stichting
mathematisch
centrum | MC

AFDELING INFORMATICA ID 1/74 FEBRUARY

W.P. de ROEVER
OPERATIONAL, MATHEMATICAL AND AX|OMATIZED SEMANTICS
FOR RECURS|VE PROCEDURES AND DATA STRUCTURES

2e boerhaavestraat 49 amsterdam



Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, 4is a non-
profit institution aiming at the promotion of pure mathematics and Ats
applications. 1t 45 sponsored by the Netherlands Government through Zhe
Netherlands Onganization forn the Advancement of Pure Research (Z.W.0),
by the Municipality of Amstendam, by the University of Amstendam, by
the Free Undversdity at Amsterdam, and by industries.

ACM - Computing Reviews - category: 5.24
AMS (MOS) subject classification scheme (1970): 02J10, 68A05




ABSTRACT

The language PL for first-order recursive program schemes with call-by-value
as parameter mechanism is developed, using models for sequential and indepen-—-
dent parallel computation. The language MU for binary relations over carte-
sian products which has minimal fixed point operators is formally defined
and the validity of the monotonocity, continuity and substitutivity proper-
ties and Scott's induction rule is proved. An injection between PL and MU
is specified together with the conditions subject to which this injection
induces a translation. Then MU is axiomatized using a many-sorted generali-
zation of Tarski's axioms for binary relations, Scott's induction rule and
fixed point axiom, and new axioms to characterize projection functions,
whence, by the translation result, a calculus for first-order recursive
program schemes is obtained. Next we define an operator composing relations
with predicates, the so-called "o'operator, relate the properties of this
operator axiomatically to the structure of the relations and predicates
composed, and demonstrate the relevance of this operator to correctness
proofs of programs in general and proofs involving the call-by-value para=
meter mechanism in particular. Axiomatic proofs are given of numerous pro-
perties of recursive program schemes, some of which involve different mo-
dular decompositions of a program. Our calculius is then applied to the
axiomatic characterization of the natural numbers, lists, linear lists and
ordered linear lists, and used to prove many properties relating the head,
tail and append list-manipulation functions to each other. Finally both

an informal and an axiomatic correctness proof is given of the well-known

recursive solution of the Towers of Hanoi problem.
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0. INTRODUCTION
0.1. Objectives

The objectives of the present paper are to provide a self-contained

description of :

1. A conceptually attractive framework for studying the foundations of

program correctness.

2. An expedient axiomatization of the properties of first—order recursive

programs with call-by-value as parameter mechanism.

Ad 1,
In reasoning about programs and their properties one is always con-—

fronted with the following two aspects:

1.1 A program serves to describe a class of computations on a possibly
idealized computer. In consequence, a programmer always conceptualizes
its execution. Whether this conceptualization figures on the very con-
crete level of bit manipulation or on the very abstract level of an
ALGOL 68 machine, it always uses some model of computation as vehicle
for the process of understanding a program. (However, the level on
which this conceptualization takes place does matter when considering
the ease with which one reasons about the outcome of a program: the
less the amount of detail necessary to understand the operation of a
program, the better the insight as to whether a program serves its

purpose).

1.2 If we abstract from this variety in understanding a program, we arri-
ve at the relational structure which embodies the mathematical essence

of that program: Zts properties.

This leads one to consider two notions of meaning:

operational and mathematical semantics.

How do these notions relate?
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First one has to chose a language, whose operational semantics are defined
by some interpreter. Then one decides which properties of the computations
defined by this interpreter to investigate. Finally one gives an Zndepen—

dent mathematical characteriztion of these properties.

Our choice has been in this paper

a. To introduce an idealized interpreter for a language for first-order
recursive program schemes with call-by-value as parameter mechanism
(first-order recursive programs manipulate neither labels nor proce~

dures as wvalues).

b. To consider the Zmput—output behaviour of programs as property subject

to investigation.

c. To use Scott's minimal fixed point characterization for the input-—
output behaviour of recursive procedures in the setting of binary

relations and projection functions.

However, other choices are very well possible, e.g., Bekic [5],
Blikle [6], Kahn [21] and Milner [32] incorporate also the intermediate
*)

stages of a computation into their mathematical semantics., This does not
necessarily imply that then all properties of a computation have been taken
into account (whence equivalence becomes equality). For instance, the two
sequences (AI(AZAB)) and ((A1A2)A3) may be considered equivalent, as their
execution amounts to executing the same elementary statements in the same

order: first A , then A, and finally A3, although these elementary state-

»
ments are diff;rently giouped together.
Ad 2.

Once the appropriate mathematical semantics have been defined, a pro-
per framework for provimng properties of programs is obtained. As the proofs
of these properties may be quite cumbersome and lengthy, one might wish to
investigate into the possibilities of computer assisted proofs, cf. King

[23], Milner [31] and Weyrauch and Milner [45]. One then has to calculate

*)

A possible approach in this direction is suggested in appendix 1.

#
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the correctness of a program, whence a formal system is needed. Our system
is an extension of the one given in de Bakker and de Roever [2] in that we
consider binary relations over cartesian products of domains, i.e., our
domains are structured.

Other formal systems are considered in Milner [31], which axiomatizes
higher order recursive functionals with call-by-name as parameter mech—
anism, and Scott [40], which contains an axiomatization of the universal

A-calculus model called "logical space".

0.2. Structure of the paper
Chapter 1

Expression of properties of programs as properties of relations. Introduc-

"o" between relational terms and predi-

tion to the correctness operator
cates: £ satisfies Xop iff X terminates for input £ with output n and out-

put n satisfies p.

Chapter 2

Formai definition of PL, a language for first—order recursive program
schemes with call-by-value as parameter mechanism, which ailows for mutual-
ly dependent recursive declarations. Rigorous investigation of the input-
output behaviour ¢ of the program schemes of PL, consisting of proofs for
(1) 0 is a homomorfiem with respect to the algebraic structure of PL,

(2) the main theorem, the union theorem, using monotonicity, substitu-—
tivity and transformation of a computation into a normal form, (3) the
modularity property, using the minimal fixed point property; the modularity
property relates to the modular design of program schemes and is applied to
yield a two-line proof for the tree traversal result of section 4.5 of

de Bakker and de Roever [2].

This chapter is a generalization of chapter 3 of de Bakker and Meertens

[31.
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Chapter 3

Formal definition of MU, a language for binary relations over cartesian
products, which has "simultaneous' minimal fixed point operators. Rigorous
investigation of the mathematical semantics of MU, consisting of proofs
for (1) the monotonicity, substitutivity and continuity properties, (2)
the union theorem (3) validity of Scott's induction rule (4) the trans-—
lation theorem, which relates the input-output behaviour ¢ of the recur-
sive program schemes defined in chapter 2 to the mathematical interpreta-—
tion of certain terms of MU. Rebuttal to Manna and Vuillemin [27] on the

subject of call-by-value.

Chapter 4

Axiomatization of MU in four successive stages: (1) a many-sorted version
of Tarski's axioms for binary relations; derivation of, amongst others, the
fundamental lemma f- R;SnT-= R;(i;T nS)nT, (2) axiomatization of
boolean relation constants; derivation of the properties of the "o" oper-
ator, (3) axiomatization of projection functions; derivation of another
characterization of the converse of a relation, involving the application
of the conversion operator to projection functions, but not to that rela-
tion, (4) axiomatization of the minimal fixed point operators Mo resulting
in a caleculus for first—order recursive program schemes with call-by-value
as parametermechanism; derivation of the monotonicity, fixed point, minimal
fixed point, “teration and modularity properties; statement of a result on
functionality of terms.

This chapter is a generalization of chapter 4 of de Bakker and de Roever

[21.

Chapter 5

Application of the calculus for recursive program schemes developed in
chapter 4 to the formal derivation of (1) an equivalence due to Morris

[33], (2) a property involving nested while statements, contained in sec-



tion 5.1 of de Bakker and de Roever [2], using modular decomposition and
stmultaneous pu-terms, (3) the regularization of linear procedures follow-—
ing Wright [47]. An applied calculus for the natural numbers N featuring
an improved axiom system for N and a derivation of the characterizing

property of the equality relation between natural numbers.

Chapter 6

Formal list manipulation, applied calculi for lists, linear lists and
ordered linear lists. Linear lists are a special case of ordered linear
lists. Proofs for (1) a characterization of termination of and associa-
tivity of the concatenation function with ordered linear lists as argu—
ments, (2) many properties relating the head, tatl and concatenation func-
tions with ordered linear lists as arguments to each other, (3) both Zn-

formal and formal versions of correctness of the Towers of Hanoi program.

Chapter 7.

Conclusion consisting of (1) a listing of the four main (technical) accom—

plishments of this paper and (2) three open problems.

0.3. Related work

First we discuss the relational approach to program correctness.
Dominant in this approach is the minimal fixed point characterization,
which is initiated by Scott and de Bakker in [41], elaborated by de
Bakker in [1,48] and crossbred with Tarski's algebra of relations [43] in
de Bakker and de Roever [2] to yield an axiomatic framework for proving
equivalence, partial correctness and termination of first—order recursive
program schemes with one variable. The present paper amplifies on the lat-
ter in that (1) the restriction to one variable is removed by considering
arbitrary subdivisions of the state and (2) the distinction on the one
hand and the connection on the other between operational and mathematical
semantics has been clarified, In de Roever [36] relational calculi are
developed for recursive procedures, of which each parameter may be either

#
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called-by~value or called-by-name, with the restriction that at least one
parameter is called-by-value; in case all parameters are called-by-name the
A—-calculus oriented approach of Manna and Vuillemin [27] should be used.
Subdivisions of the state are incorporated within the relational framework
by considering relations over cartesian products of domains; these were
introduced in unpublished work of Milner [30] and Park [35].

The connection between Znduction rules and termination proofs is described
by Hitchcock and Park in [ 18] and elaborated in Hitchcock's dissertation
[171, which also contains a correctness proof of a tramslation of recur-
sive programs into flowcharts with stacks and clarifies the notion of re-
presentation of (recursive) data structures.

Maximal fixed points, introduced by Park in [34], are applied in
Mazurkiewicz [28] to obtain a mathematical characterization of divergent
computations and may lead to the axiomatization of Hitchcock and Park's

results within an extension of our framework.

In a different setting Blikle and Mazurkiewicz [7] also use an algebra

of relations to investigate programs.

The equivalence between the method of Znductive assertions and the
minimal fixed point characterization is the subject of de Bakker and
Meertens [3]. In general, the number of inductive assertions required to
characterize a system of mutually dependent recursive procedures turns out
to be infinite; however, in the regular case this number is finite, as
proved in Fokkinga [50]. The completeness of the method of inductive as-—
sertions for general recursive procedures, as opposed to the merely regular

ones, is the subject of de Bakker and Meertens [49].

The relation between the minimal fixed point characterization and
various rules of computation is studied by Manna, Cadiou, Ness and
Vuillemin in a number of papers: Manna and Cadiou [25], Manna, Ness and
Vuillemin [26], Manna and Vuillemin [27], Cadiou [9] and Vuillemin [44].
In section 3.3 we demonstrate that Manna and Vuillemin are mistaken in
their conclusion that call-by—-value does not lead to the computation of

minimal fixed points; de Roever [36] explains the reason why.

&
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The distinction between operational and mathematical semantics and the
need for mathematical semantics has been convincingly argued in Scott
[38,39] and Scott and Strachey [42].

Rosen [37] studies conditions under which normal forms for computa-

tions exist; implicitly, normal forms are used in appendix 1 to derive the
"difficult" half of the union theorem.

The works of Dijkstra [10,11]1, Hoare [19,20] and Wirth [46] relate to
the present paper in that we provide a possible axiomatic basis for some
techniques of structured programming; e.g., our correctness operator "o

is independently described in Dijkstra [12].






1. A FRAMEWORK FOR PROGRAM CORRECTNESS

1.1. Introduction

This report is devoted to a calculus for recursive programs written in
a simple first—order programming language, i.e., a language in which
neither procedures nor labels occur as wvalues.
In order to express and prove properties of these programs such as equiva-
lence, correctness and termination, one needs a more comprehensive language.
We shall abstract in that language from the usual meaning of programs
(characterized by sequences of computations) by considering only the input-
output relationships established by their execution.
Thus we are interested only in the binary relation described by a program,
its input-output behaviour: '

the collection of all pairs of an initial state of the memory, for

which this program terminates, and its corresponding final state of

the memory.

EXAMPLE 1.1. Let D be a domain of initial states, intermediate values and

final states.
a. The undefined statement L: goto L describes the empty relation Q over D.
b. The dummy statement describes the Zdentity relation E over D.

¢. Define the composition RI;RZ of relations Rl and R2 by

and <z,y> € Rz}.

RI;R = {<x,y> ]f}z <X,Z> € R]

2

In order to express the input-output behaviour of the conditional if p

then S] else 82 one first has to translitterate p: Let D1 be p_1 (true)
and D, be p—l (false) then the predicate p is uniquely determined by the
pair <p,p'> of disjoint subsets of the identity relation defined by:
<x,x> € p 1ff x € D, and <x,x> ¢ p' iff x € D,. This way of looking at
predicates is attributed to Karp [22]. If Ri is the input-output behav-
iour of Si’ i = 1,2, the relation described by the conditional above is
P;R; U p';Rz.

I3



d. Let 7, : D" > D be the projection function of D" on its i-th component,
i=1,...,n, let the converse R of a relation R be defined by

R = {<x,y> I <y,x> ¢ R} and let Rl""’Rn be arbitrary relations over D.

Consider
Ry3my 0 oeee 0 Rogmo ().

This relation consists exactly of those pairs <Ky <Ypsere Y>> such that
<x,y;> € R, for i=1,...,n. Thus (%) terminates in x 1ff all its com—
ponents R, terminate in x. Observe the analogy with the following: The
evaluation of a list of parameters called-by—value terminates iff the
evaluation of all its constituent actual parameters terminates. This
suggests the possibility of describing the call-by-value parameter mech-

anism relationally, an idea which will be realized in chapters 2 and 3.

Note that the input-output behaviour of recursive procedures has not been
expressed above; this will be catered for by extending the language for
binary relations with minimal fixed point operators, introduced by Scott
and de Bakker in [41].

Once the input—output behaviour of a program has been described in rela-
tional terms, its correctness properties should be proved within a relation-
al framework, e.g., properties of conditionals such as listed in McCarthy
[29] are proved as properties of P3R, U p';RZ.

Suitably rich programming- and relational languages, called PL and MU, and
a precise formulation of the connections between the two by means of a
translation will be specified in the next section and will justify that the

axiomatization of MU results in a calculus for recursive programs.

The problem which correctness properties of programs can be formulated
within MU will be discussed in section 1.3 and is closely related to the

expressiveness of this language itself.

EXAMPLE 1.2. With D as above, let the universal relation U be defined by
U=D xD.

a. R, ¢ R, and R2 <R

1 o | together express equality of R, and R,, and will be



abbreviated by R1 = RZ' 1f programs S] and S2

iour R] and R2, respectively, then Sl and 82 are called equivalent iff

R1 = R2.

b. E ¢ R;i and E c R;U both express totality of R.

have input-output behav-—

c. R;R ¢ R expresses transitivity of R.

A

d. R;R ¢ E expresses that R describes the graph of a function, i.e., func—

tionality of R.

{<x,y> ] <x,y> ¢ E and <x,y> € R;R}

i
&
¢
D
(e
i

{<x,y> | x = y and 3z[<x,z> ¢ R and <z,y> € R}

{<x,x> | 3z[<x,z> ¢ RI}.

Hence R;ﬁ n E determines that subset of E which consists of all pairs
<x,x> such that there exists some z with <x,z> € R: this indicates a

correspondence with a predicate expressing the domain of convergence

of R. Note that R;R n E = R;U n E.

f. Let p ¢ E. Then p3;U n U;p © p expresses that p contains one pair <a,a>
only. This can be understood by deriving a contradiction from the assump-
tion that both <a,a> ¢ p and <b,b> ¢ p for different a and b: for that
implies that both <a,b> ¢ p;U and <a,b> € U;p, whence <a,b> ¢ p;U n Usp
and therefore <a,b> ¢ p for different a and b, contradicting p < E. This
requirement therefore states the correspondence of p with the character-

istic function of an atom. *)

The axiomatization of MU proceeds in several stages.

First a sublanguage for binary relations over cartesian products is axiom-—

atized by adding the following two axioms to typed versions of Tarski's

axioms for binary relations (see [43]):

Cl I

1;;1 N ees N nn;?n = E

C2 : Rl;Sl N eas N R.n;Sn = (Rl;wl N oee= N Rn;"n) 3 (wl;S] N eee N wn;Sn)

* . . .
) This observation 1is due to Peter van FEmde Boas.

ES



with T denoting the projection function of an n-fold cartesian product on
its i-th component, i = 1,...,n, and E the identity relation over this
product.

In the resulting formal system one can derive properties such as

R = (R;ﬁ n E);R, obtained from example 1.2.e, and RI;F
= (R1;§1 n E);(Rz;ﬁi
1.1.d and 1.2.e.

Secondly we axiomatize the minimal fixed point operators by (1) Scott's in-

1 n Rz;'rr2 =

n E);(Rl;vxr/1 n Rz;%z), obtained by combining examples

duction rule and (2) an axiom stating essentially the fixed point property
of terms containing these operators. Both of these were formulated for the

first time in [41].

The addition of further axioms to the system for MU yields various
applied calculi, used, e.g., for the characterization of a number of spe-
cial domains such as: finite domains with a fixed number of elements
(axiomatized below), finite domains ([ 17]), natural numbers (chapter 5) and

various kinds of lists (chapter 6).
EXAMPLE 1.3. Following example 1.2.f an atom a is characterized by
a=E and a;U n Uja ¢ a.

Now D contains precisely n elements iff E ¢ D x D is the disjoint union of

N atoms a;,...,3a , i.e., iff

(1) ai;U n U;ai < a;, i=1,...,n,
(2) ajua,u...ua = E,
(3) a; n aj =0, 1 <1i<j<n.

1.2. A framework for program correctness

In the previous section we discussed program correctness as follows:
Starting with a scheme T, one considers its input-output behaviour and re-
alizes that this is a relation, whence its properties should be expressed

and deduced within a relational framework.

£



The present section presents an outline of the formalization of this point
of view as contained in chapters 2 and 3.

In section 2.1 we define PL, a language for first-order recursive program
schemata.

First-order recursive program schemata are abstractions of certain classes
of programs. The statements contained in these programs operate upon a
state whose components are isolated by projection functions; a new state is
obtained by (1) execution of elémentary statements, the dummy statement or
projection functions (2) calls of previously declared and possibly recur—
sZve procedures (3) execution of conditional statements (4) the parallel
and independent execution of statements §,,...,8 in the ecall-by-value
product [Sl,...,Sn], a novel construct which unifies properties of the
assignment statement and the call-by-value parameter mechanism and allows
for the expression of both of these concepts and (5) composition of state-
ments by the ";'" operator.

The definition of the operational semantics of these schemata involves an
abstraction from the actual processes taking place within a computer by
describing a model for the computations evoked by execution of a program.
This leads to the characterization of the input=-output behaviour or opera-

tional interpretation 0(T) of a program scheme T.

In section 3.1 we define MU, a language for binary relations over
cartesian products which has minimal fixed point operators in order to
characterize the input—output behaviour of recursive programs.

As the binary relations considered are subsets of the cartesian product of
one domain or cartesian product of domains and another domain or cartesian
product of domains, terms denoting these relations have to be typed for the
definition of operations.

Elementary terms are individual relation constants, boolean relation con-
stants, logical relation constants (for the empty, identity, and universal
relations 2, E, U and projection functions ﬂi) and relation variables.

", n
3

Compound terms are constructed by means of the operators (relational or

Peirce product), "u" (union), "n" (intersection), "~" (converse) and "-"

(complementation) and the minimal fixed point operators "ui", which bind



for i =1,...,n, n different relation variables in n—tuples of terms pro—
vided none of these variables occurs in any complemented subteym, i.e.,
these terms are syntactically continuous in these variables.

Terms of MU are elementary or compound terms.

The well-formed formulae of MU are called assertions and are of the form

o |- ¥, where & and ¥ are sets of inclusions between terms.

A mathematical interpretation m of MU is defined by:

(1) providing arbitrary (type—consistent) interpretations for the individ-
ual relation constants and relation variables, interpreting pairs
<p,p'> of boolean relation constants as pairs <m(p),m(p')> of disjoint
subsets of identity relations (cf. Karp [22]).and interpreting the
logical relation constants as empty, identity and universal relations
and projection functions,

L LI T B T T B T S TR | NS T R L I 1
s H ’

(2) interpreting o, n as usual,
(3) interpreting u-terms uin cos Xn[cl,...,cn] as the i-th component of
the minimal fixed point of the functional <Oyseees0 > acting on

n—tuples of relations.

An assertion @ | ¥ is valid provided for all m the following holds:
If the inclusions contained in ® are satisfied by m, then the inclusions

contained in ¥ are satisfied by m.

The precise correspondence between the operational semantics of PL and
the mathematical semantics of MU is specified by the translation theorem of
chapter 3:

After defining an injection th between schemes and terms we prove that fr
induces a meaning preserving mapping, i.e., a translation, provided the in-
terpretation of the elementary statement constants and predicate symbols
specified by 0 "agrees" with the interpretation of the individual relation
constants and boolean relation constants specified by m. If these require-
ments are fulfilled the resulting correspondence between PL and MU is il-

lustrated by



— 1n(T)

“----

¥
o(T) = m(tn(T)).

