows.
b. Immediate from the definitions and 1emma 4.1.
c. $X ; p ; \breve{Y} \cap E=($ lemmas 4.2 and 4.4$) X ; p ;(p ; \breve{X} \cap \breve{Y}) \cap E=$ (corollary 4.2 and Lemma 4.4) $X ; p ;(\breve{X} \cap \breve{Y}) \cap E=(1$ emma $4.3 . b)(X \cap Y) ; p ; \check{X} \cap E=$ $=$ monotonicity and lemma 4.3.c) $(X \cap Y) ; p ; U \cap E$.
d. Applying lemma 4.3.c we obtain $F X ; P=(X ; p ; U \cap E) ; X ; P \subseteq(X ; p ; U \cap E) ; X=$ $=\mathrm{X} \circ \mathrm{p} ; \mathrm{X}$.
e. ․ By part d above.

ㄹ. $X \circ p ; X=(1$ emmas 4.2 and 4.4$)$ X॰p $; X ;(\breve{X} ; X \circ p ; U \cap E) \subseteq(1$ emma 4.3.c)
$X ;(\breve{X} ; X ; p ; U \cap E) \subseteq($ assumption $) X ;(p ; U \cap E)=($ corollary 4.2$) X ; p$.
f. Assume $X ; p \subseteq q ; X$. Then $F X \circ p=X ; p ; U \cap E \subseteq q ; X ; U \cap E \subseteq$ (corollary 4.2) q.

Observe that from parts d and f of lemma 4.5 , we obtain that the following equality holds in all interpretations (compare section 1.3):

$$
X \circ p=n\{q \mid X ; p \subseteq q ; X\}
$$

4.3. Axiomatization of binary relations over cartesian products

The language $M U_{2}$ for binary relations over cartesian products is obtained from $M U_{1}$ by adding, for $i=1, \ldots, n$, projection function symbols
${ }_{\pi_{i}}^{n_{1} \times \ldots \times n_{n}, n_{i}}$ to the basic terms of $M L_{1}$, for all types concerned. $M U_{2}$ is axiomatized by adding the following two axiom schemes to the axioms and rules of $M U_{1}$:

$$
\begin{aligned}
\mathcal{C}_{1}: & \mid-\pi_{1} ; \breve{\pi}_{1} \cap \ldots \cap \pi_{n} ; \breve{\pi}_{n}=E \\
C_{2}: & \mid-x_{1} ; Y_{1} \cap \ldots \cdot \cap X_{n} ; Y_{n}= \\
& =\left(X_{1} ; \breve{\pi}_{1} \cap \ldots \cap X_{n} ; \breve{r}_{n}\right) ;\left(\pi_{1} ; Y_{1} \cap \ldots \cap \pi_{n} ; Y_{n}\right),
\end{aligned}
$$

where π_{i} is of type $<n_{1} \times \ldots \times n_{n}, n_{i}>, E$ stands for $E{ }^{\eta_{1} \times \ldots \times n_{n}, n_{1} \times \ldots \times n_{n}}$ and X_{i} and Y_{i} are of types $\left\langle\theta, \eta_{i}\right\rangle$ and $\left\langle\eta_{i}, \xi\right\rangle$, respectively.
An assignment $x_{i}:=f\left(x_{1}, \ldots, x_{n}\right)$ is expressed by a statement scheme V of the form $\left[\pi_{1}, \ldots, \pi_{i-1}, S, \pi_{i+1}, \ldots, \pi_{n}\right]$. Hence Hoare's axiom for the assignment (cf. [19])
$f\left\{p\left(x_{1}, \ldots, x_{i-1}, f\left(x_{1}, \ldots, x_{n}\right), x_{i+1}, \ldots, x_{n}\right)\right\} x_{i}:=f\left(x_{1}, \ldots, x_{n}\right)\left\{p\left(x_{1}, \ldots, x_{n}\right)\right\}$ corresponds with the assertion $\mid-\operatorname{tr}(\mathrm{V}) \circ \mathrm{p} ; \operatorname{tr}(\mathrm{V}) \subseteq \operatorname{tr}(\mathrm{V}) ; \mathrm{p}$, as $\left\{\mathrm{q}_{1}\right\} \vee \mathcal{V}\left\{\mathrm{q}_{2}\right\}$ is expressed by $q_{1} ; \operatorname{tr}(V) \subseteq \operatorname{tr}(V) ; q_{2}$, and $(\operatorname{tr}(V) \circ p)\left(x_{1}, \ldots, x_{n}\right)=$ $=p\left(x_{1}, \ldots, x_{i-1}, f\left(x_{1}, \ldots, x_{n}\right), x_{i+1}, \ldots, x_{n}\right)$ (compare section 1.3). As functionality of f implies $\overline{\operatorname{tr}(\mathrm{V})} ; \operatorname{tr}(\mathrm{V}) \subseteq \mathrm{E}$ by lemma 4.11 below, this assertion follows from (the more general) lemma 4.5.e. Thus leads the axiomatization of $M U_{2}$ to a theory of assignments.

The following lemma establishes some necessary relationships between projection functions and the E and U constants.

LEMMA 4.6. FOR $\mathrm{i}=1, \ldots, \mathrm{n}$:
a. $\vdash{ }_{\pi_{i}}^{\eta_{1} \times \ldots \times n_{n}, n_{i}}{ }_{o \mathrm{E}}{ }^{\eta_{i}, \eta_{i}}=E^{n_{1} \times \ldots \times n_{n}, n_{1} \times \ldots \times n_{n}}$
b. $\mid \pi_{i}{ }^{\eta_{1} \times \ldots \times n_{n}, \eta_{i}} ; U^{\eta_{i}, \xi}=U^{\eta_{1} \times \ldots \times n_{n}, \xi}$
c. $\mathcal{H} \check{\pi}_{i}^{n_{i}, n_{1} \times \ldots \times n_{n}}{ }_{; \pi_{i}}^{n_{1} \times \ldots \times n_{n}, n_{i}}=E^{n_{i}, n_{i}}$

Proof: a. Let E_{n} denote $E E^{\eta_{1} \times \ldots \times \eta_{n} s \eta_{1} \times \ldots \times n_{n}}$, then $E_{n}=\left(C_{1}\right) \pi_{i} ; \breve{\pi}_{i} \cap E_{n}=$
$=(\operatorname{lemma} 4.3 . c) \pi_{i}{ }^{\eta_{i}, n_{i}} \subseteq E_{n}$.
b. $\pi_{i} ; U^{\eta_{i}, \xi}=\underset{(1 \text { emma 4.3.c) }}{\eta_{1} \times \ldots \times n_{n}, \xi} \pi_{i}{ }^{\circ} \mathrm{n}_{\mathrm{i}}, \eta_{i} ; U^{\eta_{1} \times \ldots \times n_{n}, \xi}=$ (part a above)

$$
U^{n_{1} \times \ldots \times n_{n} \xi \xi}
$$

c. Consider, e.g., $\mathrm{n}=2$ and $\mathrm{i}=1$:

$$
\begin{aligned}
& E^{n_{1}, n_{1}}=(1 e \operatorname{mma} 4.1 . d) E^{n_{1}, n_{1}} ; E^{\eta_{1}, n_{1}} \cap U^{\eta_{1}, n_{1}} ; U^{\eta_{1}, n_{1}} \\
& \ldots=\left(C_{2}\right)\left(E^{\eta_{1}, \eta_{1}} ; \breve{\pi}_{1} \cap U^{\eta_{1}, \eta_{2}} ; \breve{\pi}_{2}\right) ;\left(\pi_{1} ; E^{\eta_{1}, \eta_{1}} \cap \pi_{2} ; U^{\eta_{2}, \eta_{1}}\right)= \\
& =\left(1 \text { emma } 4.1 \text { and part } b \text { above) } \breve{\pi}_{1} ; \pi_{1}\right. \text {. }
\end{aligned}
$$

d. Consider, e.g., $\mathrm{n}=2, \mathrm{i}=1$ and $\mathbf{j}=2$:

$$
\begin{aligned}
U^{n_{1}, \eta_{2}} & =E^{\eta_{1}, \eta_{1}} ; U^{\eta_{1}, \eta_{2}} \cap U^{\eta_{1}, \eta_{2}} ; E^{\eta_{2}, n_{2}} \\
\cdots & =\left(C_{2}\right)\left(E^{n_{1}, \eta_{1}} ; \breve{\pi}_{1} \cap U^{\eta_{1}, n_{2}} ; \breve{\pi}_{2}\right) ;\left(\pi_{1} ; U^{\eta_{1}, \eta_{2}} \cap \pi_{2} ; E^{\eta_{2}, n_{2}}\right)= \\
& =(\text { part b above }) \breve{\pi}_{1} ; \pi_{2} .
\end{aligned}
$$

Already in example 1.1 we signalled the analogy between ${ }_{i=n}^{n} X_{i} ; \breve{\pi}_{i}$ and a list of parameters called-by-value. From this point of view properties such as $\left({ }_{i=1}^{n} x_{i} ; \breve{\pi}_{i}\right) \circ E^{n_{1} \times \ldots \times n_{n}, n_{1} \times \ldots \times n_{n}}={ }_{i=1}^{n} X_{i} \circ E^{n_{i}, n_{i}}$ - the computation of such a list terminates iff the computations of its individual members terminates - and $\left({ }_{i=1}^{n} X_{i} ; \tilde{\pi}_{i}\right) ; \pi_{j}=\left({ }_{i=1}^{n} X_{i} o E^{n_{i}}, n_{i}\right) ; X_{j}$ - the request for the value of a parameter contained in such a list amounts to computation of the individual value of this parameter plus termination of the computations of the other parameters - are intuitively evident. These and similar properties follow from the following lemma and its corollary.

LEMMA 4.7. For $k, 1 \leq n$,
$=\left(\sum_{j=1}^{k} X_{i_{j}} ; \breve{\pi}_{i_{j}}\right) ;\left({ }_{t=1}^{1} \pi_{s_{t}} ; Y_{s_{t}}\right)$, with π_{i} of type $<\eta_{1} \times \ldots \times n_{n}, n_{i}>$, and $X_{i_{j}}$
and $\mathrm{Y}_{\mathrm{s}_{\mathrm{t}}}$ of types $\left\langle\theta, \eta_{\mathbf{i}_{\mathrm{j}}}>\right.$ and $\left.<\eta_{\mathrm{s}_{\mathrm{t}}}, \xi\right\rangle$, respectively.

Proof. The case of $n=3, k=1=2, i_{1}=1, i_{2}=2, s_{1}=2, s_{2}=3$ is representative. Hence we prove

$$
X_{1} \circ E ; X_{2} \circ E ; X_{2} ; Y_{2} ; \breve{Y}_{2} \circ E ; \breve{Y}_{3} \circ E=\left(X_{1} ; \breve{\pi}_{1} \cap X_{2} ; \breve{\pi}_{2}\right) ;\left(\pi_{2} ; Y_{2} \cap \pi_{3} ; Y_{3}\right) .
$$

By lemma 4.6, $X_{1} ; \breve{\pi}_{1} \cap X_{2} ; \breve{\pi}_{2}=x_{1} ; \breve{\pi}_{1} \cap X_{2} ; \breve{\pi}_{2} \cap U^{\theta, \eta_{3}} ; \breve{\pi}_{3}$ and
$\pi_{2} ; Y_{2} \cap \pi_{3} ; Y_{3}=\pi_{1} ; U^{\eta_{1} ; \xi} \cap \pi_{2} ; Y_{2} \cap \pi_{3} ; Y_{3}$, whence
$\left(X_{1} ; \breve{\pi}_{1} \cap X_{2} ; \breve{\pi}_{2}\right) ;\left(\pi_{2} ; Y_{2} \cap \pi_{3} ; Y_{3}\right)=\left(C_{2}\right) X_{1} ; U^{n}{ }^{n} \cap X_{2} ; Y_{2} \cap U^{\theta, \eta_{3}} ; Y_{3}$ $\ldots=\left(1\right.$ emma 4.3.c) $X_{1} \circ E ; U^{\theta, \xi} \cap X_{2} ; Y_{2} \cap U^{\theta, \xi} ; \breve{Y}_{3}{ }^{\circ} E$
$\ldots=$ (1emma 4.3.e)

$$
X_{1} \circ E ; X_{2} \circ E ;\left(X_{2} \circ E ; U^{\theta, \xi} \cap X_{2} ; Y_{2} \cap U^{\theta, \xi} ; \breve{Y}_{3} \circ E\right) ; \breve{Y}_{2} \circ E ; \breve{Y}_{3} \circ E
$$

By corollary 4.2, $X_{1} \circ E ; U^{\theta, \xi} \cap X_{2} ; Y_{2} \cap U^{\theta, \xi} ; Y_{3} \circ E=X_{1} \circ E ; X_{2} ; Y_{2} ; Y_{3} \circ E$, whence the result follows by lemma 4.4.

COROLLARY 4.3. $F\left(\underset{i=1}{n} X_{i} ; \breve{\pi}_{i}\right) \circ\left({ }_{i=1}^{n} \pi_{i} ; p_{i} ; \breve{\pi}_{i}\right)=x_{1} \circ p_{1} ; \ldots ; X_{n}{ }^{\circ} p_{n}$, with X_{i} of type $<\theta, \eta_{i}>$ and p_{i} of type $\left\langle\eta_{i}, \eta_{i}>\right.$.

$\ldots=(1 \operatorname{lemma} 4.6 . b)\left(\bigcap_{i=1}^{n} x_{i} ; p_{i} ; \tilde{\pi}_{i}\right) ; \pi_{1} ; U_{1}^{n_{1}, \theta} \cap E^{\theta, \theta}=$
$=(1$ emma 4.7$)\left(X_{1} ; p_{1}\right) \circ E ; \ldots ;\left(X_{n} ; p_{n}\right) \circ E ; X_{1} ; p_{1} ; U^{\eta_{1}, \theta} \cap E^{\theta, \theta}$
$\ldots=$ (corollary 4.2 and lemma 4.5.a) $X_{1}{ }^{\circ} p_{1} ; \ldots ; X_{n}{ }^{\circ} p_{n}{ }^{\circ}$

One of the consequences of lemma 4.7 is

$$
P\left({ }_{i=1}^{n-1} x_{i} ; \breve{\pi}_{i}\right) ;\left({ }_{i=1}^{n-1} \pi_{i} ; y_{i}\right)=\sum_{i=1}^{n-1} x_{i} ; Y_{i}
$$

with π_{i}, X_{i} and Y_{i} of types $\left\langle\eta_{1} \times \ldots \times \eta_{n} s \eta_{i}\right\rangle,\left\langle\theta, \eta_{i}\right\rangle$ and $\left\langle\eta_{i}, \xi\right\rangle$, respectively.
Assume $\eta_{1}=\eta_{2}=\ldots=\eta_{n}$ for simplicity, then, apart from the intended
interpretation of π_{i} as special subset of $D^{n} \times D$,
"axiom C_{2} for n^{-1}, in which $\pi_{1}, \ldots, \pi_{n-1}$ are interpreted as subsets of $D^{n-1} \times D$ "follows from" axiom C_{2} for $n, n>2^{\prime \prime}$.

This line of thought may be pursued as follows: Change the definition of type in that only compounds ($\eta_{1} \times n_{2}$) are considered, and introduce projection function symbols $\pi_{1}^{(n \times \xi), \eta}$ and $\pi_{2}^{(\eta \times \xi), \xi}$ only. For $n>2$ define $\left(n_{1} \times \ldots \times n_{n}\right)$ as $\left(\ldots\left(\left(n_{1} \times n_{2}\right) \times n_{3}\right) \times \ldots \times n_{n}\right)$ and $\pi_{i} \eta_{1} \times \ldots \times n_{n}, \eta_{i}$ as,
 $\left.{ }_{1}\left(\eta_{1} \times n_{2}\right) \times n_{3}\right),\left(n_{1} \times n_{2}\right) ; \pi_{2}\left(\eta_{1} \times n_{2}\right), \eta_{2}$ and $\pi_{2}\left(\left(n_{1} \times \eta_{2}\right) \times n_{3}\right), \eta_{3}$. Then it is a simple exercise to deduce C_{1} and C_{2} for $n=3$ from axioms C_{1} and C_{2} for $\mathrm{n}=2$. This indicates that our original approach may be conceived of as a "sugared" version of the more fundamental set-up suggested above. These considerations are related to the work of Hotz on X-categories (cf. Hotz [51]).

Arbitrary applications of the " \sim " operator can be restricted to projection functions, as demonstrated below; this result will be used in section 5.3 to prove Wright's result on the regularization of linear procedures.

LEMMA 4.8. $F \breve{\mathrm{X}}=\breve{\pi}_{2} ;\left(E \cap \pi_{1} ; \mathrm{X} ; \breve{\pi}_{2}\right) ; \pi_{1}$.
Proof. We prove $X=\breve{\pi}_{1} ;\left(E \cap \pi_{1} ; X ; \breve{\pi}_{2}\right) ; \pi_{2}$. The result then follows by lemma 4.3.b.

$$
\begin{aligned}
\pi_{1} ; X ; \breve{\pi}_{2} \cap E & =\left(C_{1}\right) \pi_{1} ; X ; \breve{\pi}_{2} \cap \pi_{1} ; \breve{\pi}_{1} \cap \pi_{2} ; \breve{\pi}_{2}= \\
& =(\text { lenmas } 4.6 . c \text { and } 4.3 . a) \pi_{1} ;\left(X ; \breve{\pi}_{2} \cap \breve{\pi}_{1}\right) \cap \pi_{2} ; \breve{\pi}_{2} .
\end{aligned}
$$

Hence, $\breve{\pi}_{1} ;\left(\pi_{1} ; X ; \breve{\pi}_{2} \cap E\right) ; \pi_{2}=(1$ enma 4.7$)\left(X ; \breve{\pi}_{2} \cap \breve{\pi}_{1}\right) ; \pi_{2}=(1$ emma 4.7 again $) X$.

4.4. Axiomatization of the " μ_{i} " operators

$M U$ is obtained from $M U_{2}$ by introducing the " μ_{i} " operators, and is axiomatized by adding Scott's induction rule, formulated in section 3.2 and referred to as I, and the following axiom scheme to the axioms and rules of MU_{2} :

$$
\begin{aligned}
& M: \vdash\left\{\sigma_{j}\left[\mu_{i} x_{1} \ldots x_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right] / x_{i}\right]\right. \\
&\left.\subseteq \mu_{j=1} x_{1} \ldots x_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]\right\} \\
& j=1, \ldots, n^{\bullet}
\end{aligned}
$$

The axiomatization of $M U$ is motivated by the need to provide a convenient axiomatization of PL. Thus one expects axiomatic proofs of (the translations of) properties of PL such as the fixed point (lemma 2.1.e) and minimal fixed point (corollary 2.3) properties, monotonicity (1emma 2.2) and modularity (1emma 2.8), as the union theorem is embodied in Scott's induction rule and substitution is by lemma 3.3 a valid rule of inference. These proofs are provided by the following lemmas:

LEMMA 4.9.

a. If $\tau_{1}\left(X_{1}, \ldots, X_{n}, Y\right), \ldots, \tau_{n}\left(X_{1}, \ldots, X_{n}, Y\right)$ are monotonic in X_{1}, \ldots, X_{n} and Y, i.e., $A_{1} \subseteq B_{1}, \ldots, A_{n+1} \subseteq B_{n+1} \mid-\tau_{1}\left(A_{1}, \ldots, A_{n+1}\right) \subseteq \tau_{2}\left(B_{1}, \ldots, B_{n+1}\right)$, then $Y_{1} \subseteq Y_{2} \mid-\left\{\mu_{j} X_{1} \ldots X_{n}\left[\tau_{1}\left(X_{1}, \ldots, X_{n}, Y_{1} \ldots \tau_{n}\left(X_{1}, \ldots, X_{n}, Y_{1}\right)\right] \subseteq\right.\right.$ $\left.\subseteq \mu_{j} X_{1} \ldots X_{n}\left[\tau_{1}\left(X_{1}, \ldots, X_{n}, Y_{2}\right) \ldots \tau_{n}\left(X_{1}, \ldots, X_{n}, Y_{2}\right)\right]\right\}_{j=1, \ldots, n^{*}}$
b. (Monotonicity). If $\tau\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ is syntactically continuous in
$\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ then τ is monotonic in $\mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$, i.e.,
$X_{1} \subseteq Y_{1}, \ldots, X_{n} \subseteq Y_{n} \vdash \tau\left(X_{1}, \ldots, X_{n}\right) \subseteq \tau\left(Y_{1}, \ldots, Y_{n}\right)$.
c. (Fixed point property). $\vdash\left\{\tau_{j}\left[\mu_{i} X_{1} \ldots X_{n}\left[\tau_{1}, \ldots, \tau_{n}\right] / x_{i}\right]_{i=1, \ldots, n}=\right.$

$$
\left.=\mu_{j} X_{1} \ldots X_{n}\left[\tau_{1}, \ldots, \tau_{n}\right]\right\} \quad j=1, \ldots, n^{0}
$$

d. (Minimal fixed point property, Park [34]).

$$
\left\{\tau_{j}\left(Y_{1}, \ldots, Y_{n}\right) \subseteq Y_{j}\right\}_{j=1, \ldots, n} \vdash\left\{\mu_{j} X_{1} \ldots X_{n}\left[\tau_{1}, \ldots, \tau_{n}\right] \subseteq Y_{j}\right\}{ }_{j=1, \ldots, n}
$$

Proof. a. Use I, taking $\left\{Y_{1} \subseteq Y_{2}\right\}$ for Φ and

$$
\left\{X_{j} \subseteq \mu_{j} X_{1} \ldots X_{n}\left[\tau_{1}\left(X_{1}, \ldots, X_{n}, Y_{2}\right), \ldots, \tau_{n}\left(X_{1}, \ldots, X_{n}, Y_{2}\right)\right]\right\}_{j=1, \ldots, n} \text { for } \Psi
$$

and $\tau_{j}\left(X_{1}, \ldots, X_{n}, Y_{1}\right)$ for $\sigma_{j}, j=1, \ldots, n$.
 Obvious.
2. $\Phi, \Psi \vdash\left\{\tau_{j}\left(X_{1}, \ldots, X_{n}, Y_{1}\right) \subseteq \mu_{j} X_{1} \ldots X_{n}\left[\tau_{1}\left(X_{1}, \ldots, X_{n}, Y_{2}\right), \ldots\right.\right.$

$$
\left.\left.\ldots, \tau_{n}\left(x_{1}, \ldots, x_{n}, Y_{2}\right)\right]\right\} j=1, \ldots, n^{0}
$$

By monotonicity of τ_{j} in X_{1}, \ldots, X_{n} and Y, and M.
b. Follows by induction on the complexity of τ, using lemma 4.1.a. and part a above.
c. \subseteq. Use I, with Φ empty and taking $\left\{X_{j} \subseteq \tau_{j}\left(X_{1}, \ldots, X_{n}\right)\right\}_{j=1, \ldots, n}$ for ψ, proving the induction step with part b above.
2. M.
d. Use I, taking $\left\{\tau_{j}\left(Y_{1}, \ldots, Y_{n}\right) \subseteq Y_{j}\right\}_{j=1, \ldots, n}$ for Φ and $\left\{X_{j} \subseteq Y_{j}\right\}_{j=1, \ldots, n}$ for Ψ, proving the induction step with part b above.

Modularity is but one of the many consequences of the iteration lemma below. This lemma asserts that simultoneous minimalization by μ_{i}-terms is equivalent to successive singular minimalization by μ-terms. Its proof and the proof of modularity, corollary 4.4 , are both contained in appendix 3.

LEMMA 4.10. (Iteration, Scott and de Bakker [41], Bekic [4]).
$\vdash \mu_{j} x_{1} \ldots x_{j-1} x_{j} x_{j+1} \ldots x_{n}\left[\sigma_{1}, \ldots, \sigma_{j-1}, \sigma_{j}, \sigma_{j+1}, \ldots, \sigma_{n}\right]=$
$=\mu X_{j}\left[\sigma_{j}\left[\mu_{i} X_{1} \ldots X_{j-1} X_{j+1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{j-1}, \sigma_{j+1}, \ldots, \sigma_{n}\right] / x_{i}\right]{ }_{i \in I}\right.$,
with $I=\left\{1, \ldots, j^{-1}, \mathbf{j}+1, \ldots, n\right\}$.

Proof. By application of the minimal fixed point and fixed point properties and substitutivity (cf. [18]).

COROLLARY 4.4. (Modularity)
Define \hat{u}_{i} by $\mu_{i} x_{1} \ldots x_{n}\left[\sigma_{1}\left(\sigma_{11}\left(x_{1}, \ldots, X_{n}\right), \ldots, \sigma_{1 n}\left(X_{1}, \ldots, x_{n}\right)\right), \ldots\right.$
$\left.\ldots, \sigma_{n}\left(\sigma_{n 1}\left(x_{1}, \ldots, x_{n}\right), \ldots, \sigma_{n n}\left(x_{1}, \ldots, x_{n}\right)\right)\right]$ and $\hat{u}_{i j}$ by
$\mu_{i j} X_{11} \ldots x_{i j} \ldots x_{n n}\left[\sigma_{11}\left(\sigma_{1}\left(x_{11}, \ldots, x_{1 n}\right), \ldots, \sigma_{n}\left(X_{n 1}, \ldots, x_{n n}\right)\right), \ldots\right.$
$\left.\ldots, \sigma_{i j}\left(\sigma_{1}\left(x_{11}, \ldots, x_{1 n}\right), \ldots, \sigma_{n}\left(X_{n 1}, \ldots, x_{n n}\right)\right)_{3} \ldots, \sigma_{n n}(\ldots)\right]$. Then the folm lowing holds, for $\mathrm{i}=1, \ldots, \mathrm{n}$,

$$
\vdash \hat{\mu}_{i}=\sigma_{i}\left(\hat{\mu}_{i 1}, \ldots, \hat{u}_{i n}\right)
$$

Modularity itself has some interesting applications, too, e.g., corollary 4.5 below and the tree-traversal result of de Bakker and de Roever [2]. The proof of this result, using modularity in $M U$, is a straightforward transformation of the proof given at the end of section 2.2 , which uses modularity in PL.

COROLLARY 4.5. F $\left\{\mu_{i} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]^{v}=\right.$

$$
\left.=\mu_{i} X_{1} \ldots X_{n}\left[\sigma_{1}\left(\breve{X}_{1}, \ldots, \breve{X}_{n}\right)^{\smile}, \ldots, \sigma_{n}\left(\breve{X}_{1}, \ldots, \breve{X}_{n}\right)^{\smile}\right]\right\}_{i=1, \ldots, n}
$$

Proof. Let $\tau(X)$ be \breve{X} and $\tau_{i}\left(X_{1}, \ldots, X_{n}\right)$ be $\sigma_{i}\left(\breve{X}_{1}, \ldots, \breve{X}_{n}\right)$, $i=1, \ldots, n$. Then corollary 4.5 can be formulated as the following consequence of modularity:

$$
\begin{aligned}
& F \tau\left(\mu_{i} X_{1} \ldots X_{n}\left[\tau_{1}\left(\tau\left(X_{1}\right), \ldots, \tau\left(X_{n}\right)\right), \ldots, \tau_{n}\left(\tau\left(X_{1}\right), \ldots, \tau\left(X_{n}\right)\right)\right]\right)= \\
& =\mu_{i} X_{1} \ldots X_{n}\left[\tau\left(\tau_{1}\left(X_{1}, \ldots, X_{n}\right)\right), \ldots, \tau\left(\tau_{n}\left(X_{1}, \ldots, X_{n}\right)\right)\right]
\end{aligned}
$$

The last lemma of this chapter states some sufficient conditions for provability of $\Phi \mid \breve{\sigma} ; \sigma \subseteq E$, i.e., functionality of σ, and is frequently applied in combination with lemma 4.5.e ($\breve{X} ; \mathrm{X} \subseteq E \mathcal{E} ; \mathrm{X}=\mathrm{X} \circ \mathrm{p} ; \mathrm{X}$).