Thus we conclude that, in order to prove properties of T, it suffices to
prove properties of tr(T), whence axiomatization of MU leads to a calculus

. . : *)
for first—order recursive program schemata.

1.3. The formulation of specific correctness properties of programs

Globally, in order to formulate the correctness of a program one has
to state certain criteria which have to be satisfied in a specific environ-
ment. If these criteria depend on input—output behaviour only, one might
hope to express them in the present formalism.

Sometimes this condition is not satisfied. Then these criteria concern in-
trinsic properties of the computation processes involved. As these are the
very features we abstracted from, one cannot expect to formulate them in MU.
For instance, when trying to formulate the correctness criteria for the
TOWERS OF HANOI program discussed in chapter 6, it turns out that the re-
quirement of moving one disc at a time cannot be expressed in our language.
Accordingly we restrict ourselves to criteria which can be formulated in
terms of input—output behaviour only.

These may be subdivided as follows:
(a) Equivalence of or inclusions between programs.
(b) Termination provided some input condition is satisfied.

(c) Correctness in the sense of Hoare [19]:

Given partial predicates p and q and a relation tr(T) describing

)

. . * . . . .
(the input-output behaviour of) a program T , this criterion is

expressed by

Vx,ylp(x) A x tr(T) y » q(y)]

*)

By an abuse of language we suppress any mentioning of interpretations ¢
and*m satisfying o¢(T) = m(tr(T)).



and amounts to

if x satisfies p and T terminates for x with output y, then y
satisfies q.*) '
These criteria can all be formulated as inclusion between terms:

For (a) this is evident. As to (b): Let p be represented by <p,p'> satis—
fying p < E, p' < E and p n p' = @, and tr(T) describe program T, then

~—
p ¢ tr(T);tr(T)
or, equivalently,
p € tr(T);U

both express (b) (note that p ¢ R;ﬁ is equivalent to p c R;U).
As to (c): Let p and q be represented by <p,p'> and <q,q'>, then (c) is ex-
pressed by

p;tr(T) ¢ tr(T);q.

It will be clear that the underlying supposition for the expression of these
criteria is that we are able to express all the predicates involved indeed.
This was not the case in the formalism described by Scott and de Bakker in
[41] in which predicates were only expressible by primitive symbols, no
operations on these symbols or other ways of constructing them being avail-

able.

Our main vehicle for the construction of new predicates is the "o"

operator defined by

*%)

Vx[ (Xop) (%) +— Jyl[xXy and p(y)1l.

*) This corresponds with p{Tlq in Hoare's notation and with {p}T{q} in
Dijkstra's notation (cf. [11]).

**) Let X denote the function £, then (Xep)(x) = p(f(x)).



Accordingly, if X = tr(T) then (tr(T)ep)(x) is true iff T produces for in-

put x some output y which satisfies p.

In the present formalism Xop can be expressed by
Xop = X;psU n E.

./
In example 1.2 we showed that X;X n E = X3U n E = XoE describes the domain
of convergence of X. Thus XoE is the minimal predicate p satisfying
X = p;X,

In Chapter 4 we obtain the following characterization of Xop:
Xop = nlq | X;p = q;X}.

Therefore Xop is the minimal predicate q, sometimes called the weakest pre-
condition, satisfying X;p < q;X.
This observation raises the following question:

When does
X;p = Xop ;X eee (%)

hold?
We shall prove that (*) holds iff X;X c E, i.e., X denotes the graph of a
function.

Therefore the translation theorem implies that

one is allowed to retract predicates occurring in between statements
on input conditions provided these statements describe functions,

Z.e., are deterministic.
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2. THE PROGRAM SCHEME LANGUAGE PL
2.1. Definition of PL

PL is a language for first—order recursive program schemes using call-
by-value as parameter mechanism.
A statement scheme of PL is constructed from basic symbols using the se-
quencing, conditional, call-by—value product operations and recursion, and
contains a type indication in the form of a superscript <n,£> in order to
distinguish between input domain Dn and output domain Dg' The call-by-value
product [Sl,...,Sn] expresses the independent parallel execution of state—-
ments Sl""’sn’ yielding for input X an output <Y qreeesY > composed of the
individual outputs of Si’ i=1,...,n, and is used to describe the assign-

ment statement and the call-by-value parameter mechanism as follows:

Assignment statement. An assignment statement X, 8= f(xil""’xim) occurring
in an environment EITTREYS 3 of variables is expressed by

[ﬂ],...,ﬂi_],[ﬂil,.T.,ﬂim];s,ﬂi+l,...,ﬂn], where S denotes f.

Call-by—-value parameter mechanism. A procedure call
proc(fl(xl,...,xn),...,fn(x],...,xn)) with parameters which are called-by-
value is expressed by [S],..,,Sn];P, were Sk denotes £ , for k = 1,...,n,

and P declares proc.

A declaration scheme of PL is a possibly empty collection of pairs
Pj S Sj which are indexed by some index set J; for each j € J such a pair
contains a procedure symbol Pj and a statement scheme Sj of the same type

as P..
J

A program scheme of PL is a pair consisting of a declaration and a state-

ment scheme.

The well-formed formulae of PL are called assertions.

DEFINITION 2.1 (Syntax of PL) *)

Types. Let G be the collection {oz,ocl,...,B,B1 ...} of possibly subscripted

*)

Sections 2.1 and 2.2 follow closely section 3 of de Bakker and Meertens
[ 31 which deals, however, with schemes operating upon one variable.
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greek letters. A domain type is (1) an element of G, (2) any string
(gl X tae X gn), where El""’gn are domain types. A type is a pair <n,&>

of domain types.

Basic symbols. The class of basic symbols is the union of the classes of

relation and procedure symbols,

Relation symbols. The class of relation symbols R is the union of the
classes of elementary statement symbols, predicate symbols, constant sym-

bols and variable symbols.

a. The class of elementary statement symbols A contains for all types <n,&>
the symbols Aﬂ,E,An,E

AP
b. The class of predicate symbols B contains for all n the symbols

NN _N,N NsN _MNsN
PPy e d 5y saee

c. The class of constant symbols C contains the symbols Qh»& for all types
nlx--nxﬂnml n]xn-xn 71

<n,E>, E'*" for all n and ™ seneyl TR for all types

n

NysesnsN e

d. The class of variable symbols X, introduced for purposes of substitution,

n,i,xn,a ns& .’Zn,i,'...

contains for all types <n,£> the symbols X 1 5eessY 5o

Procedure symbols. The class of procedure symbols P contains for all types
£ 5Nnsé

P

3

<n,&> the symbols p"? NAFTERRE

Schemes .

a. Statement schemes. The class of statement schemes SS (arbitrary elements

sn’g,s?’g,.,.,v”’g,...,wn’g

1.AuCuXuPcsSss. *)

50o00) 15 defined as follows:

2. 1f 879,59 . S then (s];sz)nag e SS. **)

1 2
3. 1f p"’" ¢ B and s?’g,sg’g ¢ SS then (p > §,,8,)""% ¢ ss.
n:El n,én naglx“"xgn
4. If S1 ’”””Sn e SS then [SI"'°’Sn] e SS.
*) Hence, a predicate symbol is »no statement scheme.
K% )

These parentheses will be often deleted, using the following conventions:
(1) the outer pair of parentheses is suppressed, (2) right preferent pa-
renthesis insertion in case of adjacent occurrences of the ";" operator.
E.g., 8135y stands for (813Sp) and §;;S7;53 stands for S13;(S2353) which

stands on its turn for (813;(52:53)).
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b. Declaration schemes. The class of declaration schemes DS (arbitrary
elements D’Dl"") contains all setsK[P;’g = S?’g}.€J with J any index
set, and, for each j € J, Pj € P and Sj e SS, such that no Sj contains

any X € X.

c. Program schemes. The class of program schemes DS (arbitrary elements

Tl,...) contains all pairs <D,S> with D ¢ US and S ¢ SS. If D = §,

<D,S> will be written as S.

Assertions. An atomic formula is of the form Tl [ T2 with TI’T e PS. A

formula is a set of atomic formulae {T] 1 2 1}1 L with L any index set.

An assertion is of the form ¢ F- ¥ with ¢ and W formulae.

Remarks. 1. Tl = T2 will be used as abbreviation for Tl e T,, T2 e T,.

2. Any type indication will be omitted if no confusion arises.

DEFINITION 2.2. (Substitution)

Substitution operator. Let S € SS and J be any nonempty index set such
that, for j € J, Rj'e X u P and Vj € SS are of the same type, then
S[Vj/Rj].6 is defined as follows:

it

a. If §

R. £ J, th S V R.1. =V,.
5 or some j € en S[V./ i5ea i
b. If S = R and, for all j ¢ J, R # R , then S[VJ/R ]JEJ R.
c. If S =28,; 2, (p > Sl,S ) or [S1 S ], then S[V /R. ]JEJ
= sltv /R ]J o3’ sztv /R ] .y (P8 [vJ/RJ]JE »S [VJ/RJ JeJ) or

(s, [V /R ] goeeesS, [V /R ]jeJ]’ respectively.

S. S is defined as S[X /P 1.
j jed’

Closed. 1If no X € X occurs in S ¢ SS, S is called closed.

Remarks. 1. From now on the substitution operator is used in the following
forms: taking for J the index set of some declaration scheme, we (a)
restrict ourselves to Ri e X, for j € J, and (b) reserve the """ opera-
tor for substitution with Rj € P and Vj e X, for j € J. Hence, explicit
substitution in S is performed as in (a). This explains our notion of

closed statement scheme.

2. The substitution operator can be generalized to formulae by writing

{Vl’1 2 1}1 L[VJ/X ] 5 for {Vl,l[vjlxj] v, 1[vJ/xJ]J€J leL’

restrictlng ourselves as above.
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3. If J = {1,... s[v./X.1. is written as S[V./X.1. or
e oomk, [,J/ J]JEJ : J/ i“j=l,...,n
S(Vis...,V ). If J = {1} we also use S[V/XI].
1 n

4, S[Vj/Xj]j€J is defined according to the complexity of S. Therefore prop-
erties such as the chain rule, S[V./X.], _[W./X.1. . =
P J3171ed7 3 37 3ed
= §[V.[W./X.1. X.1. can be proved by induction on the complexity of
Wit % e 5 jea P v ey

S.

An interpretation of the schemes of PL is determined by an initial
interpretation % which extends to an operational interpretation 0 of pro-
gram schemes using models for sequential and independent parallel (to char-

acterize the call-by-value product) computation.

DEFINITION 2.3. (Initial interpretation). An initial interpretation is a

function 0o such that

a. For each n € G, Oo(n) is a set denoted by Dn, and for each compound
domain type (nl X .40 X nn), Oo(nl X oae X nn) is the cartesian product
Of 00(1’11):- ° “aoo(nn)o

b. For AT98 € A and X128 e X, OO(An’E) and OO(Xn,E) are subsets of
OO(H) X 00(6)-

c. For pn’n e B, oo(pn’n) is a partial predicate with arguments in oo(n).

n x--cxnn,ni nlx"'xnn’ni
d. For each projection function symbol T ) OO(Tri ) is

the projection function of OO(nl) X 4ee X oo(nn) on its i-th constituent

coordinate.

e. For all constants Qn’g and En’n, od(ﬂn’g) and oo(En’n) are the empty
subset of oo(n) X oo(g) and the identity relation over Oo(n), respec-

tively.

The main problem in defining the semantics of a program scheme opera-
tionally is the fact that the resulting computation cannot be represented
serially in any natural fashion: factors Sl,...gsn of a product [S],...,Sn]
first all have to be executed independent of another, before the computa-
tion can continue. Therefore the computations involved are described as a
paral}el and sequentially structured hierarchy of actions, a computation

model.
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At the first level of such a hierarchy any execution of a factor of a prod-
uct is delegated to the second level; assuming this results in an output,
this output becomes available as a component of the input for the still-to-
be-executed part of the original scheme, if present. When all these compo-
nents have been computed, the remaining computation at the first level, if
present, is initiated on the resulting vector. The same holds, mutatis
mutandis, for the relative dependency between computations on any n—-th and
n+l-st level of this hierarchy, if present.

Provided one has a finite computation, this delegating will end on a cer-
tain level. On that level the execution (of a factor of a product on a pre-—
vious level) does not anymore involve the computation of any product on a
state, whence this computation can be characterized by a sequence of, in
our model, atomic actions of the following forms: (1) computation of a by-
some—initial—interpretation—interpreted relation symbol (2) replacing a
procedure symbol by its body, without changing the current state and (3)
making a choice between two possible continuations of a computation, de-
pending on whether a by—some-initial-interpretation-interpreted predicate

symbol is true or false on the current state.

The extension of an initial interpretation 0, to an operational inter-

0
pretation ¢ is defined in

DEFINITION 2.4. (Computation model). *)

and a declaration scheme D, a com—

CM> with Si ¢ SS for

Relative to an initial interpretation 00

putation model for xSy is pair <Xlslx2 oo annxn+l’

i=1,...,0, Sl = g, Xy =X and x y, consisting of a computation se—

n+l
quence and a set of computation models relative to % and D, called asso-

¢itated computation models, satisfying the following conditions:

a. If S, =Ror S, =R;VwithRe AuCuX, <x,,x, > € 0,(R) and i = n
i i 1°7i+1 0
or Si+1 = V.

*)

As described in appendix 1, this definition implies that the set of com~
putation models can be structured as an algebra. This superposition of
structure allows for simple proofs about certain transformations, by in-
ductign arguments on the complexity of these models, in case these
transformations are morfisms w.r.t. this structure.
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b. If Si = Pj or Si = Pj;V and Pj = Sj € D, then x.

i+1 1
= §5.3V.
J

= x; and’Si+ = Sj
or Si+1
c. If Si= (VI;VZ);V
and Si+1 = VZ'
d. If Si = (p > VI’VZ) or Si = (p + VI’VZ);VB and ao(p)(xi) is either true

3 then CM contains a computation model for X, VI;VZ X

or false, then oo =% and, if Oo(p)(xi) = true then Si = Vl or

+1 +1
Si+1 = VI;V3’ and, if Oo(p)(xi) = false then Si+l = V2 or Si+l = V2;V3.

e. If Si = [Vl,...,Vk] or Si = [Vl,...,Vk];V, X, = <Y seees¥y > such that

i+1
CM contains computation models for Xiviyl’ for 1 =1,...,k, and i = n

or S. = V.
i

+]

Remark. A computation model represents the entire computation of program

<D,$> on input x (= Xl) resulting in output y (= x for some n). At each

n+1’
step of its constituent computation sequence, Si is the statement which re-
mains to be executed on the current state X, Clause a describes the execu-
tion of elementary statements, clause b reflects the copy ruly for proce-

dures, clause c describes preference in execution order, clause d describes
the conditional and clause e describes the independent execution of state~
ments, terminating iff all its constituent statements have terminated. The
meaning of ";" is expressed by clause c and the second part of clauses a,

b, d and e, and expresses continuation of a computation with appointed suc-

cessor.

Suppose one defines a computation model as a set of computation se-
quences such that each "delegated" computation sequence occurs in this set.
This leads to undesirable results, as demonstrated by the program scheme
T = <P <= [P,P];ﬂl,P>. Clearly, T defines 9. However the set '
{xPx[P,P];ﬂ1<x,x>ﬂlx} is a computation model for xTx in the sense of this

definition (P. van Emde Boas).

DEFINITION 2.5.

Operational interpretation. Let T = <D,Sn’€> be a program scheme and 04 be

an initial interpretation. Then the operational interpretation of this
scheme is the relation 0(T) defined as follows: for each <x,y> ¢ Oo(n) X

* OO(E), <x,y> € 0(T) iff there exists a computation model w.r.t. 0. and D

0
for xSy.
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Validity.
a. T] [ 'I‘2

0, it is called valid.

satisfies 0 iff O(Tl) c O(Tz) holds. If T] < T2 satisfies all

b. ® satisfies ¢ (is wvalid) iff all its inclusions satisfy o0 (are valid).

c. An assertion ¢ f— ¥ such that, for all o, if ¢ satisfies 0, then ¥

satisfies 0, is called valid.

2.2. The union theorem

First we mention properties of the operational interpretation ¢ such
as 0(835,) = 0(8)30(5,), 0(p > §,8,) = m(p);0(5)) u m(e')30(5,),
0([81,...,Sn]) = O(S]);5TF;3 N sse N O(Sn);ETE;3, the fixed point property
O(Pj) = O(Sj) and the monotonicity property. Then the union theorem is
proved as a culmination of these results. Finally we establish the minimal
fixed point property, which is a generalization of McCarthy's induction
rule (cf. [29]), and prove a lemma legitimating the modular design of pro-

gram schemes.

LEMMA 2.1.

a. If S e Au C u X then OO(S) = 0(S).
b. o(S];SZ) = o(Sl);o(Sz).
c. o(p ~ S],Sz) = m(p);O(Sl) U m(p');O(Sz), with m(p) and m(p') defined as

follows: <x,x> € m(p) Zff Oo(p)(x)‘= true and <x,x> ¢ m(p') Zff
OO(P)(X) = false.

d. 0([8,,...,8_1) = 0(8)30(T) n +.v n o(sn);z%};),

e. (Fized point property, fpp) o(Pj) = o(Sj),lﬁor each j ¢ J.
Proof. By induction on the complexity of the statement schemes concerned.

COROLLARY 2.1. 0((51;82);53) = O(Sl;(52;53))'

Remarks. 1. From the definitions and parts a, b, ¢ and d of lemma 2.1 the

validity of standard properties of program schemes, such as the validity
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of ¢ S and E;S = S easily follows. These and similar properties will

be used without explicit mentioning.

2. As execution of [Sl""’sn] corresponds to computation of a list of a
actual parameters which are called-by-value, part d of lemma 2.1 implies

the relational description of the call-by-value parameter mechanism.

LEMMA 2.2. (Monotonicity).

V. . cV, .}. s[v, ./X.1. . c s[v, ./X.]. ..
t 1,3 — sz}JEJ - l,J/ 173]ed ~ 2,3/ 17Jed

Proof. By induction on the complexity of S.

a. S

X., th o(SLvV, ./X.l. = o(V, . oV, .) = o(8SLv, ./X.1. _.
J, en 0(sL l:J/ J]JEJ) ( laJ) s of 293) (st 29J/ J]JGJ

b. 8§

(RubP) - {Xj}jeJ’ then O(S[V] j/Xj]jeJ) = O(S[VZ,j/Xj]jeJ)°

2

c. § = SI;SZ’ then 0((S 3S )[Vl, /Xj]JEJ) =

]
O(Slfv /X, ]JeJ’ [ /Xj]JeJ) (lemma 2.1)
O(SIEV1 J/XJJ ) O(S [V J/X 1. ) ¢ (induction hypothesis)

i jed
O(Sl[vz,j/xj]jeJ) 0(82[V /XJ]J€J) (lemma 2.1)
O(SIEVZ,j/Xj]' /XJ]J = 0((SI;SZ)EV2,j/XijeJ)'

JeJ;SZ 2,3
d. S = (p~ SI’SZ) or § =1[8§ "Sn]’ similar to c.

170

COROLLARY 2.2. (Substitutivity rule).

V., .=V, .}. - s[v, ./x.1. .= S[v, ./X.1. ..
t 1,] 2,J}JeJ | [ l,J/ J]JéJ L 2,3/ J]JGJ

Next we state a technical result concerning substitution.

LEMMA 2.3.
. For closed S, S[P./X.]. = 8,
a. For c , S, /%,;

T —
SLP,/X, /X1,
F osre./x.1. .[v, /x ] s[vJ/XJ]J€J

b. For arbitrary S, {Vj cP iiedt

i JEJ
. & —
c. For arbitrary S, S[VJ./Xj]jEJ = S[V, /X 1.,

Proof. Follows from the definitions, properties of substitution and mono-

tonicity, by induction on the complexity of S.
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Informally, if a recursive procedure Pn,€ terminates for a given ar-
gument, this happens after a finite number of "inmer calls" of this proce-
dure. We may think of these calls as being nested (where a call on a deeper
level is invoked by a call on a previous level). By the recursion depth of
the original call we mean the depth of this nesting. At the innermost level,
calls of Pn’€ are not executed again, whence they may be replaced by Qn’g
without affecting the computation.

This process of replacement can be generalized to calls of simultaneously

(n)
Qn,g

declared recursive procedures: Let Se’g be a statement scheme. Then S
is obtained from S by wuniformly replacing calls of P?’E at level n by
for j € J with S(O) defined as Qe’c. We may think of o(S(n)) as restrict-
ing 0(S) to those arguments which during execution of S cause execution of
calls of Pj with recursion depth less than n.

Thus we conclude that
x 0(8) y ¢ff Jalx o(s™) y1.

THEOREM 2.1. (Union theorem). Let S be a closed statement scheme, Then, for

all operational interpretations 0,

w
0(8) = v o),
n=0
In order to prove the union theorem we need some auxiliary definitions
characterizing (1) which occurrences of procedure symbols are executed in a
computation model, (2) the relation be;ween occurrences of the same proce-
dure symbol in proceeding computations, (3) statement schemes obtained by

successive uniform replacement of procedure calls by their bodies and

@) s,

DEFINITION 2.6.