LEMMA 4.11. (Functionality). The assertion $\Phi \mathcal{F} ; \sigma \subseteq E$ is provable if one of the following assertions is provable:
a. If $\sigma=\stackrel{\mathrm{n}}{\mathbf{U}=1} \sigma_{i}$ then $\Phi \mid\left\{\sigma_{i} \circ \mathrm{E} ; \sigma_{j}=\sigma_{j} \circ \mathrm{E} ; \sigma_{i}\right\}_{1 \leq i<j \leq n} u$

$$
u\left\{\breve{\sigma}_{i} ; \sigma_{i} \subseteq E\right\}_{i=1, \ldots, n^{\circ}}
$$

b. If $\sigma=\sigma_{1} ; \breve{\pi}_{1} \cap \ldots \cap \sigma_{n} ; \breve{\pi}_{n}$ then $\Phi \mid\left\{\breve{\sigma}_{i} ; \sigma_{i} \subseteq E\right\}_{i=1, \ldots, n}$.
c. If $\sigma=\sigma_{1} ; \sigma_{2}$ then $\Phi \mathcal{F} \breve{\sigma}_{1} ; \sigma_{1} \subseteq \mathrm{E}, \breve{\sigma}_{2} ; \sigma_{2} \subseteq \mathrm{E}$.
d. If $\sigma=\sigma_{1} \cap \sigma_{2}$ then $\Phi \mid \breve{\sigma}_{1} ; \sigma_{1} \subseteq E$ or $\Phi \mathcal{\sigma _ { 2 }} ; \sigma_{2} \subseteq \operatorname{E}$ or $\Phi \mathcal{F} \breve{\sigma}_{1} ; \sigma_{2} \subseteq E$ or $\Phi \vdash \breve{\sigma}_{2 ; \sigma_{1}} \subseteq E$.
e. If $\sigma=\mu_{i} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]$ then

$$
\Phi,\left\{\breve{X}_{i} ; X_{i} \subseteq E\right\}_{i=1, \ldots, n} \vdash^{n}\left\{\breve{\sigma}_{i} ; \sigma_{i} \subseteq E\right\}_{i=1, \ldots, n}
$$

Proof: ${ }^{\text {Straightforward. }}$

In the following chapters we shall often use the following notations:

1. $\left[\sigma_{1}, \ldots, \sigma_{n}\right]$ for $\sigma_{1} ; \breve{\pi}_{1} \cap \ldots n \sigma_{n} ; \breve{\pi}_{n}$.
2. $\left[\sigma_{1}|\ldots| \sigma_{n}\right]$ for $\pi_{1} ; \sigma_{1} ; \breve{\pi}_{1} \cap \ldots \cap \pi_{n} ; \sigma_{n} ; \breve{\pi}_{n}$.

5. APPLICATIONS

5.1. An equivalence due to Morris

In [33] Morris proves equivalence of the following two recursive program schemes:

$$
f(x, y) \Longleftarrow \text { if } p(x) \text { then } y \text { else } h(f(k(x), y))
$$

and

$$
g(x, y) \Longleftarrow \text { if } p(x) \text { then } y \text { else } g(k(x), h(y)) \text {. }
$$

We present a proof in our framework. The following equivalence is stated without proof:

LEMMA 5.1. $\mid\left[A_{1}|\ldots| A_{i-1}\left|A_{i}\right| A_{i+1}|\ldots| A_{n}\right] ; \pi_{i}=$

$$
=\left[A_{1}|\ldots| A_{i-1}|E| A_{i+1}|\ldots| A_{n}\right] ; \pi_{i} ; A_{i}
$$

THEOREM 5.1. (Morris)
Let $F \equiv \mu \mathrm{X}\left[[\mathrm{p} \mid \mathrm{E}] ; \pi_{2} \cup\left[\mathrm{p}^{\prime} \mid \mathrm{E}\right] ;[\mathrm{K} \mid \mathrm{E}] ; \mathrm{X} ; \mathrm{H}\right]$ and $\mathrm{G} \equiv \mu \mathrm{X}\left[[\mathrm{p} \mid \mathrm{E}] ; \pi_{2} \cup\left[\mathrm{p}^{\prime} \mid \mathrm{E}\right] ;[\mathrm{K} \mid \mathrm{H}] ; \mathrm{X}\right]$. Then

$$
F F=G,[E \mid H] ; G=G ; H_{0}
$$

Proof. Let Φ be empty, $\Psi(X, Y) \equiv\{X=Y,[E \mid H] ; Y=Y ; H\}$, $\sigma(X) \equiv[p \mid E] ; \pi_{2} \cup\left[p^{\prime} \mid E\right] ;[K \mid E] ; X ; H$ and $\tau(Y) \equiv[p \mid E] ; \pi_{2} \cup\left[p^{\prime} \mid E\right] ;[K \mid H] ; Y$. Hence, we must prove

$$
\begin{equation*}
\vdash \Psi(\mu X[\sigma(X)], \mu Y[\tau(Y)]) \tag{5.1.1}
\end{equation*}
$$

We intend to use Scott's induction rule. Unfortunately, this rule (as formulated in section 3.1) does not apply to (5.1.1), as, in case of a simultoneous induction argument, it only yields results about components of one simultaneous μ-term.
However, the observation that

$$
\vdash{ }_{1} \mathrm{XY}[\sigma(\mathrm{X}), \tau(\mathrm{Y})]=\mu \mathrm{X}[\sigma(\mathrm{X})]
$$

and

$$
\vdash \mu_{2} \mathrm{XY}[\sigma(\mathrm{X}), \tau(\mathrm{Y})]=\mu \mathrm{Y}[\tau(\mathrm{Y})]
$$

are straightforward applications of the iteration lemma (lemma 4.10), gives us the equivalent assertion

$$
\vdash \Psi\left(\mu_{1} \mathrm{XY}[\sigma(\mathrm{X}), \tau(\mathrm{Y})], \mu_{2} \mathrm{XY}[\sigma(\mathrm{X}), \tau(\mathrm{Y})]\right)
$$

to which Scott's induction rule does apply.
Henceforth, such transitions will be tacitly assumed.

Thus, we have to prove:

1. $\vdash \Psi(\Omega, \Omega)$. Obvious.
2. $X=Y,[E \mid H] ; Y=Y ; H \mid \sigma(X)=\tau(Y),[E \mid H] ; \tau(Y)=\tau(Y) ; H$.
a. $\sigma(X)=\tau(Y):[p \mid E] ; \pi_{2} \cup\left[p^{i} \mid E\right] ;[K \mid E] ; X ; H=$ (hyp.)

$$
[p \mid E] ; \pi_{2} \cup[p \mid E] ;[K \mid E] ; Y ; H=\text { (hyp.) }
$$

$$
[\mathrm{p} \mid \mathrm{E}] ; \pi_{2} \cup\left[\mathrm{p}^{i} \mid \mathrm{E}\right] ;[\mathrm{K} \mid \mathrm{E}] ;[\mathrm{E} \mid \mathrm{H}] ; \mathrm{Y}=\left(\mathrm{C}_{2}\right)
$$

$$
[\mathrm{p} \mid \mathrm{E}] ; \pi_{2} \cup[\mathrm{p} \mid \mathrm{E}] ;[\mathrm{K} \mid \mathrm{H}] ; \mathrm{Y} .
$$

b. $[E \mid H] ; \tau(Y)=\tau(Y) ; H:[E \mid H] ;\left([p \mid E] ; \pi_{2} \cup\left[p{ }^{2} \mid E\right] ;[K \mid H] ; Y\right)=$

$$
\begin{aligned}
& =[E \mid H] ;[\mathrm{p} \mid \mathrm{E}] ; \pi_{2} \cup[\mathrm{E} \mid \mathrm{H}] ;\left[\mathrm{p}^{\prime} \mid \mathrm{E}\right] ;[\mathrm{K} \mid \mathrm{H}] ; \mathrm{Y}=\left(\mathrm{C}_{2}\right) \\
& =[p \mid H] ; \pi_{2} \cup\left[p^{\prime} ; \mathrm{K} \mid \mathrm{H} ; \mathrm{H}\right] ; \mathrm{Y}= \\
& =(1 \mathrm{emma} 5.1)[\mathrm{p} \mid \mathrm{E}] ; \pi_{2} ; \mathrm{H} \cup\left[\mathrm{p}^{\prime} ; \mathrm{K} \mid \mathrm{H}\right] ;[\mathrm{E} \mid \mathrm{H}] ; \mathrm{Y}= \\
& =\text { (hyp.) }[\mathrm{p} \mid \mathrm{E}] ; \pi_{2} ; \mathrm{H} \cup\left[\mathrm{p}^{\mathrm{V}} \mid \mathrm{E}\right] ;[\mathrm{K} \mid \mathrm{H}] ; \mathrm{Y} ; \mathrm{H}= \\
& =\left([p \mid E] ; \pi_{2} \cup\left[p^{i} \mid E\right] ;[K \mid H] ; Y\right) ; H .
\end{aligned}
$$

5.2. An equivalence involving nested while statements

A proof of the following equivalence appeared, in a slightly different formulation, in [2]:

$$
\begin{equation*}
\vdash \mu X\left[A_{1} ; X \cup A_{2} ; X \cup E\right]=A_{1} * E ;\left(A_{2} ; A_{1} * E\right) * E, \quad \ldots \tag{5,2,1}
\end{equation*}
$$

where $A * E$ stands for $\mu X[A ; X \cup E]$ and "*" has priority over ";". The present author feels, however, that the proof contained therein obscures some of the issues involved; these are: modular decomposition and the use of simultaneous recursion (compare modularity: 1emma 2.8 and corollary 4.4). This can be understood as follows:

1. The modular decomposition of $A_{1} ; X \cup A_{2} ; X \cup E$ as $\sigma_{1}\left(X, \sigma_{2}(X)\right)$, with $\sigma_{1}(X, Y) \equiv A_{1} ; X \cup Y$ and $\sigma_{2}(X) \equiv A_{2} ; X \cup E$, leads to $\mu_{1} X Y\left[A_{1} ; X \cup Y, A_{2} ; X \cup E\right]=$ (iteration) $\mu X\left[A_{1} ; X \cup \mu Y\left[A_{2} ; X \cup E\right]\right]=$ $=(f p p) \mu X\left[A_{1} ; X \cup A_{2} ; X \cup E\right]$.
2. $A_{1} \star E ;\left(A_{2} ; A_{1} * E\right) * E=\mu_{1} X Y\left[A_{1} ; X \cup E, A_{2} ; X ; Y \cup E\right] ; \mu_{2} X Y\left[A_{1} ; X \cup E, A_{2} ; X ; Y \cup E\right]$, which is also a consequence of iteration (lemma 4.10).

These observations suggest that (5.2.1) is a consequence of the following equivalence:

THEOREM 5.2. $\mathcal{F} \mu_{1}=\hat{\mu}_{1} ; \hat{\mu}_{2}, \mu_{2}=\hat{\mu}_{2}$,
with $\mu_{i} \equiv \mu_{i} X Y\left[A_{1} ; X \cup Y, A_{2} ; X \cup E\right]$ and $\hat{\mu}_{i} \equiv \mu_{i} X Y\left[A_{1} ; X \cup E, A_{2} ; X ; Y \cup E\right]$, $i=1,2$ 。

Proof. ㄷ: Follows by the minimal fixed point property (lemma 4.9.c) from: a. $\sigma_{1}\left(\hat{\mu}_{1} ; \hat{\mu}_{2} ; \hat{\mu}_{2}\right)=A_{1} ; \hat{\mu}_{1} ; \hat{\mu}_{2} \cup \hat{\mu}_{2}=\left(A_{1} ; \hat{\mu}_{1} \cup E\right) ; \hat{\mu}_{2}=(f p p) \hat{\mu}_{1} ; \hat{\mu}_{2} ;$ b. $\sigma_{2}\left(\hat{\mu}_{1} ; \hat{\mu}_{2}\right)=A_{2} ; \hat{\mu}_{1} ; \hat{\mu}_{2} \cup E=(f p p) \hat{\mu}_{2}$ 。

2: We prove $\mathcal{H} \hat{\mu}_{1} ; \mu_{2} \subseteq \mu_{1}, \hat{\mu}_{2} \subseteq \mu_{2}$,
with $\hat{\mu}_{1} ; \hat{\mu}_{2} \subseteq \hat{\mu}_{1} ; \mu_{2} \subseteq \mu_{1}$ as obvious consequence.

Let $\tau_{1}(X) \equiv A_{1} ; X \cup E$ and $\tau_{2}(X, Y) \equiv A_{2} ; X ; Y \cup E$ ．Then we must prove，using Scott＇s induction rule：

1．$F \Omega \subseteq \mu_{2}, \Omega ; \mu_{2} \subseteq \mu_{1}$ ．Obvious．
2．$X ; \mu_{2} \subseteq \mu_{1}, Y \subseteq \mu_{2} \vdash \tau_{1}(X) ; \mu_{2} \subseteq \mu_{1}, \tau_{2}(X, Y) \subseteq \mu_{2}$ 。
a．$\tau_{1}(X) ; \mu_{2}=\left(A_{1} ; X \cup E\right) ; \mu_{2} \subseteq($ hyp．$) A_{1} ; \mu_{1} \cup \mu_{2}=(f p p) \mu_{1}$ ．
b．$\tau_{2}(X, Y)=A_{2} ; X ; Y \cup E \subseteq$（hyp．）$A_{2} ; X ; \mu_{2} \cup E \subseteq$（hyp．）$A_{2} ; \mu_{1} \cup E=$ $=(f p p) \mu_{2}$.

5．3．Wright＇s regularization of linear procedures

In［47］Wright obtains the following results：
a．The class of recursively enumerable subsets of N^{2} is the smallest class of sets with the successor relation S as member and closed under the
 N^{2} which are contained in this class．
b．In the proof of part a the main auxiliary result can be generalized to a setting in which N is replaced by any abstract domain D ．This general－ ization is：
$\vdash \mu \mathrm{X}[\mathrm{Q} \cup \mathrm{P} ; \mathrm{X} ; \mathrm{R}]=\breve{\pi}_{1} ; \mu \mathrm{Y}[\mathrm{E} \cup[\mathrm{P} \mid \breve{\mathrm{R}}] ; \mathrm{Y}] \circ\left(\mathrm{E} \cap \pi_{1} ; \mathrm{Q} ; \breve{\pi}_{2}\right) ; \pi_{2} \quad \ldots \quad$（5．3．1）

In the present calculus（5．3．1）can be proved axiomatically．

The following two auxiliary lemmas are needed：

LEMMA 5．2． $\mathcal{F}[A \mid B] \circ p=E \cap \pi_{1} ; A ; \breve{\pi}_{1} ; p ; \pi_{2} ; \breve{B} ; \breve{\pi}_{2}$ 。

Proof．Straighforward from lemma 4．5．c．

LEMMA 5．3．$F \mu X[A ; X \cup B] \circ p=\mu X[A \circ X \cup B \circ p]$ 。

Proof．Amounts to a straightforward application of Scott＇s induction rule．

Now Wright＇s result（5．3．1）follows by applying lemma 5.3 twice from

THEOREM 5.3. (Wright)

Proof. ©: Follows by the minimal fixed point property from:

$$
\begin{aligned}
& \breve{\pi}_{1} ; R \circ E ; \pi_{2}=(f p p) \breve{\pi}_{1} ;\left\{\left(E \cap \pi_{1} ; Q ; \breve{\pi}_{2}\right) \cup[P \mid \breve{R}] ; R\right\} \circ E ; \pi_{2}=(1 \text { emma } 4.5 . a) \\
& \breve{\pi}_{1} ;\left(E \cap \pi_{1} ; Q ; \breve{\pi}_{2}\right) ; \pi_{2} \cup \breve{\pi}_{1} ;\left[P \mid \breve{R}^{2}\right] \circ(R \circ E) ; \pi_{2}=(\text { lemma } 4.8) \\
& Q \cup \breve{\pi}_{1} ;[P \mid \overparen{R}] \circ(R \circ E) ; \pi_{2}=(1 \text { emma } 5.2) \\
& Q \cup \breve{\pi}_{1} ;\left(E \cap \pi_{1} ; P ; \breve{\pi}_{1} ; R \circ E ; \pi_{2} ; R ; \breve{\pi}_{2}\right) ; \pi_{2}=(1 \text { emma 4.8) } \\
& Q \cup \breve{\pi}_{1} ; R \circ E ; \pi_{2} ; R .
\end{aligned}
$$

2: One derives by similar techniques:

$$
\breve{\pi}_{1} ;\left(\left(E \cap \pi_{1} ; Q ; \breve{\pi}_{2}\right) \cup[P \mid \breve{R}] \circ\left(E \cap \pi_{1} ; L ; \breve{\pi}_{2}\right)\right) ; \pi_{2}=L,
$$

whence by lemmas 4.8 and 5.2

$$
\left(E \cap \pi_{1} ; Q ; \breve{\pi}_{2}\right) \cup[P \mid \breve{R}] \circ\left(E \cap \pi_{1} ; L ; \breve{\pi}_{2}\right) \subseteq E \cap \pi_{1} ; L ; \breve{\pi}_{2}
$$

and by the minimal fixed point property

$$
R \circ E \subseteq E \cap \pi_{1} ; L ; \check{\pi}_{2} \subseteq \pi_{1} ; L ; \breve{\pi}_{2} .
$$

By lemma 4.6.c one therefore obtains

$$
\breve{\pi}_{1} ; R \circ E ; \pi_{2} \subseteq L .
$$

The reader might notice that $\breve{\pi}_{1} ; \mu \mathrm{X}\left[\left(\pi_{1} ; Q ; \breve{\pi}_{2} \cap \mathrm{E}\right) \cup[\mathrm{P} \mid \breve{\mathrm{R}}] ; \mathrm{X}\right] \circ \mathrm{E} ; \pi_{2}$ does not correspond with any program scheme. Using work of Luckham and Garland [14] this has been remedied in I. Guessarian [15] by replacing this term by an equivalent one which does correspond with a program scheme.

5.4. Axiomatization of the natural numbers

In general, programs manipulate data of a special structure, such as natural numbers, lists and trees. Consequently, proofs about the input-
output relationships of these programs often make use of the specific structural properties of these data. In order to axiomatize such proofs, we have to axiomatize relations over special domains. This is effected by adding certain axioms, charactemizing the structural properties of these data as properties of certain relation constants (cf. example 1.3), to the general system of chapter 4. As the relational language MU is particularly suited to express induction arguments, the seque1 is devoted to (1) the axiomatization of domains satisfying some induction rule and (2) the axiomatic derivation of properties of recursive programs manipulating data which belong to these domains.

To begin with, we discuss below an axiom system for the natural numbers N which improves on a similar system described in de Bakker and de Roever [2]. In the next section an axiomatic proof of the primitive recursion theorem is presented involving a simple termination argument; the reader should consult Hitchcock and Park [18] for a more elaborate theory of termination. Chapter 6 contains axiom systems for various types of trees and correctness proofs of programs, such as the TOWERS OF HANOI, which manipulate these structures.

In [2] the natural numbers N were axiomatized as follows:
Nonlogical constants are a boolean relation constant $p_{0}^{\eta, \eta}$ and an individual relation constant $s^{n, n}$. These satisfy:

$$
\begin{aligned}
& N_{1}: F \breve{S} ; \mathrm{S} \cap \mathrm{p}_{0}=\Omega . \\
& N_{2}: \vdash \breve{\mathrm{S}} ; \mathrm{S} \subseteq \mathrm{E}, \\
& N_{3}: \vdash \mathrm{S} ; \mathrm{S}=\mathrm{E}, \\
& N_{4}^{*}: \vdash \mathrm{E} \subseteq \mu \mathrm{X}\left[\mathrm{p}_{0} \cup \breve{S} ; \mathrm{X} ; \mathrm{S}\right] .
\end{aligned}
$$

Clearly, the intended interpretation of p_{0} is $\{<0,0>\}$ and of S is $\{<\mathrm{n}, \mathrm{n}+1>\mid \mathrm{n} \in \mathrm{N}\}$. However, these axioms model also any number of disjoint copies of N :

Let J be any nonempty index set, D_{J} be the disjoint union ${ }_{j} v_{J} N_{j}$ of $|J|$ copies of $N, m_{J}\left(p_{0}\right)$ be $\{\langle<0, j\rangle,\langle 0, j\rangle>\mid j \in J\}$ and $m_{J}(S)$ be $\{\langle\langle n, j\rangle,\langle n+1, j\rangle\rangle \mid n \in N, j \in J\}$.
Then $\left.<D_{J}, m_{J}\left(p_{0}\right), m_{J}(S)\right\rangle$ satisfies N_{1}, N_{2}, N_{3} and N_{4}^{*}.
Let $R^{*} \equiv \mu X[R ; X \cup E]$. Note that

$$
\begin{equation*}
\vdash \mu X[R ; X \cup E]=\mu X[X ; R \cup E] \quad \ldots \tag{5.4.1}
\end{equation*}
$$

is a consequence of Scott's induction rule.
Then we exclude disjoint copies of N from being models by replacing N_{4}^{*} by

$$
N_{4}: H U \subseteq \breve{S}^{*} ; p_{0} ; s^{*}
$$

This can be understood as follows:

Assume to the contrary that the underlying domain of some model for N_{1}, N_{2}, N_{3} and N_{4} contains two disjoint copies of N, say N_{a} and N_{b}. Certainly $<0_{a}, 0_{b}>\in U$, whence N_{4} implies $<0_{a}, 0_{b}>\in \breve{S}^{*} ; p_{0} ; S^{*}$. By N_{1} and $\left.N_{2},<0_{a}, 0_{a}\right\rangle \in \breve{S}^{*}$ and $\left\langle 0_{b}, 0_{b}\right\rangle \in S^{*}$ are the only pairs contained in \breve{S}^{*} and S^{*} with 0_{a} as first and O_{b} as second element, respectively. Therefore, by definition of "; ", $\left\langle 0_{a}, 0_{b}>\in p_{0}\right.$, and this contradicts $\mathrm{p}_{0} \subseteq \mathrm{E}$ 。

Henceforth, N designates the type of the natural numbers, i, e, of any stmucture satisfying N_{1}, N_{2}, N_{3} and N_{4}.

As first consequence of these axioms atomicity of p_{0} is derived. Following example 1.2.f this is expressed by

LEMMA 5.4. $\mathcal{F} \mathrm{p}_{0} ; \mathrm{U} \cap \mathrm{U} ; \mathrm{p}_{0} \subseteq \mathrm{p}_{0}$.

Proof: $\mathrm{p}_{0} ; \mathrm{U} \cap \mathrm{U} ; \mathrm{P}_{0}=$ (lemma 4.3.e) $\mathrm{p}_{0} ; \mathrm{U} ; \mathrm{p}_{0} \subseteq\left(\mathrm{~N}_{4}\right) \mathrm{p}_{0} ; \mathrm{S}^{*} ; \mathrm{p}_{0} ; \mathrm{S}^{*} ; \mathrm{p}_{0}=$
$=\left(\mathrm{fpp}\right.$ and (5.4.1)) $\mathrm{p}_{0} ;\left(\breve{S} ; \mathrm{S}^{*} \cup \mathrm{E}\right) ; \mathrm{p}_{0} ;\left(\mathrm{S}^{*} ; \mathrm{S} \cup \mathrm{E}\right) ; \mathrm{p}_{0}=$
$=\left(N_{1}\right.$ and $\left.N_{2}\right) \mathrm{p}_{0} ; \mathrm{p}_{0} ; \mathrm{p}_{0}=\left(1\right.$ emma 4.4) p_{0}.

Secondly, N_{4}^{*} follows from

LEMMA 5.5. $-\mathrm{E}=\mu \mathrm{X}\left[\mathrm{p}_{0} \cup \breve{\mathrm{~S}} ; \mathrm{X} ; \mathrm{S}\right]$.

Proof. $\subseteq:$ Derive $\mathcal{E} \cap \breve{S}^{*} ; p_{0} ; S^{*} \subseteq \mu X\left[p_{0} u \breve{S} ; X ; S\right]$ by Scott's induction rule. Then the result follows from N_{4}.
We prove

$$
E \cap X ; p_{0} ; S^{*} \subseteq \mu X\left[p_{0} \cup \breve{S} ; X ; S\right] \vdash E \cap(\breve{S} ; X \cup E) ; p_{0} ; S^{*} \subseteq \mu X\left[p_{0} \cup \breve{S} ; X ; S\right]
$$

As
$E \cap(\breve{S} ; X \cup E) ; p_{0} ; S^{*}=\left(E \cap \breve{S} ; X ; P_{0} ; S^{*}\right) \cup\left(E \cap p_{0} ; S^{*}\right)$,
the proof of this splits into two parts:
a. $E \cap p_{0} ; S^{*}=\left(1\right.$ emma 4.3.e) $p_{0} \cap p_{0} ; S^{*} \subseteq p_{0} \subseteq(f p p) \mu X\left[p_{0} \cup \breve{S} ; X ; S\right]$.
b. $E \cap \breve{S} ; X ; p_{0} ; S^{*}=\left(N_{1}\right.$ and $N_{2},(5.4 .1)$ and $\left.f p p\right) \breve{S} ; S \cap \breve{S} ; X ; p_{0} ;\left(S^{*} ; S \cup E\right)=$
$=\left(N_{1}\right) \breve{S} ; S \cap \breve{S} ; X ; p_{0} ; S^{*} ; S \subseteq$ (hyp., lemma 4.3.a) $\breve{S} ; \mu X\left[p_{0} \cup \breve{S} ; X ; S\right] ; S \subseteq$ $\subseteq(f p p) \mu X\left[p_{0} \cup \breve{S} ; X ; S\right]$.

2: Straightforward from Scott's induction rule.

Let eq stand for $\mu \mathrm{X}\left[\left[\mathrm{p}_{0} \mid \mathrm{p}_{0}\right] \cup[\breve{S} \mid \breve{S}] ; X ;[S, S]\right]$.
Clearly, $\langle<n, m\rangle,\langle n, m \gg \epsilon$ eq iff $n=m$. In relational formulation, this amounts to

LEMMA 5.6. $\mathrm{F} \mathrm{eq} ; \pi_{1}=\pi_{2}$
Proof. First we prove $F\left[p_{0} \mid p_{0}\right] ; \pi_{1}=\left[p_{0} \mid p_{0}\right] ; \pi_{2} \quad \ldots$
a. $\left[\mathrm{p}_{0} \mid \mathrm{p}_{0}\right] ; \pi_{1}=(1$ emma $4.6 . \mathrm{b})\left(\pi_{1} ; \mathrm{p}_{0} ; \breve{\pi}_{1} \cap \pi_{2} ; \mathrm{p}_{0} ; \breve{\pi}_{2}\right) ;\left(\pi_{1} \cap \pi_{2} ; \mathrm{U}\right)=$
$=\left(\mathrm{C}_{2}\right) \pi_{1} ; \mathrm{P}_{0} \cap \pi_{2} ; \mathrm{P}_{0} ; \mathrm{U}=($ lemma $4.3 . e) \pi_{1} ; \mathrm{P}_{0} \cap \pi_{2} ; \mathrm{P}_{0} ; \mathrm{U} ; \mathrm{P}_{0}=$
$=$ (lemma 5.4 and monotonicity) $\pi_{1} ; p_{0} \cap \pi_{2} ; p_{0}$.
b. $\left[p_{0} \mid p_{0}\right] ; \pi_{2}=\pi_{1} ; p_{0} \cap \pi_{2} ; p_{0}$ is similarly derived.
c. Combination of parts a and b then yields (5.4.3).