Executable occurrence. A procedure symbol Pj occurs executable in a compu-—
tation model CM if it occurs in some computation sequence X, S1 Xy oee
sos X_ 8 X contained in CM, such that for some i, 1 < i £ n, S, = P,

n n ntl 1 i
or S. = P.;8

1 s

J
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To identify. Let CM be a computation model with constituent sequence

Xy S1 x2 0o Xn Sn Xn+l'

occurring in §.. 1< i < n. This occurrence directly identifies the corre-

Consider an occurrence of Pj in some S, with S

sponding occurrence of Pj in 8§ occurring in Si+ or S; below, in each of

1
the following cases:

(a) Si = R;S and Si+l =SwithReAuCuX,

() Si = Pk;S and Si+1 = Sk;S, k € J,

(cl) Si = (S);V3 and S occurs as fi;st statement S; of the associated com~
putation model for xini+l,

(c2) §. = (VI;VZ);S and Si+l = 5,

(dan) Si = (p > S,V) or S; = (p +~V,S), and si;l = S,

(d2) si = (p > s,vl);V2 or Si = (p +-V1,S);V2,_and Si+l = S;V2,

(d3) Si = (p »> Vl,Vz);S and S]._+1 = VI;S or Si+l = VZ;S’

(el) Si = [Vl,...,Vm] or Si = [V],...,Vm];v, and S = Vk for some k,
1 £k <m, CM contains an associated computation model CM' for

xini+d K’ and S occurs as first statement Si of the constituent com—
3

putation sequence of CM',

(e2) 8, = [Vl,...,Vm];S and S, . = S.

The relationship to Zdentify is defined as the reflexive and transitive

closure of the relationship to identify directly, defined above. *)
nl L0] [k+1]1_ 3r o[kl

si A st - s, s agrs M, for k= 0,102,
n 0 k+1 ~ralk

s, g0 g gUk+1) _ s[s§ )/xj]jGJ for k = 0,1,2,... .

are established in

The connections between P(n+l), S(n) and S[n]

LEMMA 2.4. Let n be a natural number. Then Pgn+l) = S§n), S(n+l) =

= stg /x.1. . ang st o gD
"% el

Proof. We prove the second result only. Use induction on n.
p—

1 _z £ol
. k=0, = X1, = JX.1.
1. k =0. S S[QJ/XJ]JEJ S [QJ/ J]JﬁJ

* . _
Hence, if S; = Pj or 5§ = P::;V, the only or first occurrence, respec

tively, of Pj in §j identifies no occurrence in Sj41-

x) Hence, for some V, and V,, S = VI;V

1 2° 2°
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2. Assume the result for n = k. We have

T N—— P -

s[ilj[szj/xj]jé . s[s[k]/ T5eg093 /%5y = (lemma 2.3)

v [K] ) ﬁﬁZT

S[Sj /Xj]jeJ[Qj/ j]jeJ (chain rule) S[S [Q. /XJ]J€J/ J]J€J
= (induction hypothesis) s[s(k+l)/x ] S(k+2)

O(S(n)) we shall transform a computation

(n) ¥

In order to prove 0(S) ¢ nHO
model for xSy for some n into a computation model for xS

Let S be closed and CM be a computation model for xSy with constituent se-

quence x, S, X, ... X_ 8§ x_ .. If no occurrences of P, in S are executed
171 72 n nt+l ntl j

to compute y, all occurrences of Pj identified by occurrences of Pj in S1

may be replaced by arbitrary statements of appropriate type for all j ¢ J

without affecting the coﬁputation of y:

LEMMA 2.5. Let CM and S be as stated above. If CM contains no executable
occurrences of Pj’ the following holds: If statement schemes Vj are of the

same type as P for all j e J, there exists a computation model for
xs[v /x J

Observe as a corollary that by choosing Q for Vj one obtains a computation

(1)

model for xS ‘y. If Pj is executed in CM, there exists at least one occur-
rence of Pj identifying an earliest executable occurrence of Pj with res—-
pect to a certain order. CM can then be transformed into a computation
model in which all occurrences of Pj in CM identified by such an occurrence
are replaced by Sj’ except the executgble one, which is deleted together
with the X Si part in which it is contained. The resulting model still
computes the same output as CM, but contains at least one executable occur-

rence of some Pj less than CM, as at least one application of the copy-rule

has been dealt with:

LEMMA 2.6. (van Emde Boas). Let CM and S be as stated above. If for some

j € J an occurrence of Pj in 5, identif%?ﬁ an executable occurrence of Pj’
there exists a computation model for xS "y which contains at least one
executable occurrence of Pj less than CM.

&
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[KIC1] _ gLkl

As § by lemma 2.4, repeated application of lemma 2.6 leads

finally to a computation model for xS[n]y in which all executable occur-

rences of PJ have been removed for all j € J. Therefore lemma 2.5 applies,

yielding a computation model for xS[n][Q /P ] 57 and hence, by lemma 2.4,

(n+ l)y

for xS

LEMMA 2.7. Let CM and S be as stated above., Then there exists for some n a

computation model for xs(n)y

The proofs of these three lemmas are contained in appendix 1.

Next we prove 30 O(S(n)) c 0(S):

n=
First we show that for each j € J and each k, Pék)

k.

c Pj' Use induction on

1. k = 0. Clear.

2. Assume the result for k. P§k+l)-(1emma 2.4) S;k) S [S(k l)/ J g =
=S, [P(k)/XJ]JEJ ¢ (induction hypothesis and lemma 2. 2) §5[ / ] =
= J (lemma 2.1) Pj.
Next we show that S(k) <8 S(k) S[S(k 1)/X ] S[P(k)/XJ]JEJ c
< (lemma 2.2) S[P /X. ]J 7= (lemma 2. 3) S.
oo
Thus U (n) = S follows.
n=0
Remark. In the sequel we abbreviate "For all ¢, 0(8) = U0 O(S(n))" to
n=
s= u ™,
n=0

As a corollary to theorem 2,1 we immediately obtain the minimal fixed

point property (called mfpp) of procedures:

cV.}.

COROLLARY 2.3. {S.[V./X.]. . c .
171 1 3e ] j Jed

- Vj}jeJ F o(r
Proof. Use P. = U
J =

(0) k=0
1. Pj = Vj is clear.

&

(0

and induction on k.
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2. Assume the result for k, then P§k+l) = Sgk) = g.[ng)/X.]

~ J
c (induction hypothesis) S.[V./X.]. c V..
s ( P ) J7173731eJ = ]

Remark. Combination of the fixed point and minimal fixed point properties

yields, for all i ¢ J,
0(B;) = (n{<0(V,)> 5 | ”(Sk[vjlxj]jes) g 0(V,), for all keJ}),,
where <0(Vk)>keJ denotes the sequence with elements O(Vk), k € J, and

<0V )>y g

This characterization of O(Pi) is the key to the definition of the mathe-

)i denotes the i~th component O(Vi) of this sequence.

matical interpretation of u—terms in the next section.

The following lemma legitimates the modular approach to programming
and is a simple consequence of fpp (lemma 2.1.e), the substitutivity rule

(corollary 2.2) and mfpp (corollary 2.3).

LEMMA 2.8. (Modularity lemma). Let J and K be disjoint index sets, let Sj
for all j ¢ J be a closed statement scheme of which the procedure symbols
are indexed by K, and let S and, for all <j,k> ¢ J x K, Sj,k be closed
statement schemes the procedure symbols of which are indexed by J, then

<{Pj = Sj[Sj,k/Xk]keK}jeJ’S> =

P [g.[P.
ik /

X 1
371,k 7k

= <{P,

jsk /Xj]

kek/ %5 35eat <5 o e SI85 185 1 B e X e”

78 valid.

PROOF. The case J = {0} and K = {1,2} is considered to be representative.
Consider the following declaration scheme:

P3 Sl SO(PI’PZ)’PA &= SI(PO)’PS = SZ(PO)}.

With respect to this declaration scheme one proves PO = P3 by applying mfpp

c Pz}.

Then one has to prove <P

on {PO < P3, P, cP,, P,c PS, Py < PO’ P4 € P P5

&
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E.g., SO(SI(PB)’SZ(PS)) = P3 is derived by SO(SI(P3)’SZ(P3)) =
(fpp and substitution rule) SO(SI(SO(PI’PZ))’SZ(SO(PI’PZ))) = (similarly)
As P3 = (fpp) SO(PI’PZ)’ the desired result is obtained by deleting decla-

rations for uncalled procedures.

First the following convention is introduced: Calls of recursive pro-
cedures P, with P declared by P <= (p - S;P,E), are written as p*S. Hence

declarations of such P are omitted.

Next we demonstrate how to apply this lemma to obtain a simple proof
for a tree—traversal result in de Bakker and de Roever [2], section 4.5,
and mention that the equivalences between certain procedures which do not
have the form of while statements and nested while statements, contained in
the same paper, section 5.1, can be proved as simple application of modu-

larity, too. We quote, mutatis mutandis:

"The following problem, which at first sight appeared to be a problem
of tree searéhing, was suggested to us ... by J.D. Alanen.

Suppose one wishes to perform a certain action A in all nodes of all
trees of a forest (in the sense‘of Knuth [247, pp. 305-307). Let, for
x any node, s(x) be interpreted as '"has x a son?", and b(x) as "has x

a brother?". Let S(x) be: "Visit the first son of x", B(x) be: "Visit
the first brother of x", and F(x): "Visit the father of x". The problem

posed to us can then be formulated as:
<P <= A;(s » S;P;F,E);(b > B;P,E),P> =

= <P <= A;(s > S;P; bx (B;P);F,E),P; bx (B;P)>."

This equivalence can be obtained from lemma 2.8 by taking PI;PZ for S

A:;(s > S;P :F,E) for S, and (b -» B;PO,E) for S

0’

0’ i 2°
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3. THE CORRECTNESS LANGUAGE MU
3.1. Definition of MU

MU is a formal language for binary relations over cartesian products
which has minimal fixed point operators in order to characterize the input-
output behaviour of recursive program schemes. Its semantics will be des~
cribed using elementary model-theoretic concepts. This involves a mathemat—
ical, as opposed to operational, characterization of its semantics, and re-
sults in a rigorous definition of its interpretations m, which will be

axiomatized in the next chapter.

DEFINITION 3.1. (Syntax of MU)

Basic symbols. The class of basic symbols is the union of the classes of
symbols for individual relation constants, boolean relation constants, log-

ical relation constants and relation variables.

a. The class of individual relation constant symbols A contains for all
g An’g An,EL
R .

1 55909

types <n,£> the symbols A

ge =8 °

b. The class of boolean relation constant symbols B contains for all n the
n n,n
symbols p ’n,p?’n,...gqn’n,... and p' "’ ,p;n’n,...,q'n’n,... .
c. The class of logical relation constant symbols C contains for all types
MyXewoXn 50y

Qn,E’Un,ﬁ,En,n’ﬂi

concerned the symbols s 1= 1,.0..,0.

d. The class of relation variable symbols X contains for all types <n,&>

the symbols X”’g,x?’g,.,.,Y"’E,...,Z”’g,.., .

Teyrms. The class of terms T, with arbitrary elements on’g,dT’g,..,,rn’g,...

is defined as follows:
a. AUBuUCuXcT

b. If on’E e T, then SE’n and Gn’g eT.

c. If on’g,rg’e e T then (o;T)n’e e T, and if on’g,rn’g e T then
(o v T)n’g,(o n T)n’g e T. *)

In aceordance with the convention, that ";" binds stronger than '"n" and

"n" binds stronger than "u", the parentheses around 03T, o n T and 0 U T
will be often deleted. If the reader so wishes, he may stipulate any con-
vention for parenthesis insertion in case the same binary operators occur
adjacently. However, by assoclativity of these operators, the need for

this is limited.
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n,,& n_,§ n,,& n_,§
d. If o ! l,...,o 0T and X ! 1,...,X 0 ¢ T then
1 n . 1 n
niogi
uixl...Xn[ol,...,cn] e T, for i = 1,.,.,n.

Free variables. An occurrence of a relation variable X is free in o iff it

occurs in no subterm of ¢ of the form My oeee X eon [eon]e

Syntactically continuous. A term o is syntactically continuous in X if no

free occurrence of X in ¢ lies within any subterm T or within any subterm
X.ouoo eoesT it T. D tically conti i

u X, Xn[Tl, R n] with some F ot syntactically continuous in X,

k= 1,...,n0.

Well—formed terms. A term ¢ is well-formed if, for all terms

uixl...Xn[cl,...,cn] occurring as subterms of o, each Gj is syntactically

continuous in each Xk’ ik = 1,...,n.

Assertions. An atomic formula is of the form g, €9, with 010, € T. A for-

leL with L any index set. An

assertion is of the form & |- ¥ with ¢ and ¥ formulae.

mula is a set of atomic formulae {o <o, .}
1,1 2,1

Remarks. 1. o) = 0, is an abbreviation for 0 £ 0,5 0y €0y and uIX][clj

is written as pX{ol.

2. For empty ®, & | ¥ is written as | VY.

DEFINITION 3.2. (Substitution)

Let 0 € T and J be any index set such that, for j e J, Xj e X and T € T

are of the same type, then o[rj/Xj]jEJ is defined as follows:

a. If 0 = X. for some j € J then ol[1./X.] = 1..
J J 1 J
b. If J=@PoroceAvuvBuCu (X-{X.3}. then oft./X.]. . = 0.
c. If 0 = G, or o, then o[Tj/Xj]jEJ==01 T Xj]j€J or GIETj/Xj]jeJ’ respec-
tively.

2 1 2 J
= G][Tj/xj]jeJ;OZETj/Xj]jeJ’ GIETj/Xj]jeJ U OZETj/Xj]jeJ or

d. If 0 = 0130, 0, U O, 0r 0, NGO then c[rj/Xj]j€ =

Ol[Tj/Xj]jeJ n OZETj/Xj]jeJ’ respectively.
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e. If o = “in"'XﬁEGl’°"’0n] then
olto/X di g = uy¥yen Y Lo I /X 0y oq b7/ % e e

"'fcn[Yllxljlé{l,...,n}[Tj/Xj]jeJ*]’ for

i=1,...,n, where I =3- {1,...,n}, whence {Xj}. =

jeJ*
= {Xj}jeJ - {X,...,Xn}, and Yl""’Yn are any relation variables differ-
ent from any Xj’ j € J, and which do not occur in any Ty s k=1,...,n, or
. *
Tj, jedJ.

Remarks. 1. Thus c[rj/Xj]jEJ is obtained from ¢ by simultaneous substitu-
tion of Tj for Xj’ replacing bound(variables whenever necessary in order
to prevent binding of free occurrences of Xk in any substituted Tj, and
omitting substitution for bound variables (cf. Hindley, Rogers and
Seldin [16], definition 1.4), for j ¢ J.

2. Definition 3.2 is extended to formulae by writing

{01’1 c 02,1} [Tj/XJ.]J.GJ for {cl’l[rj/Xj]j

3. Properties involving the substitution operator such as the chain rule

1[Tj/X.]. }

lel eJ = %2, j jeJ lel’

can be proved by induction on the complexity of o.

4, If J = {1,...,n}, o[Tj/Xj]j€J is written as OETj/Xj]j=l,...,n or

G(T],..-,Tn)o If J = {1} we also use o[t/X].

Compared with the everyday relational language the u-terms
uiX1°’”Xn[Tl"”’Tn] represent the only new feature of MU and its predeces-
sors (cf. Scott and de Bakker [41], de Bakker [ 1] and de Bakker and
de Roever [2]). In order to explain their interpretation we first describe
the concept of continuity.

A term T induces upon interpretation of its constants a functional of
tuples of relations to relations by selecting a fixed component of these
tuples as interpretation for each free variable occurring in 1. Therefore
interpretations of variables, called variable valuations v, have to be
separated from interpretations of constants, called initial interpretations
1. Thus a pair <t1,1> determines a functional; this functional is called
model function and denoted by ¢1<r>.

Continuity of ¢, <> in Xy5e0.,X can now be defined as follows: Let T be a

term, Xl,.“,Xn be variables, 1 be an initial interpretation and v and, for



27

each j ¢ N, Vj’ be variable valuations satisfying, for i = 1,...,n,
V(Xi) = ,go vj(Xi), Vj(Xi) c vj+1(Xi) and v(X) = vj(X) for X different from
Xi’ for all j. Then ¢1<T> is continuous in Xl""’Xn iff ¢1<T>(V) =

[+o] .
= U ¢ <t>(v.) for all v and <v.>?_0 considered above and all 1.

i=0 "1 J J J=
This concept derives its impotrtance from the fact that only if
¢1<T1>,...,¢1<Tn> are continuous in Xl""’Xn’ Scott's induction rule for
establishing properties of ¢1<uin"'Xn[Tl""’Tn]>(v) is valid.
A syntactically sufficient, although not necessary condition for continuity
of ¢1<T> in Xl""’Xn’ is the following one: free occurrences of Xl""’Xn
are not contained in complemented subterms of T, i.e., T is syntactically
continuous in X,,...,X .

1 n

We therefore define the interpretation of uiXI"'Xn[Tl""’Tn] only if
Tysees»T  are syntactically continuous in X],;..,Xn, and refer to Hitchcock

and Park [ 18] for more general considerations.

DEFINITION 3.3. (Semantics of MU)

Assignment of ty?es. An initial assignment of types is a function
o G > D, where G is the collection of possibly subscripted greek letters
and D is a class of domains. An assignment of types, relative to a given
initial assignment of types tgs is a function t defined by (1) for n ¢ G,
t(n) =to(n), and (2) for any compound (domain type, cf. definition 2.1)

(n1 X oo xnn), t(n) = t(nl) X 4. X t(nn). For n € G, t(n) will be referred
to as Dn’ and for n= OH Xoue Xnn) with n; €6, i=1,...,n, t(n) will be

referred to as D X o0 XD .

n n
1 n .
Initial interpretation. Relative to a given assignment of types t, an ini-
D.xD
tial interpretation is a function 1: A u Bu C »> u 2 ! satisfying
Dl,DzeU

for all types involved.
a. 1A% ¢ tn) x t(e).

b. For pn’n,p'n’n € B, 1(p"*™ and 1(p'n’n) are disjoint subsets of the

identity relation over t(n).

c. 1(9”’5) is the empty subset of t(n) x t(&), 1(En’n) is the identity
NyXessXn 5n

relation over t(n), 1(Un’€) is t(n) x t(&) itself and 1 (m )

.
1
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is the projection function of t(nl) X 6ae X t(nn) on its i-th consti-

tuent component.

Variable valuation. Relative to a given assignment of types t, the class of
D.xD
variable valuations V contains the functions v : X -+ u 2 , satis-
D.,D.eD
fying V(Xn’g) c t(n) x t(g) for all Xn’E e X. 1772

Model function. Relative to a given assignment of types t and an initial
n,& anDE
interpretation 1, the model function ¢1<0" >3 V2

follows for well-formed terms Un,E:

is defined as

a. ¢1<R>(v) = 1(R), Re AuBuC

be ¢ <X>(¥) = V(X), X ¢ X.

c. ¢1<o];02>(v) = ¢1<cl>(v);¢1<02>(v), ¢1<01L102>(V)= ¢1<01>(V)(1¢1<02>(V),
6,50; 1 0,2(@) = §,<0,>(v) 1 4 <0,>(v), b <) = ¢ 50,

¢1<5>(V) = ¢ <0>(v).

d. ¢1<“1X1"'Xn[01""’on]>(v)

(n{<v'(Xk)>£=] | ¢1<Ok><v')

In

v'(Xk), k=1,...,n, and v'(X)=v(X)
for XeX—{Xl,...,Xn}})i,

Interpretation of terms. An interpretation of terms is a triple <t S V>

1
09
where each term o is interpreted as ¢1<0>(v). This triple will often be

)

referred to as m. Then ¢1<0>(v) is abbreviated by m(c),*

Satisfaction. An atomic formula 0y €09, satisfies an interpretation of

terms m iff m(ol) < m(oz)a A formula {01’1 c 02,1}1 L satisfies an inter—
pretation of terms m iff 9,159 1 satisfies m for all 1 ¢ L.

$ H
Validity. An assertion ® | V¥ is valid iff for every interpretation of

terms m such that & satisfies m, ¥ satisfies m.

Remark. The definition of u-terms can be straightforwardly generalized to
the case where the u-operators bind an infinite number of variables in an
infinite sequence of terms.

The results of the next section are formulated and proved in such a way

that they still apply if this generalization is effected.

*)

In the sequel m is often called the mathematical interpretation, as op-
posed to ¢, the operational interpretation.
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3.2. Validity of Scott's induction rule and the translation theorem.

First the union theorem for MU is proved. This theorem is then applied
to proving (1) validity of Scott's induction rule and (2) the translation
theorem.

The reader who has followed the technical development of the previous chap-
ter will observe a certain analogy between the results contained therein
and the results of the present section. Notably, monotonicity is used in
both chapters in proving union theorems. The substitutivity property, how-
ever, plays a more important role in this section and the continuity prop-
erty is only defined in section 3.1. We state these properties in the fol-

lowing lemmas and refer to appendix 2 for proofs.

LEMMA 3.1. (Monotonicity).*) Let J be any index set,'{Xj}jGJ cX, 0eTbe
syntactically continuous in Xj’ j € J, and variable valuations v, and v,
satisfy (1) vl(Xj) c vz(Xj) for j € J and (2) vl(X) =‘v2(X) for

XeX- {Xj}j€J._Then the following holds:

¢<0>(v,) < ¢<0>(v,).