Next we prove (5.4.2).
ㄷ: Use Scott's induction rule on eq. By lemma 5.5 we have to prove parts d and e below:
d. $\vdash\left[p_{0} \mid p_{0}\right] ; \pi_{1} \subseteq \underbrace{\left[\mu Y\left[p_{0} \cup \breve{S} ; Y ; S\right] \mid \mu Y\left[p_{0} \cup \breve{S} ; Y ; S\right]\right] ; \pi_{2}}$

$$
L
$$

Use (5.4.2) and the fixed point property in $L_{\text {. }}$
e. $X ; \pi_{1} \subseteq L ; \pi_{2} \mid-[\breve{S} \mid \breve{S}] ; x ;[S \mid S] ; \pi_{1} \subseteq L ; \pi_{2}$.
$[\breve{S} \mid \breve{S}] ; \mathrm{X} ;[\mathrm{S} \mid \mathrm{S}] ; \pi_{1}=[\breve{\mathrm{S}} \mid \breve{\mathrm{S}}] ; \mathrm{X} ; \pi_{1} ; \mathrm{S} \subseteq$ (hyp.) $[\breve{\mathrm{S}} \mid \breve{\mathrm{S}}] ; L ; \pi_{2} ; \mathrm{S}=$
$=[\breve{S} \mid \breve{S}] ; L ;[s \mid S] ; \pi_{2} \subseteq(f p p) L ; \pi_{2}$.
ミ: Similarly.
5.5. The primitive recursion theorem

This is the following theorem:
THEOREM 5.4. Let $G: N^{\mathrm{n}} \rightarrow N$ and $\mathrm{H}: \mathrm{N}^{\mathrm{n}+2} \rightarrow N$ be primitive recursive fumctions. Then there exists an unique total function $\mathrm{F}: N^{\mathrm{n}+1} \rightarrow N$ such that, for all $x_{1}, \ldots, x_{n}, y \in N$:

$$
\begin{align*}
F\left(x_{1}, \ldots, x_{n}, y\right)= & \text { if } y=0 \text { then } G\left(x_{1}, \ldots, x_{n}\right) \text { else } \\
& H\left(x_{1}, \ldots, x_{n}, y-1, F\left(x_{1}, \ldots, x_{n}, y-1\right)\right) \quad \ldots \tag{5.5.1}
\end{align*}
$$

Proof. To simplify the notation we take $\mathrm{n}=1$. The minimal solution of (5.5.1) is

$$
\underbrace{\mu X\left[\pi_{2}{ }^{\circ} P_{0} ; \pi_{1} ; G \cup\left[\pi_{1} ; \pi_{2} ; \breve{S},[E \mid \breve{S}] ; X\right] ; H\right]}_{\mu \tau} .
$$

We prove below that $\mu \tau$ is total. By the minimal fixed point property, then certainly $\mu \tau \subseteq F$, if F is any solution of (5.5.1). If F is a function, then
$\mu \tau \subseteq F$ implies by lemma 4.3.d that $\mu \tau=\mu \tau \circ E ; F$, whence $\mu \tau=F$ follows from totality of $\mu \tau$. It remains to be demonstrated that such an F exists, i.e., $\mu \tau$ is functional; this follows from $S_{\text {sott' }}$ s induction rule by repeated application of lemma 4.11.

LEMMA 5.7. $\mathrm{GoE}{ }^{1,1}=\mathrm{E}^{1,1}, \mathrm{H} \circ \mathrm{E}^{1,1}=\mathrm{E}^{3,3} \mid \mathrm{E}^{2,2} \subseteq \mu \tau ; \mathrm{U}^{1,2}$, with $\sigma^{j, k} \equiv \sigma \underbrace{N \times N \times \ldots \times N}_{j \text { times }}, \underbrace{N \times N \times \ldots \times N}_{k \text { times }}$.

Proof. Assume G०E ${ }^{1,1}=E^{1,1}$ and $H \circ E^{1,1}=E^{3,3}$
Then

$$
\vdash E^{2,2}=\left[E^{1,1} \mid \mu X\left[p_{0} \cup \check{S} ; X ; s\right]\right]
$$

holds by lemma 5.5 and

$$
\vdash\left[E^{1,1} \mid \mu X\left[p_{0} \cup \breve{S} ; X ; S\right]\right] \subseteq \mu \tau ; U^{1,2}
$$

follows from Scott's induction rule as proved below, whence the result. We prove the induction step only:

$$
\left[E^{1,1} \mid X\right] \subseteq \mu \tau ; U^{1,2} \mid\left[E^{1,1} \mid p_{0} u \breve{S} ; X ; S\right] \subseteq \mu \tau ; U^{1,2}
$$

$\ldots=$ (lemma 4.6.b)

$$
\left[E \mid P_{0}\right] ; U^{2,2} \cup\left[\pi_{1}, \pi_{2} ; \breve{S},[E \mid S ็ ; \mu \tau] ;\left(\pi_{1} ; U^{1,2} \cap \pi_{2} ; U^{1,2} \cap \pi_{3} ; U^{1,2}\right)\right.
$$

$$
\ldots=\left[\left.E\right|_{P_{0}}\right] ; U^{2,2} u\left(\pi_{2} ; \breve{S} ; U^{1,2} \cap[E \mid \breve{S}] ; \mu \tau ; U^{1,2}\right)
$$

$$
\ldots \quad \geq\left[E \mid P_{0}\right] ; U^{2,2} \cup[E \mid \check{S}] ; \mu \tau ; U^{1}, 2 ;[E \mid S]
$$

$$
\ldots \quad \supseteq\left(h y p_{0}\right)\left[\left.E\right|_{p_{0}} \cup \breve{S} ; X_{;} s\right]
$$

Remark. Since in the proof above the induction argument applies to the very structure of the underlying domain, we run here up against the axiomatic counterpart of Burstall's stmuctural induction (cf. [8]).

$$
\begin{aligned}
& \mu \tau ; U^{1,2}=(f p p)\left[E \mid P_{0}\right] ; \pi_{1} ; G ; U^{1}, 2 U\left[\pi_{1}, \pi_{2} ; \breve{S},[E \mid \breve{S}] ; \mu \tau\right] ; H ; U^{1,2} \\
& \left.\ldots=\text { (lemma 4.3.c by totality of } \pi_{1}, G \text { and } H\right) \\
& {\left[\left.E\right|_{P_{0}}\right] ; U^{2,2} \cup\left[\pi, \pi_{2} ; \breve{S},[E \mid S \breve{S}] ; \mu \tau\right] ; U^{3,2}}
\end{aligned}
$$

6. AXIOMATIC LIST PROCESSING

6.1. Lists, Iinear Iists and ordered Iinear Iists

For our purpose it is sufficient to characterize a domain of lists as a collection of binary trees which is closed w.r.t. the following operations:
(1) taking a binary tree t apart by applying the car and $c d r$ functions, resulting in its constituent subtrees $\operatorname{car}(\mathrm{t})$ and $\mathrm{cdr}(\mathrm{t})$, if possible; otherwise, t is an atom and satisfies the predicate $a t$, whence $a t(t)=t$,
(2) constructing a new binary tree from two old ones by application of the function cons,

Thus we introduce one (applied) individual constant cons ${ }^{\eta \times \eta}, \eta$ and one (applied) boolean constant at ${ }^{n, n}$ and postulate these to satisfy the following axioms:

$$
\begin{aligned}
& L_{1}: \vdash \text { cons;cǒns }=E^{n \times \eta, \eta \times n} \\
& L_{2}: \vdash \text { cons;cons } \subseteq E^{n, \eta} \\
& L_{3}: F \text { at } \cap \text { cons;cons }=\Omega^{\eta, \eta} \\
& L_{4}: \vdash \mathrm{E}^{\mathrm{n}, n} \subseteq \mu \mathrm{X}\left[\text { at } u\left[\text { cơns } ; \pi_{1} ; \mathrm{X}, \text { cơns } ; \pi_{2} ; \mathrm{X}\right] ; \text { cons }\right] \text {. }
\end{aligned}
$$

Remarks. 1. L_{1} implies that cons is total and cons, whence cons; π_{1} and cons; π_{2} (by lemma 4.11), are functions, L_{2} that cons is a function, L_{3} that an atom can never be taken apart and L_{4} that any list is either an atom or can be first taken apart and then fitted together again.
2. Satisfaction of these axioms establishes $<D_{\eta}$, at, cons> as a structure of lists. This leads us to introduce a new type, L , reserved for lists, resulting in $\langle L, L\rangle$ and $\langle L \times L, L\rangle$ as new types for at and cons. If there is no confusion between different domains of lists, L is also used to indicate a domain of lists.
3. cons; π_{1} and cons; π_{2} will be referred to as car and cdr. ...

Linear lists are lists with the additional property that $\operatorname{car}(1)$ is always an atom.
Thus we obtain axioms for linear lists by replacing L_{1} by

$$
L L_{1}: \vdash \text { cons } ; \text { cǒns }=\left[\pi_{1} ; a t, \pi_{2}\right],
$$

postulating L_{2} and L_{3}, and replacing L_{4} by

$$
L L_{4}: \vdash \mathrm{E}^{\eta, \eta} \subseteq \mu \mathrm{X}[\text { at } u[\text { car }, \mathrm{cdr} ; \mathrm{X}] ; \text { cons }] .
$$

LL is then introduced as type for linear lists.
With linear lists as domain and range some interesting properties can be proved, such as
(1) if conc stands for $\mu X\left[\right.$ cons $\cup\left[\pi_{1} ; \operatorname{car},\left[\pi_{1} ; c d r, \pi_{2}\right] ; X\right] ;$ cons $]$, i.e., $\operatorname{conc}\left(1_{1}, 1_{2}\right) \Longleftarrow$ if $\operatorname{atom}\left(1_{1}\right)$ then cons $\left(1_{1}, 1_{2}\right)$ else cons(car $\left(1_{1}\right)$, $\left.\operatorname{conc}\left(\operatorname{cdr}\left(1_{1}\right), 1_{2}\right)\right)$,
then conc is associative, i.e., conc $\left(\operatorname{conc}\left(1_{1}, 1_{2}\right), 1_{3}\right)=$
$=\operatorname{conc}\left(1_{1}, \operatorname{conc}\left(1_{2}, 1_{3}\right)\right)$, cf. McCarthy [29],
(2) if first and last stand for (at u car) and $\mu \mathrm{X}[$ at u cdr; $X]$, ... (6.1.3) respectively, then conc;first $=\pi_{1}$;first and conc;last $=\pi_{2} ;$ last,
(3) conc is a total function.

It is proved in lemma 6.3 that these properties of linear lists can be obtained as corollaries of the analoguous properties for ordered linear lists.

Ordered Iinear lists are linear lists with the additional property that some relation holds between the subsequent atoms of these lists. For convenience, we do not use a relation α^{\prime}, holding, e.g., between 1_{1} and $1_{2}: 1_{1} \alpha^{\prime} 1_{2}$, but introduce the characteristic predicate α of this relation: $\left\langle 1_{1}, 1_{2}\right\rangle \alpha<1_{1}, 1_{2}>$ iff $1_{1} \alpha^{\prime} 1_{2}$, i.e., $\alpha=\pi_{1} ; \alpha^{\prime} ; \breve{\pi}_{2} \cap \mathrm{E} . \quad . .(6,1.4)$ In principle α^{\prime} need not be a partial order at all; many interesting properties can be proved without this requirement: theorems 6.1 and 6.3 establish (1) and a variant of (2) above for ordered linear lists and theorem 6.2 establishes concoE $=\alpha$, i.e., conc $\left(1_{1}, 1_{2}\right)$ is defined iff $1_{1} \alpha^{\prime} 1_{2}$ 。

In order to axiomatize ordered linear lists we introduce therefore a boolean constant $\alpha^{\eta \times \eta, \eta \times \eta}$ ，replace $L L_{1}$ by \mathcal{F} cons；cons $=\left[\pi, \quad ; a t, \pi_{2}\right] ; \alpha$, i．e．， $<\operatorname{car}(1), \operatorname{cdr}(1)>\alpha<c \operatorname{ar}(1), \operatorname{cdr}(1)>$ ，and stipulate that $<a t_{i}, a t_{i+1}>\alpha$ $\alpha<a t_{i}, a t_{i+1}>$ holds for $a l l$ subsequent atoms $a t_{i}$ and $a t_{i+1}$ which constitute an ordered linear list．This leads to the following axioms for ordered linear 1ists：

$$
\begin{aligned}
& O L L_{1}: F \text { cons;conns }=\left[\pi_{1} ; \text { at }, \pi_{2}\right] ; \alpha \\
& O L L_{2}: F \text { cons;cons } \subseteq E^{\eta, \eta} \\
& O L L_{3}: \vdash \text { at } \cap \text { cons;cons }=\Omega^{\eta, \eta} \\
& O L L_{4}: F E^{\eta, \eta} \subseteq \mu X[\text { at } \cup[\text { car,cdr;Xं }] ; \text { cons }] \\
& O L L_{5}: F \propto=\left[\pi_{1} ; 1 \text { ast }, \pi_{2} ; \text { first }\right] \circ \alpha,
\end{aligned}
$$

with last and first as defined in（6．1．3）．
Remarks．OLL is introduced as type for ordered linear lists and （at $u\left[\right.$ car，cdr；X］；cons）will be referred to as ${ }^{\tau}{ }_{0 L L}$ ．Then $O L L_{4}$ reads as $F E^{n, n} \subseteq \mu \mathrm{X}\left[\tau_{\mathrm{OLL}}\right]$ 。

First some simple properties of at，car，cdr，cons and α are collected in

LEMMA 6．1．Let at＇denote［car，cdr］；cons（or cons；cons，which is equiva－ lent）then the following properties hold for
a．Lists： $\mid-E=\mu X[$ at $u[\operatorname{car} ; \mathrm{X}, \mathrm{cdr} ; \mathrm{X}] ; \mathrm{cons}]$ ，at $u a t^{\prime}=\mathrm{E}$ ，cons；at＇$=$ cons， cons；at $=\Omega$ ．
b．Linear Zists：$F E=\mu X[$ at u［car，cdr；$X]$ cons］，cons；cons $=\pi_{1}^{\circ}$ at， car；at $=$ car，car；at ${ }^{\prime}=\Omega$ 。
c．Ordered Zinear Zists：F cons；corns $=\pi_{1}{ }^{\circ}$ at：α ．

Proof．a．$E=\mu X[$ at $u[$ car；$X, c d r ; X] ;$ cons $]$ ：ㄷ．Axiom L_{4} ．
こ．Use I with Φ empty，taking $\{X \subseteq E\}$ for Ψ and（at $U[$ car；$X, c d r ; X] ;$ cons） for σ ．
at U at ${ }^{\prime}=E \quad: E=\mu X[$ at $\cup[$ car；$X, c d r ; X] ;$ cons $]=$
$=(f p p)$ at $u[c a r, c d r] ;$ cons．

```
cons;at \({ }^{\prime}=\) cons \(:\) cons;at \({ }^{\prime}=\) cons;cǒns;cons \(=\left(L_{1}\right)\) cons.
cons;at \(=\Omega \quad\) : cons;at \(=\) cons;cons \(\circ \mathrm{E} ; \mathrm{at}=\left(L_{2}\right)\) cons; (cons;cons \(\left.\cap a t\right)=\)
    \(=\left(L_{3}\right) \Omega\).
```

b. $E=\mu X[$ at $U[$ car,$c d r ; X]$ cons $]:$ Similar to above.
cons; cơns $=\pi_{1}{ }^{\circ}$ at $:$ Obvious from $L L_{1}$.
car;at $=$ car $:$ corns; $\pi_{1} ;$ at $=(1$ emma 4.5.e $)$ corns; consoE $; \pi_{1}{ }^{\circ}$ at $; \pi_{1}=$
$=$ (from above) cons;consoE $; \pi_{1}=$ cons; π_{1}.
car;at $=\Omega \quad:$ cons; $\pi_{1} ; a t^{\prime}=$ cons; $\left[\pi_{1} ; a t, \pi_{2}\right] ; \pi_{1} ; a t^{\prime}=$
$=$ cons; $\pi_{1} ;\left(\right.$ at $\left.\cap a t^{\prime}\right)=\left(L L_{3}\right) \Omega$.
c. cons;cons $=\pi_{1} \circ$ at $; \alpha:$ Obvious from $O L L_{1}$.

In the proofs of this chapter the following property, lemma 4.5.e, is often implicitly applied: $\breve{X} ; X \subseteq E F X ; p=X o p ; X$. Functionality of the terms involved is proved by repeated application of lemma 4.11 and may require in the induction steps $\breve{X} ; X \subseteq E$ as additional hypothesis and $\tau_{O L L}(X) ; \tau_{O L L}(X) \subseteq E$ as additional conclusion.

Next we establish an auxiliary lemma.

LEMMA 6.2. $\mathcal{F}\left[\pi_{1} ; a t, \pi_{2}\right] ;$ cons, $\left.\pi_{3}\right] ;$ conc $=$

$$
=\left[\pi_{1} ; a t, \pi_{2}\right] \circ \alpha ;\left[\pi_{1},\left[\pi_{2}, \pi_{3}\right] ; \text { conc }\right] ; \text { cons } .
$$

Proof. $F\left[\left[\pi_{1} ;\right.\right.$ at, $\left.\pi_{2}\right] ;$ cons, $\left.\pi_{3}\right]$;conc $=$
$=\left[\left[\pi_{1} ;\right.\right.$ at,$\left.\pi_{2}\right] ;$ cons,$\left.\pi_{3}\right] ;\left[\pi_{1} ;\right.$ car, $\left[\pi_{1} ;\right.$ cdr, $\left.\pi_{2}\right] ;$ conc $] ;$ cons $=$
$=\left[\left[\pi_{1} ;\right.\right.$ at, $\left.\pi_{2}\right] ;$ cons $;$ cons $; \pi_{1},\left[\left[\pi_{1} ;\right.\right.$ at, $\left.\pi_{2}\right]$; cons; cons; $\left.\pi_{2}, \pi_{3}\right] ;$ conc $]$;cons, as may be proved using C_{2} and (6.1.1),
$\ldots=\left(O L L_{1}\right)\left[\left[\pi_{1} ; a t, \pi_{2}\right] ; \alpha ; \pi_{1},\left[\left[\pi_{1} ;\right.\right.\right.$ at,$\left.\left.\pi_{2}\right] ; \alpha ; \pi_{2} ; \pi_{3}\right]$; conc $] ;$ cons, whence by
lemma $4.5 . e$ and cor. 4.2 the result follows.

The fundamental theorem of this section is

THEOREM 6.1. F conc; first $=\alpha_{;} \pi_{1}$; first, conc;1ast $=\alpha ; \pi \pi_{2} ; 1$ ast.
Proof, We derive F conc;first $=\alpha ; \pi_{1}$; first as an example; the proof of \vdash conc;last $=\alpha ; \pi_{2} ;$ last uses similar techniques.

By lemma 6.1 it is sufficient to prove $\mid-\left[\pi_{1} ; \mu X\left[\tau_{\mathrm{OLL}}\right], \pi_{2}\right]$; conc;first $=$ $=\left[\pi_{1} ; \mu \mathrm{X}\left[\tau_{\mathrm{OLL}}\right], \pi_{2}\right] ; \alpha_{;} \pi_{1}$;first. Use I with Φ empty, taking $\left\{\left[\pi_{1} ; X, \pi_{2}\right]\right.$;conc; first $=\left[\pi_{1} ; X_{2} \pi_{2}\right] ; \alpha ; \pi_{1} ;$ first $\}$ for Ψ and $\tau_{0 L L}$ for $\sigma_{\text {. }}$ *) $\vdash \Psi(\Omega)$. Obvious.
$\Psi(X) \vdash \Psi\left(\tau_{0 L L}(X)\right)$ 。

1. $\left[\pi_{1} ;\right.$ at,$\left.\pi_{2}\right]$;cons; first $=$ (lemma 6.1) $\left[\pi_{1} ;\right.$ at, $\left.\pi_{2}\right]$;cons; car $=$
$=\left(O L L_{1}\right)\left[\pi_{1} ; a t, \pi_{2}\right] ; \alpha ; \pi_{1}=\left[\pi_{1} ; a t, \pi_{2}\right] ; \alpha ; \pi_{1} ;$ first.
2. The nucleus of the proof:
$\left[\pi_{1} ;\right.$ car,$\left[\pi_{1} ;\right.$ cdr; $\left.X_{,} \pi_{2}\right] ;$ conc $] \circ \alpha=$
$=\left(\mathrm{OLL}_{5}\right)\left[\pi_{1} ; \operatorname{car},\left[\pi_{1} ; \operatorname{cdr} ; \mathrm{X}_{,} \pi_{2}\right] ;\right.$ conc; first $] \circ \alpha=$ (induction hypothesis)
$\left[\pi_{1} ; \operatorname{car},\left[\pi_{1} ; \operatorname{cdr} ; X_{2} \pi_{2}\right] ; \alpha ; \pi_{1} ;\right.$ first $] \circ \alpha=$

3. $\left[\left[\pi_{1} ; \operatorname{car}, \pi_{1} ; \operatorname{cdr} ; \mathrm{X}\right] ;\right.$ cons, $\left.\pi_{2}\right]$;conc;first $=$ (lemmas 6.1 and 6.2)
$\left[\pi_{1} ;\right.$ car,$\left.\pi_{1} ; \operatorname{cdr} ; \mathrm{X}\right] \circ \alpha ;\left[\pi_{1} ; \operatorname{car},\left[\pi_{1} ; \operatorname{cdr} ; \mathrm{X}, \pi_{2}\right] ;\right.$ conc $] ;$ cons; first $=$
$=$ (using cons;first $=\alpha ; \pi_{1} ;$ at, lemma 4.5.e and part 2)
$\left[\pi_{1} ; \operatorname{car}, \pi_{1} ; \operatorname{cdr} ; X\right] \circ \alpha ;\left[\pi_{1} ; \operatorname{cdr} ; X_{2} \pi_{2}\right] \circ \alpha ; \pi_{1} ;$ car.
4. $\left[\left[\pi_{1} ;\right.\right.$ car,$\pi_{1} ;$ cdr $\left.; X\right] ;$ cons,$\left.\pi_{2}\right] ; \propto ; \pi_{1} ;$ first $=(1$ emma 4.5.e)
$\left[\left[\pi_{1} ;\right.\right.$ car,$\pi_{1} ;$ cdr; X $]$;cons, $\left.\pi_{2}\right] \circ \alpha ;\left[\pi_{1} ;\right.$ car, $\pi_{1} ;$ cdr; X $]$;cons;first $=$
$=$ (using cons;first $=\alpha ; \pi_{1} ;$ at, lemma 4.5.e and cor. 4.2)
$\left[\left[\pi_{1} ;\right.\right.$ car,$\left.\pi_{1} ; \operatorname{cdr} ; X\right] ;$ cons, $\left.\pi_{2}\right] \circ \alpha ; \pi_{1} ;$ car.
5. $\left[\left[\pi_{1} ; \operatorname{car}_{,} \pi_{1} ; \operatorname{cdr} ; \mathrm{X}\right] ;\right.$ cons, $\left.\pi_{2}\right] \circ \alpha=\left(0 L L_{5}\right.$ and cor. 4.2)
$\left[\pi_{1} ; \operatorname{car} \pi_{1} ; \operatorname{cdr} ; \mathrm{X}\right] \circ \alpha ;\left[\pi_{1} ; \mathrm{cdr} ; \mathrm{X}_{,} \pi_{2}\right] \circ \alpha_{0}$
6. The proof of the induction step follows from part 1 and
$\left[\pi_{1} ;[\right.$ car, $\mathrm{cdr} ; \mathrm{X}] ;$ cons,$\left.\pi_{2}\right]$; conc; first $=$
$=\left[\left[\pi_{1} ;\right.\right.$ car,$\left.\pi_{1} ; \operatorname{cdr} ; \mathrm{X}\right] ;$ cons, $\left.\pi_{2}\right] ;$ conc;first $=($ part 3)
$\left[\pi_{1} ;\right.$ car,$\left.\pi_{1} ; c d r ; X\right] \circ \alpha ;\left[\pi_{1} ; \operatorname{cdr} ; X_{9} \pi_{2}\right] \circ \alpha ; \pi_{1} ; \operatorname{car}=($ parts 4 and 5)
$\left[\pi_{1} ;[\right.$ car, $\mathrm{cdr} ; \mathrm{X}] ;$ cons,$\left.\pi_{2}\right] ; \alpha ; \pi_{1} ;$ first.
We apply this theorem for the first time in
THEOREM 6.2. F conc $\circ E=\alpha$ 。
[^9]
Proof.

1. conco ${ }^{\circ}=(f p p)$

$$
\left(\left[\pi_{1} ; \text { at }, \pi_{2}\right] ; \text { cons } \cup\left[\pi_{1} ; \operatorname{car},\left[\pi_{1} ; \operatorname{cdr}, \pi_{2}\right] ; \text { conc }\right] ; \text { cons }\right) \circ \mathrm{E} .
$$

2. $\left(\left[\pi_{1} ; a t, \pi_{2}\right] ;\right.$ cons $) \circ E=\left[\pi_{1} ; a t, \pi_{2}\right] \circ \alpha$.
3. $\left(\left[\pi_{1} ;\right.\right.$ car, $\left[\pi_{1} ; \mathrm{cdr}^{2} \pi_{2}\right] ;$ conc $] ;$ cons $) \circ \mathrm{E}=$
$=\left(O L L_{5}\right.$ and theorem 6.1) $\left[\pi_{1} ; \operatorname{car},\left[\pi_{1} ; c d r, \pi_{2}\right] ; \propto ; \pi_{1}\right] \circ \alpha=$
$=\left[\pi_{1} ; \operatorname{car}, \pi_{1} ; \mathrm{cdr}\right] \circ \alpha ;\left[\pi_{1} ; \mathrm{cdr}, \pi_{2}\right] \circ \alpha=$
$=\left[\pi_{1} ;[\mathrm{car}, \mathrm{cdr}] ;\right.$ cons,$\left.\pi_{2}\right] \circ \propto$.
By combining parts 1,2 and 3 one obtains the result from lemmas $4.5 . b$ and 6.1.

Next we prove the classical
THEOREM 6.3. (Associativity of conc).
F $\left[\left[\pi_{1}, \pi_{2}\right] ;\right.$ conc,$\left.\pi_{3}\right] ;$ conc $=\left[\pi_{1},\left[\pi_{2}, \pi_{3}\right]\right.$;conc $]$;conc.
Proof. By lemma 6.1 it is sufficient to prove
F $\left[\left[\pi_{1} ; \mu \mathrm{X}\left[\tau_{\mathrm{OLL}}\right], \pi_{2}\right] ;\right.$ conc, $\left.\pi_{3}\right] ;$ conc $=\left[\pi_{1} ; \mu \mathrm{XX}\left[\mathrm{T}_{\mathrm{OLL}}\right],\left[\pi_{2}, \pi_{3}\right] ;\right.$ conc $]$;conc. Use I with Φ empty, taking $\left\{\left[\left[\pi_{1} ; \mathrm{X}_{3} \pi_{2}\right] ;\right.\right.$ conc,$\left.\pi_{3}\right] ;$ conc $=\left[\pi_{1} ; \mathrm{X},\left[\pi_{2} ; \pi_{3}\right] ;\right.$ conc $] ;$ conc $\}$ for Ψ and $T_{\text {OLL }}$ for σ 。

F $\Psi(\Omega)$. Obvious.
$\Psi(X) \vdash \Psi\left(\tau_{\text {OLL }}(X)\right)$. Follows from parts 1 and 2 below.