LEMMA 3.2. (Continuity). Let J be any index set, {Xj}jeJ c X, 0eTbe
syntactically continuous in Xj’ jed, and v and, for i e N, vi?be variable
valuations which satisfy, for i e Nand j « J, (1) V(Xj) = igO vi(xj)’

(2) Vi(Xj) [ Vi+](Xj) and (3) v(X) = vi(X) for X € X - {Xj}jeJ' Then the
following holds:

W c 38

¢p<o>(v) = ¢<0>(Vi)-

i=0

LEMMA 3.3. (Substitutivity). Let J be any index set, ¢ « T, Xj e X and
Tj e T for j € J, and varitable valuations v, and v, satisfy (1) vl(Xj) =
¢<Tj>(v2) for i € J and (2) VI(X) = VZ(X) for X ¢ X - {Xj}jeJ' Then the

following holds:

¢<o>(v) = ¢<0[Tj/Xj]j€J>(V2)-

* . . e s . . . .
) Reference to a given initial interpretation is tacitly assumed. Accord-
ingly, ¢1<0> will be written as ¢<ag>.
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COROLLARY 3.1. (Change of bound variables). If Yl""’Yn do not occur free

in o N

1?° n

¢<uiX .Xn[ol,...,on]>(v) =

=

= ¢<u,¥,... Y Lo, [Y, /X, ] g2 00 LY /%] ]>(v),

1""171=1, 171=1,

Proof. Follows by definition 3.2 from lemma 3.3.

The union theorem for MU states that minimal fixed points
<¢<u1X1...Xn[0],...,on]>(v),...,¢<u X1 ..Xn[013...,0n]>(v)> of continuous

functionals A<$<o, >(v),...,¢<c >(v)> can be obtained as unions of sequences

i . . i
of finite approximations <¢<0 >(v), ..,¢<on>(v)>, i=0,1,..., with ¢

X simi-
larly defined as S(l), k=1,...,n, cf. definition 2.6.
i nys€y nn,En

DEFINITION 3.4. Oy Let X] ,,..,Xn € X be the free variables in
nys€ n_,& . . n, »&
o ! 1,...,0 R T, then o is defined by (1) 00 =Q k™ 7k and

1 n k k

i+l _
(2) o = ck[c /X1 1=1, 0’ for k = 1,...,n.

THEOREM 3.1. (Union theorem for MU). Let Tyseeesd € T be syntactically
continuous in X],...,Xn € X. Then the following holds for all variable

valuations v:

” i
¢<ukX],..ancl,,..,cn]>(v) = v ¢<Ok>(v), k=1,...,n.
i=0
Proof The proof splits into three parts. In the first part we prove
¢<ok>(v) < ¢<Gk >(v) for i ¢ N, in the second part

¢<ukX1°'°Xn[GI’°"’Gn]>(v) c :

¢<ukX1,,,Xn[o],...,on]>(v) =

¢<o >(v), and in the third part

¢<0 >(v) (the reverse inclusion).

e
Ilc8 llc

Part 1. By induction on i Obv1ously, ¢<c >(v) < ¢<c >(v)
Assume by hypothesis ¢<G >(v) < ¢<01>(v) and prove ¢<0 >(V) < ¢<0 >(v),

k=1,...,n. Define varlable valuatlon vy by vl(Xk) = ¢<ok>(v) for

&
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k=1,...,n and v](X) = v(X), otherwise.
Then ¢<ol+l>(v) = ¢<0 [ol/X 1. >(v) (substitutivity) ¢<o >(v ).
k k1717 1=1,...

. . i _ . . _
Similarly, ¢<o >(v) = ¢<ok>(v2) with v, defined by vz(Xk) = ¢<0k >(v) for
k=1,...,n and v, (X) = v(X), otherwise.
As Glsee-,0  are syntactlcally continuous, ¢<ck>(v) $<o >(v2) <

< (monotonicity and hypothesis) ¢<Gk>(vl) = ¢<c; 1>(v), for k = 1,...,n,

Part 2, c: Define variable valuations v' and, for i € N, Vi, as follows:
v'(Xk) = ¢<o s (v) for k=1,...,0, and v'(X) = v(X), otherwise, and
31m11ar1y v, (Xk) ¢<o >(v) for k = 1,...,n, and vi(X) = v(X), otherwise.

v = U = .' = 1
Then v (Xk) iio vi(Xk) for k 1,...,n and v'(X) vi(X), othe#w1se. In
| i+](Xk)' As o) is
syntactically continuous in Xl""’Xn’ the assumptions for continuity are

. ' = g = [ » L
fulfilled, whence ¢<ck>(v ) igo ¢<ok>(vi) (substitutivity)

part 1 we proved ¢<c;>(v) < ¢<G;+l>(v), whence Vi(Xk) cv

;9 0 ¢<ol 1>(v) §0 ¢<c;>(v) = v'(Xk). Thus v' satisfies ¢<ok>(v')55v'(Xk)
for k = 1,...,n and v'(X) = v(X), otherwise, whence

(n{<V"(X1)> ! <o, >(v'") ¢ v"(X ), 1=1,...,n, and v'X)=v(X)
for X e X~ {X;,...,X }}), ¢

cv (Xk) ; <ck>(v).

Part 3. 2: Let v' satisfy ¢<0k>(v') c v'(Xk) for k=1,...,n and v'(X) =

= v(X), otherwise

Then we prove ¢<o >(v ) cv (Xk) for i € N by induction on i. Obviously,

<oy O, (v cv (Xk)

Assume by hypothesis ¢<o >(v ) cv (Xk) and prove ¢<0 >(v') [= v'(Xk),

k=1,...,0.

Define variable wvaluation v" by v"(Xk) $<o, >(v') for k = 1,...,n and
v'"(X) = v (X)9 otherwise.

Then ¢<c >(v ) = <oy [o /X >(V') = (substitutivity) ¢<0k>(v") c

1°1= 1
(monotonicity, as v"(Xk) = ¢<ck>(v') c v'(Xk) by hypothesis and v'"(X) =

In

. ® i
v'(X), otherwise) ¢<Uk>(v')15v'(Xk). Thus i=0 ¢<ck>(v) = (Xl""’Xn not

. Lo i
occurring in ¢

k) i§0¢<0;>(v') = v'(Xk)-As this holds for all v' considered

above,
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i

e W) ¢

<8

¢<o
i=0
(n{<v'(X1)>[11=1 ] ¢<cl>(v') =4 v'(Xl), 1=1,...,n, and v' (X)=v(X)

for Xer-{Xl,...,Xn}})k.

Scott's induction rule is the main innovation of Scott and de Bakker
[41], represents a general formulation for inductive arguments which does
not assume any knowledge of the integers, and unifies methods for proof by
induction such as recursion induction (McCarthy [291), structural induction
(Burstall [8]) and computational induction (Manna and Vuillemin [271]).

Its formulation is given by

Ny, &
kK
% et om

o,¥ |- vlio /%, e

Ny s&
I: o | v[o k77K

.0

nk,Ek
o byt el o RS R

with @ only containing occurrences of Xi which are bound (i.e., not free)

and ¥ only containing occurrences of Xi which are not complemented.

THEOREM 3.2. (Validity of Scott's induction rule, I). If ¢ and ¥ are for-
mulae such that ¢ does not contain any free occurrence of X, s k=1,...,n,
and all terms contained in ¥ ave syntactically continuous in X

k=1,...on, then 1 i8 valid.

Proof. Let v be any variable valuation satisfying ¢, let v' be defined by
V'(xk) ='¢<“kX1’°°Xn[Ol""’Un]>(v) for k = 1,...,n and v'(X) = v(X),

otherwise, and let i1 S 79 be any atomic formula contained in
3 9

¥=dny ST 0k

We prove ¢<T],1[“le'“'Xn[01’°°"Gn]/Xk]k=1,...,n>(v) c

< ¢<T2,1[“kxl'”Xn[gl”'°’On]/xk]k=1,...,n>(v)°

By substituvity, ¢<Tj,1[ukxl°°'Xn[01’°°"Gn]/xk]k=],...,n>(v) = ¢<Tj,1>(v')’
ji=1,2.
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By the unlon theorem for MU, v'(Xk) ¢<ukX]...anol,...,cn]>(v)
= 0, ¢<o> ).

Let varlable valuations v, be defined by vi(Xk) = ¢<c;>(v) for k

l,...,0,
and v.(X) = v(X), otherwise, ieN.

Then ¢<T >(v ) = ¢<TJ >(Vi): 3

[

1,2, by continuity.

o0 Cﬂ .
Therefore we must prove igo ¢<T1,1>(Vi) = 2 0 ¢<T2 1>(vi) in order to ob
tain the desired result.

It is sufficient to prove ¢<T1 1
i nk’g ?

For i = 0, op = Q , whence ¢<t

>(vi) < ¢<T >(Vi) by induction on i.

2,1

1,1>(V0) c ¢<T2’1>(VO) follows by sub-

n, »& .

stitutivity from validity of & | ¥[Q k k/Xk]k__1 » as (1) v and v
=],.000,0 0

differ only in their assignments of relations to Xl""’Xn’ (2) ® satisfies

v and X Xn do not occur free within &, whence (3) & satisfies Vo

) ¢

[2eeeo
Assume by hypothesis ¢<T1’1>(Vi) [ ¢<T2’1>(Vi) and prove ¢<T] l>(v

o<1, >(v,.,), 1 e L,
2,1 i+1
Validity of o,¥ F— ¥lo /Xk] _ implies in particular that if & and V¥
 *kk=1,...,n

i+l

satisfy v,, W[Gk/xk]k=l,...,n satisfies v,. Now ¢ satisfies A by an argu-

ment similar to the one above for i = 0. By hypothesis, ¥ satisfies v,

Therefore we conclude that ¥[g /Xk] satisfies \ and in particular
1 k/Xk]k 1, >(v ) < ¢<12 1[Gk/Xk]k 1, >(Vi)' By definitions

of v, il and Ok’ ¢<o >(v.) = ¢<Xk>(v.+1) follows by substitutivity, whence

<15 100 K dean, >(V ) = bsty >0

1+]) = 1,2, by substitutivity,
’

too.

Thus we conclude ¢<T1’1>(Vi+1) = ¢<T2’1>(Vi+1) for 1 ¢ L.

Finally we define the mapping tr : PL > MU (compare section 1.2) and

prove the translation theorem.

DEFINITION 3.5. (tr). The mapping tr of program schemes of PL into terms of
MU is defined as follows: consider a program scheme

= <{P = Sk}k 1, S>, then tr(T) is inductively defined by

a. tr(R) = R, for R ¢ A u Cu X,

b. tr(Pi) = uiX

&

1..,Xn[tr(Sl),...,tr(Sn)], i = 1,0u0,0
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c. tr(Sl;Sz) = tr(Sl);tr(Sz), tr(p ~> SI’S

n,ilx---xin g o
tr([S],...,Sn] ) = tr(Sl);wl N oo N tr(Sn);wn, with ™ of

type <£IX...xgn,£i>, i=1,.00,n.

2) = p;tr(Sl) u p';tr(Sz) and

COROLLARY 3.2. tr(S[Vj/Xj]jeJ) = tr(S)[tr(Vj)/Xj]jEJ.

THEOREM 3.3. (Translation theorem). Let 0 be an operational interpretation
of PL, m be a mathematical interpretation of MU, and ¢ and m satisfy (1) <if
ReAuCuXthen o(R) = m(R) and (2) 2f p € B then o(p)(x) = true iff
<x,x> ¢ m(p) and 0(p)(x) = false Lff <x,x> € mp'). Then o(T) = m(tr(T))

for all T € PS, Z.e., tr is meaning preserving relative to 0 and m.

Proof. By induction on the values under a certain measure of the complex—
ities of the program schemes concerned and relative to some declaration

scheme D = {Pj = Sj}j= L Let N u N x {0} be well-ordered by «, with

lyeees
« defined by:

xxy iff (1) x e Nand y e Nand x <y, or (2) x e Nand y ¢ N x {0}, or
(3) x = <u,0> and y = <v,0> and u < v.

Then this measure of complexity is the function ¢ : PS > N u N x {0},

defined by
a. If S e Au C u X then c(8) = 1.
b. If S ¢ P, then c(P) = <0,0>.

c. If § = SI;SZ’ S = (p~ S],Sz), let x or <x,0> be the maximum of c(Sl)

and c(Sz) under the well-order . Then C(SI;SZ) and c(p > S SZ) are

19
defined as x+1 or <x+1,0>.
d. If § = [Sl"°°’sn] let x or <x,0> be the maximum of c(Sl),...,c(Sn)

under the well—-order x. Then c(Sl,...,Sn) is defined as x+1 or <x+1,0>.

Thus C(Si) > C(SI;SZ) and C(Si) Zc(p » SI’SZ) for i = 1,2,
c(Si) ES c([S],..,,Sn]), i=1,...,n, and c(S§k)) P C(Pj) for k ¢ N and

ij=1,.0.,n0.
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Hence c provides the basis for the inductive proof of the translation theo-

rem below:

m(tr{S)) is obvious.

a. If S e A u Cu X then 0(S)

b. If § = SI;SZ then O(SI;SZ) = (lemma 2.1) O(Sl);O(Sz) = (induction hypo-
thesis) m(tr(Sl));m(tr(Sz)) = m(tr(Sl);tr(Sz)) = m(tr(Sl;Sz)).

c. If S = (p ~> Sl,Sz) then o(p ~> SI’SZ) = (lemma 2.1) m(p);O(Sl) u
u m(p');o(Sz) = (induction hypothesis) m(p);m(tr(Sl)) U
um(p');m(tr(s,)) = mpstr(s;) u p';tr(S,)) = m(tr(p + 8;,5,)).

d. If S = [8,,...,8 1 then 0(S) = (lemma 2.1) 0(S,);0(m.) n ... N
1 n ) 1 1

n O(Sn);o(wn) = (induction hypothesis) m(tr(Sl));m(ﬂ]) N eso N

n m(tr(Sn));m(ﬂn) = m(tr(S]);ﬁ1 N ees N tr(Sn);wn) = m(tr([S],...,Sn])).
e. If § = Pj then O(Pj) = (union theorem for PL) iEO 0(P§1)) = (lemma 2.4)

o (i)

1o 75577 »

tr(Sgl)) = tr(g.)(l) is easily proved by induction on i. Hence,

,60 m(tr(S§1))) = _ﬁ m(tr(g.)(l)) = (union theorem for MU)

1=

~ 1=0 ~ .
m(quI...Xn[tr(Sl),,..,tr(Sn)] = m(tr(Pj)), = 1,00., 0.

= (induction hypothesis) iQO M(tr(s§1))). Using corollary 3.2,

3.3. Rebuttal of Manna and Vuillemin on call-by—-value

In [27] Manna and Vuillemin discard call-by-value as a computation
rule, because, in their opinion, it does not lead to computation of the
minimal fixed point. Clearly, our translation theorem Znvalidates their
conclusion. As it happens, they work with a formal system in which minimal
fixed points coincide with recursive solutions computed with eall-by-name
as rule of computation; this has been demonstrated in de Roever [36]. Quite
correctly they observe that within such a system call-by-value does not
necessarily lead to computation of minimal fixed points. We may point out
that observations like this one hardly justify discarding call-by-value as
rule of computation in general.

For more remarks on the topic of parameter mechanisms (or rules of computa-

tion) and minimal fixed point operators we refer to de Roever [361].
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4. AXIOMATIZATION OF MU

The axiomatization of MU proceeds in four successive stages:

1. In section 4.1 we develop the axiomatization of typed binary relations.

2. This axiomatization is extended in section 4.2 to boolean constants.

3. The axiomatization of projection functions in section 4.3 then results
in the axiomatization of binary relations over cartesian products.

4. The additional axiomatization of u~terms in section 4.4 completes the

axiomatization of MU.

4.1. Axiomatization of typed binary relations -

Consider the following sublanguage of MU, called MUO:

The elementary terms of MUO are restricted to the individual
relation constants, relation variables and logical constants
Qn’g, E"" and Un’gof MU, i.e., boolean constants and projection
functions are excluded.

The compound terms of MUO are those terms of MU which are con-

L LR T T R T TR TR
s U, TN,

structed using these basic terms and the "; and

1H-—11 ¢

operators, i.e., the "ui' operators are excluded.

The assertions of MUO are those assertions of MU whose atomic

formulae are inclusions between terms of MUO.
MUO is axiomatized by the following axioms and rules:
1. The typed versions of the axioms and rules of boolean algebra.
2. The typed versions of Tarski's axiéms for binary relations (cf. [431):

Tl . "(Xn’e;Ye’E);Zc’g = Xn’e;(Ye’C;ZC’E)

T, : FE7E = xMF

N e SRS S S

T, s FXUEESE L gt

T, : (x"0;¥998) o 28 o gs® L (¢88,2m08y 3158 B

3, u - I_UH,E. c UH,G;UQ,E
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In the sequel we omit parentheses in our formulae, based on the asso—
ciativity of binary operators and on the convention that ";" has priority

over "n", which has in turn priority over "u".

LEMMA 4.1.

a. Xn,g < Yn,E l_ iﬂ:g c §n,£’xn,€;zis9 c Yn.’g;zgae’ze:n;xn:g < Ze’n;Yn’g
b. |- ano8;x500 = @M® xs8gE,0  gn.8
En,n;Xn,£ =yt

I_
d- l__ Unag; E,e = Un’e
F

.. BneE Qa,n’ ENen - gnen, UL
£. I_ Xnag;(Y U Zg e) XT\,E;YE,G u Xnag ,(Xg e U Yg’e);ze’n =

x528,70m  ¢550.58

g. !__ (XH,E U Ynsg)\/ - iﬂ:& U Yn,E’(Xn,E n Ynag)\’ = in,i n YH,E Zn,E X ’E.
Proof. Except for the proof of lemma 4.1.d which is obtained using U and a

law of boolean algebra, the proofs for the typed case are similar to the

proofs for the untyped case as contained in Tarski [431.

Lemma 4.1.a expresses monotonicity of "' and ";". Together with the
obvious monotonicity of "u" and '"n", this will be used in lemma 4.9 to

establish monotonicity of syntactically continuous terms in general.

Remarks. 1. Henceforward the laws of boolean algebra are used without ex~

plicit reference,

2. Type indications are omitted provided no confusion arises.

LEMMA 4.2. FX;Y n Z = X;(X;Z n Y) n Z.

Proof. X3 n Z = X300 Y) nZ=X(XZ v X32) nY)ynz-=
= (&2 0Y) 0z o{XE;20Y) 0z} Also Z;X n Z3X = Q, whence by Tss

X;(Z;X)" n Z = Q, thus by T,» Ty and lemma 4.1, (X; X;2) n Z = Q.
Therefore, X;(X;Z n Y) n Z= 9 whence XY nzZ=%;%;Z n7Y) nZ follows.




38

The first applications of lemma 4.2 follow in the proof of lemma 4.3,
in which a number of useful properties of relations and functions are for-
mally derived. Remember that X°E has been defined as X;U n E (section 1.3).

By convention the "o operator has a higher priority than the ";" operator.

a. ;X c E | X3(Y n 2) = XY n X3Z
b. XcEF X=X
c. F X = XoE ;X, X = X; XoE, XoE = X;X n E, X;U = XoE ;U
, ;¥ < E | XoE; Y = X

X, 5Y, = XjoE; ...; X oE; (

Proof. a. c. Clear.
2. XY n X3Z = (lemma 4.2) X;(X;%X;Z n Y) n X3Z < (assumption) X;(Y n Z).

b, X =

L

nE= (lemma 4.2) X;(i;E nE)nEc¢c X;i g'i. Thus X ¢ i, whence

R

N

c. X = XoE 3;X: X =X n U = (lemma 4.2) X;(X;U n E) n U = X;(X;U n E).
Thus, by T3, X = (X;U n E)”;X = (part b) XoE ;X.
XoE = X3;X n E: Direct from lemma 4.2.
X3U = XoE ;U: X;U = (from above) (X;U3;U n E);X;U < (lemma 4.1) XoE ;U
c X;0;U0 = X;U.

In

d. 2. X ¢ Y implies ¥:x < Y;Y ¢ (assumption) E,X;i;Y < (part b and T3) X
and (X;X n E);Y c X;i;Y c X.
c. Immediate from part c.

e. We prove X;Y n Z = XoE ;(X;Y n Z) only. 2. Obvious.

c. X35Y n Z = (part c) X°E ;X;Y n Z = (part b and lemma 4.2)
XoE ;(XoE 3;Z n X3Y) n Z ¢ XoE ;(X3Y n Z).

4.2. Axiomatization of boolean relation constants

Partial predicates are represented within MU by pairs <pn’n,p'n’n>

&
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whose interpretation is restricted to pairs of disjoint subsets of the

identity relation corresponding to inverse images of true and false. MUO
is extended to MU1 by adding the boolean relation constants of MU to the
basic terms of MUO. MUl is axiomatized by adding the following two axioms

to those of MUO:

P] . ‘_ pnsn c Enan’ pin:n c En,n

P . ‘_ pn’n n pyn,n = Qn:n.