1. Lemma 6.2 and theorem 6.1 imply $\left[\left[\pi_{1} ;\right.\right.$ at, $\left.\pi_{2}\right] ;$ cons, $\left.\pi_{2}\right] ;$ conc $=$
$=\left[\pi_{1} ;\right.$ at,$\left[\pi_{2}, \pi_{3}\right] ;$ conc $] ;$ cons.
2. $\left[\left[\left[\pi_{1} ;\right.\right.\right.$ car,$\left.\pi_{1} ; \mathrm{cdr} ; \mathrm{X}\right] ;$ cons, $\left.\pi_{2}\right] ;$ conc, $\left.\pi_{3}\right] ;$ conc $=$
$=\left(f \mathrm{fpp}, \mathrm{OLL} 5\right.$, theorem 6.1) $\left[\left[\pi_{1} ; \operatorname{car}^{2}\left[\pi_{1} ; \mathrm{cdr} ; \mathrm{X}, \pi_{2}\right] ;\right.\right.$ conc $] ;$ cons, $\left.\pi_{3}\right] ;$ conc $=$
$=($ similarly $)\left[\pi_{1} ; \operatorname{car},\left[\left[\pi_{1} ; \mathrm{cdr} ; \mathrm{X}, \pi_{2}\right] ;\right.\right.$ conc, $\left.\pi_{3}\right] ;$ conc $] ;$ cons $=$
$=$ (hypothesis) $\left[\pi_{1} ; \operatorname{car}_{3}\left[\pi_{1} ; \mathrm{cdr} ; \mathrm{X},\left[\pi_{2}, \pi_{3}\right] ;\right.\right.$ conc $] ;$ conc $]$;cons $=$
$=\left[\pi_{1} ;[\right.$ car, cdr $; X] ;$ cons, $\left[\pi_{2}, \pi_{3}\right] ;$ conc $] ;$ conc.
Finally we observe that, although intuitively not obvious, linear
lists are a special case of ordered linear lists.
This follows from
(1) totality of last and first for linear lists, the proof of which is a matter of routine,
and
(2) the fact that substitution in $O L L_{1}, \ldots, O L L_{5}$ of $E^{n \times n, n \times n}$ for $\alpha^{n \times n, \eta \times n}$ results in $L L_{1}, \ldots, L L_{4}$ and $\vdash E^{n \times n, n \times n}=\left[\pi_{1} ;\right.$ last, $\pi_{2} ;$ first $] \cdot E^{n \times n, n \times n}$, which is proved by $\left[\pi_{1} ; 1\right.$ ast, $\pi_{2} ;$ first $] \circ \mathrm{E}^{n \times \eta, \eta \times \eta}=($ corollary 4.3) $\left(\pi_{1} ;\right.$ last $) \circ E^{n, n} ;\left(\pi_{2} ;\right.$ first $) \circ E^{n, n}=\pi_{1}^{\circ}\left(\right.$ last $\left.\circ E^{n, n}\right) ; \pi_{2} \circ\left(\right.$ first $\left.\circ E^{n, n}\right)=$ $=$ (part 1 above) $\pi_{1} \circ \mathrm{E}^{n, n} ; \pi_{2} \circ \mathrm{E}^{n, n}=$ (lemma 4.6) $\mathrm{E}^{n \times n, \eta \times n}$.

Hence we have, a fortiori,

LEMMA 6.3. Any property of ordered linear lists holds upon substitution of $\alpha b y \mathrm{E}^{\mathrm{LL} \times \mathrm{LL}, \mathrm{LL} \times \mathrm{LL}}$ for linear lists.

6.2. Properties of head and tail

The head and tail functions $h d$ and $t \tau$, both of type $<\mathrm{N}^{+} \times O L L, O L L>$, where N^{+}is the type of the positive natural numbers and OLL the type of ordered linear lists, are defined by
(1) $h d(n, 1)$ is the ordered linear list of n elements which constitutes the initial part of 1 of length n, if extant, and
(2) $\mathrm{tl}(\mathrm{n}, 1)$ is the ordered linear list which constitutes the remainder of 1 , after $h d(n, 1)$ has been chopped off, if possible.

If both sides are defined, clearly properties such as $\operatorname{conc}(h d(n, 1), t 1(n, 1))=1, t 1(n+1,1)=\operatorname{cdr}(t 1(n, 1))$, $\operatorname{conc}(h d(n, 1), \operatorname{car}(t l(n, 1)))=h d(n+1,1), \operatorname{tl}\left(n, \operatorname{conc}\left(h d\left(n, 1_{1}\right), 1_{2}\right)\right)=1_{2}$ and $h d\left(n, \operatorname{conc}\left(h d\left(n, 1_{1}\right), 1_{2}\right)\right)=h d\left(n, 1_{1}\right)$ are valid and therefore amenable to proof within our system.

First we observe that the axioms for \mathbb{N}^{+}are the axioms for N which are modified by "renaming" p_{0} as p_{1} (p_{0}^{\prime} is renamed as p_{1}^{\prime}, too).
Next we introduce some notation:
hd denotes $\mu \mathrm{X}\left[\pi_{1}{ }^{\circ} \mathrm{P}_{1} ; \pi_{2} ; \operatorname{car} \cup\left[\pi_{2} ; \operatorname{car},\left[\pi_{1} ;\right.\right.\right.$ Sh $\left.\left._{\mathrm{s}}, \pi_{2} ; \operatorname{cdr}\right] ; \mathrm{X}\right] ;$ cons $], \ldots(6.2 .1)$
t1 denotes $\mu \mathrm{X}\left[\pi_{1}{ }^{\circ} \mathrm{P}_{1} ; \pi_{2} ; \mathrm{cdr} \cup\left[\pi_{1} ; \mathrm{S}_{,}, \pi_{2} ; \mathrm{cdr}\right] ; \mathrm{X}\right]$ ，
$\pi_{i_{1}}, \ldots, i_{n} \operatorname{denotes}\left[\pi_{i_{1}}, \ldots, \pi_{i_{n}}\right]$ ．
Then the above mentioned properties are established in

THEOREM 6．4．
a．$ト$［hd，t1］；conc
$=[h d, t 1] \circ \alpha ; \pi{ }_{2}$ ，of type $\left\langle\mathrm{N}^{+} \times\right.$OLL，OLL＞ ．
b．$卜 \mathrm{t} 1 ; \mathrm{cdr}$
$=\left[\pi_{1} ; S, \pi_{2}\right] ; t 1$ ，of type $\left\langle\mathrm{N}^{+} \times\right.$OLL, $0 \mathrm{LL}>$ ．
c．$卜[h d, t 1 ;$ car $]$ ；conc $=\left[\pi_{1} ; \mathrm{S}, \pi_{2}\right] ; \mathrm{hd}$ ，of type $\left\langle\mathrm{N}^{+} \times \mathrm{OLL}\right.$, OLL \rangle ．
d． $\mathcal{F}\left[\pi_{1},\left[\pi_{1,2} ;\right.\right.$ hd,$\left.\pi_{3}\right] ;$ conc $] ; t 1=\left[\pi_{1,2} ;\right.$ hd，$\left.\pi_{3}\right] \circ \alpha_{;} ; \pi_{3}$ ，
of type $\left\langle\mathbb{N}^{+} \times O L L \times O L L, O L L>\right.$ ．
e．卜 $\left[\pi_{1},\left[\pi_{1}, 2 ;\right.\right.$ hd,$\left.\pi_{3}\right]$ ；conc $] ;$ hd $=\left[\pi_{1,2} ;\right.$ hd，$\left.\pi_{3}\right] \circ \alpha ; \pi_{1,2} ;$ hd， of type $<\mathrm{N}^{+} \times 0 \mathrm{OL} \times 0 \mathrm{OL}$ ，OLL＞．
f． $\mid=\mathrm{tloE}=[\mathrm{hd}, \mathrm{tl}] \circ 0 \mathrm{o}$ ，of type $\left\langle\mathrm{N}^{+} \times O L L, \mathrm{~N}^{+} \times 0 \mathrm{LL}\right\rangle$ ．

Proof．The techniques required for proving this theorem are illustrated by proving parts a and e．
a．First we prove $f[h d, t 1] ;$ conc $\subseteq \pi_{2}$ ．Then the result follows from $[h d, t 1] ;$ conc $=\left(1\right.$ emma 4．3．d）$([h d, t 1] ;$ conc $) \circ \mathrm{E} ; \pi_{2}=$（theorem 6．2） ［hd，t1］ $0<0 ; \pi_{2}$ ．
Apply I ，with Φ empty and taking $\left\{[h d, t 1] ; X \subseteq \pi_{2}\right\}$ for Ψ and （cons $u\left[\pi_{1} ; \operatorname{car},\left[\pi_{1} ; \operatorname{cdr}, \pi_{2}\right] ; \mathrm{X}\right]$ ；cons）for σ ．Then $\Psi(X) \vdash \Psi(\sigma(X))$ follows from parts 1 and 2 below．
 $\pi_{1}{ }^{\circ} \mathrm{P}_{1} ;\left[\pi_{2} ; \mathrm{car}, \pi_{2} ; \mathrm{cdr}\right] ; \alpha ;$ cons $\subseteq\left(O L L_{2}\right) \pi_{2}$.
2．$[h d, t 1] ;\left[\pi_{1} ; \operatorname{car},\left[\pi_{1} ; \mathrm{cdr}, \pi_{2}\right] ; \mathrm{X}\right] ;$ cons $=[\mathrm{hd} ;$ car，$[\mathrm{hd} ; \mathrm{cdr}, \mathrm{tl}] ; \mathrm{X}] ;$ cons $=$ $=(f p p$ and lemma 6．1）
$\left[\pi_{2} ; \operatorname{car}_{,}\left[\left[\pi_{1} ; \breve{s}, \pi_{2} ; \mathrm{cdr}\right] ; \mathrm{hd},\left[\pi_{1} ; \breve{S}_{,} \pi_{2} ; \mathrm{cdr}\right] ; \mathrm{t} 1\right] ; \mathrm{X}\right] ;$ cons \subseteq（hypothesis） $\left[\pi_{2} ; \operatorname{car},\left[\pi_{1} ; \breve{s}^{\prime}, \pi_{2} ; \mathrm{cdr}\right] ; \pi_{2}\right] ; \operatorname{cons} \subseteq\left(O L L_{2}\right) \pi_{2}$ ．
e. Apply I, with Φ empty, taking $\left\{\left[\pi_{1},\left[\pi_{1,2} ;\right.\right.\right.$ hd, $\left.\pi_{3}\right] ;$ conc $] ; \mathrm{X}=$
$\left.=\left[\pi_{1,2} ; \mathrm{hd}, \pi_{3}\right] \circ \alpha ; \pi_{1,2} ; \mathrm{X}\right\}$ for Ψ and ($\pi_{1}{ }^{\circ} \mathrm{P}_{1}$; car U
$\cup\left[\pi_{2} ; \mathrm{car},\left[\pi_{1} ; \breve{S}, \pi_{2} ; c \mathrm{cdr}\right] ; \mathrm{X}\right]$; cons $)$ for σ. Then $\Psi(\mathrm{X}) \vdash \Psi(\sigma(\mathrm{X}))$ follows from part 1 and 4 below.

1. It follows from lemma 4.3.d that $\left[\pi_{1,2} ; \mathrm{hd}, \pi_{3}\right]$;conc;car \subseteq (fpp) $\pi_{2} ;$ car and ($\left[\pi_{1,2} ;\right.$ hd, $\left.\pi_{3}\right] ;$ conc;car $) \circ E=\left[\pi_{1,2} ;\right.$ hd, $\left.\pi_{3}\right] \circ($ concoat' $)=(f p p)$ $\left[\pi_{1,2} ; h,^{2} \pi_{3}\right] \circ\left(\right.$ conc \circ E) $=$ (theorem 6.2) $\left[\pi_{1,2} ;\right.$ hd, $\left.\pi_{3}\right] \circ \alpha$ together imply $\left[\pi_{1,2} ;\right.$ hd,$\left.\pi_{3}\right] ;$ conc; car $=\left[\pi_{1,2} ;\right.$ hd, $\left.\pi_{3}\right] \circ \alpha ; \pi_{2} ;$ car.
2. $\left[\pi_{1,2} ; \mathrm{hd}, \pi_{3}\right] ;$ conc $; \mathrm{cdr}=$
$=\left[\pi_{1,2} ; \mathrm{hd}, \pi_{3}\right] \circ \alpha ;\left(\pi_{1}{ }^{\circ} \mathrm{p}_{1} ; \pi_{3} \cup \pi_{1}{ }^{\circ} \mathrm{P}_{1}^{\prime} ;\left[\pi_{1,2} ; \mathrm{hd}_{\mathrm{cdr}}, \pi_{3}\right] ;\right.$ conc $)$ is proved similarly.
3. $\pi_{1,2} ;$ hd $; c \mathrm{cdr}=\left(\mathrm{fpp}_{\mathrm{p}}\right)\left[\pi_{1} ; \breve{S}_{,} \pi_{2} ; \mathrm{cdr}\right] ;$ hd.
4. $\left[\pi_{1},\left[\pi_{1,2} ;\right.\right.$ hd,$\left.\pi_{3}\right] ;$ conc $] ; \pi_{1} \circ \mathrm{p}_{1}^{\prime} ;\left[\pi_{2} ; \operatorname{car}_{,}\left[\pi_{1} ; \breve{S}_{,} \pi_{2} ; \mathrm{cdr}\right] ; \mathrm{X}\right] ;$ cons $=$
$=($ parts 1 and 2)
$\left[\pi_{1}, 2 ; \text { hd }^{2} \pi_{3}\right]_{\circ} \alpha ; \pi_{1}{ }^{\circ}{ }_{1}^{\prime} ;\left[\pi_{2} ; \operatorname{car},\left[\pi_{1} ; \breve{S},\left[\pi_{1,2} ;\right.\right.\right.$ hd $;$ cdr,$\left.\pi_{3}\right] ;$ conc $\left.] ; \mathrm{X}\right] ;$ cons $=$ $=$ (part 3)
$\left[\pi_{1,2} ; \mathrm{hd}, \pi_{3}\right] \circ \alpha ; \pi_{1}{ }^{\circ} \mathrm{P}_{1}^{\prime} ;$
$\left[\pi_{2} ; \operatorname{car},\left[\pi_{1} ; \breve{S}_{3} \pi_{2} ; \operatorname{cdr}, \pi_{3}\right] ;\left[\pi_{1},\left[\pi_{1,2} ;\right.\right.\right.$ hd, $\left.\pi_{3}\right] ;$ conc $\left.] ; \mathrm{x}\right] ;$ cons $=$
$=$ (hypothesis) $\left[\pi_{1}, 2 ; \mathrm{hd}_{3} \pi_{3}\right] \circ \alpha ; \pi_{1}{ }^{\circ}{ }_{1}^{\prime} ;\left[\pi_{2} ; \operatorname{car}_{2}\left[\pi_{1} ; \breve{S}_{2} \pi_{2} ; \mathrm{cdr}\right] ; \mathrm{X}\right]$;cons.
Since $\alpha=\pi_{1} ; \alpha^{\prime} ; \breve{\pi}_{2} \cap E(6.1 .4)$, transitivity of the relation α^{\prime}, i.e.,
 of the predicate α in its two arguments or transitivity of α, for short. This follows from $\pi_{1,2} 2^{\circ} \alpha ; \pi_{2,} 3^{\circ} \alpha=\left(\pi_{1} ; \alpha^{\prime} ; \breve{\pi}_{2} \cap \mathrm{E}\right) ;\left(\pi_{2} ; \alpha^{\prime} ; \breve{\pi}_{3} \cap \mathrm{E}\right)=$ $=\pi_{1} ; \alpha^{\prime} ; \breve{\pi}_{2} \cap \pi_{2} ; \alpha^{\prime} ; \breve{\pi}_{3} \cap \mathrm{E} \subseteq \pi_{1} ; \alpha^{\prime} ; \alpha^{\prime} ; \breve{\pi}_{3} \cap^{\mathrm{E}} \subseteq$ (assumption) $\pi_{1} ; \alpha^{\prime} ; \breve{\pi}_{3} \cap \mathrm{E}=\pi_{1}, 3^{\circ \alpha}$ 。

COROLLARY 6.1. Let α be transitive (in its two arguments), then
a. $\mid\left[\left[\pi_{1} ; S, \pi_{2}\right] ; h d, \pi_{3}\right] \circ \alpha=$

b. $卜\left(\left[\pi_{1} ; S, \pi_{2}\right] ; t 1\right) \circ E=[h d, t 1 ; c a r] \circ \alpha ;[t 1 ; c a r, t 1 ; c d r] \circ \alpha ;[h d, t 1 ; c d r] \circ \alpha$.

Proof.

a. $\left[\left[\pi_{1} ; S, \pi_{2}\right] ;\right.$ hd, $\left.\pi_{3}\right]$ oo人 $=($ theorem $6.4 . c)\left[\left[\pi_{1,2} ;\right.\right.$ hd, $\pi_{1,2} ;$ t1; car $] ;$ conc, $\left.\pi_{3}\right] \circ \alpha=$ $=$ (theorem 6.1) $\left[\pi_{1,2} ;\right.$ hd, $\left.\pi_{1,2} ; \mathrm{tl} ; \mathrm{car}\right] \circ \alpha ;\left[\pi_{1,2} ; \mathrm{tl} ; \mathrm{car}, \pi_{3}\right] \circ \alpha$, whence the result can be deduced from the assumption.
b. $\left(\left[\pi_{1} ; S, \pi_{2}\right] ; \mathrm{tl}\right) \circ \mathrm{E}=$ (theorem 6.4.f) $\left[\left[\pi_{1} ; \mathrm{S}, \pi_{2}\right] ; \mathrm{hd},\left[\pi_{1} ; \mathrm{S}, \pi_{2}\right] ; \mathrm{tl}\right] \circ \alpha=$ $=($ theorem 6.4.b and 6.4.c) [hd, tl; car]; conc, t1;cdr] $0 \alpha=$ (theorem 6.1 and transitivity of α) [hd, t1;car] $0 \alpha ;[t 1 ; c a r, t 1 ; c d r] \circ \alpha ;[h d, t 1 ; c d r] \circ \alpha$.

6.3. Correctness of the TOWERS OF HANOI

6.3.a. Informal part

We present an informal argument for the correctness of a certain version of the TOWERS OF HANOI program. This version looks in ALGOL-1ike notation as follows:
procedure $\operatorname{TVH}(\mathrm{n}, \mathrm{x}, \mathrm{y}, \ell 1, \ell 2, \ell 3)$; integer $\mathrm{n}, \mathrm{x}, \mathrm{y}$; ordered 1inear 1ist $\ell 1, \ell 2, \ell 3$; if $n=1$ then $\operatorname{MOVE}(n, x, y, \ell 1, \ell 2, \ell 3)$ else
begin $n:=n-1 ; y:=\operatorname{alt}(x, y) ; \operatorname{TVH}(n, x, y, \ell 1, \ell 2, \ell 3)$;
$y:=a 1 t(x, y) ; \operatorname{MOVE}(n, x, y, \ell 1, \ell 2, \ell 3) ; x:=\operatorname{alt}(x, y) ;$
$\operatorname{TVH}(\mathrm{n}, \mathrm{x}, \mathrm{y}, \ell 1, \ell 2, \ell 3) ; \mathrm{n}:=\mathrm{n}+1$; $\mathrm{x}:=\mathrm{alt}(\mathrm{x}, \mathrm{y})$
end;
procedure $\operatorname{MOVE}(n, x, y, \ell 1, \ell 2, \ell 3)$; integer n, x, y; ordered linear list $\ell 1, \ell 2, \ell 3$; if $x=1 \wedge y=2$ then begin $\ell 2:=\operatorname{cons}(\operatorname{car}(\ell 1), \ell 2) ; \ell 1:=\operatorname{cdr}(\ell 1)$ end e1se if $x=1 \wedge y=3$ then begin $\ell 3:=\operatorname{cons}(\operatorname{car}(\ell 1), \ell 3) ; \ell 1:=\operatorname{cdr}(\ell 1)$ end else if $x=2 \wedge y=3$ then begin $\ell 3:=\operatorname{cons}(\operatorname{car}(\ell 2), \ell 3) ; \ell 2:=c d r(\ell 2)$ end e1se if $x=2 \wedge y=1$ then begin $\ell 1:=\operatorname{cons}(c a r(\ell 2), \ell 1) ; \ell 2:=c d r(\ell 2)$ end else if $x=3 \wedge y=1$ then begin $\ell 1:=\operatorname{cons}(\operatorname{car}(\ell 3), \ell 1) ; \ell 3:=\operatorname{cdr}(\ell 3)$ end else if $x=3 \wedge y=2$ then begin $\ell 2:=\operatorname{cons}(\operatorname{car}(\ell 3), \ell 2) ; \ell 3:=\operatorname{cdr}(\ell 3)$ end e1se undefined;
integer procedure alt (x, y); integer $x, y ;$ if $x \geq 1 \wedge x \leq 3 \wedge y \geq 1 \wedge y \leq 3$ then alt: $=6-x-y$ else undefined

To which conditions does correctness of TVH amount?
First we have to assume the transitivity of the relation ordering the ordered linear lists considered above. We do not wish to elaborate this assumption in the present informal setting; for this the reader is referred to the next section.

Let us assume $x \neq y$, then execution of $\operatorname{TVH}(n, x, y, \ell 1, \ell 2, \ell 3)$, if defined,

1. Has to result in the removal of the top n discs of the pin "identified by" x , to the pin identified by y .
2. These discs are moved in correct order, i.e., never a larger disc is placed on a smaller disc.
3. The discs are moved one at a time.

As to (3): we cannot formalize this requirement, as the present formalism deals only with input-output relationships and not with intermediate stages: cf. section 1.3.

As to (2): this condition is implicit in our approach as all functions are only defined for ordered linear lists. Thus, the question whether or not the order is disturbed amounts to whether or not the execution is defined.

As to (1): let us declare $R(n, x, y, \ell 1, \ell 2, \ell 3)$ by
procedure $R(n, x, y, \ell 1, \ell 2, \ell 3)$; integer n, x, y; ordered 1inear 1ist $\ell 1, \ell 2, \ell 3$; if $x=1 \wedge y=2$ then begin $\ell 2:=\operatorname{conc}(h d(n, \ell 1), \ell 2) ; \ell 1:=t 1(n, \ell 1)$ end else if $x=1 \wedge y=3$ then begin $\ell 3:=\operatorname{conc}(h d(n, \ell 1), \ell 3) ; \ell 1:=t 1(n, \ell 1)$ end else if $x=2 \wedge y=3$ then begin $\ell 3:=\operatorname{conc}(h d(n, \ell 2), \ell 3) ; \ell 2:=t 1(n, \ell 2)$ end else if $x=2 \wedge y=1$ then begin $\ell 1:=\operatorname{conc}(h d(n, \ell 2), \ell 1) ; \ell 2:=t 1(n, \ell 2)$ end else if $x=3 \wedge y=1$ then begin $\ell 1:=\operatorname{conc}(h d(n, \ell 3), \ell 1) ; \ell 3:=t 1(n, \ell 3)$ end else if $x=3 \wedge y=2$ then begin $\ell 2:=\operatorname{conc}(h d(n, \ell 3), \ell 2) ; \ell 3:=t 1(n, \ell 3)$ end e1se undefined.

If we assume $\mathrm{x} \neq \mathrm{y}$, (1) amounts to

$$
\operatorname{TVH}(n, x, y, \ell 1, \ell 2, \ell 3)=R(n, x, y, \ell 1, \ell 2, \ell 3),
$$

provided both sides are defined.
As $\operatorname{TVH}(1, x, y, \ell 1, \ell 2, \ell 3)=R(1, x, y, \ell 1, \ell 2, \ell 3)$ follows from the dec1arations, we concentrate on the case $n>1$:

The induction hypothesis is $\operatorname{TVH}(n-1, x, y, \ell 1, \ell 2, \ell 3)=R(n-1, x, y, \ell 1, \ell 2, \ell 3)$, provided both sides are defined. Start with statevector $\xi_{0} \equiv\langle n, 1,2, \ell 1, \ell 2, \ell 3\rangle$ 。

1. Execution of $n:=n-1 ; y:=a l t(x, y) ; \operatorname{TV} H(n, x, y, 21,22,23)$ with ξ_{0} as input results in

$$
\xi_{1} \equiv\langle n-1,1,3, t 1(n-1, \ell 1), \ell 2, \operatorname{conc}(h d(n-1, \ell 1), \ell 3)\rangle,
$$

by the induction hypothesis.
2. Execution of $y:=\operatorname{alt}(x, y) ; \operatorname{MOVE}(n, x, y, 21,22,23)$ with ξ_{1} as input results in

$$
\begin{aligned}
\xi_{2} \equiv & <n-1,1,2, \operatorname{cdr}(\operatorname{t1}(\mathrm{n}-1, \ell 1)), \operatorname{cons}(\operatorname{car}(\mathrm{t} 1(\mathrm{n}-1, \ell 1)), \ell 2), \\
& \operatorname{conc}(h d(\mathrm{n}-1, \ell 1), \ell 3)>
\end{aligned}
$$

3. Execution of $x:=\operatorname{alt}(x, y) ; \operatorname{TVH}(n, x, y, 21,22,23) ; n:=n+1 ; x:=\alpha Z t(x, y)$ with ξ_{2} as input results in

$$
\begin{aligned}
\xi_{2} \equiv & <\mathrm{n}, 1,2, \underbrace{\operatorname{cdr}(\mathrm{tl}(\mathrm{n}-1, \ell 1))}_{\operatorname{Expr} 1}, \\
& \underbrace{\operatorname{conc}(\operatorname{hd}(\mathrm{n}-1, \operatorname{conc}(\mathrm{hd}(\mathrm{n}-1, \ell 1), \ell 3)), \operatorname{cons}(\operatorname{car}(\mathrm{tl}(\mathrm{n}-1, \ell 1), \ell 2)))}_{\operatorname{Expr} 2}, \\
& \underbrace{\mathrm{t} 1(\mathrm{n}-1, \operatorname{conc}(\operatorname{hd}(\mathrm{n}-1, \ell 1), \ell 3))}_{\operatorname{Expr} 3}>
\end{aligned}
$$

We demonstrate that, provided ξ_{3} is defined, ξ_{3} equals
$<n, 1,2, t 1(n, \ell 1)$, conc $(h d(n, \ell 1), \ell 2), \ell 3>$.
$\operatorname{Expr} 1: \operatorname{cdr}(\mathrm{t} 1(\mathrm{n}-1, \ell 1))=\mathrm{t} 1(\mathrm{n}, \ell 1)$ by theorem 6.4.b.
Expr 2: 1. $h d(n-1, \operatorname{conc}(h d(n-1, \ell 1), \ell 3))=$ if $h d(n-1, \ell 1) \propto \ell 3$ then $h d(n-1, \ell 1)$ else undefined,
by theorem 6.4.e.
2. $\operatorname{conc}(h d(n-1, \ell 1), \operatorname{cons}(\operatorname{car}(t 1(n-1, \ell 1)), \ell 2))=$
$=\operatorname{conc}(\operatorname{conc}(h d(n-1, \ell 1), \operatorname{car}(t 1(n-1, \ell 1))), \ell 2)$, by associativity of conc, theorem 6.3.
3. $\operatorname{conc}(h d(n-1, \ell 1), \operatorname{car}(t 1(n-1, \ell 1)))=h d(n, \ell 1)$, by theorem 6.4.c.