The translation theorem implies o(p ~ SI’SZ) = m(p;in(sl) U ﬁ;in(sz)),
provided O(Si) = m(t&(Si)L i=1,2,and 0(p) is represented by <m(p) .m(p‘')>.
Thus leads axiomatization of MU] to a theory of conditionals. This will be
demonstrated by deriving the usual axioms for conditionals, cf. McCarthy

[291, as a corollary from

LEMMA 4.4. P— E =p, P34 =D N q.

Proof. p = p: Follows from lemma 4.3.b, and axiom Pl'

P39 = p n q: <. Since f— p ¢ E,q ¢ E,monotonicity implies

I Ps;q € q,p3q € p. Thus | pjq cp n q.

2. F pnq= (lemma 4.2) p;(F3q n E) n q c p;(P;q n E) < p;P3q < p3q.

COROLLARY 4.1. Using the notation (p > X,Y) = p;X u p;Y, we have
F (=~ (p~X,Y),2) = (p>X,2),(p > X,(p > ¥,2)) =
= (P i X’Z)a(P > (q -+ Xl ’Xz)a(q > Yl ’YZ)) = (q > (P - X] aYl)’(P -+ XZ;YZ))-

Proof. Immediate from lemma 4.4, using Pl,and PZ'

COROLLARY 4.2. } p3sX n Y = p;(X n Y).

Proof. p;X 0 Y = (lemma 4.2) p;(p;Y n X) n Y = (lemmas 4.3.a and 4.4)
p;Y n p3X = (lemma 4.3.a) p;(X n Y).

non

In section 1.3 we already mentioned the operator, defined by

*
Xop = X;p;U n E. The basic properties of this operator are collected in )

* N . .
) Some connections between u—terms and the "o operator are collected in

section 5.3.
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LEMMA 4.5.

a. F (X;Y)ep = Xo(Yop)

. F XuY)ep

Xop U Yop

o

F & n¥)op =x;p;¥ n E

[¢]

(=W

. F X;p = Xop 3X

e. 3X c E | X;p = Xop ;X

In

£.X5pc ;X | Xopc g

In

Proof. a. By definition, (X;Y)eop = X;Y;p;U n E.and Xo(Yop) =
= X;(Y;p;U n E);U n E. Since by lemma 4.3.c |- X;p;U = (X;p;U n E);U,

the result follows.
b. Immediate from the definitions and lemma 4.1.

c. X;p;Y N E= (lemmas 4.2 and 4.4) X;p;(p;i n ?) n E = (corollary 4.2
and lemma 4.4) X;p3(X n ¥) n E = (lemma 4.3.b) (X n Y);p;X n E =
= monotonicity and lemma 4.3.c) (X n ¥);p;U n E.

d. Applying lemma 4.3.c we obtain f— Xip = (Xsp3U n E);X;p ¢ (Xsp3U n E)3X=

Xop ;X.

c. By part d above.
Xop 3X = (lemmas 4.2 and 4.4) Xeop ;X;(X; Xep ;U n E) ¢ (lemma 4.3.c)
X;(i;X;p;U n E) c (assumption) X;(p;U n E) = (corollary 4,2) X;p.

o
n

v

f. Assume X3p < q;X. Then }- Xop = X3p3U n E € q;X3U n E ¢ (corollary 4.2) q.

Observe that from parts d and f of lemma 4.5, we obtain that the fol- .

lowing equality holds in all interpretations (compare section 1.3):
Xop = nfq | X;p ¢ g;X}.

4.3. Axiomatization of binary relations over cartesian products

The language MU2 for binary relations over cartesian products is ob-

tained from MU1 by adding, for i = 1,...,n, projection function symbols

P
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NyXeeoXn 5M,

T, 1 to the basic terms of MU], for all types concerned. MU2 is
i

axiomatized by adding the following two axiom schemes to the axioms and rules

of MUI:
E

]

c, : wl;ﬁl

C2 : k- X;5¥, 0 ... n X3Y =
= (Xl;ﬁ

~
0 eeo 0O T_3T
n n

PN oeee Xn;nn);(nl;Yl N eee N wn;Yn),

NyXeeeXN o0 Xe0oXn
where ™ is of type hy Xeeox mo,n.>, E stands for E and

Xi and Yi are of types <6,ni> and <ni,£>, respectively.

An assignment X, 1= f(xl"'°’Xn) is expressed by a statement scheme V of
the form [ﬂ],...,ﬂi_l,S,ﬂi+l,...,ﬂn]. Hence Hoare's axiom for the assign-—
ment (cf. [19])

- {p(xl"’"Xi—l’f(xl""’xn)’xi+l""’Xn)}xi = f(xl"'"xn){P(Xl""’Xh)}

corresponds with the assertion |- a(V)ep ;£a(V) < (V) ;p, as {ql}V{qz} is
expressed by ql;tn(V) E_tn(V);qz, and (t&(V)OP)(xl,...,xn) =

= P(Xl""’Xi-l’f(xl""’Xn)’xi+1""’xn) (compare section 1.3). As func-
tionality of f implies a(V);£1(V) < E by lemma 4.11 below, this assertion
follows from (the more general) lemma 4.5.e. Thus leads the axiomatization

of MU2 to a theory of assignments.

The following lemma establishes some necessary relationships between

projection functions and the E and U constants.

LEMMA 4.6. For i=1,...,n:

Xoo s X . . . XsoaX XoooX
T\I nn,nl ﬂlaﬂl nl nn,nl ﬂn
a. ﬂi oF = E
N.XeoaXN _4N. N.s5E NiXoesXN_ 4§
i
b. P‘ TTi1 n l;U - U 1 n
. X, ooX XaaoX . N < 8
an,nl nn n] nn;nl ﬂl,ﬂl
C. i ST, = E
N, N, XoaoXN_ N, XeoaXN_5MN. n.sn,
v 171 n 1 n i . . .
d. F- . ;nj J=vu J, for i # j, j = 1,...,0.

n x"'xnn,nlx"‘xn o
= 3T, nE_ =

Proof; a. Let En denote E n; g , then En (Cl)ﬂl,ﬂl nE
cE

= (lemma 4.3.c) ﬁiOE 0



ni,€ ni’ni nlx'..Xnn’E
b. ﬂi;U = (lemma 4.3.c) ﬂiOE ;U = (part a above)
nlx..-xnn,i
U .
¢, Consider, e.g., n = 2 and 1 = 13
n gn Ti ’n T] ,T] nlﬂn] nl’n
E L (lemma 4.1.d) E t l;E 1" ny ;U !
Ny N N, N N, N NyseN
1771 . 1272 © 1 271
ce. = (C2) (E 3T, 0 U ;ﬂz);(nl;E n nz;U ) =
= (lemma 4.1 and part b above) ﬁl;ﬂl,
d. Consider, e.g., n =2, 1 =1 and j = 2:
N,sN N,sn N, 5N N, N NosN
S R M T M M
n,sNn N, N N, eN Nayshl
_ 1M . 1°"2 o e 20
cos = (C2) (E 3Ty N U ,ﬁz),(wl,U n ﬂz,E ) =
= (part b above) %l;wz.
. - n ~
Already in example 1.1 we signalled the analogy between ,n Xi;wi and
i=n
a list of parameters called-by-value. From this point of view properties
n o nlx"'xnn)nlxcnoxnn n n"n'
such as (,n X.;w.)°E = n X,°E - the computation
1i=1 1 1 1=1 i
of such a list terminates iff the computations of its individual members
n o n niani
terminates — and ( n_ X,3m.)sm. = (,n_ X.eE };X. - the request for the
i=1 171 3 i=1 1 J

value of a parameter contained in such a list amounts to computation of the
individual value of this parameter plus termination of the computations of
the other parameters — are intuitively evident. These and similar proper-

ties follow from the following lemma and its corollary.

LEMMA 4.7. For k,l < n,

F— X, °FE 3...3 X. oE;( n X, ¥ ) Y oE Seso} Y oE =
4 ' o i.=s Li=l,...,k Y5 St S 1
J t
t=l,...,1
k . 1
=(n X, 3m. )s(n 3Y ; . oo .
( n 5. )5 ( nom )s with T, of type <ny X XN N> and X,

i=1 Y3 Y5 =1 St St i
and Y of types <8,n; >and <ng »E>, respectively.
t - k| t
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Proof. The case of n =3, k=1=2,1i =1, i = 3 is rep~

resentative. Hence we prove

=2,8, =2, 8

l 2

X °E 3X,0E X,3Y; §2oE sYgoE = (X 3% n Xy5%,5)5(my3Y, 0 my3Y,).
v v v v 9,'{]3 v
By lemma 4.6, Xl;w1 n Xz;n2 = X],w] n Xz;w2 nvu 3Ty and
n]’g
1T2;Y2 n 1r3;Y3 = w];U n wz;Y2 n n3;Y3, whence
o Nysé O,nq

v 1 . .
(Xl,w1 n Xz,wz),(nz,Y2 n w3,Y3) = (CZ) XI’U n XZ’YZ nvu ,Y3

ver = (lemma 4.3.c) X, oE ;u8f g Ky5¥, 0 y®:6, §3oE

- (lemma 4.3.e)

0 0, % v v

xloE $XyoF 5 (KyoF ;U & 4 Xp5Y,) 0 U o&, Y oE); ¥,08; ¥,eE.
By corollary 4.2, X.oE :U°°% n X.3¥. n U8 Y. oF = X, oF ;X 3Y.; Y.oF
y y . 9 1 H 2’ 2 1] 3 ] -] 2’ 2’ 3 9

whence the result follows by lemma 4,4.

n n
COROLLARY 4.3. | ( n X;5%.)e(n mp

i=1 i=1
of type <6,n;> and p; of type <n;,n.>.

;ﬁi) = X 0Py 5005 X 0P, with X,

1

n o n o n o nIX...xn N 6.8
Proof. ( n Xi;"i)°( n wi;pi;ni) = (Cz) (n Xi;pi;vi);U nE?
i=1 i=] i=1
n ~ ne® 5.8
= o . ° . ? =
. (lemma 4.6.b) (121 Xi,pi,‘ni),ﬂl,U1 neE
n,,8

1
(lemma 4.7) (Xl;pl)oE $ees) (Xn;pn)éE ;Xl;pl;U neE

see (corollary 4.2 and lemma 4.5.a)'Xl°pl HPI Xn°pn-

One of the consequences of lemma 4.7 is

n-] v n-1 n-]
FoCn Xpm05Cn 1Y) = 0 XY,
i=] i=] i=]

with e Xi and Yi of types Ny Xeeo XN N>y <9,ni> and <ni,£>, respec~
tively.
Assume Ny =Ny = oo = for simplicity, then, apart from the intended

£
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interpretation of ™. as special subset of D" x D,

"axiom C, for n~1, in which Myseeest , are interpreted as subsets of

2
™! x D "follows from" axiom CZ for n, n > 2",

This line of thought may be pursued as follows:
Change the definition of type in that only compounds (nlxnz) are considered,
l(nxi)m (nxg),g only. For

MyXee e XNy
n > 2 define (nIX...Xnn) as (...((nIan)Xn3)X...xnn) and Lo as,

and introduce projection function symbols 7 and T,

((nlxnz)xn3),(n]Xn2). (nIan),n1

e.g., forn =3 and 1 = 1,2,3,1r1 . 3T .
TTl((n1><n2)><n3),(nIan);ﬂz(nIan),n2 . nz((nlxnz)Xn3),n3. Then it ic a
simple exercise to deduce C1 and C2 for n = 3 from axioms C] and C2 for

n = 2, This indicates that our original approach may be conceived of as a
"sugared" version of the more fundamental set-up suggested above. These con-

siderations are related to the work of Hotz on X-~categories (cf. Hotz [511]).

Arbitrary applications of the ™" operator can be restricted to pro-
jection functions, as demonstrated below; this result will be used in sec-
tion 5.3 to prove Wright's result on the regularization of linear proce-

dures.,

LEMMA 4.8. F X = Ty (E n n];X;F )3my .

Proof, We prove X = %1;(E n w];X;FZ);nz. The result then follows by lemma
4.3.b.

s

HI;X;HZ nE-= (Cl) ﬂ];X;ﬂz N W3y 0 Ty3T,y =

~

m

(lemmas 4.6.c and 4.3.a) w];(X;Kz n %l) N M3ty

Hence, nl;(ﬂl;X;%zer);ﬂz = (lemma 4.7) (X;Férwﬁ]);nz = (lemma 4.7 again) X.
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4.4, Axiomatization of the "ui" operators

" operators, and is

MU is obtained from MU2 by introducing the "ui
axiomatized by adding Scott's induction rule, formulated in section 3.2 and
referred to as I, and the following axiom scheme to the axioms and rules
of MUZ:
<

M H |— {Uj[uixlauoXn[:Ol"."cn]/Xi]i.:l,000’n

c “le"°Xn[Gl""’cn]}j=l,...,n'

The axiomatization of MU is motivated by khe need to provide a con—
venient axiomatization of PL. Thus one expects axiomatic proofs of (the’
translations of) properties of PL such as the fixed point (lemma 2.1.e) and
minimal fixed point (corollary 2.3) properties, monotonicity (lemma 2.2)
and modularity (lemma 2.8), as the union theorem is embodied in Scott's in-
duction rule and substitution is by lemma 3.3 a valid rule of inference,

These proofs are provided by the following lemmas:

LEMMA 4,9,

a, If Tl(Xl"'"Xn’Y>""’Tn(Xl""’Xn’Y) are monotonic in Xyseoe X, and Y,
1 preeeofney £ By Ty

Z.€., A Al,...,An_l_l)_C_Tz(Bl,...,B )
then Y, < Y, - {qul.,.Xn['c](Xl,,..,Xn,Y

cB n+1
! e Tn(Xl""’Xn’YI)] c
1o .Xn[T] (X1 sooee ,Xn,Yz) coo Tn(Xl sose ’Xn’Yz)]}j=

b. (Monotonicity). If T(Xl,...,Xn) 18 syntactically continuous in

¢ u.X .
- UJ l,0e0,n

X],..,,Xn then T 18 monotonic in Xl,...,Xn, TeCay

X, € YVyseesX Y - T(X e0esX ) € T(T 50,7 )

c. (Fixed point property). | {Tj[uixl"'xn[Tl""’Tn]/Xi]i=l,.,,,n =
= qu ...Xn[Tl,...,Tn]}-

1 j=l,0es,n’

d. (Minimal fixed point property, Park [ 34]).

{Tj (Yl,...,Yn) c Yj}j = {ujxl...xn[rl,,..,rn] c Y.}

=l,'°.,n J j=l,...’n.

Proof. a. Use I, taking {Yl c Y2} for ¢ and

{Xj c ij ...Xn[Tl(Xl,...,Xn,Yz),...,Tn(X],,..,Xn,YZ)]}j= for Vv,

1

],oto,
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and T, (Xl""’X s Y ) for cJ, j=1,..0,n.

}- {sz < u X X [Ty RyseensX ,Y0) 50000t (Rypeen X LY )]}
0bv1ous.

2. 0,¥ I—'{Tj(Xl"‘"’Xn’Yl) TS S WS C SPPRTIS S92 S FIPY

...’T (Xl,..-’X YZ)J}J

By monotonicity of Tj in X seeesX and Y, and M.

1

=ly000,0

=] y000,0"

b. Follows by induction on the complexity of T, using lemma 4.1.a. and

part a above.

c. . Use I, with ¢ empty and taking {X, c 7.(X,,...,X )}. for V¢,
J 171 n° j=l,...,n
proving the induction step with part b above.
>, M.
d. Use I, takin {T (Y, ,000,Y Y.}, for & and {X. ¢ Y.}.
’ J ety S50 i~ i'j=1,...,m

for ¥, proving the 1nduct10n step with part b above.

Modularity is but one of the many consequences of the iteration lemma
below., This lemma asserts that simultaneous minimalization by u;-terms is
equivalent to successive singular minimalization by p-terms. Its proof and

the proof of modularity, corollary 4.4, are both contained in appendix 3.

LEMMA 4.10. (Iteration, Scott and de Bakker [41], Bekic [41]).

R 10 XX % =177

= uX [o. [ulxl... 5= IXj+1"'Xn[gl .,.,c

with I = {1,...,j-1,j%1,...,0}.

...X [GI,WO"O ’c ]’0..’0 ]

20 1/X. 1.

1’°J+1"“ i7ie1?

Proof., By application of the minimal fixed point and fixed point properties

and substitutivity (cf. [181).

COROLLARY 4.4, (Modularity)

Define u by u. Xl'°°xn[01(Oll(Xl’“°"Xn)’°"’gln(Xl’“”"Xn))’°°'

"”’On(gnl( 1’°°°’Xn)""’0nn(xl""’Xn))] and B by

lJ lleaoX -ooann[G]1(01(Xl1,00a,Xln),.ao,cn(xn],.oogxnn)),...
o..,clJ(o X 1’"“”’Xln)’°'°’cn(xnl""’Xnn))"'f’dnn(’°')]’ Then the fol-

lowing holds, for i = 1,...,n,

&
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Py =0y sl ).

Modularity itself has some interesting applications, too, e.g., corollary
4.5 below and the tree—traversal result of de Bakker and de Roever [2]. The
proof of this result, using modularity in MU, is a straightforward trans-
formation of the proof given at the end of section 2.2, which uses modular-

ity in PL.

L
COROLLARY 4.5. F {w,X o0 X [0,000,0 17 =

ol

= uin..‘Xn[G](Xl’...’Xn) ,...,Gn(X],...,Xn) ]}i

],..”

Proof. Let 1(X) be X and T, (X50-+5X ) be oi(;‘c’],...,k’n), i=1,...,n. Then

corollary 4.5 can be formulated as the following consequence of modularity:
ForGuyX oo X Do (@D seee, t® Nseeest (1)) 5000, D) =
= uixl""XnET(Tl(Xl""’xn))""’T(Tn(Xl""’Xn))]'

The last lemma of this chapter states some sufficient conditions for
provability of ¢ | ;0 < E, i.e., functionality of o, and is frequently

applied in combination with lemma 4.5.e (i;X c E F- X;p = Xop 3X).

LEMMA 4.11, (Functionality). The assertion ® F &;o c E Zs provable if one
of the following assertions is provable:
n
a, If o=,
1"—'

o

1 1
v {G,30. ¢ E},
i*vi = i

. then @ | {cioE s = ojoE ;oi}lsi<an u

=lj00e,02

b. If o = O 3Ty N eee N O 3T then ¢ | {Ei;o. c E}.

i~ "i=1,...,n°

1

c. If o =030, then o F 5];0 c E, 52;02 c E.

1
d. If o = 9y c E

or ¢ | Gy30

n o, then @ F 51;0
< E,

SEore | S50, cEoro | g,59,

1
1
e. If o = uixl...Xn[ol,...,cn] then

@,{Xi;Xi c E}i= - {oi;oi c E}.

1,0004m i=l,...,0

Proof,” Straightforward.
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In the following chapters we shall often use the following notations:

L
n e %o nc .’n' ®

1. [01""’Gn] for o ;Fl BT

1

n o 3T
N ose T 30 ST o
1 n’ n’'n

2. [01 crn] for T30 5T
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5. APPLICATIONS
5.1. An equivalence due to Morris

In [33] Morris proves equivalence of the following two recursive pro-

gram schemes:

f(x,y) <= if p(x) then y else h(f(k(x),y))
and

g(x,y)y<==_i£ p(x) then y else g(k(x),h(y)).

We present a proof in our framework.

The following equivalence is stated without proof:

1818y

LEMMA 5.1.‘F- [al...la A lsm, =

ol V. RSV VR 1V VY O PN FL JEY
THEOREM 5.1. (Morris)
Let F = uX[[p|El;m, v [p' [EL;[K|E1;X;H] and 6 = wX[[p|El;m, v [p'|E1;[KR[HIsX].
Then

F 7 =6, [E|H];G = G;H.

Proof. Let ¢ be empty, ¥(X,Y) = {X = Y, [E|H];Y = Y;H},
G(X) = [p]E];nz u [p'|E];[K|E];X;H and t(Y) = [P]E];nz v [p'|E1;[K|HI;Y.

Hence, we must prove
F YuRlo(X)1, u¥lt(M)]) cee (5.1.1)

We Zntend to use Scott's induction rule. Unfortunately, this rule (as formu-
lated in section 3.,1) does mot apply to (5.1.1), as, in case of a simul-
taneous induction argument, it only yields results about components of one
simultaneous u—term.

However, the observation that

&
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- ulXY[cr(X), (Y)] = 1X[o(X)]

and

F o, X¥lo (%), 1(1)]

(]

YLt (Y)]

are straightforward applications of the iteration lemma (lemma 4.10), gives

us the equivalent assertion
F ¥ X¥o (X), T(V)1, 1y X¥lo(X),t(¥)1)

to which Scott's induction rule does apply.

Henceforth, such transitions will be tacitly assumed.

Thus, we have to prove:

1. F ¥(2,%). Obvious.

2. X =Y, [E|H;Y = Y3H | o@X) = 1(Y), [E|H];7(Y) = =(Y);H.

a, 0(X) = ©(¥) : [p|Elsm, v [p"|ET;[R|EI;X;H = (hyp.)
[plE];ﬂz u [p'|E];[KR|EI;Y;H = (hyp.)
[p]E];wz v [p*|E1;[K|E1;[E|HI;Y = (Cz)
[p|Elsm, u [p'|EI;[K[HI;Y.

b. [E|H];T(Y) = ©(¥);H : [E|H];(Cp|Elsm, v [p'|E;[K[HI;Y) =
CE|HI;Cp|ETsm, v [E|H1;[p' |ED;[R[HI;Y = (€,
[plHlsm, v [p"sK|H;HI;Y =

(lemma 5.1) [plE];wz;H u [p';K|H];[E|HI;Y =
(hyp.) [p|ElsmysH v [p' [ETIR|HI;Y;H =
([p]E];w2 v [p'|E1;[KR|HI;Y);H.
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5.2, An equivalence involving nested while statements

A proof of the following equivalence appeared, in a slightly different

formulation, in [21]:

- uwK[A 35X U A X U E] = A

9 1*E ;(Az; AI*E)*E, coe (5.2.1)

where AxE stands for uX[A;X u E] and "x" has priority over ";".