Thus Expr $2=$ if $h d(n-1, \ell 1) \propto l 3$ then $\operatorname{conc}(h d(n, \ell 1), \ell 2)$
else undefined.
Expr 3: $\operatorname{tl}(\mathrm{n}-1, \operatorname{conc}(h d(n-1, \ell 1), \ell 3))=$ if $h d(n-1, \ell 1) \propto \ell 3$ then $\ell 3$
else undefined,
by theorem 6.4.d.
Thus $\xi_{3}=$ if $h d(n-1, \ell 1) \propto \ell 3$ then $\langle n, 1,2, t 1(n, \ell 1)$, conc $(h d(n, \ell 1), \ell 2), \ell 3\rangle$ else undefined, whence the result.
6.3.b. An axiomatic corpectness proof for the TOWERS OF HANOI

First we introduce some auxiliary notions:
By example 1.3 it is possible to axiomatize a three-element set $\{a, b, c\}$ of type 3. Furthermore we need the function alt of type < $3, \underline{3}$ defined by: if $x \neq y$ then $a l t(x, y) \in\{a, b, c\}-\{x, y\}$, and $a l t(x, y)$ is undefined, otherwise. Then alt has the following properties: alt $(x, y)=a 1 t(y, x)$, $\operatorname{alt}(\operatorname{alt}(x, y), x)=y$ and $\operatorname{alt}(a l t(x, y), y)=x$. The formal definition of alt, using the predicates a, b and c, and the subsequent derivation of these properties is a matter of routine.

$$
\pi_{i-j D} \overline{\bar{E} F} \pi_{i, i+1}, \ldots, j \quad \text { for } i<j
$$

Secondly we define $T V H$, of type $<\mathrm{N}^{+} \times 3 \times 3 \times 0 \mathrm{LL} \times O L L \times O L L, \mathrm{~N}^{+} \times \underline{3} \times \underline{3} \times O L L \times O L L \times O L L>$, by

and

$$
\begin{aligned}
& \text { MOVE DEF } \mathrm{p}_{\mathrm{a}, \mathrm{~b}} ;\left[\pi_{1-3} ; \pi_{4} ; \mathrm{cdr},\left[\pi_{4} ; \text { car, } \pi_{5}\right] ; \text { cons, } \pi_{6}\right] \text { u } \\
& \cup \mathrm{P}_{\mathrm{a}, \mathrm{c}} ;\left[\pi_{1-3}, \pi_{4} ; \mathrm{cdr}_{3} \pi_{5},\left[\pi_{4} ; \mathrm{car}_{3} \pi_{6}\right] ; \mathrm{cons}\right] \cup \\
& \cup \mathrm{p}_{\mathrm{b}, \mathrm{c}} ;\left[\pi_{1-4} ; \pi_{5} ; \mathrm{cdr},\left[\pi_{5} ; \mathrm{car}, \pi_{6}\right] \text {;cons }\right] u \\
& \cup \mathrm{P}_{\mathrm{b}, \mathrm{a}} ;\left[\pi_{1-3},\left[\pi_{5} ; \mathrm{car}_{9} \pi_{4}\right] ; \text { cons }, \pi_{5} ; \mathrm{cdr}_{8} \pi_{6}\right] \cup \\
& \cup P_{c, a^{j}}\left[\pi_{1-3},\left[\pi_{6} ; \operatorname{car}_{9} \pi_{4}\right] ; \text { cons }, \pi_{5}, \pi_{6} ; \mathrm{cdr}\right] \cup \\
& \cup P_{c, b} ;\left[\pi_{1-4} ;\left[\pi_{6} ; \mathrm{car}_{9} \pi_{5}\right] ; \text { cons }, \pi_{6} ; \mathrm{cdr}\right] \text { 。 }
\end{aligned}
$$

with

$$
\begin{equation*}
\mathrm{p}_{\mathrm{x}, \mathrm{y} \mathrm{DEF}} \mathrm{E}_{2}{ }^{\circ \mathrm{x}} ; \pi_{3}{ }^{\circ y} \quad \text { for } \mathrm{x}, \mathrm{y} \in\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \tag{6.3.2}
\end{equation*}
$$

Thirdly we define $p_{e q}^{\prime}, 0$ and R in order to express correctness of TVH:

$$
\begin{align*}
& P_{\text {eq }}^{\prime} D \overline{\bar{E} F} x \neq y_{x, y} \quad \text { cf. (6.3.2). } \\
& 0_{\text {DEF }} \underbrace{\pi_{2}{ }^{\circ \mathrm{a}} ;\left[\pi_{1,4} ; \text { hd, } \pi_{5}\right] \circ \alpha ;\left[\pi_{1,4} ; \text { hd }, \pi_{6}\right] \circ \alpha}_{0} u \\
& \underbrace{u \pi_{2} \circ b ;\left[\pi_{1,5} ; h d_{,} \pi_{4}\right] \circ \alpha ;\left[\pi_{1,5} ; h h_{6} \pi_{6}\right] \circ \alpha}_{0_{b}} u \\
& \underbrace{u \pi_{2}{ }^{\circ} ; ;\left[\pi_{1,6} ; \text { hd }_{2} \pi_{4}\right] \circ \alpha ;\left[\pi_{1,6} ; \text { hd, }_{5}\right] \text {]od }}_{0_{c}} \tag{6.3.3}
\end{align*}
$$

and

$$
\begin{aligned}
& R_{D E F} \overline{\overline{E F F}} \mathrm{P}_{\mathrm{a}, \mathrm{~b}} ;\left[\pi_{1-3}, \pi_{1,4} ; \mathrm{t1},\left[\pi_{1,4} ; \mathrm{hd}, \pi_{5}\right] ; \text { conc, } \pi_{6}\right] \cup \\
& \cup \mathrm{p}_{\mathrm{a}, \mathrm{c}} ;\left[\pi_{1-3} ; \pi_{1,4} ; \mathrm{tl}, \pi_{5},\left[\pi_{1,4} ; \mathrm{hd}, \pi_{6}\right] ; \text { conc }\right] u \\
& \cup \mathrm{p}_{\mathrm{b}, \mathrm{c}} ;\left[\pi_{1-4}, \pi_{1,5} ; \mathrm{t} 1,\left[\pi_{1,5} ; \mathrm{hd}, \pi_{6}\right] \text {; conc }\right] u \\
& \cup \mathrm{p}_{\mathrm{b}, \mathrm{a}} ;\left[\pi_{1-3},\left[\pi_{1,5} ; \mathrm{hd}, \pi_{4}\right] ; \text { conc }, \pi_{1,5} ; \mathrm{tl}, \pi_{6}\right] \cup \\
& \cup \mathrm{p}_{\mathrm{c}, \mathrm{a}} ;\left[\pi_{1-3},\left[\pi_{1,6} ; \mathrm{hd}, \pi_{4}\right] ; \text { conc }, \pi_{5}, \pi_{1,6} ; \mathrm{tl}\right] \mathrm{u} \\
& \cup \mathrm{p}_{\mathrm{c}, \mathrm{~b}} ;\left[\pi_{1-4} ;\left[\pi_{1,6} ; \mathrm{hd}, \pi_{5}\right] ; \text { conc }, \pi_{1,6} ; \mathrm{tl}\right] \text {. }
\end{aligned}
$$

Then the correctness of TVH is established by
THEOREM 6.5. (Correctness of TOWERS OF HANOI). Let α be transitive (in the sense indicated in (6.2.1)), then

$$
\text { F } p_{e q}^{\prime} ; 0 ; T V H=p_{e q}^{\prime} ; 0 ; R .
$$

The proof of this theorem proceeds by induction on N^{+}, i.e., we prove

$$
\begin{aligned}
& \mathcal{F} p_{e q}^{\prime} ;\left[\pi_{1} ; \mu X\left[p_{1} \cup \breve{S} ; X ; S\right], \pi_{2-6}\right] ; 0 ; T V H= \\
& =p_{e q}^{\prime} ;\left[\pi_{1} ; \mu X\left[p_{1} \cup \breve{S} ; X ; S\right], \pi_{2-6}\right] ; 0 ; R
\end{aligned}
$$

by applying I as follows: let Φ be empty, Ψ be
$\left\{\mathrm{p}_{\mathrm{eq}}^{\prime} ;\left[\pi_{1} ; \mathrm{X}, \pi_{2-6}\right] ; 0 ; T V H=p_{e q}^{\prime} ;\left[\pi_{1} ; \mathrm{X}_{2} \pi_{2-6}\right] ; 0 ; R\right\}$ and σ be ($\mathrm{p}_{1} \cup \mathrm{~S} ; \mathrm{X} ; \mathrm{S}$). Then the result follows from $\mu X\left[p_{1} \cup \breve{S} ; X ; S\right]=E^{N^{+}}, N^{+}, c f .1 e m m$ 5.5.

We adopt the following strategy:
Using the notation introduced in (6.3.1) we associate in the proof of the induction step terms P_{0}, \ldots, P_{3} and Q_{0}, \ldots, Q_{3}, which are defined below, with

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{eq}}^{\prime} ;\left[\pi_{1} ;\left(\mathrm{p}_{1}^{;} \cup \breve{\mathrm{S}} ; \mathrm{X} ; \mathrm{S}\right), \pi_{2-6}\right] ; \mathrm{O} ; \mathrm{TVH}=(\mathrm{fpp})
\end{aligned}
$$

Then our correctness proof consists in proving, with Ψ as hypothesis,

$$
\begin{equation*}
P_{0} ; \tau_{0}=Q_{0} \tag{6.3.4}
\end{equation*}
$$

and

$$
\begin{align*}
& P_{1} ; \tau_{1} ; T V H ; \tau_{2} ; T V H ; \tau_{3}= \\
& =\left(\text { parts } 1 \text { and 2) } Q_{1} ; T V H ; \tau_{2} ; T V H ; \tau_{3}=\right. \\
& =(\text { part } 3) P_{2} ; \tau_{2} ; T V H ; \tau_{3}= \\
& =(\text { parts } 4,5 \text { and } 6) Q_{2} ; T V H ; \tau_{3}= \\
& =(\text { part } 7) P_{3} ; \tau_{3}=(\text { part } 8) Q_{3} ; \text {) } \tag{6.3.5}
\end{align*}
$$

 $Q_{3} \equiv \mathrm{p}_{\mathrm{eq}}^{\prime} ;\left[\pi_{1} ; \tilde{S}^{\prime} ; \mathrm{X} ; \mathrm{S}_{9} \pi_{2-6}\right] ; 0 ; R$, whence (6.3 .4) and (6.3 .5) together imply

$$
\mathrm{p}_{\mathrm{eq}}^{\prime} ;\left[\pi_{1} ;\left(\mathrm{p}_{1} \cup \breve{S}_{;} X_{;} ; S\right) ; \pi_{2-6}\right] ; 0 ; T V H=\mathrm{P}_{\mathrm{eq}}^{;} ;\left[\pi_{1} ;\left(\mathrm{p}_{1} \cup \breve{S}_{;} \mathrm{X}_{;} \mathrm{S}\right), \pi_{2-6}\right] ; 0 ; R
$$

*) Parts 1 to 8 refer to the formal proof at the end of this section.

Without of generality we prove

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{eq}}^{\prime} ;\left[\pi_{1} ; \mathrm{X}_{3} \pi_{2-6}\right] ; 0 ; \mathrm{TVH}=\mathrm{p}_{\mathrm{eq}}^{\prime} ;\left[\pi_{1} ; \mathrm{X}_{2} \pi_{2-6}\right] ; 0 ; \mathrm{R} \text { ト } \\
& \vdash\left[\pi_{1} ;\left(p_{1} \cup \breve{S} ; X ; S\right), \pi_{2} ; a, \pi_{3} ; b, \pi_{4-6}\right] ; O_{a} ; T V H= \\
& =\left[\pi_{1} ;\left(p_{1} \cup \breve{S} ; X ; S\right), \pi_{2} ; a, \pi_{3} ; b, \pi_{4-6}\right] ; O_{a} ; R \text {. }
\end{aligned}
$$

Next terms P_{i} and Q_{i} are defined as below，$i=0, \ldots, 3$.
Let $O_{a}(X) \underset{\operatorname{DEF}}{ }\left[\left[\pi_{1} ; X, \pi_{4}\right] ; h d_{2} \pi_{5}\right] \circ \alpha ;\left[\left[\pi_{1} ; X, \pi_{4}\right] ; h d_{,} \pi_{6}\right] \circ \alpha$ ，whence $O_{a}(E)=0_{a}$ （see（6．3．b）），and let $0_{a, b \operatorname{DEF}}\left[\pi_{1,4} ; h d_{5} \pi_{5}\right] 0 \alpha$ and $0_{a, c} D_{\bar{E} F}\left[\pi_{1,4} ; h d_{6} \pi_{6}\right] \circ \alpha$ ， whence $O_{a}=\pi_{2}{ }^{\circ} a ; 0_{a, b} ; O_{a, c}$ ．For O_{b} and O_{c} we introduce similar notations．
$P_{0 ~ D E F}\left[\pi_{1} ; \mathrm{P}_{1}, \pi_{2} ; a, \pi_{3} ; \mathrm{b}_{2} \pi_{4-6}\right] ; 0_{a}$.
$Q_{0} \mathrm{DEF}\left[\pi_{1} ; p_{1} ; \pi_{2} ; a, \pi_{3} ; b, \pi_{4-6}\right] ; 0_{a} ;$ MOVE.
P_{1} D $\overline{\bar{E} F}\left[\pi_{1} ; \breve{S} ; X ; S, \pi_{2} ; a, \pi_{3} ; b, \pi_{4-6}\right] ; O_{a}$.

$\mathrm{P}_{2} \mathrm{DEF}{ }_{\mathrm{E}}^{\mathrm{O}}(\breve{\mathrm{S}} ; \mathrm{X} ; \mathrm{S}) ;\left[\pi_{1} ; \breve{\mathrm{S}}, \pi_{2-6}\right]$ ；
$\left[\pi_{1} ; X_{9} \pi_{2} ; a_{9} \pi_{3} ; c,\left[\pi_{1} ; X_{9} \pi_{4}\right] ; t 1_{9} \pi_{5},\left[\left[\pi_{1} ; X_{,} \pi_{4}\right] ; h d_{9} \pi_{6}\right] ;\right.$ conc $]$.

$\left[\left[\pi_{1} ; X_{2}, \pi_{4}\right] ;\right.$ tI；car，$\left.\pi_{5}\right] ;$ cons，$\left[\left[\pi_{1} ; X_{3} \pi_{4}\right] ;\right.$ hd，$\left.\pi_{6}\right]$ ；conc $]$ ；
$\left[\pi_{1} ; X_{2} \pi_{2-6}\right] ; 0_{c}$.
$P_{3} \mathrm{DEF}_{\bar{E} F} \mathrm{O}_{\mathrm{a}}(\breve{S} ; \mathrm{X} ; \mathrm{S}) ;\left[\pi_{1} ; \breve{S}, \pi_{2-6}\right] ;\left[\pi_{1} ; X_{2}, \pi_{2} ; c, \pi_{3} ; b,\left[\pi_{1} ; X ; S, \pi_{4}\right] ; t 1\right.$ ，
$\left[\left[\pi_{1} ; X,\left[\left[\pi_{1} ; X, \pi_{4}\right] ;\right.\right.\right.$ hd,$\left.\pi_{6}\right] ;$ conc $] ;$ hd，
$\left.\left[\pi_{1} ; X, \pi_{4}\right] ; \mathrm{t} 1 ; \mathrm{car}, \pi_{5}\right] ;$ cons $] ;$ conc，
$\left[\pi_{1} ; X,\left[\left[\pi_{1} ; X, \pi_{4}\right] ;\right.\right.$ hd,$\left.\pi_{6}\right] ;$ conc $\left.] ; t 1\right]$ ．
$Q_{3} \operatorname{DEF}\left[\pi_{1} ; \breve{S}_{;} ; X ; S, \pi_{2} ; a, \pi_{3} ; b, \pi_{4-6}\right] ; O_{a} ; R$ ．

Finally we prove the induction step as indicated in（6．3．4）and（6．3．5）． Assume transitivity of α ，i．e．，$\pi_{1,2}{ }^{\circ} \alpha ; \pi_{2,3^{\circ} \alpha \subseteq \pi_{1,3}} \circ \alpha$ ，and the induc－ tion hypothesis Ψ 。

The proof of $\mathrm{P}_{0} ; T V H=Q_{0}$ is a matter of routine and therefore omitted.

1. $\left[\pi_{1} ; \breve{S} ; X ; S, \pi_{2} ; a, \pi_{3} ; b, \pi_{4-6}\right] ; \tau_{1}=\left(S ; \breve{S}=E^{N^{+}}, N^{+}\right.$, cf. axiom $\left.N_{3}\right)$

$$
\left[\pi_{1} ; \breve{S}, \pi_{2-6}\right] ;\left[\pi_{1} ; X, \pi_{2} ; a, \pi_{3} ; c, \pi_{4-6}\right] .
$$

2. $P_{1} ; \tau_{1}=\left[\pi_{1} ; \breve{S} ; X ; S, \pi_{2} ; a, \pi_{3} ; b_{4} \pi_{4-6}\right] ; O_{a} ;\left[\pi_{1} ; \breve{S}_{3}, \pi_{2}, \pi_{2-3} ; a 1 t_{,} \pi_{4-6}\right]=(1 \mathrm{emma} 4.5 . e)$
$=P_{1} ; \tau_{1} ; 0_{a}(S)=($ corollary 6.1.a, α being transitive, and part 1)
$0_{a}(\breve{S} ; X ; S) ;\left[\pi_{1} ; \breve{S}, \pi_{2-6}\right] ;\left[\pi_{1} ; X, \pi_{2} ; a, \pi_{3} ; c, \pi_{4-6}\right] ; 0_{a}=Q_{1}$.
3. $Q_{1} ; T V H=$ (hypothesis)

$$
\begin{aligned}
& 0_{a}(\breve{S} ; X ; S) ;\left[\pi_{1} ; \breve{S}, \pi_{2-6}\right] ; \\
& {\left[\pi_{1} ; X, \pi_{2} ; a, \pi_{3} ; c,\left[\pi_{1} ; X_{,} \pi_{4}\right] ; t 1, \pi_{5} ;\left[\left[\pi_{1} ; X, \pi_{4}\right] ; h d_{,}\right] ; \text {conc }\right]=P_{2}}
\end{aligned}
$$

4. $\mathrm{P}_{2} ; \tau_{2}=\mathrm{P}_{2} ;\left[\pi_{1-2}, \pi_{2,3} ; a 1 t, \pi_{4-6}\right] ; \operatorname{MOVE} ;\left[\pi_{1}, \pi_{2,3}, a 1 t, \pi_{4-6}\right]=$
(theorem 6.4) $0_{a}(\breve{S} ; \mathrm{X} ; \mathrm{S}) ;\left[\pi_{1} ; \breve{\mathrm{S}}, \pi_{2-6}\right]$;
$\left[\pi_{1} ; X_{9} \pi_{2} ; c, \pi_{3} ; b,\left[\pi_{1} ; X ; S, \pi_{4}\right] ; t l_{,}\left[\left[\pi_{1} ; X_{9} \pi_{4}\right] ; t 1 ;\right.\right.$ car,$\left.\pi_{5}\right] ;$ cons,

5. $Q_{2} ;\left[\pi_{1,6} ;\right.$ hd $\left._{2} \pi_{4}\right] \circ \alpha=$
$=\left[\left[\pi_{1} ; X,\left[\left[\pi_{1} ; X, \pi_{4}\right] ;\right.\right.\right.$ hd,$\left.\pi_{6}\right] ;$ conc $] ;$ hd,$\left.\left[\pi_{1} ; X ; S, \pi_{4}\right] ; t 1\right] \circ \propto ; Q_{2}^{\prime}=$
$=\left(\right.$ theorem 6.4) $\left[\left[\pi_{1} ; X_{9} \pi_{4}\right] ;\right.$ hd, $\left.\pi_{6}\right] \circ \alpha ;$

$$
\left[\left[\pi_{1} ; X, \pi_{4}\right] ; h d_{,}\left[\pi_{1} ; X ; S, \pi_{4}\right] ; t 1\right] \circ \alpha ; Q_{2}^{\prime}
$$

6. (i) $Q_{2}^{\prime}=\left(\left[\pi_{1} ; X ; S, \pi_{4}\right] ; t 1\right) \circ E ; Q_{2}^{\eta}=$
$\left[\left[\pi_{1} ; X, \pi_{4}\right] ; \mathrm{hd}_{,}\left[\pi_{1} ; \mathrm{X} ; \mathrm{S}, \pi_{4}\right] ; \mathrm{tl}\right] \circ \alpha ; Q_{2}^{\prime}$.
(ii) $0_{a}(\breve{S} ; X ; S) ;\left[\pi_{1} ; \breve{S}, \pi_{2-6}\right]=0_{a}(\breve{S} ; X ; S) ;\left[\pi{ }_{1} ; \breve{S}, \pi_{2-6}\right] ;\left[\left[\pi_{1} ; X_{;} S_{;} \pi_{4}\right] ; h d_{;} \pi_{6}\right] 0 \alpha=$ $=\left(\right.$ corollary 6.1) $\ldots ;\left[\left[\pi_{1} ; \mathrm{X}_{3} \pi_{4}\right] ; h d_{9} \pi_{6}\right] \circ \alpha$.

By combining parts 4, 5 and (i), (ii) above, we obtain
 is proved similarly. Thus we have $P_{2} ; \tau_{2}=O_{a}(\breve{S} ; X ; S) ;\left[\pi_{1} ; \breve{S}, \pi_{2-6}\right] ; Q_{2}^{\prime} ; O_{c}=Q_{2}$.
7. $Q_{2} ; T V H=$ (hypothesis) $Q_{2} ; R=P_{3}$.
 $=\left(\right.$ theorem 6.4) $\left[\left[\pi_{1} ; X_{,} \pi_{4}\right] ;\right.$ hd, $\left.\pi_{6}\right] \circ \alpha$;
$\left[\left[\pi_{1} ; \mathrm{X}_{,} \pi_{4}\right] ;\right.$ hd, $\left[\left[\pi_{1} ; \mathrm{X}_{2} \pi_{4}\right] ;\right.$ t1; car, $\left.\pi_{5}\right]$; conc $] ;$ conc $=$
$=($ theorems 6.3 and 6.4$)\left[\left[\pi_{1} ; X_{3} \pi_{4}\right] ; h,_{2} \pi_{6}\right] \circ \alpha_{;}$
$\left.\left[\pi_{1} ; X ; S, \pi_{4}\right] ; h d_{2} \pi_{5}\right] ;$ conc.
(ii) $\left[\pi_{1} ; \mathrm{X},\left[\left[\pi_{1} ; \mathrm{X}, \pi_{4}\right] ; \mathrm{hd}, \pi_{6}\right] ;\right.$ conc $] ; \mathrm{tl}=$ (theorem 6.4) $\left[\left[\pi_{1} ; X, \pi_{4}\right] ; h d, \pi_{6}\right] \circ \alpha ; \pi_{6}$.
(iii) By part 6 (ii) , $0_{a}(\breve{S} ; \mathrm{X} ; \mathrm{S}) ;\left[\pi_{1} ; \breve{\mathrm{S}}, \pi_{2-6}\right]=\ldots ;\left[\left[\pi_{1} ; \mathrm{X}, \pi_{4}\right] ; \mathrm{hd}, \pi_{6}\right] \circ \alpha$.

By combining parts (i), (ii) and (iii) above, we obtain

$$
\begin{aligned}
& P_{3}=0_{a}(\breve{S} ; \mathrm{X} ; \mathrm{S}) ;\left[\pi_{1} ; \breve{S}_{2} \pi_{2-6}\right] ; \\
& \quad\left[\pi_{1} ; \mathrm{X}, \pi_{2} ; \mathrm{c}, \pi_{3} ; \mathrm{b},\left[\pi_{1} ; \mathrm{X} ; \mathrm{S}, \pi_{4}\right] ; \mathrm{t} 1,\left[\left[\pi_{1} ; \mathrm{X} ; \mathrm{S}, \pi_{4}\right] ; \mathrm{hd}, \pi_{5}\right] ; \text { conc, } \pi_{6}\right],
\end{aligned}
$$

whence $P_{3} ; \tau_{3}=\left[\pi_{1} ; \bar{S} ; X ; S, \pi_{2} ; a, \pi_{3} ; b, \pi_{4-6}\right] ; O_{a} ; R=Q_{3}$.
7. CONCLUSION

The present investigation shows that:

1. A conceptually attractive framework for a mathematical theory of correctness of programs comprises:
1.1. The notion of execution of a program by introducing an idealized interpreter.
1.2. An operational semantic function 0 which abstracts the relevant information from the computations defined by this interpreter.
1.3. A mathematical language (with semantic function m) in which to express and derive properties of programs.
1.4. A translation tr between programs and terms of this mathematical language, i.e., a mapping satisfying

$$
o(T)=m(\operatorname{tr}(T))
$$

for every program T.
2. A theory of correctness of programs requires an operator describing the interaction between programs and predicates; in the present theory this is the "o" operator.
3. The "o" operator is crucial to an expedient axiomatization of the call-by-value parameter mechanism.
4. The axiomatization of correctness proofs of recursive programs can be applied to the axiomatization of recursive data structures; this leads to a unified theory of recursive programs and recursive data.

Our system of proof is based on the minimal fixed point characterization, as opposed to Floyd's method of inductive assertions [13]; the minimal fixed point characterization descends from McCarthy's recursion induction [29]. We restricted ourselves to the axiomatization of first-order programs with a particular parameter mechanism, call-by-value. Consequently, the following problems remain open:

1. An axiomatization of call-by-value for higher-order programs.
2. A comparison of formal systems for call-by-name, call-by-value and the like. *)
3. The equivalence of the minimal fixed point characterization with a generalization of the method of inductive assertions is proved by de Bakker and Meertens in [3] in case of a simple language for recursive programs with one variable.
Generalize this result to more complicated programming languages.
[^10]
APPENDIX 1: SOME TOOLS FOR REASONING ABOUT COMPUTATION MODELS

Definition A.1.1 below imposes an algebraic structure upon the set of computation models relative to some initial interpretation o_{0} and some declaration scheme D, thus making this set into an algebra. Next we propose an alternative to our method of defining the operational interpretation of a program scheme, an alternative which captures the whole structure of the computations involved in executing a statement scheme. Then we prove that certain transformations essential to the proofs of lemma 2.5, 2.6 and 2.7 are morfisms with respect to the algebra of computation models. These lemmas then follow as simple corollaries of this fact.

DEFINITION A.1.1. Let $C M$ be a computation model relative to some initial interpretation O_{0} and some declaration scheme D.
a. If $C M$ is a computation model for $x V_{1} ; V_{2} y$ with $V_{1}=R, P_{j},\left(p \rightarrow W_{1}, W_{2}\right)$ or $\left[\mathrm{W}_{1}, \ldots, \mathrm{~W}_{\mathrm{n}}\right]$, then $\mathrm{CM}=\mathrm{CM}_{1} ; \mathrm{CM}_{2}$ with CM_{1} a computation model for $x V_{1} z$ and $C M_{2}$ a computation model for $z V_{2} y$, where z is the intermediate state in the computation of $\mathrm{V}_{1} ; \mathrm{V}_{2}$ described by CM , which results from executing V_{1} on input x.
b. If $C M$ is a computation model for $x\left(V_{1} ; V_{2}\right) ; V_{3} y$, then $C M=\left(\mathrm{CM}_{1}\right) ; \mathrm{CM}_{2}$ with CM_{1} a computation model for $\mathrm{x} \mathrm{V}_{1} ; \mathrm{V}_{2} \mathrm{z}$ and CM_{2} a computation model for $z V_{3} y$, where z is the intermediate state in the computation of $\left(V_{1} ; V_{2}\right) ; V_{3}$ described by $C M$, which results from executing $V_{1} ; V_{2}$ on input x.
c. If $C M$ is a computation model for $x\left(p \rightarrow V_{1}, V_{2}\right) y$, then
(1) if $o_{0}(p)(x)$ is true, $C M=\left(o_{0}(p) \rightarrow M_{1}, V_{2}\right)$ with CM_{1} a computation model for $x V_{1} y$.
(2) if $o_{0}(p)(x)$ is false, $C M=\left(o_{0}(p) \rightarrow V_{1}, \mathrm{CM}_{2}\right)$ with CM_{2} a computation model for $\mathrm{x} \mathrm{V}_{2} \mathrm{y}$.
d. If $C M$ is a computation model for $x\left[V_{1}, \ldots, V_{n}\right]<y_{1}, \ldots, y_{n}>$ then $C M=$

Remark. With definition A.1.1 in mind, one may conceive of the following notion of operational interpretation, which differs from the one defined in def. 2.5:

The operational interpretation $\psi_{D}\langle S\rangle\left(0_{0}\right)$ of a statement scheme S relative to the initial interpretation 0_{0} and the declaration scheme D is the set
$\left\{C M \mid \exists x, y\left[C M\right.\right.$ is, relative o_{0} and D, a computation model for $\left.x S y\right]$. This definition captures the whole structure of the computations involved in executing S and resembles the method of defining the semantics of MU as given in def. 3.3, in that both ψ_{D} and $\psi_{D}\langle S\rangle$ are conceived of as functions. Definition 2.5 of the operational interpretation $O(S)$ of a statement scheme S relative to o_{0} and D can be recovered from $\psi_{D}<S>\left(o_{0}\right)$ by forgetting the internal structure of the computation models constituting $\psi_{D}<\mathrm{S}>\left(0_{0}\right)$ and preserving the extermal input-output relationship of these models.