The present author feels, however, that the proof contained therein ob-
scures some of the issues involved; these are: modular decomposition and
the use of simultaneous recursion (compare modularity: lemma 2.8 and corol-

lary 4.4). This can be understood as follows:

1. The modular decomposition of AjsXu A
UI(X,Y) = AI;X U Y and GZ(X) = Az;
uIXY[Al;X vy, A2;X v E] = (iteration) pX[A];X U uY[AZ;X u E1] =
= (fpp) uX[AI;X U AyX U E].

2;X U E as GI(X’O (X)), with
X u E, leads to

2. AI*E ;(Az; AI*E)*E = uIXY[A];X\JE, A2;

which is also a consequence of iteration (lemma 4.10).

X;YlJE];UZXY[AI;X(JE, AZ;X;YLJE],

These observations suggest that (5.2.1) is a consequence of the following

equivalence:

THEOREM 5.2. | My = 30,, uy = 0,

with u, = uiXY[Al;X uY, AX U E]l and ﬁi = uiXY[Al;X UE, A X;Y U E],

i
i=1,2,

Proof. c: Follows by the minimal fixed point property (lemma 4.9.c) from:

a. o) (B30,,8,) = A0 50, v @, = (A58, v E)s, = (fpp) 11,30,,
b. o,(@;30,) = Aysi; 50, v E = (fpp) 1,.
>: We prove P— ﬁl;uz = “1’ ﬁz = UZ’

with ﬁl;ﬁz c ﬁl;uz S as obvious consequence,
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Let TI(X) = AI;X U E and TZ(X,Y) = AZ;X;Y u E. Then we must prove, using

Scott's induction rule;
1. F- Qc Hos Q;uz S Hy- Obvious.
2. X3uy S Uy YE W, = T X)sH, S ups T,(X,Y) < My
a. T{(X)suy = (A 5X U E)suy < (hyp.) Apsuy U uy = (£pp) uy.

b, TZ(X,Y) = AZ;X;Y u E ¢ (hyp.) AZ;X;p2 v E ¢ (hyp.) Az;u1 u E =
= (fpp) u,.

5.3. Wright's rvegularization of linear procedures

In [47] Wright obtains the following results:

. 2 .
a. The class of recursively enumerable subsets of N* is the smallest class
of sets with the successor relation S as member and closed under the

operations ™", ";" and "uX[Q u P;X;R1", where Q, P and R are subsets of

2 , . .
N® which are contained in this class.

b. In the proof of bart a the main auxiliary result can be generalized to a
setting in which N is replaced by any abstract domain D. This general-~

ization is:
F uX[Q u P3;X;R] = Fl;uY[E u [P]ﬁj;YJO(E n nl;Q;FZ);ﬂz oo (5.3.1)

In the present calculus (5.3.1) can be proved axiomatically.

The following two auxiliary lemmas are needed:

LEMMA 5.2. F [A[BJop = E n nl;A;Hl;p;nz;E;Fz.

Proof, Straighforward from lemma 4.5.c,

LEMMA 5.3. F uX[A;X u Blep = pX[AeX u Bepl.

Proof. Amounts to a straightforward application of Scott's induction rule.

Now Wrig@t’svresult (5.3.1) follows by applying lemma 5.3 twice from
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THEOREM 5.3. (Wright)

F uX[Q v P3X;RI = 7 3uXL(E n my3Q37,) U [P|R1;XIE ;m,

v

L R

Proof. c: Follows by the minimal fixed point property from:

pd ~

T3 RoE My = (fpp) wl;{(E n nl;Q;FZ) U [P]ﬁj;R}OE 3Ty = (lemma 4.5.a)
T5(E nom3Q3m,)5m,y U T3 [P|RIe(RoE) 3w, = (lemma 4.8)

Qu %3 [P|RIo(RoE) 3m, = (lemma 5.2)

Qu §1;(E n ﬂ];P;EI; RoE ;ﬁZ;R;FZ);wz = (lemma 4.8)

Qu P;Fl; RoE 3m,;3R. .

2: One derives by similar techniques:
%l;((E n n];Q;%é) u [P|RIo(E n m3L5M)) smy = L,
whence by lemmas 4.8 and 5.2
(E n ﬁI;Q;Fz) u [P|RIo(E n nl;L;Eé) cEn wl;L;Fz,
and by the minimal fixed point property
ReE ¢ E n w];L;Fé c m,3L3T

13L3Tge

By lemma 4.6.c one therefore obtains

Fl; RoE 3Ty € L.

The reader might notice that Fl;uX[(nl;Q;Ez nE)u [P[E];X]OE 3Ty does not
correspond with any program scheme. Using work of Luckham and Garland [14]
this has been remedied in I. Guessarian [15] by replacing this term by an

equivalent one which does correspond with a program scheme.

5.4. Axiomatization of the natural numbers

In general, programs manipulate data of a spectal structure, such as

natural numbers, lists and trees. Consequently, proofs about the input-

&
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output relationships of these programs often make use of the specific
structural properties of these data., In order to axiomatize such proofs, we
have to axiomatize relations over spectal domains. This is effected by
adding certain axioms, characterizing the structural properiies of these
data as properties of certain velation constants (cf. example 1.3), to the
general system of chapter 4. As the relational language MU is particularly
suited to express induction arguments, the sequel is devoted to (1) the
axiomatization of domains satisfying some induction rule and (2) the axiom—
atic derivation of properties of recursive programs manipulating data which

belong to these domains.

To begin with, we discuss below an axiom system for the natural num—
bers N which improves on a similar system described in de Bakker and
de Roever [2]. In the next section an axiomatic proof of the primitive re-
cursion theorem is presented involving a simple termination argument; the
reader should consult Hitchcock and Park [ 18] for a more elaborate theory
of termination. Chapter 6 contains axiom systems for various types of trees
and correctness prodfs of programs, such as the TOWERS OF HANOI, which ma~

nipulate these structures.

In [2] the natural numbers N were axiomatized as follows:

Nonlogical constants are a boolean relation constant pg’n and an individ-

s N

ual relation constant S'°". These satisfy:

A S35 n py = 9.

N, : | §;8 ¢ E,

N3 : F S;§ = E,

Nz s  Ec uxlp, v $;X;57.

Clearly, the intended interpretation of Py is {<0,0>} and of S is
{<n,n+1> | n e N}. However, these axioms model also any number of disjoint

copies of N:
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Let J be any nonempty index set, DJ be the disjoint union ng Nj of
| 3| copies of N, mJ(pO) be {<<0,j>,<0,j>> | j € J} and mJ(S) be
{<<n,j>,<n+1,i>> | n e N, j e J}.

. . *
Then <DJ,mJ(pO),mJ(S)> satisfies Nl’ NZ’ N3 and N4.
Let R = uX[R:;X u E]. Note that
F ux[R;X u E] = uX[X;R u E] (5.4.1)

is a consequence of Scott's induction rule.
Then we exclude disjoint copies of N from being models by replacing Nz by

N, : Fuc E*;pO;S*.

This can be understood as follows:

Assume to the contrary that the underlying domain of some model for
Nl’ N2, N3 and N4 contains two disjoint copies of N, say Na and Nb'

° . ° wk
Certainly <0_,0,> i*U, whence N, implies <0_,0,> ¢ § ;pO;S*. By N,
and N2, <Oa’0a> € S and <Ob’0b> € S are the only pairs contained
in § and s* with 0a as first and Ob as second element, respectively.

Therefore, by definition of ";", <0a,0 > € py» and this contradicts

Py < E.

Henceforth, N designates the type of the natural numbers, t.e., of any
structure satisfying Nl’ NZ’ N3 and NA.

As first consequence of these axioms atomicity of Po is derived. Fol-

lowing example 1.2.f this is expressed by

LEMMA 5.4, F- pO;U n U;pO [ Py
Proof. pO;U n U;p0 = (lemma 4,3.e) pO;U;pO c (N4) p0;§*;p0;s*;Po =
~ *
= (fpp and (5.4.1)) PO;(S;S* U E)?PO;(S 35S u E);pO =
= (N1 and N2) PosPqiPg = (lemma 4.4) Py
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Secondly, NZ follows from

LEMMA 5.5. | E = uXlpg u §;x;87.

Proof. c<: Derive F- En §*;pO;S*g uX[po U §EX;S] by Scott's induction rule.
Then the result follows from N4.

We prove
* ~ RV * ~
En X;PO;S c uX[po U 83X:S] F- En (S:X v E);PO;S c uX[pO U S;X;s1.
As
~ * ~ * *
En (S;X U E)spysS = (E n 5;X5p38 ) u (B nopysS),
the proof of this splits into two parts:

a. En pO;S* = (lemma 4.3.e) Py 0 pO;S* €SPy < (fpp) uX[pO u S$3;X;381.

b. E n §;X;pO;S* = (N1 and N2’ (5.4.1) and fpp) §;S n §;X;po;(s*;s U E)=
= (Nl) §;S n §;X;p0;s*;s < (hyp., lemma 4.3.a) §;uX[p0 u §;X;81;S <
(fpp) uX[pO u S:X;s1].

In

2: Straightforward from Scott's induction rule.

Let eq stand for uX[[pO]pO] U [§|§];X;[S,S]]@
Clearly, <<n,m>,<n,m>> ¢ eq iff n = m. In relational formulation, this

amounts to
LEMMA 5.6. } eqsm, = m, oo (5.4.2)

Proof. First we prove }— [polpo];w] = [polpo];ﬂz oo (5.4.3)
a. [polpo];ﬂ] = (lemma 4.6.b) (wl;po;F] n "2;p0;;é);(wl n WZ;U) =

= (C2) T 3Pg N nz;pO;U = (lemma 4.3.e) T13Pg 0 wzng;U;pO =

= (lemma 5.4 and monotomnicity) T3Py N T3Py
b. [polpojgﬂz = T3P N Ty5Pg is similarly derived.

c. Combination of parts 2 and b then yields (5.4.3).

£
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Next we prove (5.4.2).
S: Use Scott's induction rule on eq. By lemma 5.5 we have to prove parts
d and e below:

a. F [polpol;w1 < [utlpy u S;Y;S]luY[po v S;Y;S]{;nz

Ve

L

Use (5.4.2) and the fixed point property in L.

e, X3m

In

| € L;ﬂ2 - [§|§];X;[S]S];nl
[§I§];X;[S|S];ﬂ1 = [§]§];X;nl;s
= [§I§];L;[S]S];n2 < (fpp) Lsm,.

L;nz.
(hyp.) [8|81;L3m,58 =

n

U

Similarly.

5.5. The primitive recursion theorem
This is the following theorem:

+ o e, s o
N® LY be primitive recursive func—

THEOREM 5.4. Let G: N + N and H:
tions. Then there exists an unique total function F: NS N sueh that,

for all X se00s% Y € N

F(X1’°°"Xn’Y) =1fy = 0 then G(Xl""’xn) else

H(x],.g.,xn,y—l,F(xl,...,xn,y-l)) o (5.5.1)

Proof. To simplify the notation we take n = 1.

The minimal solution of (5.5.1) is

uX[ﬂzopo ;wl;G U [ﬂl,ﬂz;g,[Elgj;X];H].

)
L &

uT

We prove below that ut is totagl. By the minimal fixed point property, then

certainly ut ¢ F, if F is any solution of (5.5.1). If F is a function, then

#
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put € F implies by lemma 4.3.d that ut = utoE ;F, whence ut = F follows from
totality of ut. It remains to be demonstrated that such an F exists, i.e.,
ut is functional; this follows from Scott's induction rule by repeated
application of lemma 4.11.

LeMMa 5.7, Gl 2! = g!0!) pegle! = g3>3 F g?2 ¢ prsute?,

with Gj ’k =g yXNX:f. OXN),NXNX,'. .XN)

j times k times
Proof, Assume GoEl’] = El’1 and HoEl’1 = E3’3 sea (5.5.2)

Then
F 522 - [El’llux[p0 u §;3X;811

holds by 1emma 5.5 and

f [E]’]lux[po u §;X;S]] c UT;UI’Z

follows from Scott's induction rule as proved below, whence the result,

We prove the induction step only:

[E]’IIX] c uT;U]’z F [E]’llpo u §;%;87 ¢ uT;Ul’z.
ur;Ul’z = (fpp) [Elpo];ﬂl;G;Ul’z U [nl,w2;§,[E|§];uT];H;UI’2
eoe = (lemma 4.3.c ﬁy totality of Ty G and H)
[E|pg150%*% U [n ,m,ys8,[E|§T5ur 150772
ess = (lemma 4.6.b)
[ElpOJ;Uz’2 U [Wl,ﬂz;g,[Elgj;uT];(W];Ul’z n nz;U]’2 n w3;U1’2)
A [E!pO];UZ’2 U (wz;g;U]’2 n [Elgl;uT;Ul’z)
s 3_[E|p0];U2’2 U [E|§];UT;U1’2;EE!S]

ess 2 (hyp.) [Elpo U §;X;S].

Remark. Since in the proof above the induction argument applies to the very
structure- of the underlying domain, we run here up against the axiomatic

counterpart of Burstall's structural induction (cf. [8]).
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6. AXIOMATIC LIST PROCESSING
6.1. Lists, linear lists and ordered linear lists

For our purpose it is sufficient to characterize a domain of Iists as
a collection of binary trees which is closed w.r.t. the following opera-

tions:

(1) taking a binary tree t apart by applying the car and cdr functions, re-
sulting in its constituent subtrees car(t) and'cdr(t), if possible;
otherwise, t is an atom and satisfies the predicate at, whence

at(t) = t,

(2) constructing a new binary tree from two old ones by application of the

function cons,

‘ st - ~/ N
where car, cdr and cons are related by car = cons;T, and cdr = cons;m, .

nxn,n

Thus we introduce one (applied) individual constant cons and one (ap—

plied) boolean constant at"*" and postulate these to satisfy the following
: . X7 , X
axioms L] . F‘ cons ;cShs = g Nsnxn
L2 H P- consjcons < "
L3 : | at n cofisjcons = Q"
L NyN AP Slaem oX e
4 ¢ P— E c yuXfat u [cons,w],X,cons,ﬂz,X],cons].

Remarks., 1, Ll implies that cons is total and cons, whence cBﬁs;ﬂl and

c5ﬁs;ﬂ2 (by lemma 4.11), are functions, L2 that cons is a function, L3
that an atom can never be taken apart and L4 that any list is either an

atom or can be first taken apart and then fitted together again.

2. Satisfaction of these axioms establishes <Dn,at,cons> as a structure of
lists. This leads us to introduce a new type, L, reserved for lists, re-
sulting in <L,L> and <LxL,L> as new types for at and cons. If there is
no confusion between different domains of lists, L is also used to in-

dicate a domain of lists.

3. c5§s;n1 and c6§s;n2 will be referred to as car and cdr. soe (6.1.1)

&
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Linear lists are lists with the additional property that car(l) is
always an atom.

Thus we obtain axioms for linear lists by replacing Ll by
LL, :  cons;cons = [m,sat,m,1,

postulating L2 and L3, and replacing L4 by
LL4 : b """ ¢ uxlat u [car,cdr;X1;cons].

LL is then introduced as type for linear lists.
With linear lists as domain and range some interesting properties can be

proved, such as

(1) if conc stands for uX[cons u [ﬂl;car,[nl;cdr,wz];X];cons], i.e.,
conc(ll,lz) == if atom(ll) then cons(ll,lz) else cons(car(ll),
conc(cdr(ll),lz)), weo (6,1.2)
then conc is associative, i.e., conc(conc(ll,lz),l3) =
= conc(ll,conc(12,13)), cf. McCarthy [291],

(2) if first and last stand for (at u car) and pX[at u cdr;X]l, ... (6.1.3)

respectively, then conc;first = n];first and conc;last = wz;last,
(3) conc is a total function.

It is proved in lemma 6.3 that these properties of linear lists can be ob-

tained as corollaries of the analoguous properties for ordered linear lists.

Ordered linear lists are linear lists with the additional property
that some relation holds between the subsequent atoms of these lists.

For convenience, we do not use a relation < ,holding, e.g., between 1l and

1, 11 <! 1,, but introduce the characteristic predicate < of this relation:

<1,,1,> < <1,,1,

In principle <" need not be a partial order at all; many interesting prop-—

> 1ff ll ot 12, i.e., ¢ = wl;a(';ﬁz n E. vee (6.1.4)

erties can be proved without this requirement: theorems 6.1 and 6.3 estab—
lish (1) and a variant of (2) above for ordered linear lists and theorem

< 1.,

6.2 establishes concoE = =, i,e., conc(ll,lz) is defined iff 1] 9

&
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In order to axiomatize ordered linear lists we introduce therefore a
nXn,nxn

boolean constant < , replace LL] by }-cons;ths = [ﬂlgat,ﬂz];x, i.e.,

<car(l),cdr(1)> < <car(1l),cdr(1l)>, and stipulate that <at;,at; > <

< <at.,at. > holds for all subsequent atoms ati and ati+l which constitute

+1
an ordered linear list. This leads to the following axioms for ordered

linear lists:

OLL1 H F' cons;cons = [Trl;at,'nz];p<

OLL, : | consjcons ¢ A

OLL, : I at n cohsjcons = ™"

OLL4 : F- g n c uX[at u [car,cdr;X1;cons]
OLL5 : F <= [wl;last,wz;first]°“5

with last and first as defined in (6.1.3).

Remarks. OLL is introduced as type for ordered linear lists and

(at U [car,cdr;Xl;cons) will be referred to as T
]_ ET’t 5T :

OLL" Then OLL4 reads as

g_uX[TOLL].

First some simple properties of at, car, cdr, cons and < are collected
in
LEMMA 6.1. Let at' demote [car,cdrl;cons (or cons;cons, which 18 equiva-
lent) then the following properties hold for
a, Lists: |- E = uX[at u [car;X,cdr;XJ;cons], at u at' = E, cons;at' = cons,
consjat = Q, '
b. Linear lists: F E = uX[at u [car,cdr;X];cons], cons;cons = ™ eat,

carjat = car, carjat' = Q.
c. Ordered linear lists: | consjcons = m oatj«.
Proof. a. E = pX[at u [car;X,cdr;X];cons]l: c. Axiom L4.

2. Use I with ¢ empty, taking {X c E} for ¥ and (at u [car;X,edr;X];cons)

for o.

<]
I

at U at' = E uXlat u [car;X,cdr;X]scons] =

&

(fpp) at u [car,cdrl;cons.
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N
cons;at! = cons : cons;at' = cons;cons;cons = (Ll) cons,
S
consjat = Q : cons;at = cons;cOnscE ;at = (Lz) cons; (consjcons n at) =

= (L3) Q2.

b. E = pX[at u [car,cdr;X];cons]: Similar to above.

cons;cons = wloat : Obvious from LL]'

~/
car;at = car : cBﬁs;ﬂl;at = (lemma 4.5.e) consj;consoE 3mycat jm, =

N \—y
= (from above) consjconscE My = cons;m,.
onpt =0 e Anmaem cabrl = Ao [, : Jem. sat! =
carjat : cons;m,;at cons;lm, ;at,m,I3m sat

= cBﬁs;wl;(at n at') = (LL3) Q.

c. consjcons = ™ °at 3« : Obvious from OLLI.

In the proofs of this chapter the following property, lemma 4.5.e, is
often implicitly applied: i;X c E F- X;p = Xop ;X. Functionality of the
terms involved is proved by repeated application of lemma 4.11 and may re-
quire in the induction steps X;x ¢ E as additional hypothesis and

X X) € E dditional lusi
TOLL( )’TOLL( ) ¢ E as additional conclusion.
Next we establish an auxiliary lemma.

LEMMA 6.2. F [[wl;at,wz];cons,w3];conc =

= [wl;at,ﬂ2]°~:;[n],[ﬂz,ﬂ3];conc];cons.

Proof. } [[ﬂl;at,wzj;cons,n3];conc =

= [[nl;at,wz];cons,w ];[nl;car,[ﬂl;cdr,ﬂz];conc];cons =

= [[ﬂl;at,ﬂzj;cons;dﬁﬁs;w],[[nl;at,wz];cons;éﬁﬁs;nz,n3];conc];cons, as may
be proved using C'2 and (6.1.1),

soe = (OLL]) [[wl;at,wzj;x;n],[[nl;at,ﬂz];x;wz,ﬂ3];conc];cons, whence by

lemma 4.5.2 and cor. 4.2 the result follows.

The fundamental theorem of this section is

THEOREM 6.1. }- concjfirst = <7, ;first,concylast = x;ﬂz;last.

13
Proof., We derive F- concyfirst = x;ﬂ];first as an example; the proof of

F conc;last = x;ﬂzglast uses similar techniques.
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By lemma 6.1 it is sufficient to prove |- [ﬂl;uX[T ],ﬂz];conc;first =

OLL

= [wl;uX[T ],ﬂz];«;ﬂl;first. Use I with & empty, taking

OLL

. . *
{[nl;X,nz];conc;flrst = [wl;X,nz];x;ﬂl;flrst} for ¥ and TOLL for o. )

F ¥(Q). Obvious.

¥ Fo¥(rg (X)),

1. [wl;at,ﬂz];cons;first = (lemma 6.1) [wl;at,ﬂz];cons;car =

= (OLLI) [wl;at,wz];x;ﬂl = [ﬂl;at,wZJ;A;ﬂ];first;

2. The nucleus of the proof:
[171;car,[ﬂl;cdr;X,Tr:Z];conc]c“>< =
= (OLLS) [nl;car,[ﬂl;cdr;X,wzj;conc;first]°°<= (induction hypothesis)

[w,3car,[n sedr;X,m, Jixsm ;first]o=c =
i 1 2

l;
= (lemma 4.5.e, cor. 4.2) [nl;car,ﬂl;cdr;XJO°< ;[ﬂl;cdr;X,w2]°<.

3. [[ﬂl;car,ﬂl;cdr;X];cons,ﬂzj;conc;first = (lemmas 6.1 and 6.2)
[ﬁlgcar,ﬂlgcdr;X]ox ;[wl;car,[wl;cdr;X,WZJ;conc];cons;first =
= (using cons;first ='<;nl;at, lemma 4.5.e and part 2)
[w];car,ﬂlscdr;XJOx.;[n];cdr;X,ﬂz]ox 3T scar.

4, [[wl;car,ﬂl;cdr;X];cons,ﬂZJ;x;ﬂl;first = (lemma 4.5.¢)
[[ﬂl;car,wl;cdr;X];cons,ﬂZJOK ;[ﬂl;car,ﬂl;cdr;X];cons;first =
= (using cons;first = o5, 3at, lemma 4.5.e and cor. 4.2)

[[ﬂl;car,ﬂl;cdr;X];cons,n2]°°<;ﬂl;car.

5. [[ﬂl;car,ﬂl;cdr;X];cons,wz]ox = (OLL5 and cor. 4,2)
[wl;car,nlgcdr;X]ox ;[ﬂl;cdr;X,ﬂ2]°«L

6. The proof of the induction step follows from part 1 and
[ﬂl;[car,cdr;X];cons,WZ];conc;first =

= [[ﬂ];car,w ;cdr;X];cons,wz];conc;first = (part 3)

1
[ﬂlscar,ﬂl;cdr;X]ox.;[ﬂl;cdr;X,wzlou:;ﬂl;car = (parts 4 and 5)
[ﬂl;[car,cdr;X];cons,ﬂz];x;wl;first.

We apply this theorem for the first time in

THEOREM 6.2. | conceE =X,

*)

This corresponds with structural induction on the first coordinate, cf.
séction 5.5.
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Proof.

1. concoE = (fpp)

([ﬂl;at,nz];cons u [ﬂl;car,[wl;cdr,ﬂz];conc];cons)OE.
2, ([wl;at,ﬂzj;cons)OE = [ﬁl;at,wz]ox.

3. ([ﬂl;car,[ﬂl;cdr,ﬂzl;conc];cons)OE =

= (OLL5 and theorem 6.1) [Trl;car,[ﬂ];cdr,,vrz];a><;1rl]°"< =

[ﬂl;car,n scdr]ox ;[ﬂl;cdr,ﬂ2]°< =

1
[m.3lcar,cdr];cons,n, Jo=<,
1 ® 2

By combining parts 1, 2 and 3 one obtains the result from lemmas 4.5.b and
6.1. '

Next we prove the classical

THEOREM 6.3. (Associativity of conc).

F [[ﬂl,wz];conc,HBJ;conc = [ﬂl,[ﬂz,ﬂ3];conc];conc.

Proof, By lemma 6.1 it is sufficient to prove

Ly suleg OLL
with ¢ empty, taking {[[ﬂl;X,wz];conc,w3];conc = [wl;X,[wz;n3];conc];conc}

£ v
or and TOLL for o,

],nz];conc,ﬂ3];conc = [ﬂl;uX[T ],[ﬂz,ﬂ3];conc];conc. Use 1

 v(o). Obvious.
¥(X) F— W(EHJFX))° Follows from parts 1 and 2 below,

1. Lemma 6.2 and theorem 6.1 imply [[nl;at,wZJ;cons,ﬂz];conc =

= [ﬂl;at,[ﬂz,ﬂ3];conc];cons.

2, [[[m,scar,w,;cdr;X];cons,n,l;cone,m,l;cone =
1 1 2 3

(fpp, OLLg,

(similarly) [ﬂl;car,[[ﬂl;cdr;X,ﬂz];conc,ﬂ3];conc];cons =

theorem 6.1) [[ﬂl;car,[wl;cdr;X,wz];conc];cons,ﬂ3];conc =

(hypothesis) [ﬁl;car,[ﬁ];cdr;X,[ﬂz,HBJ;conc];conc];cons =

= [ﬂl;[car,cdr;X];cons,[ﬂz,n3];conc];conc.

Finally we observe that, although intuitively not obvious, linear
lists are a special case of ordered linear lists.

This foliows from
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(1) totality of last and first for linear lists, the proof of which is a
matter of routine,

and

(2) the fact that substitution in OLLI,...,OLL5 of EVTMM g0 [NXNHNXN

results in LLl,...,LL4 and }- AU AL [ﬂl;1ast,w2;firstJOEnxn’nxn,

nxn,nxn

which is proved by [ﬂlglast,ﬂz;first]OE = (corollary 4.3)

ﬂ,n)

(ﬂ];last)OEn’n ;(ﬁz;first%En’r'= wlO(lastOE ;wZO(firstOEn’n) =

= (part 1 above) 'nloEn’n ;TrZOEn’n = (lemma 4.6) Ean,nxn.
Hence we have, a fortiori,

LEMMA 6.3. Any property of ordered linear lists holds upon substitution of

< by g "LL, LLXLL for linear lists.

6.2. Properties of head and tall

The head and tail functions id and ¢, both of type <N+X0LL,OLL>,
where N' is the type of the positive natural numbers and OLL the type of

ordered linear lists, are defined by

(1) hd(n,1) is the ordered linear list of n elements which constitutes the

initial part of 1 of length n, if extant, and

(2) t1(n,1) is the ordered linear list which constitutes the remainder of

1, after hd(n,1) has been chopped off, if possible.

I1f both sides are defined, clearly pr&perties such as
conc(hd(n,1l),tl(n,1)) = 1, tl(n+l1,1) = edr(tl(n,l)),
conc(hd(n,1),car(tl(n,1))) = hd(n+l,1), tl(n,conc(hd(n,ll),lz)) = 12 and
hd(n,conc(hd(n,ll),lz)) = hd(n,l,) are valid and therefore amenable to

proof within our system.

First we observe that the axioms for N+ are the axioms for N which are
modified by "renaming" Py a8 P, (pa is renamed as p:, too).

Next we introduce some notation:
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hd denotes uXEWIOPI imyscar U [wz;car,[wl;§,ﬁ2;cdr];X];cons], veo (6.2.1)
tl denotes UX[ﬂlopl ;nz;cdr u [w1;§,n2;cdr];X], eoe (6.2.2)

" o,...,i demotes Lrg seeesmy Je cee (6.2.3)
1 n 1 n

Then the above mentioned properties are established in

THEOREM 6.4.

f.

Proof. The techniques required for proving this theorem are illustrated by
pr

a,

F [hd,tl];conc [hd,tllex ;7 , of type <N+XOLL,0LL>.

2’

I tljedr = [ 38,m,15t1 , of type <N xOLL,OLL>.
F [hd,tl;car];conc = [nl;S,wz];h& , of type <N+XOLL,OLL>.
F [ﬂl,[ﬁl’z;hd,WBJ;ConC];tl = [wl,z;hd,ﬂ3]°K 3735 .
' of type <N xOLLxOLL,OLL>,
= [mysLmy o3hd,molsconclshd = [my )shd,mle smy ,3hd,

of type <N xOLLXOLL,OLL>.

L tlem [hd,tlloe , of type <N XOLL,N'xOLL>.

oving parts a and e,

First we prove F- [hd,tl1];conc ¢ Toe Then the result follows from
[hd,tl];conc = (lemma 4.3.d) ([hd,tl];conc)cE Ty = (theorem 6.2)
[hd,tl]ex 3Ty

Apply I, with ¢ empty and taking {[hd,t1]:X ¢ ﬂz} for ¥ and

(cons U [wl;car,[wl;cdr,WZJ;X];cons) for o. Then ¥(X) }- ¥(o (X)) follows

from parts 1 and 2 below,

1. [hd,tl];cons = (OLL]) [hd;at,tl]s<;cons = (fpp and lemma 6.1)
TPy ;[wzgcar,ﬂz;cdr];x;cons c (OLLZ) Ty

2. [hd,tl];[ﬂl;car,[nlgcdr,ﬂzj;X];cons = [hdjcar,[hd;cdr,t1];X];cons =
= (fpp and lemma 6.1) _
[ﬂz;car,[[wlgg,wz;cdr];hd,[w];§,w2;cdr];t1];X];cons ¢ (hypothesis)
[ﬂz;cargfw];§,ﬂ2;cdr];ﬂ2];cons < (OLLZ) Toe
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e. Apply I, with ¢ empty, taking'{[wl,[ﬁ] p3hd,T Js;concl;X =
®
= [nl 2,hd o 3w 1 93
u [ﬂz,car [ﬂl,S,ﬂz,cdr] X1;cons) for o. Then ¥(X) | ¥(0(X)) follows from
part 1 and 4 below.

:X} for ¥ and (w 1°Pp scar U

1 2;hd,w3];conc;car < (fpp) m,jcar
b

1. It follows from lemma 4.3.d that [w
shd,m,];concicar)E = [ﬂl 2;hd,ﬂ3]°(concoat') = (fpp)
2

and ([wl 93

2

[w, .shd,m,]lo(conceE) = (theorem 6.2) [m, _;hd,n,]Jo<X together imply
1,2 3 1,2 3

[ﬂl 2;hd,ﬂBJ;conc;car = [ﬂl z;hd,ﬂ3]°< 3T,3car.
9 3

]

2. [ﬂl 2;hd,'n3];conc;cdr
b
= [wl’z;hd,ﬂ3]°x 3(m op, 3Ty U ﬂ1°p; ;[ml’z;hd;cdr,w3];conc) is

proved similarly.

. ,3hd;cdr = (fpp) [w ;§;ﬂ sedr]zhd.
1,2 13°:™

4, [ﬂl,[wl’Z;hd,ﬂ3];conc];w1°p; ;[nz;car,[ﬂl;§,w2;cdr];X];cons =
= (parts 1 and 2)
[nl’z;hd,ﬂ3]o< 1
= (part 3) -

0ol T,
[w 1 2,hd w3] < 3 ﬂ1°p] H
[ﬁ ;car, [wl,s ﬂz,cdr,ﬂ 1; [nl,[ﬂ] 2,hd T ] concl;Xl;cons =

1°p; ;[ﬂz;car,[wl;g,[n]’z;hd;cdr,w3];conc];X];cons =

(hypothe31s) [ﬂ] 2,hd T,JoX 3 ﬁ1°p1 ,[ﬂz,car [ﬂ],S ﬂz,cdr] XJ1;cons,

Since =L = l,oi "2 nE (6.1.4), transitivity of the relation ', i.e.,

the property « '; ' € < ', implies M poelsm, geC S W, 3% 0> transitivity
¥ 2 ?
of the predicate = 1in its two arguments or transitivity of <« , for short.

{ ° ® o = e LA~ . o | -4 =

This follfws from n]’g o} 3Ty .3 oL (nl,ec 3Ty n E),(nz,ac ,ﬂ3 n E)
ﬂl;aé';ﬂz n ﬂz;«L';HB nEc ﬂl,ec';ec';§3 n E ¢ (assumption)
. LR = o

mi3e 3y N E T3 oL, ves (6.2.1)

£}

COROLLARY 6.1. Let « be transitive (in its two arguments), then

F [[ﬂlgs,nz];hd,ﬂ3]od =

= [ﬂl’zghd,wl,zgtlgcar]°< ;[ﬂl’zgtl;car,ﬁ3]°<‘;[w 'hd,n3]°<.

1,2}
b. }- ([nl;S,nz];tl)oE = [hd,tl;car]ox ;[tljcar,tl;edrlex ;[hd,tl;cdr]ex,

&
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Proof,

a. [[w];s,wz];hd,ﬂ3]o« = (theorem 6.4.¢) [[wl’z;hd,ﬂl’z;tlgcar];conc,ﬂ3]°<==

= (theorem 6.1) [~ shd, stlscar]e< 3[w stlscar,m,lox, whence the
1,227 71,2 1,2 3
result can be deduced from the assumption.
b. ([TT];S,TI’ 1;t1)°E = (theorem 6.4.f) [[Trl;S,wzj;hd,[ﬂl;S,Trz];tl]M =
=(theorem 6.4.b and 6.4.c) [[hd,tl;car];conc,tljedrle< = (theorem 6.1

and transitivity of «) [hd,tljcarle« ;[tljcar,tljedriex j[hd,tl;cdr]ex,

6.3. Correctness of the TOWERS OF HANOI
6.3.a. Informal part

We present an informal argument for the correctness of a certain ver-
sion of the TOWERS OF HANOI program. This version looks in ALGOL-like nota-

tion as follows:

procedure TVH(n,x,y,£1,£2,£3); integer n,x,y; ordered linear list £1,£2,£3;
if n=1 then MOVE(n,x,y,£1,£2,£3) else
begin n:= n-1; y:= alt(x,y); TVH(n,x,y,£1,£2,£3);
yi:= alt(x,y); MOVE(n,x,y,£1,£2,£3); x:= alt(x,y);
TVH(n,x,y,£1,£2,£3); ns= n+l; x:= alt(x,y)

end;

p—

procedure MOVE(n,x,y,£1,£2,£3); integer n,x,y; ordered linear list £1,£2,£3;
cons(car(£1),£2); L1:= cdr(£1) end else
cons(car(£1),£3); £1:= cdr(£1) end else
cons (car(£2),£3); £2:= cdr(£2) end else
cons(car(£2) ,£1); £2:= cdr(£2) end else
cons (car(£3),£1); £3:= cdr(£3) end else
cons (car(£3) ,£2) ; £3:= cdr(£3) end else

undefined;

if x=1Ay=2 then begin £2:

if x=1Ay=3 then begin £3:

if x=2Ay=3 then begin £3:

if x=2Ay=1 then begin £1:

if x=3Ay=1 then begin £1:

if x=3Ay=2 then begin £2:

integer procedure alt(x,y); integer x,y; if x>1 Ax<3Ay21 Ay<3 then

alt:= 6~x-y else undefined

To which conditions does correctness of TVH amount?

First we have to assume the transitivity of the relation ordering the order-—
ed linear lists considered above. We do not wish to elaborate this assump—
tion in the present informal setting; for this the reader is referred to

the next section.
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Let us assume x # y, then execution of TVH(n,x,y,£1,£2,£3), if defined,

1. Has to result in the removal of the top n discs of the pin "identified
by" x, to the pin identified by vy.

2. These discs are moved in correct order, i.e., never a larger disc is
placed on a smaller disc.

3. The discs are moved one at a time.

As to (3): we cannot formalize this requirement, as the present formalism
deals only with input=output relationships and not with inter-

mediate stages: cf. section 1.3.

As to (2): this condition is implicit in our approach as all functions are
only defined for ordered linear lists. Thus, the question
whether or not the order is disturbed amounts to whether or not

the execution is defined.
As to (1): let us declare R(m,x,y,£1,£2,£3) by

procedure Rkn,x,y,£1,£2,£3); integer n,x,y; ordered linear list £1,£2,£3;

if x=1Ay=2 Ehgg begin £2:= conc(hd(n,£1),£2); £1:= t1(n,L1) end else
conc(hd(n,£1),£3); £1:= t1l(n,£1) end else
conc(hd(n,£2),£3); £2:= tl(n,£2) end else
conc(hd(n,£2),£1); £2:= t1l(n,£2) end else
conc(hd(n,£3),£1); £3:= t1(n,£3) end else
if x=3Ay=2 then begin £2:= conc(hd(n,£3),£2); £3:= t1(n,£3) end else

if x=1Ay=3 then begin £3:

1]
1

if x=2Ay=3 then begin £3:

]
]

if x=2Ay=1 then begin £1:

if x=3Ay=1 then begin £1:

undefined.
If we assume x # y, (1) amounts to
TVH(n,x,y,£41,£2,£3) = R(n,x,y,£1,£2,£3),
provided both sides are defined.
As TVH(1,x,y,£1,£2,23) = R(1,x,y,£1,£2,£3) follows from the declaratioms,
we concentrate on the case n > 13

The induction hypothesis is TVH(n-1,x,y,£1,£2,£3) = R(n~-1,x,y,£1,£2,23),
provided both sides are defined. Start with statevector

£y = <n,1,2,21,£2,£3>,

1. Execution of n:= n~I1; y:= alt(x,yl); TVH(n,x,y,11,12,13) with £y as input

results in
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g, = <n-1,1,3,t1(n-1,41),£2,conc (hd(n-1,L1),£3)7,

by the induction hypothesis.
2, Execution of y:= alt(z,y); MOVE(n,xz,y,11,12,13) with £, as input results
in
62 =z <n-1,1,2,cdr(t1(n~1,£1)),cons(car(tl(n~1,£1)),£2),
conc(hd(n~1,£1),£3)>

3. Execution of x:= alt(x,y); TVH(n,2,y,11,12,13); n:= n+tl; x:= alt(x,y)

with 52 as input results in

£, = <n,1,2,edr(tl(n-1,£1)),
Expr 1

gonc(hd(n-l,conc(hd(n-l,ﬂl),KB)),cons(car(tl(n—l,Kl),KZ))),
EXQ; 2

E}(n—l,conc(hd(n~1,£l),£3)2>.
Expr 3

We demonstrate that, provided £3 is defined, £3 equals
<n,1,2,t1(n,£1),conc(hd(n,£1) ,£2) ,£3>,
Expr 1: cdr(tl(n-1,£1)) = t1(n,£1) by theorem 6.4.b.

Expr 2: 1. hd(n-1,conc(hd(n~1,£1),£3)) = if hd(n-1,£1) < £3 then hd(n~1,£1)

else undefined,

by theorem 6.4.e.

2. conc(hd(n—-1,£1),cons(car(tl(n-1,£1)),£2)) =
= conc(cone(hd(n-1,£1),car(tl(n~1,£1))),£2), by associativity of

conc, theorem 6.3.
3. conc(hd(n-1,£1),car(tl(n-1,£1))) = hd(n,£L1), by theorem 6.4.c.

Thus Expr 2 = if hd(n~1,£1) < £3 then conc(hd(n,£1),£2)

else undefined,

Expr 3: tl(n-1,conc(hd(n-1,£1),£3)) = if hd(n-1,£1) <X £3 then £3

else undefined,

by theorem 6.4.d.

Thus £q = if hd(n-1,£1) < £3 then <n,1,2,tl(n,£1),conc(hd(n,L1),£2),£3>

else undefined, whence the result.
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6.3.b. 4n axiomatic correctness proof for the TOWERS OF HANOI

First we introduce some auxiliary notions:

By example 1.3 it is possible to axiomatize a three-element set {a,b,c}

of type 3. Furthermore we need the function al¢ of type <3,3> defined by:

if x # y then alt(x,y) € {a,b,c} - {x,y}, and alt(x,y) is undefined, other-
wise, Then alt has the following properties: alt(x,y) = alt(y,x),
alt(alt(x,y),x) = vy and alt(alt(x,y),y) = X. The formal definition of alt,
using the predicates a, b and ¢, and the subsequent derivation of these pro-

perties is a matter of routine.

Timj DEF "i,it1,...,] yfor 1 < J.

Secondly we define TVH, of type <N+&2X§§0LLXOLLXOLL,N+x§§§80LLXOLLXOLL>,
by

=‘- o 4 o ¥ . .u 3 ° ®
TVH DEF uXEi] P, ,MOV% U ?l P, ,[wl,S,ﬂz,n2’3,a1t,w4_6],x,
Y Y )
o B
FWI_Z,HZ,B;alt,w4_6];MOVE;[n],w2’3;a1t,n3_6{;x;
Y
T2
. S °
Efl’ ’“2,3’alt””3-6?] ve. (6.3.1)
W
'3
and
MOVE bop pasb;[n1m3,w4;cdr,[n4;car9ﬂ5];cons,wGJ U
up, C;[ﬂl_S,n4;cdr,n55[ﬂ4;car,n6];cons] u
3

u Pb,c§[W1“49W5;Cdr,[ﬁ5;car,n6];cons] U
U pb,a;[ﬂl_3,[ﬂ5;car,w4];cons,nS;cdr9ﬂ6] u

U [ﬂl_B,[ﬂﬁgcar,n4];conSEﬂs,w6;cdr] U

Pe,al

(o

pc,b;[ﬂl_4§[ﬂ6;car,ﬂ5];cons9ﬂ6;cdr].
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with

Px,y DEF "2°% 3T3°Y for x,y e {a,b,c}. ver (6.3.2)
]

Thirdly we define péq, O and R in order to express correctness of TVH:

' =
peq DEF xgy Px,y’ cf. (6.3.2).