After defining the appropriate operations one can establish results such as:

$$
\begin{aligned}
& \psi_{\mathrm{D}}<\mathrm{S}_{1} ; \mathrm{S}_{2}>\left(o_{0}\right)=\psi_{\mathrm{D}}<\mathrm{S}_{1}>\left(o_{0}\right) ; \psi_{\mathrm{D}}<\mathrm{S}_{2}>\left(o_{0}\right) \\
& \psi_{\mathrm{D}}<\left(\mathrm{S}_{1} ; \mathrm{S}_{2}\right) ; \mathrm{S}_{3}>\left(o_{0}\right)=\left(\psi_{\mathrm{D}}<\mathrm{S}_{1} ; \mathrm{S}_{2}>\left(o_{0}\right)\right) ; \psi_{\mathrm{D}}<\mathrm{S}_{3}>\left(o_{0}\right) \\
& \psi_{\mathrm{D}}<\left(\mathrm{p} \rightarrow \mathrm{~S}_{1}, \mathrm{~S}_{2}\right)>\left(o_{0}\right)=\left(o_{0}(\mathrm{p}) \rightarrow \psi_{\mathrm{D}}<\mathrm{S}_{1}>\left(o_{0}\right), \mathrm{S}_{2}\right) \cup\left(o_{0}(\mathrm{p}) \rightarrow \mathrm{S}_{1}, \psi_{\mathrm{D}}<\mathrm{S}_{2}>\left(o_{0}\right)\right) \\
& \psi_{\mathrm{D}}<\left[\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}\right]>\left(o_{0}\right)=\left[\psi_{\mathrm{D}}<\mathrm{S}_{1}>\left(o_{0}\right), \ldots, \ldots \psi_{\mathrm{D}}<\mathrm{S}_{\mathrm{n}}>\left(o_{0}\right)\right],
\end{aligned}
$$

from which the proofs of parts b, c and d of 1 emma 2.1 can be derived.

Let us now analyse how the notions "to identify" and "executable occurrence", defined in def. 2.6, relate to this way of structuring computation mode1s:
a. $\mathrm{CM}=\mathrm{CM}_{1} ; \mathrm{CM}_{2}$:

$$
\begin{aligned}
& \mathrm{CM}_{1}=\left\langle\mathrm{x}_{1} \mathrm{~V}_{1} \mathrm{x}_{2} \mathrm{~V}_{2} \ldots \mathrm{x}_{\mathrm{n}} \mathrm{~V}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}+1}, C M_{1}\right\rangle, \\
& \mathrm{CM}_{2}=\left\langle\mathrm{y}_{1} \mathrm{~W}_{1} \mathrm{y}_{2} \mathrm{~W}_{2} \ldots \mathrm{y}_{\mathrm{m}} \mathrm{~W}_{\mathrm{m}} \mathrm{y}_{\mathrm{m}+1}, C M_{2}\right\rangle, \mathrm{x}_{\mathrm{n}+1}=\mathrm{y}_{1} \text { and } \\
& C M=\left\langle x_{1} \nabla_{1} ; W_{1} x_{2} V_{2} ; W_{1} \ldots x_{n} V_{n} ; W_{1} x_{n+1} W_{1} y_{2} W_{2} \ldots y_{m} W_{m} y_{m+1}, C M_{1} \cup C M_{2}\right\rangle \\
& \mathrm{cs}_{1}^{*} \longrightarrow \mathrm{cs}_{2}^{*} \longrightarrow
\end{aligned}
$$

It follows from the definitions that
(1) Two occurrences of some procedure symbol, which are both contained in CM_{i}, identify each other w.r.t CM_{i} iff the corresponding occurences in $C M_{\text {, }}$ i.e., in $\operatorname{cs}_{i}^{*}$ or $C M_{i}$, identify each other w.r.t. $C M_{,} i=1,2$; an occurrence of some procedure symbol contained in W_{1} identifies also the corresponding occurrences of this symbol in the n copies of W_{1} contained in $\operatorname{cs}{ }_{1}^{*}$.
(2) An occurrence of some procedure symbol contained in CM_{i} is executable w.r.t. CM_{i} iff the corresponding occurrence in cs_{i}^{*} or CM_{i} is executable, $i=1,2$; these are the only executable occurrences.
b. $\mathrm{CM}=\left(\mathrm{CM}_{1}\right) ; \mathrm{CM}_{2}$:

$$
\begin{aligned}
& C M_{1}=\left\langle x_{1} V_{1} x_{2} V_{2} \ldots x_{n} V_{n} x_{n+1}, C M_{1}\right\rangle, V_{1}=V ; W \text { for some statement } \\
& \longleftrightarrow \mathrm{cs}_{1} \longrightarrow \text { schemes } V \text { and } W \text {, } \\
& C M_{2}=\left\langle y_{1} W_{1} y_{2} W_{2} \ldots y_{m} W_{m} y_{m+1}, C M_{2}\right\rangle, x_{n+1}=y_{1} \text { and } \\
& \longleftrightarrow \mathrm{cs}_{2} \longrightarrow
\end{aligned}
$$

It follows from the definitions that
(1) Two occurrences of some procedure symbol, which are both contained in CM_{1} (or CM_{2}) identify each other w.r.t. CM_{1} (or CM_{2}) iff these occurrences (or, the corresponding occurrences contained in cs ${ }_{2}^{*}$ or CM_{2}) identify each other w.r.t. CM ; an occurrence of some procedure symbol contained in V_{1} or W_{1} also identifies the corresponding occurrence of this symbol in $\left(V_{1}\right) ; W_{1}$.
(2) An occurrence of some procedure symbol contained in CM_{1} (or CM_{2}) is executable w.r.t. CM_{1} (or CM_{2}) iff this occurrence as contained in CM (or, its corresponding occurrence in cs_{2}^{*} or CM_{2}) is executable w.r.t. $C M$; these are the only executable occurrences.
c. $C M=\left(O_{0}(\mathrm{p}) \rightarrow \mathrm{CM}_{1}, \mathrm{~V}_{2}\right)$ (the case $\mathrm{CM}=\left(\mathrm{O}_{0}(\mathrm{p}) \rightarrow \mathrm{V}_{1}, \mathrm{CM}_{2}\right)$ is similar):
$\mathrm{CM}_{1}=\stackrel{\left.\mathrm{y}_{1} \mathrm{~W}_{1} \mathrm{y}_{2} \mathrm{~W}_{2} \ldots \mathrm{y}_{\mathrm{n}} \mathrm{W}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}+1}, C M_{1}\right\rangle}{\longleftrightarrow}$ cs
$\mathrm{CM}=\left\langle\mathrm{x}\left(\mathrm{p} \rightarrow \mathrm{W}_{1}, \mathrm{~W}_{2}\right) \underset{\xrightarrow[1]{\mathrm{y}_{1} \mathrm{~W}_{1} \ldots \mathrm{y}_{\mathrm{n}} \mathrm{W}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}+1}}, C M_{1}>\text { and } \mathrm{x}=\mathrm{y}_{1} .}{ }\right.$.
It follows from the definitions that
(1) Two occurrences of some procedure symbol which are both contained in CM_{1} identify each other w.r.t. CM_{1} iff the corresponding occurrences in cs_{1}^{*} or CM_{1} identify each other w.r.t. CM ; an occurrence of some procedure symbol in W_{1} identifies also the corresponding occurrence of this symbol in ($p \rightarrow W_{1}, V_{2}$).
(2) An occurrence of some procedure symbol contained in CM_{1} is executable w.r.t. CM_{1} iff its corresponding occurrence in cs_{1}^{*} or CM_{1} is executable w.r.t. CM; these are the only executable occurrences.
d. $C M=\left[\mathrm{CM}_{1}, \ldots, \mathrm{CM}_{\mathrm{n}}\right]$:
$C M_{j}=\left\langle x_{j, 1} v_{j, 1} x_{j, 2} v_{j, 2} \ldots x_{j, m j} v_{j, m j} x_{j, m j+1}, C M_{j}\right\rangle, j=1, \ldots, n$, $\mathrm{CM}=\left\langle\mathrm{x}_{1}\left[\mathrm{~V}_{1,1}, \ldots, \mathrm{~V}_{\mathrm{n}, \mathrm{l}}\right]\left\langle\mathrm{x}_{1, \mathrm{ml}+1}, \ldots, \mathrm{x}_{\mathrm{n}, \mathrm{mn+1}}\right\rangle,\left\{\mathrm{CM}_{1}, \ldots, \mathrm{CM}_{\mathrm{n}}\right\}\right\rangle$ and $x_{1}=x_{j, 1}, j=1, \ldots, n$.

It follows from the definitions that
(1) Two occurrences of some procedure symbol both contained in CM_{j} identify each other w.r.t. CM_{j} iff they identify each other w.r.t. CM, $j=1, \ldots, n$; an occurrence of some procedure symbol contained in $\mathrm{v}_{\mathrm{j}, 1}$ as occurring in $\left[\mathrm{v}_{1,1}, \ldots, \mathrm{~V}_{\mathrm{n}, 1}\right]$ also identifies the corresponding occurrence of this symbol contained in $\mathrm{CM}_{\mathrm{j}}, \mathrm{j}=1, \ldots, \mathrm{n}$.
(2) An occurrence of some procedure symbol contained in CM_{j} is executable w.r.t. CM_{j} iff it is executable w.r.t. $\mathrm{CM}, \mathrm{j}=1, \ldots, \mathrm{n}$; these are the only executable occurrences.

Next we define two transformations of computation models, t_{1} and t_{2}, which are essential to the proofs of 1 emmas 2.5 and 2.6:

In the following definition $x_{1} V_{1} x_{2} V_{2} \ldots x_{n} V_{n} x_{n+1}$ stands for the constituent computation sequence of any model CM.

Let $C M$ contain no executable occurrences of any $P_{j}, j \in J$, and $W_{j} \in S S$ be for every $j \in J$ of the same type as P_{j}, then t_{1} (CM) is obtained from $C M$ by executing the following steps:

Step 1: Consider for every $j \in J$ all occurrences of P_{j} in $C M$ identified by occurrences of P_{j} in V_{1}.
Step 2: Replace all considered occurrences by $\mathrm{W}_{\mathbf{j}}$, for all $\mathbf{j} \in \mathrm{J}$.
For arbitrary $\mathrm{CM}, \mathrm{t}_{2}$ (CM) is obtained from CM by executing the following steps:

Step 1: Consider for every $j \in J$ all occurrences of P_{j} in CM identified by occurrences of P_{j} in V_{1}.
Step 2: Mark all those considered occurrences which are executable.
Step 3: Replace all other considered occurrences of P_{j} by $\mathrm{S}_{\mathrm{j}}\left(w i t h \mathrm{P}_{\mathrm{j}} \Longleftarrow \mathrm{S}_{\mathrm{j}}\right)$.
Step 4: Replace every combination ... $x_{k} p_{j}^{*} x_{k+1} S_{j} x_{k+2} \ldots$ by \ldots $\ldots x_{k} s_{j} x_{k+2} \ldots$ and every combination $x_{k} P_{j}^{*} ; S x_{k+1} s_{j} ; S x_{k+2} \ldots$ \ldots by ... $x_{k} S_{j} ; S x_{k+2} \ldots$, where P_{j}^{*} denotes the marking of P_{j} performed in step 2.

Transformations t_{1} and t_{2} are morfisms w.r.t. the operations defined above (in def. A.l.1), i.e.,

$$
\text { (1) } \begin{aligned}
\mathrm{t}_{1}\left(\mathrm{CM}_{1} ; \mathrm{CM}_{2}\right) & =\mathrm{t}_{1}\left(\mathrm{CM}_{1}\right) ; \mathrm{t}_{1}\left(\mathrm{CM}_{2}\right), \\
\mathrm{t}_{1}\left(\left(\mathrm{CM}_{1}\right) ; \mathrm{CM}_{2}\right) & =\left(\mathrm{t}_{1}\left(\mathrm{CM}_{1}\right)\right) ; \mathrm{t}_{1}\left(\mathrm{CM}_{2}\right), \\
\mathrm{t}_{1}\left(\left(o_{0}(\mathrm{p}) \rightarrow \mathrm{CM}, \mathrm{~W}\right)\right) & \left.\left.=\left(o_{0}(\mathrm{p}) \rightarrow \mathrm{t}_{1}(\mathrm{CM}), \tilde{W}\left[\mathrm{w}_{\mathrm{j}} / \mathrm{X}_{\mathrm{j}}\right]\right]_{j \in \mathrm{~J}}\right), *\right) \\
\mathrm{t}_{1}\left(\left(o_{0}(\mathrm{p}) \rightarrow \mathrm{W}, \mathrm{CM}\right)\right) & =\left(o_{0}(\mathrm{p}) \rightarrow \tilde{\left.\left.\mathrm{W}\left[\mathrm{w}_{\mathrm{j}} / \mathrm{X}_{\mathrm{j}}\right] \mathrm{j} \in \mathrm{~J}, \mathrm{t}_{1}(\mathrm{CM})\right) \quad *\right) \text { and }}\right. \\
\mathrm{t}_{1}\left(\left[\mathrm{CM}_{1}, \ldots, \mathrm{CM}_{\mathrm{n}}\right]\right) & =\left[\mathrm{t}_{1}\left(\mathrm{CM}_{1}\right), \ldots, \mathrm{t}_{1}\left(\mathrm{CM}_{\mathrm{n}}\right)\right],
\end{aligned}
$$

*)
These formulae hold only in case W is closed.
(2) $t_{2}\left(\mathrm{CM}_{1} ; \mathrm{CM}_{2}\right)=t_{2}\left(\mathrm{CM}_{1}\right) ; \mathrm{t}_{2}\left(\mathrm{CM}_{2}\right)$,

$$
\mathrm{t}_{2}\left(\left(\mathrm{CM}_{1}\right) ; \mathrm{CM}_{2}\right)=\left(\mathrm{t}_{2}\left(\mathrm{CM}_{1}\right)\right) ; \mathrm{t}_{2}\left(\mathrm{CM}_{2}\right),
$$

$$
\left.\mathrm{t}_{2}\left(\left(o_{0}(\mathrm{p}) \rightarrow \mathrm{CM}, \mathrm{~W}\right)\right)=\left(o_{0}(\mathrm{p}) \rightarrow \mathrm{t}_{2}(\mathrm{CM}), \mathrm{W}^{[1]}\right), *\right)
$$

$$
\left.\mathrm{t}_{2}\left(\left(o_{0}(\mathrm{p}) \rightarrow \mathrm{W}, \mathrm{CM}\right)\right)=\left(o_{0}(\mathrm{p}) \rightarrow \mathrm{w}^{[1]}, \mathrm{t}_{2}(\mathrm{CM})\right)^{*}\right) \text { and }
$$

$$
\mathrm{t}_{2}\left(\left[\mathrm{CM}_{1}, \ldots, \mathrm{CM}_{\mathrm{n}}\right]\right)=\left[\mathrm{t}_{2}\left(\mathrm{CM}_{1}\right), \ldots, \mathrm{t}_{2}\left(\mathrm{CM}_{\mathrm{n}}\right)\right]
$$

LEMMA 2.5*. Let S be a closed statement scheme, CM be a computation model for $\mathrm{x} S \mathrm{y}$ containing no executable occurrences of $\mathrm{P}_{\mathrm{j}}, \mathrm{j} \in \mathrm{J}$, and $\mathrm{W}_{\mathrm{j}} \in S S$ be for every $j \in J$ of the same type as P_{j}, then transformation t_{1} is a morfism (in the sense indicated above) of the algebra of computation models (defined in def. A.1.1) into itself, which tronsforms CM into a computation model for $\tilde{\mathrm{S}}\left[\mathrm{W}_{\mathbf{j}} / \mathrm{X}_{\mathrm{j}}\right] \mathbf{j} \in \mathrm{J}$.

Proof. By induction on the complexity of the statement schemes concerned. We use the notation indicated above in our analysis of the notion "to identify".
a. $S=R, R \in A \cup C$ ($R \in X$ does not apply, S being closed): Obvious from definitions 2.2 and 2.6.
b. $S=P_{j}$: Does not apply as $C M$ contains no executable occurrences of P_{j}. c. $S=V_{1} ; W_{1}$: Step 1 of t_{1} results in considering for all $j \in J$ those occurrences of P_{j} in $C M$ which are identified by occurrences of P_{j} in $V_{1} ; W_{1}$. These occurrences are:
(1) The occurrences of P_{j} in $C M$ identified by occurrences of P_{j} in V_{1}. These correspond exactly with the occurrences of P_{j} in CM_{1} identified by occurrences of P_{j} in V_{1} in CM_{1}.
(2) The occurrences of P_{j} in $C M$ identified by occurrences of P_{j} in W_{1} as contained in $V_{1} ; W_{1}$. These are:
(2a) The occurrences of P_{j} in $C M$ corresponding with the occurrences of P_{j} in CM_{2} identified by occurrences of P_{j} in W_{1} in CM_{2}.
(2b) The remaining occurrences of P_{j} in cs_{1}^{*} identified by occurrences of P_{j} in W_{1} as contained in $V_{1} ; W_{1}$.
*) These formulae hold only in case W is closed.

Then step 2 is performed; the occurrences of group 1 above are replaced by W_{j} - this corresponds exactly with $t_{1}\left(\mathrm{CM}_{1}\right)$ - then the occurrences of group $2 a$ are replaced by W_{j} - this corresponds exactly with $t_{1}\left(\mathrm{CM}_{2}\right)$ and finally the occurrences of group $2 b$ are replaced by W_{j} - corresponding exactly with the extra occurrences of $\tilde{W}_{1}\left[W_{j} / x_{j}\right]_{j \in J}^{*}{ }_{j}^{j}$ necessary for the construction of $t_{1}\left(\mathrm{CM}_{1}\right) ; \mathrm{t}_{1}\left(\mathrm{CM}_{2}\right)$ from $\mathrm{t}_{1}\left(\mathrm{CM}_{1}\right)$ and $\mathrm{t}_{1}\left(\mathrm{CM}_{2}\right)$.
It follows that $t_{1}(C M)=t_{1}\left(\mathrm{CM}_{1}\right) ; \mathrm{t}_{1}\left(\mathrm{CM}_{2}\right)$.
By the induction hypothesis $t_{1}\left(\mathrm{CM}_{1}\right)$ and $\mathrm{t}_{1}\left(\mathrm{CM}_{2}\right)$ are computation models for $x \tilde{V}_{1}\left[W_{j} / X_{j}\right]_{j \in J} z$ and $z \tilde{W}_{1}\left[W_{j} / X_{j}\right]_{j \in J} y$ for appropriate z, whence, by definitions 2.2 and $2.6, t_{1}(C M)$ is a computation model for $\widetilde{\left(V_{1} ; W_{1}\right)}\left[W_{j} / X_{j}\right] j \in J^{*}$
d. $S=\left(V_{1}\right) ; W_{1}$: Step 1 of t_{1} results in considering for all $j \in J$ those occurrences of P_{j} in $C M$ which are identified by occurrences of P_{j} in $\left(\mathrm{V}_{1}\right) ; \mathrm{W}_{1}$. These are:
(1) The occurrences of P_{j} in CM_{1} identified by occurrences of P_{j} in V_{1}.
(2) The occurrences of P_{j} in cs_{2}^{*} or CM_{2} identified by occurrences of P_{j} in W_{1} - these correspond exactly with the occurrences of P_{j} in CM_{2} identified by occurrences of P_{j} in W_{1} in CM_{2}.
(3) The occurrences of P_{j} in $\left(V_{1}\right) ; W_{1}$.

Then step 2 is applied; the occurrences of group 1 above are replaced by W_{j} - this corresponds exactly with $t_{1}\left(C M_{1}\right)$ - then the occurrences of group 2 are replaced by W_{j} - this corresponds exactly with $t_{1}\left(\mathrm{CM}_{2}\right)$ and finally the occurrences of group 3 are replaced by $W_{j}-$ corresponding exactly with the occurrence of $\left.\left.\left(\mathrm{V}_{1}\right) ; \mathrm{W}_{1}\right)\left[W_{j} / X_{j}\right]_{j \in J}^{*}\right)$ necessary for the construction of $\left(t_{1}\left(\mathrm{CM}_{1}\right)\right)$; $t_{1}\left(\mathrm{CM}_{2}\right)$ from $t_{1}\left(\mathrm{CM}_{1}\right)$ and $t_{1}\left(\mathrm{CM}_{2}\right)$.
It follows that $t_{1}(C M)=\left(t_{1}\left(\mathrm{CM}_{1}\right)\right) ; t_{1}\left(\mathrm{CM}_{2}\right)$.
By the induction hypothesis $t_{1}\left(\mathrm{CM}_{1}\right)$ and $\mathrm{t}_{1}\left(\mathrm{CM}_{2}\right)$ are computation models for $x \widetilde{V}_{1}\left[W_{j} / X_{j}\right]_{j \in J} z$ and $z \tilde{W}_{1}\left[W_{j} / X_{j}\right]_{j \in J} y$ for appropriate z, whence, by definitions 2.2 and $2.6, t_{1}(C M)$ is a computation model for $\left.\left(V_{1}\right) ; W_{1}\right)\left[W_{j} / X_{j}\right]_{j \in J^{\circ}}$
e. $S=\left(p \rightarrow V_{1}, V_{2}\right)$ or $S=\left[V_{1}, \ldots, V_{n}\right]$: Similar to above.

COROLLARY: LEMMA 2.5.
*) The reader should not be confused in case $1 \in J$.

LEMMA 2.6*. Let S be a closed statement scheme and CM be a computation model for $\times \mathrm{S} y$, then t_{2} is a morfism (in the sense indicated above) of the algebra of computation models (defined in definition A.1.1) into itself, which transforms CM into a computation model for $\mathrm{x} \mathrm{s}^{[1]} \mathrm{y}$.

Proof. By induction on the complexity of CM.
We use the notation indicated in our analysis of the notions "to identify" and "executable occurrence".
a. $S=R, R \in A \cup C(R \in X$ does not apply, S being closed): Obvious from definitions 2.2 and 2.6.
b. $S=P_{j}: C M$ has the following form: $\left\langle x P_{j} \times S_{j} \ldots y, C M\right\rangle$.

$$
\longleftarrow \mathrm{cs}{ }^{\prime} \rightarrow
$$

Thus $t_{2}(C M)=\left\langle c s^{\prime}, C M\right\rangle$, as in step 1 only the first occurrence of P_{j} is considered, which is executable, whence in step 2 this occurrence is marked, step 3 does not apply, and step 4 results in the deletion of the $\operatorname{part} P_{j}^{*} \mathrm{x}$.
c. $S=V_{1} ; W_{1}$: Step 1 of t_{2} results in considering for all $j \in J$ those occurrences of P_{j} in $C M$ which are identified by occurrences of P_{j} in $V_{1} ; W_{1}$. These occurrences are:
(1) The occurrences of P_{j} in $C M$ identified by occurrences of P_{j} in V_{1}. These correspond exactly with the occurrences of P_{j} in CM_{1} identified by occurrences of P_{j} in V_{1} in CM_{1}.
(2) The occurrences of P_{j} in $C M$ identified by occurrences of P_{j} in W_{1} as contained in $V_{1} ; W_{1}$. These are:
(2a) The occurrences of P_{j} in CM corresponding with the occurrences of P_{j} in CM_{2} identified by occurrences of P_{j} in W_{1} in CM_{2}.
(2b) The remaining occurrences of P_{j} in Cs_{1}^{*} identified by occurrences of P_{j} in W_{1} as contained in $V_{1} ; W_{1}$, which are all nonexecutable.

Next step 2 is performed: the executable occurrences of groups 1 and 2a above are marked, group 2 b containing no executable occurrences. Hence we obtain
$\left\langle x_{1} V_{1}^{*} ; W_{1} x_{2} V_{2}^{*} ; W_{1} \ldots x_{n} V_{n}^{*} ; W_{1} x_{n+1} W_{1}^{*} y_{2} W_{2}^{*} \ldots y_{m} W_{m}^{*} y_{m+1}, C M_{1}^{*} \cup C M_{2}^{*}\right\rangle$,
with $\mathrm{V}_{\mathrm{k}}^{*}$, W_{1}^{*} and $\mathrm{CM}_{\mathrm{i}}^{*}$ indicating the result of marking the executable occurrences of P_{j} in V_{k}, W_{1} and $C M_{i}, k=1, \ldots, n, 1=1, \ldots, m, i=1,2$, which are considered in step 1.
Then step 3 is performed, whence we obtain
with $\nabla_{k}^{*}\left[S_{j} / P_{j}\right]_{j \in J}, W_{1}^{*}\left[S_{j} / P_{j}\right]_{j \in J}$ and $C M_{i}^{* *}$ indicating the result of replacing the non-executable (unmarked) occurrences of P_{j} considered in step 1 by S_{j}, in V_{k}^{*}, W_{1}^{*} and $C M_{i}^{*}, k=1, \ldots, n, 1=1, \ldots, m, i=1,2$.
The problem with the construct obtained in step 3 is that parts occur of the form $\ldots z_{1} V ; S_{j} z_{1+1} P_{j}^{*} z_{1+2} S_{j} \ldots$, violating definition 2.4 of computation model (e.g., if $V_{1}=W_{1}=P_{j}$, then $W_{1}^{[1]}=S_{j}$ but $W_{1}^{*}\left[S_{j} / P_{j}\right]{ }_{j \in J}=P_{j}^{*}$). In step 4 these parts are deleted in order to obtain a proper computation model.
Finally step 4 is performed:
Application of this step to $\mathrm{cs}_{1}^{* *}$ and $\mathrm{CM}_{1}^{* *}$ results in

and

$$
C M_{1}^{P}
$$

with

by the induction hypothesis, whence $v_{i_{1}}^{*}\left[s_{j} / P_{j}\right]_{j \in J}=v_{1}^{[1]}, x_{i_{1}}=x$ and $x_{i_{s}}=x_{n+1}$, as the set of indices k for which parts $V_{k}^{*}\left[S_{j} / P_{j}\right]_{j \in J} ; W_{1}^{[1]} x_{k+1}$ are deleted from cs ${ }_{1}^{* *}$ is the some set as the set of indices k for which parts $\nabla_{k}^{*}\left[S_{j} / P_{j}\right]_{j \in J} X_{k+1}$ are deleted from
$x_{1} V_{1}^{*}\left[S_{j} / P_{j}\right]_{j \in J} x_{2} V_{2}^{*}\left[S_{j} / P_{j}\right]_{j \in J} \ldots x_{n} V_{n}^{*}\left[S_{j} / P_{j}\right]_{j \in J} x_{n+1}$, the result of applying steps 1,2 and 3 to cs_{1} 。

Application of step 4 to $\mathrm{Cs}_{2}^{* *}$ and $\mathrm{CM}_{2}^{* *}$ results by the induction hypothesis in
$y_{j_{1}} W_{j_{1}}^{*}\left[S_{j} / P_{j}\right]_{j \in J} y_{j_{2}} W_{j_{2}}^{*}\left[S_{j} / P_{j}\right]_{j \in J} \cdots y_{j_{t}} W_{j_{t}}^{*}\left[S_{j} / P_{j}\right]_{j \in J} y_{j_{t}+1}$ and $C M_{2}{ }^{\prime}$, the two constituent parts of $t_{2}\left(\mathrm{CM}_{2}\right)$, whence $y_{j_{1}}=x_{n+1}, y_{j_{t}+1}=y$ and $W_{j_{1}}^{[1]}=W_{1}^{[1]}$. Thus we conclude that $t_{2}(C M)=t_{2}\left(\mathrm{CM}_{1}\right) ; \mathrm{t}_{2}\left(\mathrm{CM}_{2}\right) \cdot$ As $\mathrm{V}_{1}^{[1]} ; \mathrm{W}_{1}^{[1]}=$ $=\left(V_{1} ; W_{1}\right)^{[1]}$ by definitions 2.2 and $2.6, \mathrm{t}_{2}(\mathrm{CM})$ is a computation model for $\mathrm{x}^{[1]} \mathrm{y}$.
d. $S=\left(V_{1} ; V_{2}\right) ; V_{3},\left(p \rightarrow V_{1}, V_{2}\right)$ or $\left[V_{1}, \ldots, V_{n}\right]$: Proved similarly.

COROLLARY: LEMMA 2.6: Let CM be a computation model for $\mathrm{x} S \mathrm{y}$, with S closed and with constituent sequence $\mathrm{x}_{1} \mathrm{~V}_{1} \mathrm{x}_{2} \mathrm{~V}_{2} \ldots \mathrm{x}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}+1}$. If for some $\mathrm{j} \in \mathrm{J}$ at least one occurpence of P_{j} in V_{1} identifies an executable occurrence of P_{j}, $t_{2}(C M)$ is a computation model for $\times S^{[1]} \mathrm{y}$ which contains at least one executable occurrence of P_{j} less than CM .

Proof. Follows from lemma 2.6^{*} by a simple induction argument, as t_{2} is a morfism.

LEMMA 2.7. Let CM be a computation model for x S y and S be closed. Then there exists for some k a computation model for $\mathrm{x} \mathrm{S}^{(\mathrm{k})} \mathrm{y}$.

Proof. By applying lemma 2.6 n times in succession one obtains a computation model for $\mathrm{x} \mathrm{S}^{[\mathrm{n}]} \mathrm{y}$; this follows from lemma $2.4\left(\mathrm{~S}^{[\mathrm{m}][1]}=\mathrm{S}^{[\mathrm{m}+1]}\right)$ and the fact that, if $\mathrm{s}^{[\mathrm{m}]}$ is closed, $\mathrm{S}^{[\mathrm{m}+1]}$ is also closed. Let 1 be the smallest number such that $S^{[1]}$ contains no executable occurrences of P_{j}. This number exists as every application of 1 emma 2.6 decreases the number of executable occurrences of P_{j}, if any. Then the conditions of lemma 2.5 are satisfied, whence some computation model for $\mathrm{x}^{[1]}\left[\Omega_{\mathrm{j}} / \mathrm{X}_{\mathrm{j}}\right]_{\mathrm{j} \in \mathrm{J}} \underset{[1]}{\mathrm{y}}$ exists.
As by lemma $2.4 \mathrm{~S}^{[1]}{ }_{\left[\Omega_{j} / \mathrm{X}_{\mathrm{j}}\right]}^{\mathrm{j} \in \mathrm{J}} \mathrm{S}^{(1+1)}$, it suffices to take $1+1$ for k.

APPENDIX 2: PROOFS OF MONOTONICITY, CONTINUITY AND SUBSTITUTIVITY FOR MU LEMMA 3.1. (Monotonicity). Let J be ony index set, $\left\{\mathrm{x}_{\mathrm{j}}\right\}_{\mathrm{j} \in \mathrm{J}} \subseteq \mathrm{X}, \sigma \in T$ be syntactically continuous in all $\mathrm{X}_{\mathrm{j}}, \mathrm{j} \in \mathrm{J}$, and vamable valuations v_{1} and v_{2} satisfy
(1) $\mathrm{v}_{1}\left(\mathrm{x}_{\mathrm{j}}\right) \subseteq \mathrm{v}_{2}\left(\mathrm{x}_{\mathrm{j}}\right), \mathrm{j} \in \mathrm{J}$,
(2) $v_{1}(X)=v_{2}(X), X \in X-\left\{X_{j}\right\}_{j \in J}$,
then the following holds:

$$
\phi<\sigma>\left(v_{1}\right) \subseteq \phi<\sigma>\left(v_{2}\right) .
$$

Proof. By induction on the complexity of σ.
a. $\sigma \in A \cup B \cup C \cup X:$ Obvious.
b. $\sigma=\sigma_{1} ; \sigma_{2}, \sigma_{1} \cup \sigma_{2}, \sigma_{1} \cap \sigma_{2}, \breve{\sigma}_{1}$:
$\phi<\sigma_{1} ; \sigma_{2}>\left(v_{1}\right)=\phi<\sigma_{1}>\left(v_{1}\right) ; \phi<\sigma_{2}>\left(v_{1}\right)$ and $<x, y>\in \phi<\sigma_{1}>\left(v_{1}\right) ; \phi<\sigma_{2}>\left(v_{1}\right)$ iff
$\exists z\left[<x, z>\epsilon \phi<\sigma_{1}>\left(v_{1}\right)\right.$ and $\left\langle z, y>\in \phi<\sigma_{2}>\left(v_{1}\right)\right]$.
By the induction hypothesis, $\phi<\sigma_{i}>\left(v_{1}\right) \subseteq \phi<\sigma_{i}>\left(v_{2}\right), i=1,2$.
Thus $\langle x, y\rangle \in \phi<\sigma_{1}>\left(v_{1}\right) ; \phi<\sigma_{2}>\left(v_{1}\right)$ implies $\left\langle x, y>\in \phi<\sigma_{1}>\left(v_{2}\right) ; \phi<\sigma_{2}\right\rangle\left(v_{2}\right)$, whence $\phi<\sigma_{1} ; \sigma_{2}>\left(v_{1}\right) \subseteq \phi<\sigma_{1} ; \sigma_{2}>\left(v_{2}\right)$ follows from the definitions.
The cases $\sigma=\sigma_{1} \cup \sigma_{2}, \sigma_{1} \cap \sigma_{2}$ and $\breve{\sigma}_{1}$ are proved similarly.
c. $\sigma=\bar{\sigma}_{1}$: By syntactic continuity of σ in all $X_{j}, j \in J$, no X_{j} occurs in
σ_{1} for any $j \in J$, whence $\phi<\sigma_{1}>\left(v_{1}\right)=\phi<\sigma_{1}>\left(v_{2}\right)$.
Therefore $\phi<\bar{\sigma}_{1}>\left(v_{1}\right)=\overline{\phi<\sigma_{1}>\left(v_{1}\right)}=\overline{\phi<\sigma_{1}>\left(v_{2}\right)}=\phi<\overline{\sigma_{1}}>\left(v_{2}\right)$.
d. $\sigma=\mu_{k} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]$:
$\phi<\sigma>\left(v_{2}\right)=$
$\left(n\left\{<v_{2}^{\prime}\left(X_{1}\right)>{ }_{1=1}^{n} \mid \phi<\sigma_{1}>\left(v_{2}^{*}\right) \subseteq v_{2}^{*}\left(X_{1}\right), 1=1, \ldots, n\right.\right.$, and $\left.\left.v_{2}^{\prime}(X)=v_{2}(X), X \in X-\left\{X_{1}, \ldots, X_{n}\right\}\right\}\right)_{k} \quad \ldots(a .2 .1)$

Let v_{2}^{\prime} satisfy the conditions mentioned in (a.2.1).
Define v_{1}^{\prime} by: $v_{1}^{i}\left(X_{1}\right)=v_{2}^{i}\left(X_{1}\right), 1=1, \ldots, n$, and $v_{1}^{\prime}(X)=v_{1}(X)$,
$x \in X-\left\{x_{1}, \ldots, X_{n}\right\}$.
Then, the conditions for monotonicity, w.r.t. the index set J U $\{1, \ldots, n\}$,
and v_{1}^{\prime} and v_{2}^{\prime}, are fulfilled, whence by the induction hypothesis:

$$
\phi<\sigma_{1}>\left(\mathrm{v}_{1}^{\prime}\right) \subseteq \text { (monotonicity) } \phi<\sigma_{1}>\left(\mathrm{v}_{2}^{\prime}\right) \subseteq \mathrm{v}_{2}^{\prime}\left(\mathrm{X}_{1}\right)=\mathrm{v}_{1}^{\prime}\left(\mathrm{X}_{1}\right), \quad 1=1, \ldots, \mathrm{n} .
$$

Thus,

$$
\begin{aligned}
& n\left\{\left\langle v_{1}^{\prime}\left(X_{1}\right)\right\rangle_{1=1}^{n} \mid \phi<\sigma_{1}>\left(v_{1}^{\prime}\right) \subseteq v_{1}^{\prime}\left(X_{1}\right), 1=1, \ldots, n\right. \text {, and } \\
& \left.\mathrm{v}_{1}^{\prime}(\mathrm{X})=\mathrm{v}_{1}(\mathrm{X}), \mathrm{x} \in \mathrm{X}-\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}\right\} \subseteq \\
& \subseteq \cap\left\{<v_{2}^{\prime}\left(X_{1}\right)\right\rangle_{1=1}^{n} \mid \phi<\sigma_{1}>\left(v_{2}^{\prime}\right) \subseteq v_{2}^{\prime}\left(X_{1}\right), 1=1, \ldots, n \text {, and } \\
& \left.v_{2}^{\prime}(X)=v_{2}(X), x \in X-\left\{x_{1}, \ldots, x_{n}\right\}\right\},
\end{aligned}
$$

whence

$$
\phi<\mu_{k} X_{1} \ldots \mathrm{X}_{\mathrm{n}}\left[\sigma_{1}, \ldots, \sigma_{\mathrm{n}}\right]>\left(\mathrm{v}_{1}\right) \subseteq \phi<\mu_{k} \mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{n}}\left[\sigma_{1}, \ldots, \sigma_{\mathrm{n}}\right]>\left(\mathrm{v}_{2}\right) .
$$

LEMMA 3.2. (Continuity). Let J be any index set, $\left\{\mathrm{X}_{\mathrm{j}}\right\}_{\mathrm{j} \in \mathrm{J}} \in \mathrm{X}, \sigma \in \mathrm{T}$ be syntactically continuous in all $\mathrm{X}_{\mathrm{j}}, \mathrm{j} \in \mathrm{J}, \mathrm{v}$ and v_{i}, for all $\mathrm{i} \in \mathrm{N}$, be variable valuations satisfying, for $i \in N$ and $j \in J$,
(1) $v\left(X_{j}\right)=\bigcup_{i=0}^{\infty} v_{i}\left(X_{j}\right)$,
(2) $v_{i}\left(x_{j}\right) \subseteq v_{i+1}\left(x_{j}\right)$,
(3) $v(X)=v_{i}(X)$ for $X \in X-\left\{X_{j}\right\} ; J$,
then the following holds:

$$
\phi<\sigma>(v)={\underset{i=0}{\infty} \phi\langle\sigma\rangle\left(v_{i}\right) ~}_{u}
$$

Proof. $\sum:$ By monotonicity (1emma 3.1).
\subseteq : By induction on the complexity of σ.
a. $\sigma \in A \cup B \cup C \cup X$: Obvious.
b. $\sigma=\sigma_{1} ; \sigma_{2}, \sigma_{1} \cup \sigma_{2}, \sigma_{1} \cap \sigma_{2}, \breve{\sigma}_{1}$:
$\phi<\sigma_{1} ; \sigma_{2}>(\mathrm{v})=\phi<\sigma_{1}>(\mathrm{v}) ; \phi<\sigma_{2}>(\mathrm{v})=$ (induction hypothesis)

$\phi<\sigma_{1}>\left(v_{i}\right) ; \phi<\sigma_{2}>\left(v_{j}\right) \subseteq$ (monotonicity) $\phi<\sigma_{1}>\left(v_{\max (i, j}\right) ; \phi<\sigma_{2}>\left(v_{\max (i, j)}\right)$.
Thus, $\stackrel{u}{i=0}_{\infty}^{u}\left\langle<\sigma_{1} ; \sigma_{2}>\left(v_{i}\right)=\phi<\sigma_{1} ; \sigma_{2}>(v)\right.$.
The cases $\sigma=\sigma_{1} \cup \sigma_{2}, \sigma_{1} \cap \sigma_{2}$ and $\check{\sigma}_{1}$ are proved similarly.
c. $\sigma=\overline{\sigma_{1}}$: By syntactic continuity of σ in all $X_{j}, j \in J$, no X_{j} occurs in σ_{1} for any $j \in J$, whence $\phi<\sigma_{1}>(v)=\phi<\sigma_{1}>\left(v_{i}\right)$.
Therefore $\phi<\bar{\sigma}_{1}>(v)=\overline{\phi<\sigma_{1}>(v)}=\overline{\phi<\sigma_{1}>\left(v_{i}\right)}=\phi<\bar{\sigma}_{1}>\left(v_{i}\right)$ for all i $\in N$, whence $\phi<\overline{\sigma_{1}}>(v)={ }_{i=0}^{\infty} \phi<\overline{\sigma_{1}}>\left(v_{i}\right)$.
d. $\sigma=\mu_{k} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]$:
$\underset{\substack{\underset{\infty}{=0}}}{\bigcup_{0}^{\infty}} \phi\langle\sigma\rangle\left(v_{i}\right)=$
$\bigcup_{i=0}^{\infty}\left(\cap\left\{\left\langle v_{i}^{!}\left(X_{1}\right)>_{1=1}^{n}\right| \phi<\sigma_{1}>\left(v_{i}^{!}\right) \subseteq v_{i}^{!}\left(X_{1}\right), 1=1, \ldots, n\right.\right.$, and

$$
\left.\left.v_{i}^{\prime}(x)=v_{i}(x), X \in X-\left\{x_{1}, \ldots, x_{n}\right\}\right\}\right)_{k}=
$$

$\left(\cap\left\{<\stackrel{U}{=}_{i=0}^{\infty} v_{i}^{\prime}\left(X_{1}\right)>{ }_{1=1}^{n} \mid\right.\right.$ for any $i \in N, \phi<\sigma_{1}>\left(v_{i}^{\prime}\right) \subseteq v_{i}^{\prime}\left(X_{1}\right)$,

$$
1=1, \ldots, n, \text { and } v_{i}^{\prime}(x)=v_{i}(x),
$$

$$
\underbrace{\left.\left.x \in X-\left\{x_{1}, \ldots, x_{n}\right\}\right\}\right)_{k}, \quad \ldots(a .2 .2), ~}
$$

$\underbrace{\left.\left.X \in X-\left\{X_{1}, \ldots, X_{n}\right\}\right\}\right)_{k},}_{E_{2}} \quad \ldots(a .2,2)$
by a property of relations.
First we demonstrate that one can restrict oneself in (a.2.2) to intersections of unions of $v_{i}^{\eta}\left(X_{1}\right)$ such that $v_{i}^{\prime}\left(X_{1}\right) \subseteq v_{i+1}^{\prime}\left(X_{1}\right), 1=1, \ldots, n$: Let $\left\langle v_{i}^{\prime}\right\rangle_{i=0}^{\infty}$ be a sequence consisting of valuations which satisfy for every $i \in N, \phi<\sigma_{1}>\left(v_{i}^{\prime}\right) \subseteq v_{i}^{\prime}\left(X_{1}\right), 1=1, \ldots, n$, and $v_{i}^{\prime}(X)=v_{i}(X)$, for $X \in X-\left\{X_{1}, \ldots, X_{n}\right\}$.
Define $\left\langle\mathrm{v}_{\mathrm{i}}^{\prime \prime}\right\rangle_{i=0}^{\infty}$ as follows:
For every $i \in N, v_{i}^{\prime \prime}\left(X_{1}\right)={ }_{j=i}^{\infty} v_{j}^{\prime}\left(X_{1}\right), 1=1, \ldots, n$, and $v_{i}^{\prime \prime}(X)=v_{i}^{\prime}(X)$, $X \in X-\left\{X_{1}, \ldots, X_{n}\right\}$.
This sequence of valuations satisfies the following properties:

1. For every i $\in N, \phi<\sigma_{1}>\left(v_{i}^{\prime \prime}\right) \subseteq v_{i}^{\prime \prime}\left(X_{1}\right), 1=1, \ldots, n$.

This can be deduced from the fact that, for all $\mathbf{j} \geq \mathbf{i}$,

$$
\phi<\sigma_{1}>\left(v_{i}^{\prime \prime}\right) \subseteq \text { (monotonicity) } \phi<\sigma_{1}>\left(v_{j}^{\prime}\right) \subseteq v_{j}^{\prime}\left(X_{1}\right), 1=1, \ldots, n
$$

2. For every $i \in N, v_{i}^{\prime \prime}\left(X_{1}\right) \subseteq v_{i+1}^{\prime \prime}\left(X_{1}\right), 1=1, \ldots, n$.

Therefore, as every n-tuple $\left\langle{\left.\underset{i=0}{\infty} v_{i}^{\prime}\left(X_{1}\right)\right\rangle_{1=1}^{n} \text { with }\left\langle v_{i}^{\prime}\right\rangle \infty}_{\infty}^{\infty}\right.$ satisfying the conditions mentioned above contains coordinatewise an n-tuple
$\left.{ }_{i=0}^{\infty} v_{i}^{\prime \prime}\left(X_{1}\right)\right\rangle_{1=1}^{n}$ with $\left\langle v_{i}^{\prime \prime}\right\rangle_{i=0}^{\infty}$ also satisfying these conditions, in addition to the extra condition $v_{i}^{\prime \prime}\left(X_{1}\right) \subseteq v_{i+1}^{\prime \prime}\left(X_{1}\right), 1=1, \ldots, n, i \in N$, one can restrict oneself in (a .2 .2) to k-th components of intersections of the latter.
Define $v^{\prime \prime}$ by $v^{\prime \prime}\left(X_{1}\right)=\underset{i=0}{\infty} v_{i}^{\prime \prime}\left(X_{1}\right), 1=1, \ldots, n$, and $v^{\prime \prime}(X)=v(X)$, $X \in X-\left\{X_{1}, \ldots, X_{n}\right\}$ 。
Then the conditions for continuity, w. r.t. the index set $J u\{1, \ldots, n\}$, and $v^{\prime \prime}$ and $\left\langle v_{i}^{\prime \prime}\right\rangle{ }_{i=0}^{\infty}$, are fulfilled, whence by the induction hypothesis:

$$
\begin{aligned}
& \bigcup_{i=0}^{\infty} v_{i}^{\prime \prime}\left(X_{1}\right)=v^{\prime \prime}\left(X_{1}\right), \quad \text { for } 1=1, \ldots, n \text {. }
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \phi<\mu_{k} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]>(v)= \\
& =\left(n \left\{<v^{\prime}\left(X_{1}\right)>{ }_{1=1}^{n} \mid \phi<\sigma_{1}>\left(v^{\prime}\right) \subseteq v^{\prime}\left(X_{1}\right), 1=1, \ldots, n,\right.\right. \text { and } \\
& \left.\left.\qquad v^{\prime}(X)=v(X), X \in X-\left\{X_{1}, \ldots, X_{n}\right\}\right\}\right)_{k} \subseteq \\
& \subseteq E_{2}=\bigcup_{i=0}^{\infty} \phi<\mu_{k} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]>\left(v_{i}\right) .
\end{aligned}
$$

LEMMA 3.3. (Substitutivity). Let J be any index set, $\sigma \in T, X_{j} \in X$ and ${ }_{j} \in T$ be of the same type for $j \in J$, and variable valuations v_{1} and v_{2} satisfy
(1) $v_{1}(X)=v_{2}(X), X \in X-\left\{X_{j}\right\}, j \in J$,
(2) $\mathrm{v}_{1}\left(\mathrm{X}_{\mathrm{j}}\right)=\phi<\tau_{j}>\left(\mathrm{v}_{2}\right), j \in \mathrm{~J}$,
then the following holds:

$$
\phi<\sigma>\left(\mathrm{v}_{1}\right)=\phi\left\langle\sigma\left[\mathrm{\tau}_{\mathrm{j}} / \mathrm{x}_{\mathrm{j}}\right]_{\mathbf{j} \in \mathrm{J}}>\left(\mathrm{v}_{2}\right) .\right.
$$

Proof. By induction on the complexity of σ.
We only consider the case $\sigma=\mu_{m} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]$.
By definition,

$$
\begin{aligned}
& \mu_{m} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right]\left[\tau_{j} / X_{j}\right]_{j \in J}= \\
& =\mu_{m} Y_{1} \ldots Y_{n}\left[\sigma_{1}\left[Y_{1} / X_{1}\right]_{1=1, \ldots, n^{[\tau}}^{j} / X_{j}\right]_{j \in J^{*}}, \ldots \\
& \ldots, \sigma_{n}\left[Y_{1} / X_{1}\right]_{\left.1=1, \ldots, n^{\left[\tau_{j}\right.} / X_{j}\right]}^{\left.j \in J^{*}\right]}
\end{aligned}
$$

with $J^{*}=J-\{1, \ldots, n\}$ and Y_{1}, \ldots, Y_{n} relation variables different from X_{j}, $j \in J$, and not occurring in $\sigma_{k}, k=1, \ldots, n$, or $\tau_{j}, j \in J^{*}$.
Let

$$
\begin{aligned}
& E_{1} \equiv \\
& \left(n \left\{\left\langle v_{1}^{\prime \prime}\left(X_{k}\right)\right\rangle_{k=1}^{n} \mid \phi<\sigma_{k}>\left(v_{1}^{\prime \prime}\right) \subseteq v_{1}^{\prime \prime}\left(X_{k}\right), k=1, \ldots, n,\right.\right. \text { and } \\
& \left.\left.\qquad v_{1}^{\prime \prime}(X)=v_{1}(X), X \in X-\left\{X_{1}, \ldots, X_{n}\right\}\right\}\right)_{m},
\end{aligned} \quad \begin{array}{r}
E_{2} \equiv \\
\left(n \left\{\left\langle v_{1}^{\prime}\left(Y_{k}\right)\right\rangle_{k=1}^{n}\left|\phi<\sigma_{k}\left[Y_{1} / X_{1}\right]_{1=1, \ldots, n}\right\rangle\left(v_{1}^{\prime}\right) \subseteq v_{1}^{\prime}\left(Y_{k}\right), k=1, \ldots, n,\right.\right. \text { and } \\
\left.\left.v_{1}^{\prime}(X)=v_{1}(X), X \in X-\left\{Y_{1}, \ldots, Y_{n}\right\}\right\}\right)_{m}
\end{array}
$$

and

$$
\begin{aligned}
& E_{3} \equiv \\
& (n\left\{<v_{2}^{\prime}\left(Y_{k}\right)\right\rangle_{k=1}^{n} \mid \underbrace{\phi<\sigma_{k}\left[Y_{1} / X_{1}\right]}_{\sigma_{k}^{\prime}} 1=1, \ldots, n^{\left[\tau_{j} / X_{j}\right]}{ }_{j \in J^{*}}>\left(v_{2}^{\prime}\right) \subseteq v_{2}^{\prime}\left(Y_{k}\right), \\
& \left.\left.\quad k=1, \ldots, n, \text { and } v_{2}^{\prime}(X)=v_{2}(X), X \in X-\left\{Y_{1}, \ldots, Y_{n}\right\}\right\}\right)_{m} .
\end{aligned}
$$

In order to prove $\phi<\sigma>\left(v_{1}\right)=\phi\left\langle\sigma\left[\tau_{j} / \mathrm{X}_{\mathrm{j}}\right]_{\mathrm{j} \in \mathrm{J}} \mathrm{J}^{>}\left(\mathrm{v}_{2}\right)\right.$, that is $E_{1}=E_{3}$, we first prove $E_{2}=E_{3}$ and then $E_{1}=E_{2}$:
$E_{2}=E_{3}:$
\subseteq : Let v_{2}^{\prime} satisfy $\mathrm{v}_{2}^{\prime}(\mathrm{X})=\mathrm{v}_{2}(\mathrm{X})$, for $\mathrm{X} \in \mathrm{X}-\left\{\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right\}$, and
$\phi\left\langle\sigma_{k}^{\prime}\right\rangle\left(v_{2}^{\prime}\right) \subseteq v_{2}^{\prime}\left(Y_{k}\right), k=1, \ldots, n$.
Define v_{1}^{\prime} by $v_{1}^{\prime}(X)=v_{2}^{\prime}(X)$ for $X \in X-\left\{X_{j}\right\}_{j \in J}$ and $v_{1}^{\prime}\left(X_{j}\right)=\phi<\tau{ }_{j}>\left(v_{2}^{\prime}\right)$,
for $j \in J$, and define $v_{1}^{\prime \prime}$ by $v_{1}^{\prime \prime}(X)=v_{2}^{\prime}(X)$ for $X \in X-\left\{X_{j}\right\}_{j \in J^{*}}$ and $v_{1}^{\prime \prime}\left(X_{j}\right)=\phi<\tau_{j}>\left(v_{2}^{\prime}\right)$, for $j \in J^{*}$.

By the induction hypothesis, $\phi<\sigma_{k}\left[Y_{1} / X_{1}\right]_{1=1, \ldots, n}>\left(v_{1}^{\prime \prime}\right)=\phi\left\langle\sigma_{k}^{\prime}\right\rangle\left(v^{\prime}{ }_{2}\right)$.
As X_{1}, \ldots, X_{n} do not occur in $\sigma_{k}\left[Y_{1} / X_{1}\right] \quad 1=1, \ldots, n, \phi<\sigma_{k}\left[Y_{1} / X_{1}\right] 1=1, \ldots, n>\left(v_{1}^{\prime \prime}\right)=$ $=\phi<\sigma_{k}\left[Y_{1} / X_{1}\right]_{1=1, \ldots, n^{\prime}}\left(v_{1}^{\prime}\right)$.
Moreover $\phi<\sigma_{k}^{\prime}>\left(v_{2}^{\prime}\right) \subseteq v_{2}^{\prime}\left(Y_{k}\right)=v_{1}^{\prime}\left(Y_{k}\right), k=1, \ldots, n$, as
$\left\{X_{j}\right\}{ }_{j \in J} \cap\left\{Y_{1}, \ldots, Y_{n}\right\}=\emptyset$.
Thus $\phi<\sigma_{k}\left[Y_{1} / X_{1}\right]_{1=1, \ldots, n}>\left(v_{1}^{\prime}\right) \subseteq v_{1}^{\prime}\left(Y_{k}\right), k=1, \ldots, n$.
Furthermore $v_{1}^{\prime}\left(X_{j}\right)=\phi<\tau_{j}>\left(v_{2}^{i}\right)=\left(Y_{1}, \ldots, Y_{n}\right.$ do not occur in $\left.\tau_{j}\right) \phi<\tau_{j}>\left(v_{2}\right)=$ $=v_{1}\left(X_{j}\right), j \in J$, and $v_{1}^{\prime}(X)=v_{2}^{\prime}(X)=v_{2}(X)=$ (assumption) $v_{1}(X)$ for $X \in X-\left\{X_{j}\right\}{ }_{j \in J}-\left\{Y_{1}, \ldots, Y_{n}\right\}$, whence v_{1}^{\prime} satisfies the conditions mentioned in E_{2}.

As $\left.\left\langle v_{1}^{\prime}\left(Y_{k}\right)\right\rangle_{k=1}^{n}=\left\langle v_{2}^{\prime}\left(Y_{k}\right)\right\rangle\right\rangle_{k=1}^{n}$, we obtain $E_{2} \subseteq E_{3}$.
ב: Let v_{1}^{\prime} satisfy $\mathrm{v}_{1}^{\prime}(\mathrm{X})=\mathrm{v}_{1}(\mathrm{X}), \mathrm{X} \in \mathrm{X}-\left\{\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right\}$ and $\phi<\sigma_{k}\left[Y_{1} / X_{1}\right]_{1=1, \ldots, n}>\left(v_{1}^{\prime}\right) \subseteq v_{1}^{\prime}\left(Y_{k}\right), k=1, \ldots, n$. Define v_{2}^{\prime} by $v_{2}^{\prime}\left(Y_{k}\right)=v_{1}^{\prime}\left(Y_{k}\right), k=1, \ldots, n$, and $v_{2}^{\prime}(X)=v_{2}(X)$, otherwise.
Now (1) $v_{1}^{\prime}\left(X_{j}\right)=v_{1}\left(X_{j}\right)=\phi<\tau_{j}>\left(v_{2}\right)=\left(Y_{1}, \ldots, Y_{n}\right.$ do not occur in $\left.\tau_{j}\right)$ $\phi<\tau_{j}>\left(v_{2}^{\prime}\right), j \in J$,
(2) $v_{1}^{\prime}(X)=v_{1}(X)=v_{2}(X)=v_{2}^{\prime}(X), X \in X-\left\{X_{j}\right\}_{j \in J}-\left\{Y_{1}, \ldots, Y_{n}\right\}$, and
(3) $v_{1}^{i}\left(Y_{k}\right)=v_{2}^{i}\left(Y_{k}\right), k=1, \ldots, n$,
imply together that the induction hypothesis may be applied, whence

$$
\phi<\sigma_{k}\left[Y_{1} / X_{1}\right]_{\left.1=1, \ldots, n^{[\tau} \tau_{j} / X_{j}\right]}^{j \in J} \gg\left(v_{2}^{\prime}\right)=\phi<\sigma_{k}\left[Y_{1} / X_{1}\right]_{1=1}, \ldots, n\left(v_{1}^{\prime}\right) .
$$

 as no X_{1}, \ldots, X_{n} occur in $\sigma_{k}\left[Y_{1} / X_{1}\right] \quad 1=1, \ldots, n^{\prime}$

$$
\phi<\sigma_{k}^{\prime}>\left(v_{2}^{\prime}\right)=\phi<\sigma_{k}\left[Y_{1} / X_{1}\right]_{1=1, \ldots, n}>\left(v_{1}^{\prime}\right) \subseteq v_{1}^{\prime}\left(Y_{k}\right)=v_{2}^{\prime}\left(Y_{k}\right)
$$

follows, $k=1, \ldots, n$. As $v_{2}^{\prime}(X)=v_{2}(X), X \in X-\left\{Y_{1}, \ldots, Y_{n}\right\}$, it can be deduced that $E_{2} \supseteq E_{3}$.
$E_{1}=E_{2}:$
2: Let $v_{1}^{\prime \prime}$ satisfy $\phi<\sigma_{k}>\left(v_{1}^{\prime \prime}\right) \subseteq v_{1}^{\prime \prime}\left(X_{k}\right), k=1, \ldots, n$, and $v_{1}^{\prime \prime}(X)=v_{1}(X)$, $X \in X-\left\{X_{1}, \ldots, X_{n}\right\}$.
Define v_{1}^{\prime} by $v_{1}^{\prime}\left(Y_{k}\right)=v_{1}^{\prime \prime}\left(X_{k}\right), k=1, \ldots, n$, and $v_{1}^{\prime}(X)=v_{1}(X)$, $X \in X-\left\{Y_{1}, \ldots, Y_{n}\right\}$ 。
By the induction hypothesis, $\phi<\sigma_{k}>\left(v_{1}^{\prime \prime}\right)=\phi<\sigma_{k}\left[Y_{1} / X_{1}\right]{ }_{1=1, \ldots, n}>\left(v_{1}^{\prime}\right)$. Therefore, $\phi<\sigma_{k}\left[Y_{1} / X_{1}\right]_{1=1, \ldots, n}>\left(v_{1}^{\prime}\right)=\phi<\sigma_{k}>\left(v_{1}^{\prime \prime}\right) \subseteq v_{1}^{\prime \prime}\left(X_{k}\right)=v_{1}^{\prime}\left(Y_{k}\right)$, $k=1, \ldots, n$. As $v_{1}^{\prime}(X)=v_{1}(X), X \in X-\left\{Y_{1}, \ldots, Y_{n}\right\}$, it can be deduced that $E_{1} \geq E_{2}$ holds.

C: As $\sigma_{k}\left[Y_{1} / X_{1}\right] \quad 1=1, \ldots, n^{\left[X_{1} / Y_{1}\right]} 1=1, \ldots, n=\sigma_{k}$, the proof of this part is similar to the proof above.

APPENDIX 3: PROOFS OF THE ITERATION AND MODULARITY PROPERTIES

LEMMA 4.10. (Iteration, Scott and de Bakker [41], Bekic [4]).
$\mid-\mu_{j} x_{1} \ldots x_{j-1} x_{j} x_{j+1} \ldots x_{n}\left[\sigma_{1}, \ldots, \sigma_{j-1}, \sigma_{j}, \sigma_{j+1}, \ldots, \sigma_{n}\right]=$
$=\mu X_{j}\left[\sigma_{j}\left[\mu_{i} X_{1} \ldots X_{j-1} X_{j+1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{j-1}, \sigma_{j+1}, \ldots, \sigma_{n}\right] / x_{i}\right]{ }_{i \in I}\right.$,
with $I=\{1, \ldots, j-1, j+1, \ldots, n\}$.
Proof. The proof of this lemma is copied from Hitchcock and Park [18]. For ease of notation, we establish this lemma just for the case $n=i$; the general version, for $n \neq i$, should be clear.
We use the following notation:

$$
\begin{aligned}
\mu_{j} & \equiv \mu_{j} X_{1} \ldots X_{n} X\left[\sigma_{1}, \ldots, \sigma_{n}, \sigma\right], j=1,2, \ldots, n+1, \\
\hat{\mu}_{j}(X) & \equiv \mu_{j} X_{1} \ldots X_{n}\left[\sigma_{1}, \ldots, \sigma_{n}\right], \quad j=1,2, \ldots, n, \\
\mu & \equiv \mu X\left[\sigma\left(\hat{\mu}_{1}(X), \ldots, \hat{\mu}_{n}(X), X\right)\right],
\end{aligned}
$$

and prove

$$
\mid \mu=\mu_{n+1}, \hat{\mu}_{1}(\mu)=\mu_{1}, \ldots, \hat{\mu}_{n}(\mu)=\mu_{n}
$$

By the minimal fixed point property, we have
(1) $\mid-\sigma_{j}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}, \mu_{n+1}\right) \subseteq \mu_{j} \quad, j=1,2, \ldots, n$,
(2) $\mid-\sigma\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}, \mu_{n+1}\right) \subseteq \mu_{n+1}$,
(3) $\mid-\sigma_{j}\left(\hat{\mu}_{1}(\mu), \ldots, \hat{\mu}_{n}(\mu), \mu\right) \subseteq \hat{\mu}_{j}(\mu), j=1,2, \ldots, n$,
(4) $\mid-\sigma\left(\hat{\mu}_{1}(\mu), \ldots, \hat{\mu}_{n}(\mu), \mu\right) \subseteq \mu$ 。

Then
(i) $\mid-\hat{\mu}_{j}\left(\mu_{n+1}\right) \subseteq \mu_{j}, j=1,2, \ldots, n$,
applying an n-ary minimal fixed point argument to the inequalities (1), noting that

$$
\hat{\mu}_{j}\left(\mu_{n+1}\right) \equiv \mu_{j} x_{1} \ldots x_{n}\left[\sigma_{1}\left(x_{1}, \ldots, x_{n}, \mu_{n+1}\right), \ldots, \sigma_{n}\left(x_{1}, \ldots, x_{n}, \mu_{n+1}\right)\right]
$$

(ii) from (i) and monotonicity of σ point argument, whence

$$
\mid-\mu \subseteq \mu_{n+1}
$$

follows.
(iii) $\mid-\mu_{n+1} \subseteq \mu_{1} \mu_{1} \subseteq \hat{\mu}_{1}(\mu), \ldots, \mu_{n} \subseteq \hat{\mu}_{n}(\mu)$, follows directly from (3) and (4) by an ($n+1$)-ary minimal fixed point argument. The result follows then from inequalities (i), (ii) and (iii).

COROLLARY 4.4. (Modularity). FOY $\mathrm{i}=1, \ldots, \mathrm{n}$,

$$
\begin{aligned}
& \mid-\mu_{i} X_{1} \ldots x_{n}\left[\sigma_{1}\left(\tau_{11}\left(X_{1}, \ldots, X_{n}\right), \ldots, \tau_{1 m}\left(X_{1}, \ldots, X_{n}\right)\right), \ldots,\right. \\
& \left.\quad \sigma_{n}\left(\tau_{n 1}\left(X_{1}, \ldots, X_{n}\right), \ldots, \tau_{n m}\left(X_{1}, \ldots, X_{n}\right)\right)\right]= \\
& \quad=\sigma_{i}\left(\mu_{i 1} X_{11} \ldots X_{n m}^{\left[\tau_{11}\left(\sigma_{1}\left(X_{11}, \ldots, x_{1 m}\right), \ldots, \sigma_{n}\left(X_{n 1}, \ldots, X_{n m}\right)\right),\right.}\right. \\
& \left.\left.\ldots, \tau_{n m}(\ldots)\right], \ldots, \mu_{i m} \ldots\right) .
\end{aligned}
$$

Proof.
(1) $n=1$ and $m=1$.

First we prove $\mu_{1} \mathrm{XY}[\sigma(\mathrm{Y}), \tau(\mathrm{X})]=$ (iteration) $\mu \mathrm{X}[\sigma(\mu \mathrm{Y}[\tau(\mathrm{X})])]=$
$=(f p p) \mu X[\sigma(\tau(X))]$. Then we have $\mu_{1} X Y[\sigma(Y), \tau(X)]=(f p p)$
$\sigma\left(\mu_{2} \mathrm{XY}[\sigma(\mathrm{Y}), \tau(\mathrm{X})]\right)=$ (iteration) $\sigma(\mu \mathrm{Y}[\tau(\mu \mathrm{X}[\sigma(\mathrm{Y})])])=(\mathrm{fpp})$ $\sigma(\mu \mathrm{Y}[\tau(\sigma(\mathrm{Y}))])=\sigma(\mu \mathrm{X}[\tau(\sigma(\mathrm{X}))])$, whence the result.
(2) $\mathfrak{n}=1$. By induction on m. Induction step:
a. $\mu X\left[\sigma\left(\tau_{1}(X), \ldots, \tau_{m}(X)\right)\right]=\mu_{1} X_{1} \ldots X_{m+1}\left[\sigma\left(X_{2}, \ldots, X_{m+1}\right), \tau_{1}\left(X_{1}\right), \ldots, \tau_{m}\left(X_{1}\right)\right]$. Proof. $\mu_{1} X_{1} \ldots X_{m+1}\left[\sigma\left(X_{2}, \ldots, X_{m+1}\right), \tau_{1}\left(X_{1}\right), \ldots, \tau_{m}\left(X_{1}\right)\right]=$ (iteration)

$$
\mu_{1} X_{1}\left[\sigma\left(\mu_{1} X_{2} \ldots X_{m+1}\left[\tau_{1}\left(X_{1}\right), \ldots . \tau_{m}\left(X_{1}\right)\right], \ldots, \mu_{m} \ldots\right)\right]=(f p p)
$$

$$
\mu X_{1}\left[\sigma\left(\tau_{1}\left(X_{1}\right), \ldots, \tau_{m}\left(X_{1}\right)\right)\right]
$$

b. $\mu_{1} X_{1} \ldots X_{m+1}\left[\sigma\left(X_{2}, \ldots, X_{m+1}\right), \tau_{1}\left(X_{1}\right), \ldots, \tau_{m}\left(X_{1}\right)\right]=(f p p)$ $\sigma\left(\mu_{2} X_{1} \ldots X_{m+1}\left[\sigma, \tau_{1}, \ldots, \tau_{m}\right], \ldots, \mu_{m+1} X_{1} \ldots X_{m+1}\left[\sigma, \tau_{1}, \ldots, \tau_{m}\right]\right)$.

$$
\begin{aligned}
& \mid-\sigma\left(\hat{\mu}_{1}\left(\mu_{n+1}\right), \ldots, \hat{\mu}_{n}\left(\mu_{n+1}\right), \mu_{n+1}\right) \subseteq \sigma\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n+1}\right), \\
& \text { so } \mid-\sigma\left(\hat{\mu}_{1}\left(\mu_{n+1}\right), \ldots, \hat{\mu}_{n}\left(\mu_{n+1}\right), \mu_{n+1}\right) \subseteq \mu_{n+1} \\
& \text { and } H \mu X\left[\sigma\left(\hat{\mu}_{1}(X), \ldots, \hat{\mu}_{n}(X), X\right)\right] \quad \subseteq \mu_{n+1} \text {, by a } 1 \text {-ary minimal fixed }
\end{aligned}
$$

c. $\mu_{i} X_{1} \ldots X_{m+1}\left[\sigma, \tau_{1}, \ldots, \tau_{m}\right]=$
$\mu_{i-1} X_{1} \ldots X_{m}\left[\tau_{1}\left(\sigma\left(X_{1}, \ldots, X_{m}\right)\right), \ldots, \tau_{m}\left(\sigma\left(X_{1}, \ldots, X_{m}\right)\right)\right], 2 \leq i \leq n$.
Proof. E.g., $\mathbf{i}=2$,
$\mu_{2} X_{1} \ldots X_{m+1}\left[\sigma, \tau_{1}, \ldots, \tau_{m}\right]=$ (iteration)
$\mu X_{2}\left[\tau_{1}\left(\mu_{1} X_{1} X_{3} \ldots X_{m+1}\left[\sigma, \tau_{2}, \ldots, \tau_{m}\right]\right)\right]=$ (iteration and fpp)
$\mu \mathrm{X}_{2}\left[\tau_{1}\left(\mu_{1} \mathrm{X}_{1}\left[\sigma\left(\mathrm{X}_{2}, \tau_{2}\left(\mathrm{X}_{1}\right), \ldots, \tau_{\mathrm{m}}\left(\mathrm{X}_{1}\right)\right)\right]\right)\right]=$ (induction hypothesis)
$\mu X_{2}\left[\tau_{1}\left(\sigma\left(X_{2}, \mu Y_{1} \ldots Y_{m-1}\left[\tau_{2}\left(\sigma\left(X_{2}, Y_{1}, \ldots, Y_{m}\right)\right), \ldots\right.\right.\right.\right.$,
$\left.\left.\left.\left.\tau_{m}\left(\sigma\left(X_{2}, Y_{1}, \ldots, Y_{m}\right)\right)\right], \ldots, \mu_{m-1} \ldots\right)\right)\right]=$ (iteration)
$\mu_{1} X_{1} X_{2} \ldots X_{m}\left[\tau_{1}\left(\sigma\left(X_{1}, \ldots, X_{m}\right)\right), \ldots, \tau_{m}\left(\sigma\left(X_{1}, \ldots, X_{m}\right)\right)\right]$.
Combination of a, b and c yields the desired result for $n=1$.
(3) By induction on n. Induction step: Let
$\mu_{i} \equiv \mu_{i} X_{1} \ldots X_{n}\left[\sigma_{1}\left(\tau_{11}\left(X_{1}, \ldots, X_{n}\right), \ldots, \tau_{1 m}\left(X_{1}, \ldots, X_{n}\right)\right), \ldots\right.$ $\left.\ldots, \sigma_{n}\left(\tau_{n 1}\left(x_{1}, \ldots, x_{n}\right), \ldots, \tau_{n m}\left(x_{1}, \ldots, x_{n}\right)\right)\right]$,
$\hat{\mu}_{i} \equiv \mu_{i} X_{1} \ldots X_{n} X_{11} \ldots X_{n m}\left[\sigma_{1}, \ldots, \sigma_{n}, \tau_{11}, \ldots, \tau_{n m}\right]$,
$\mu_{i j} \equiv \mu_{(i-1) * n+j} X_{11} \ldots X_{n m}{ }^{[\tau}{ }_{11}\left(\sigma_{1}\left(X_{11}, \ldots, X_{1 m}\right), \ldots, \sigma_{n}\left(X_{n 1}, \ldots, X_{n m}\right)\right), \ldots$ $\left.\ldots \tau_{n m}(\ldots)\right]$,
$\hat{u}_{i j} \equiv \mu_{i * n+j} X_{1} \ldots X_{n} X_{11} \ldots X_{n m}\left[\sigma_{1}\left(x_{11}, \ldots, x_{1 m}\right), \ldots, \sigma_{n}\left(X_{n 1}, \ldots, X_{n m}\right)\right.$, $\left.\tau_{11}\left(X_{1}, \ldots, X_{n}\right), \ldots, \tau_{n m}\left(X_{1}, \ldots, x_{n}\right)\right]$.
a. $\mu_{i}=\hat{\mu}_{i}, i=1, \ldots, n$. By induction. E.g., consider $i=1$,

$$
\hat{\mu}_{1}=\text { (iteration) }
$$

$$
\mu X_{1}\left[\sigma_{1}\left(\mu_{11} X_{2} \ldots X_{n} X_{11} \ldots X_{n m}\left[\sigma_{2}, \ldots, \sigma_{n}, \tau \tau_{11}, \ldots, \tau \tau_{n m}\right], \ldots, \mu_{1 n} \ldots\right)\right]=\left(f_{p p}\right)
$$

$$
\mu X_{1}\left[\sigma _ { 1 } \left(\tau _ { 1 1 } \left(X_{1}, \mu, X_{2} \ldots X_{n} X_{11} \ldots X_{n m}\left[\sigma_{2}, \ldots, \sigma_{n}, \tau_{11}, \ldots, \tau_{n m}\right], \ldots\right.\right.\right.
$$

$$
\left.\left.\left.\ldots, \mu_{n-1} x_{2} \ldots x_{n m}[\ldots]\right), \ldots, \tau_{1 m}(\ldots)\right)\right]=
$$

$$
\mu X_{1}\left[\sigma _ { 1 } \left(\tau _ { 1 1 } \left(X_{1}, \mu X_{1} X_{2} \ldots X_{n} X_{21} \ldots X_{n m}\left[\sigma_{2}, \ldots, \sigma_{n}, \tau_{21}, \ldots, \tau_{n m}\right], \ldots\right.\right.\right.
$$

$$
\left.\left.\left.\ldots, \mu_{n-1} x_{2} \ldots x_{n} x_{21} \ldots x_{n m}[\ldots]\right), \ldots, \tau 1 m\right)\right]
$$

by repeated application of iteration,
... = (induction hypothesis)

$$
\begin{gathered}
\mu X_{1}\left[\sigma _ { 1 } \left(\tau _ { 1 1 } \left(X_{1}, \mu_{1} x_{2} \ldots X_{n}\left[\sigma_{2}\left(\tau_{21}\left(X_{1}, \ldots, X_{n}\right), \ldots, \tau \tau_{2 m} \ldots\right), \ldots, \sigma_{n}(\ldots)\right], \ldots\right.\right.\right. \\
\left.\left.\ldots, \mu_{n-1} x_{2} \ldots x_{n}[\ldots]\right), \ldots, \tau_{1 m}(\ldots)\right]=\text { (iteration) } \\
\mu_{1} .
\end{gathered}
$$

b. $u_{i j}=\hat{u}_{i j}$. Similarly.

Hence $\mu_{i}=($ part $a) \hat{\mu}_{i}=(f p p) \sigma_{i}\left(\hat{\mu}_{i 1}, \ldots, \hat{\mu}_{i m}\right)=($ part $b) \sigma_{i}\left(\mu_{i 1}, \ldots, \mu_{i m}\right)$.

REFERENCES

[1] de Bakker, J.W., Recursive procedures, Mathematical Centre Tracts 24, Amsterdam, 1971.
[48] de Bakker, J.W., Recursion, induction and symbol manipulation, in Proc. MC-25 Informatica Symposium, Mathematical Centre Tracts 37, Amsterdam, 1971.
[2] de Bakker, J.W., and W.P. de Roever, A calculus for recursive program schemes, in Proc. IRIA Symposium on Automata, Formal languages and Programming, M. Nivat (ed.), North-Holland, Amsterdam, 1972.
[3] de Bakker, J.W., and L.G.L.Th. Meertens, Simple recursive progrom schemes and inductive assertions, Mathematical Centre Report $\mathbb{M R}$ 142/72, Amsterdam, 1972.
[49] de Bakker, J.W., and L.G.L.Th. Meertens, On the completeness of the inductive assertion method, Prepublication, Mathematical Centre Report IW 12/73, Amsterdam, 1973.
[4] Bekic, H., Definable operations in general algebra, and the theory of automata and flowcharts, Report IBM Laboratory Vienna, 1969.
[5] Bekic, H., Towards a mathematical theory of processes, Technical Report TR 25.125, IBM Laboratory Vienna, 1971.
[6] Blikle, A., An algebraic approach to programs and their computations, in Proc. of the Symposium and Summer School on the Mathematical Foundations of Computer Science, High Tatras, Czechoslovakia, 1973.
[7] Blikle, A., and A. Mazurkiewicz, An algebraic approach to the theory of programs, algorithms, languages and recursiveness, in Proc. of an International Symposium and Summer School on the Mathematical Foundations of Computer Science, Warsaw-Jablonna, 1972.
[8] Burstall, R.M., Proving properties of progroms by structural induction, Comput. J., 12 (1969) 41-48.
[9] Cadiou, J.M., Recursive definitions of partial functions and their - computations, Thesis, Stanford University, 1972.
[10] Dijkstra, E.W., Notes on structured programming, in Hoare, C.A.R., Dijkstra, E.W., and O.J. Dah1, Structured Programming, Academic Press, New York, 1972.
[11] Dijkstra, E.W., A short introduction to the art of programming, Report EWD 316, Technological University Eindhoven, 1971.
[12] Dijkstra, E.W., A simple axiomatic basis for programming language constructs, Report EWD 372, Technological University Eindhoven, 1973.
[13] Floyd, R.W., Assigning meanings to programs, in Proc. of a Symposium in Applied Mathematics, Vo1. 19, Mathematical Aspects of Computer Science, J.T. Schwartz (ed.), AMS, Providence R.I., 1967.
[50] Fokkinga, M.M., Inductive assertion patterns for recursive procedures, in Proc. of Symposium on Programming, Paris, April 9-11, 1974 (to appear).
[14] Garland, S.J., and D.C. Luckham, TransZating recursion schemes into progrom schemes, in Proc. of an ACM Conference on Proving Assertions about Programs, Las Cruces, New Mexico, January 6-7, 1972 。
[15] Guessarian, I., Sur une réduction des schémas de programes polyadiques à des schémas monadiques et ses applications, Memo GRIT no. 73. 05, Université de Paris, 1973.
[16] Hindley, J.R., Lercher, B., \& J.P. Seldin, Introduction to combinatory Zogic, London Mathematical Society Lecture Note Series 7, Cambridge University Press, 1972.
[17] Hitchcock, P., An approach to formal reasoning about programs, Thesis, University of Warwick, Coventry, England, 1973.
[18] Hitchcock, P., and D. Park, Induction mules and proofs of termination, in Proc. IRIA Symposium on Automata, Formal Languages and Programming, M. Nivat (ed.), North-Holland, Amsterdam, 1972.
[19] Hoare, C.A.R., An axiomatic basis for computer programming, Comm. ACM, 12 (1969) 576-583.
[20] Hoare, C.A.R., Proof of a program: FIND, Comm. ACM, 14 (1971) 39-45.
[51] Hotz, G., Eindeutigkeit und Mehrdeutigkeit formaler Sprachen, Electron. Informationsverarbeit. Kybernetik, $\underline{2}$ (1966) 235-246.
[21] Kahn, G., A preliminary theory of parallel programs, Rapport LABORIA, IRIA, 1973.
[22] Karp, R.M., Some applications of Iogical syntax to digital computer programming, Thesis, Harvard University, 1959.
[23] King, J.C., A progrom verifier, Thesis, Carnegie-Mellon University, 1969.
[24] Knuth, D.E., The Art of Computer Progromming, Vo1. 1, Fundomental Algorithms, Addison Wesley, Reading (Mass.), 1968.
[25.] Manna, Z., and J.M. Cadiou, Recursive definitions of partial functions and their computations, in Proc. of an ACM Conference on Proving Assertions about Programs, Las Cruces, New Mexico, January 6-7, 1972.
[26] Manna, Z., Ness, S., and J. Vuillemin, Inductive methods for proving properties of progroms, ibidem.
[277 Manna, Z., and J. Vuillemin, Fixpoint approach to the theory of computation, Comm. ACM, 15 (1972) 528-536.
[28] Mazurkiewicz, A., Proving properties of processes, PRACE CO PANCC PAS Reports 134, Warsaw; 1973.
[29] McCarthy, J., A basis for a mathematical theory of computation, in Computer Programming and Formal Systems, pp. 33-70, P. Braffort and D. Hirschberg (eds.), North-Holland, Amsterdam, 1963.
[30] Milner, R., Algebraic theory of computable polyadic functions, Computer Science Memorandum 12, University College of Swansea, 1970.
[31] Milner, R., Implementation and application of Scott's logic for computable functions, in Proc. of an ACM Conference on Proving Assertions about Programs, Las Cruces, New Mexico, January 6-7, 1972.
[32] Milner, R., An approach to the semantics of parallel progroms, Edinburgh Technical Memo, University of Edinburgh, 1973.
[33] Morris Jr., J.H., Another recursion induction principle, Conm. ACM, 14 (1971) 351-354.
[34] Park, D., Fixpoint induction and proof of program semantics, in Machine Intelligence, Vo1.5, pp.59-78, B. Meltzer and D. Michie (eds.), Edinburgh University Press, Edinburgh, 1970.
[35] Park, D., Notes on a formalism for reasoning about schemes, Unpublished notes, University of Warwick, 1970.
[36] de Roever, W.P., A formalization of various parameter mechanisms as products of relations within a calculus of recursive progrom schemes, in Séminaires IRIA, théorie des algorithmes, des langages et de la programmation, 1972, pp. 55-88.
[37] Rosen, B.K., Tree-manipulating systems and Church-Rosser theorems, J. Assoc. Comput. Mach., 20 (1973) 160-187.
[38] Scott, D., Outiine of a mathematical theory of computation, in Proc. of the Fourth Annual Princeton Conference on Information Sciences and Systems, pp. 169-176, Princeton, 1970.
[39] Scott, D., Mathematical concepts in progranming language semantics, in Proc. Spring Joint Computer Conference 1972, pp.225-234.
[40] Scott, D., Data types as lattices, Unpublishes lecture notes, University of Amsterdam, 1973.
[41] Scott, D., and J.W. de Bakker, A theory of programs, Unpub1ished notes, IBM Seminar, Vienna, 1969.
[42] Scott, D., and C. Strachey, Towards a mathematical semantics for computer Zanguages, in Proc. of the Symposium on Computers and Automata, Microwave Research Insitute Symposia Series Vol.21, Polytechnic Institute of Brooklyn, 1972.
[43] Tarski, A., On the calculus of relations, J. Symbolic Logic, 6 73-89.
[44] Vuillemin, J., Proof techniques for recursive programs, Thesis, Stanford University, 1972.
[45] Weyrauch, R.W., and R. Milner, Progrom correctness in a mechanized Zogic, in Proc. of the First USA-JAPAN Computer Conference, 1972, pp. 384-390.
[46] Wirth, N., Program development by stepwise refinement, Comm. ACM, 14 (1971) 221-227.
[47] Wright, J.B., Characterization of recursively enumerable sets, J. Symbolic Logic, 37 (1972) 507-511.

[^0]: *) A possible approach in this direction is suggested in appendix 1.

[^1]: *) This observation is due to Peter van Emde Boas.

[^2]: *) By an abuse of language we suppress any mentioning of interpretations 0 and m satisfying $o(T)=m(\operatorname{tr}(T))$.

[^3]: *) This corresponds with $p\{T\} q$ in Hoare's notation and with $\{p\} T\{q\}$ in Dijkstra's notation (cf. [11]).
 **) Let X denote the function f, then ($X \circ p$) $(x)=p(f(x))$.

[^4]: *) As described in appendix 1, this definition implies that the set of computation models can be structured as an algebra. This superposition of structure allows for simple proofs about certain transformations, by induction arguments on the complexity of these models, in case these transformations are morfisms w.r.t. this structure.

[^5]: *) Hence, if $S_{i}=P_{j}$ or $S_{i}=P_{j} ; V$, the only or first occurrence, respectively, of P_{j} in S_{i} identifies no occurrence in $\mathrm{S}_{\mathrm{i}+1}$.
 **) Hence, for some V_{1} and $V_{2}, S=V_{1} ; \nabla_{2}$.

[^6]: *) In the sequel m is often called the mathematical interpretation, as opposed to O, the operational interpretation.

[^7]: *) Reference to a given initial interpretation is tacitly assumed. Accordingly, $\phi_{2}\langle\sigma\rangle$ will be written as $\phi\langle\sigma\rangle$.

[^8]: *) Some connections between μ-terms and the "o" operator are collected in section 5.3 .

[^9]: *) This corresponds with structural induction on the first coordinate, cf. séction 5.5.

[^10]: *) An attempt towards a solution of this problem has been made in de Roever [36].