Jox u
J

0 ca ;[w hd,n

hd,ﬂ5]°< HE 6

Y

0
a

DEF | 2 1,4° 1,4°

U ﬂ2°b sim

L

hd,m, Jox ;[ﬂ],s;hd,'n6

2Ty,
L'
0

e °°<U
1’5, ])

hd,ﬂ4]°K HE

v

0
c

hd,mg]ex eses (6.3.3)

U mpeesslmy g 1,6° y

and
R DEF pa,b;[ﬂ1_3’ﬂ],4;t1,["1 ’4;hd9'"5];conc”“-6] v
U pa,c;[nl_B,nl,4;t1,n5,[n1’4;hd,ﬂ6];conc] U

u pb’c;[ﬂ1_4,ﬁl’5;t1,[w1,S;hd,w6];conc] U

U pb,a;[ﬂ1_3,[ﬂ1,S;hd,ﬂ4];conc,ﬁ]’5;t1,ﬂ6] U

C

pc,a;[ﬂ]_3,[n1’6;hd,n4];conc,ws,w1’6;tl]

L

o

Pc,b;[ﬂl—é’ ﬂl’é;hd,ﬂs];conc,ﬂl’6;t1].

Then the correctness of TVH is established by

THEOREM 6.5. (Correctness of TOWERS OF HANOI). Let =< be transitive
(in the sense indicated in (6.2.1)), then

| plq303TVE = Bl 3O3R

. . . + .
The proof of this theorem proceeds by induction on N , i.e., we prove
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F Péq;["15”XEP1 u 8;X;81,m, 1;0;TVH =
= péq;[wl;uX[pl U S;X;S],n2_6];O;R

by applying I as follows: let & be empty, Y be

'{péq;[ﬂ];x,wz_G];O;TVH = péq;[ﬂl;x,nz_G];O;E} ind o be (pl U S$3;X;S). Then
NN

the result follows from uX[pl U §;X;S] = E , cf. lemma 5.5.

We adopt the following strategy:

Using the notation introduced in (6.3.1) we associate in the proof of the

induction step terms Po,...,P and QO,...,QB,.which are defined below, with

3

Pl 3lT3(P] U 83X38),my (T503TVH = (fpp)

eq' 1 1

p! 3057y U péq;[ﬂl;S;X;S,ﬂz_éj;O;Tl;TVH;TZ;TVH;T3 .
1 i ] i i
t |
!

| A
Py Qo PLQ PyQ PyQq

Then our correctness proof consists in proving, with Y as hypothesis,

PO;TO = Q0 ees (6.3.4)
and

PI;TI;TVH;T TVH; T

2 3"
(parts 1 and 2) Ql;TVH;T

TVH; T

2’ 3"

(part 3) P TVH; T

25T2; 3 =
(parts 4, 5 and 6)Q2;TVH;T

3=
(part 7) P3;T3 = (part 8) Q3, *) oss (6.3.5)

since PO = péq;O, Q0 E ﬂl°pl;péq;O;R, P, = Péq;[ﬂl;S;X;S,ﬂ2_6];0 and

Qg = péq;[nl;§;X;S,ﬂ2_6];0;R, whence (6.3.4) and (6.3.5) together imply

péq;[ﬂls(pl U §;X;S),ﬂ2‘6];0;TVH = P;q3[“]3(P1 u S3X;8),m, 130;R.

*) Parts | to 8 refer to the formal proof at the end of this section.
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Without of generality we prove

péq;[ﬂ];X,ﬂ2_6];0;TVH = péq;[nl;X,n2_6];O;R F
F [WI;(pl U §;X;S),nz;a,WB;b,w4_6];Oa;TVH =

= [nl;(p1 u S;X;S),ﬁz;a,ﬂ sh,w ];Oa;R.

327246

Next terms Pi and Qi are defined as below, i = 0,...,3.

Let Oa(X) DEF [[ﬂ];X,ﬂ4];hd,ﬂ5]°°< ;[[ﬂ];X,ﬂ4];hd,w6]°K , whence Oa(E) =

(see (6.3.b)), and let Oa,b DEF [ﬂl,A;hd,ﬂ5]°“§ and Oa,c DEF [ﬂl’a;hd,ﬂ6]°°<,
whence 0a = ﬂ2°a ;Oa,b;oa o For Ob and 0c we introduce similar notations,
Po pEp [M13P12Mp32,Tg3bsm, 130,

Q0 . [nl;pl,w ;a,w3;b,ﬂ4_6];Oa;MOVE.

P] oEF [ﬂ ,S X3S, ﬂz,a NB,b,ﬂ4_6];Oan

Q1 oEF 0 (S X;8): [ﬂ Symy 6] [ﬂl;X,ﬂz;a,n3;C,ﬂ4_6];Oa

P2 DEF 0 (S X:8); ['ITl,S T 6];

[mw ,X,Wz,a,HB,C,[ﬂ];X,ﬁéj;tl,WS,[[ﬂl;X,ﬂaj;hd,ﬂ6];concj.
0 (S X:8); [ﬂ],S,ﬂ 6];[n1,w2;c,v3;b,[n1;X;S,w4];t1,

[[nl,X,ﬂ4],t1,car,ﬂ5];cons,[[wl;X,ﬂéj;hd,w6];conc];

[ﬂ ;X,n ];0 .

Q pEF

P 0 (S X;8): [w ]‘[w 3X ﬂz;C,ﬂ3;b,[ﬂ1;X;S,ﬂ4];tl,

3 DEF '
[[WI,X,[[HI, 4] hd ﬂ6] concl;hd,

[[wl;X,w4];t1;car,ﬂ5],cons];conc,

[WIQXs[[n];X,ﬁ4];hd,ﬂ6];conc];t1].

W
Q3 DEF [ﬂl;S;X;S,ﬂz;a,ﬂ3;b,ﬂ4_6];Oa;R.

Finally we prove the induction step as indicated in (6.3.4) and (6.3.5).

Assume transitivity of =, i.e., T, 93T, %< C T oo, and the induc-
1,2 2,3 — 1,3

tion hypothesis VY.
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The proof of PO;TVH = Q0 is a matter of routine and therefore omitted.

+ 4+

w g N .

1. [ﬂl;S;X;S,ﬂzia,ﬂ3;b,ﬂ4_6];T] = (§;8S = E oN , cf. axiom N3)
[wl;S,w2_6];[nl;X,wz;a,w3;c,r4_6].

= [ﬂ];S;X;Saﬂz§a,ﬂ3;b,ﬂ4_6];oa;[ﬂl;é,ﬂz,w2_3;a1t,w
Oa(S;X;S);[ﬂ];S,ﬂ2_6];[ﬂ];X,wz;a,ﬂ3;c,ﬂ4_6];oa = Q-

2. P,

1’1 1l = (lemma 4.5.e)

4-6
(corollary 6.1.a, < being transitive, and part 1)

3. Ql;TVH = (hypothesis)
03(§;X;S);[ﬂ1;s,ﬂ2_6];
[ﬂl;X,wz;a,w3;c,[nl;X,w4];t1,w5,[[ﬂl;X,w4];hd,w6];conc] = Pzi
b PysTy = Poslm oM, 3;a1t,w4_6];MOVE;[nl,n2‘3,a1c,w4_6] =
’ o - ?
(theorem 6.4) Oa(S;X;S);[WI;S’“2—6];
[nl;X,nz;c,HB;b,[ﬂl;X;S,w4];t1,[[ﬁl;X,ﬂ4];t1;car,w5];cons,
[[w,;X,7,]1;hd,n,1;conc].
l’ 9 4 2 9 6 ] y

-

5. Qé;[n Jox =

hd,vr4
[[ﬂl;X,[[nl;X,w4];hd,w6];conc];hd,[ﬂl;X;S,ﬂ4];t1]°“i;Qé =
(theorem 6.4) [[ﬁl;X,HAJ;hd,ﬂ6

[[nlgx,whj;hd,[wl;X;S,w4];t1]ox.;Qé.

1,6°

]oo( H

i

6. (1) Q= (Lm 3X;5,m,15t1)<E Q) =
CCmysX,m, Jshd, [my5X;58,m, J5e1]ex 5Q5.
(i1) Oa(§;X;S);[n1;§,ﬂ2_6] = Oa(S;X;S);[nl;S,ﬂ2_6];[[ﬂl;X;S,ﬂ4];hd,ﬂ6]°°4 =
= (corollary 6.1) e.a§[[ﬂ1;X,ﬂ4];hd,ﬂ6]°°Co

By combining parts 4, 5 and (i), (ii) above,we obtain

. = Sew.al)e .G .0t . . = Sovoay . .8 AT .
PZ’TZ Oa(s’X’S)’[ﬂl’S’ﬂ2—6]’Q2’Oc,b' P2,T2 - Oa(S,X,S)i['rrl,S,'rr2_6],Q2,Oc,a
is proved similarly. Thus we have PyiT,y = Oa(S;X;S);[nl;S’"2—6];Qé;0c = Q,.

7. QZ;TVH = (hypothesis) QZ;R = P3.
8. (1) [[wl;X,[[ﬂl;X,n4];hd,ﬁ6];conc];hd,[[w1;X,wé];tlgcar,nslgconc];conc =
= (theorem 6.4) [[ﬂlgx,ﬂéj;hd,ﬂ6]°°(;
[[ﬂl;X,NAJ;hd,[[ﬂl;X,ﬂél;tl;car,ﬁs];conc];conc =
= (theorems 6.3 and 6.4) [[ﬂ];X,nAJ;hd5w6]°=<;
. [[ﬂl;X;S,ﬂ4];hd,ﬂ5];C0nc .
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(ii) [ﬂl;X,[[ﬂl;X,w4];hd,ﬂ6];conc];t1 = (theorem 6.4)

[[ﬂl;X,ﬂéj;hd,ﬂ6]°°4;ﬂ6.
(iii) By part 6(ii), oa(s;X;S);[wl;s,n2_6] = -.-;[[wl;X,ﬂ4];hd,w6]o°C.

By combining parts (i), (ii) and (iii) above, we obtain

Py = 0,(55%;8)30m58,m, s
LmysX,mase,mysb, Ly sX58,m, I5€l, Llm 3X;8,m, 1shd, 5 ]5cone,me 1,

whence P3;T3 = [nl;S;X;S,nz;a,ﬁB;b,n4_6];Oa;R = Q3_



7.

1.
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CONCLUSION

The present investigation shows that:

A conceptually attractive framework for a mathematical theory of cor-

rectness of programs comprises:

1.1, The notion of execution of a program by introducing an idealized

interpreter.

1.2. An operational semantic function ¢ which abstracts the relevant

information from the computations defined by this interpreter.

1.3. A mathematical language (with semantic function m) in which to

express and derive properties of programs.

1.4. A translation 1% between programs and terms of this mathematical

language, i.e., a mapping satisfying
0(T) = m(£(T))

for every program T.

A theory of correctness of programs requires an operator describing
the interaction between programs and predicates; in the present theo-

"O 1"

ry this is the operator.

The "o" operator is crucial to an expedient axiomatization of the call-

by-value parameter mechanism.

The axiomatization of correctness proofs of recursive programs can be
applied to the axiomatization of recursive data structures; this leads

to a unified theory of recursive programs and recursive data.

Our system of proof is based on the minimal fixed point characteriza-

tion, as opposed to Floyd's method of inductive assertions [13]; the mini-

mal fixed point characterization descends from McCarthy's recursion induc-

tion [29]. We restricted ourselves to the axiomatization of first-order

programs with a particular parameter mechanism, call-by-value. Conse-

quently, the following problems remain open:
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. An axiomatization of call-by-value for higher-order programs.

. A comparison of formal systems for call-by-name, call-by-value and the

like. *) ‘

The equivalence of the minimal fixed point characterization with a gen-

eralization of the method of inductive assertions is proved by de Bakker
and Meertens in [3] in case of a simple language for recursive programs

with one variable.

Generalize this result to more complicated programming languages.

*)

An attempt towards a solution of this problem has been made in de Roever
[361.



APPENDIX 1: SOME TOOLS FOR REASONING ABOUT COMPUTATION MODELS

Definition A.1.1 below imposes an algebraic structure upon the set of com-
putation models relative to some initial interpretation % and some decla—
ration scheme D, thus making this set into an algebra. Next we propose an
alternative to our method of defining the operational interpretation of a
program scheme, an alternative which captures the whole structure of the
computations involved in executing a statement scheme. Then we prove that
certain transformations essential to the proofs of lemma 2.5, 2.6 and 2.7
are morfisms with respect to the algebra of computation models. These

lemmas then follow as simple corollaries of this fact.

DEFINITION A.1.1. Let CM be a computation model relative to some initial

interpretation 00 and some declaration scheme D.

a, If CM is a computation model for x VI;VZ v with Vl = R,Pj, (p + W],Wz)
or [W],.L.,Wh], then CM = CMI;CM2 with CMl

X Vl z and CM2 a computation model for z V2 y, where z is the interme-

diate state in the computation of VI;V2 described by CM, which results

a computation model for

from executing V, on input x.

1

b. If CM is a computation model for x (VI;VZ);V3 y, then CM = (CMI);CM2
with CM] a computation model for x VI;VZ z and CM2 a computation model
for z V, y, where z is the intermediate state in the computation of

3
(Vl;Vz);V3 described by CM, which results from executing VI;VZ on input x.

c. If CM is a computation model for x (p > VI’V2) v, then

(1) if oo(p)(x) is true, CM = (Oo(p) -> CMI’VZ) with CM1 a computation

model for x Vl Yo

(2) if Oo(p)(x) is false, CM = (Oo(p) > VI’CMZ) with CM, a computation

2
model for x V2 Vs

d. If CM is a computation model for x [Vl,..,,Vn] Yy seres¥ > then CM =

= [CM1’°"’CMh] with CM. a computation model for x P 7P i=1,...,0.
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Remark. With definition A.1.1 in mind, one may conceive of the following
notion of operational interpretation, which differs from the one defined in
def. 2.5:

The operational interpretation WD<S>(00) of a statement scheme S
relative to the initial interpretation % and the declaration
scheme D is the set

{cM l Ix,y[CM is, relative 0, and D, a computation model for x S yl}.

0
This definition captures the whole structure of the computations involved

in executing S and resembles the method of defining the semantics of MU as
given in def. 3.3, in that both wD and wD<S> are conceived of as functions.
Definition 2.5 of the operational interpretation 0(S) of a statement scheme
S relative to % and D can be recovered from wD<S>(00) by forgetting the
internal structure of the computation models constituting wD<S>(00) and pre-
serving the external input-output relationship of these models.

After defining the appropriate operations one can establish results such as:

]

¥<8,38,>(0g) ¥<8,>(04) 3¥<S9>(0)

Vb <(8385)384>(0g) = (¥<8,38,>(04))3¥<84>(0y)

0p<(p > 81,55)>(00) = (0g(p) > ¥<8,>(0),S;) v (05 (R) > §;,4,<5,>(04))

from which the proofs of parts b, ¢ and d of lemma 2.1 can be derived.

Let us now analyse how the notions "to identify" and "executable occur-

rence", defined in def. 2.6, relate té this way of structuring computation

models:
a. CM = CMI;CM2 :
oM, = <x, V, %, Vy eee x, VX0 CM1>,
“- cs, ——
CM, = <y, W, y, W, ... Wy CM2>, X4 =Y and

m m “mtl’?
4 cs >
2

™ =& <x, VﬁW] %y Vy3W, ..;ann;W] X 4l W, ¥, W, eee ymwmym-!-l’ CMl u CM2>.

A Cs] < cs* >
¢ 9 >
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It follows from the definitions that

(1) Two occurrences of some procedure symbol, which are both cohtained
in CMi’ identify each other w.r.t CMi iff the corresponding occurences
in CM, i.e., in csz or CMi’ identify each other w.r.t. CM, i = 1,2; an
occurrence of some procedure symbol contained in W, identifies also the

1

corresponding occurrences of this symbol in the n copies of W1 contained

N *
in ecs;.
1
(2) An occurrence of some procedure symbol contained in CMi is execut—

able w.r.t. CM, iff the corresponding occurrence in csz or CMi is

U

executable, i 1,2; these are the only executable occurrences.

M = (CMl);CM2 :

cM, = <xy V1 X, V2 eee XV X CM.>, V., = V;W for some statement

n n ntl’ 1 1

“ cs > schemes V and W,

CM, = <y, W, y, Wy o0 5 W Yo CM2>, X ., =Y, and

< - csz -
M = <x (Vl);w1 vy W - Yo Yo Toer? {CMI} U CM2>.
- CSZ ~>

It follows from the definitions that

(1) Two occurrences of some procedure symbol, which are both contained
in M, (or CM2) identify each other w.r.t. G, (or CMZ) iff these
occurrences (or, the corresponding occurrences contained in cs; or
CMZ) identify each other w.r.t. CM; an occurrence of some procedure
symbol contained in Vl or W] also identifies the corresponding oc~

currence of this symbol in (V1)5W1'

(2) An occurrence of some procedure symbol contained in CMl (or CM2) is
executable w.r.t. CMl (or CMZ) iff this occurrence as contained in
. . . * .
CM (or, its corresponding occurrence in cs, or CMZ) is executable

w.r.t. CM; these are the only executable occurrences.
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c. CM = (Oo(p) -> GMI’VZ) (the case CM = (Oo(p) >V GMZ) is similar):

l,

CMy = <y Wy vy Wy voe v W)y s CMp>,

CS]

2

= (p > w]’WZ) 7 Wl "; In Wﬁ In+1?

—— g, T———

1

CM]> and x = y,.

It follows from the definitions that

(1) Two occurrences of some procedure symbol which are both contained in

CM1 identify each other w.r.t. CM]

. * . .
in cs, or CMl identify each other w.r.t. CM; an occurrence of some

iff the corresponding occurrences

procedure symbol in W1 identifies also the corresponding occurrence

of this symbol in (p - wl’VZ)'

(2) An occurrence of some procedure symbol contained in CM1 is execut-
*

1
executable w.r.t, CM; these are the only executable occurrences.

able w.r.t. CM, iff its corresponding occurrence in cs; or CM] is

d. ¢M = [CM ..,CM#] :

1°°
M, = <x. ., V. . x, . V.
] 3.1 3,1 73,2 3,2
M = <X][V1’1,...,Vn’]]<x

. Xj,mj Vj,md Xj,mj+1’ CMj>’ 3= l,c0.,m,

1>’{CMI"“’CMn} >

beasX
1,ml+1’ >“n,mn+

and X = Xj’], 3 =1,...,n0.
It follows from the definitions that

(1) Two occurrences of some procedure symbol both contained in CMj iden~

tify each other w.r.t. CMj iff they identify each other w.r.t. CM,

j =1,...,n; an occurrence of some procedure symbol contained in

Vj ; as occurring in [Vl 1""’Vn ]] also identifies the correspond-
3 3 H

ing occurrence of this symbol contained in CMj’ 3= 1,...,0,

(2) An occurrence of some procedure symbol contained in CM& is execut—
able w.r.t. CMj iff it is executable w.r.t. CM, j = 1,...,n; these

are the only executable occurrences.

Next we define two transformations of computation models, Il and tz, which

are essential to the proofs of lemmas 2.5 and 2.6:

£
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In the following definition x, V. %, V, ... x_V_ x stands for the con-
171 72 "2 n n nt+l

stituent computation sequence of any model CM.

Let CM contain no executable occurrences of any Pj’ j € J, and Wj € SS be
for every j € J of the same type as Pj’ then tl(CM) is obtained from CM by

executing the following steps:

Step 1: Consider for every j € J all occurrences of Pj in CM identified by
occurrences of Pj in v,

Step 2: Replace all constidered occurrences by Wj, for all j e J.

For arbitrary CM, t2(CM) is obtained from CM by executing the following

steps:

Step 1: Comsider for every j € J all occurrences of Pj in CM identified by
oceurrences of Pj in Vl'

Step 2: Mark all those considered occurrences which are executable.

Step 3: Replace all other considered occurrences of Pj by Sj (with Pj ¢==Sj).

Step 4: Replace every combination ... X, P; X v Sj Kyp oo by ...

o . *
oo X Sj Xyg ton and every combination X Pj,s X Sj,S Xiyg oo

cos DY von X Sj;S Kpgo ooes where P§ denotes the marking of Pj
performed in step 2.

Transformations t and t, are morfisms w.r.t.the operations defined above

(in def. A.1.1), 1i.e.,

1

(1) &, (O, 50M,) £, (@15t (O1,),
£, ((CM,)3CM,) = (t,(@));5t, (M),
*)

£,((0y () > QLM = (04(p) > £, (@D, FW, /X1, ),

tl((OO(p) > W,CM)) (00(p) -> ﬁ[Wj/Xj]jeJ’tl(CM)) *) and

tl([CMl”"’CMp]) = [tl(CMl)’°"’tl(CMn)]’

*)
These formulae hold only in case W is closed.

£
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(2) t,(CM, 5CM,) = £, (CM);5t,(CM,),
(@50 = (6, (0M,))3E,(Ar,),
£,((0, () > ALW) = (0(@) » ty(@n,u-'Dy, *
£,((0, () > ,aM) = (0, W't (@) ™) and

t?_([CMI,..,,CMn]) [tZ(CMI),...,tZ(CMn)].
LEMMA 2.5 . Let S be a closed statement scheme, CM be a computation model
for x Sy containing no executable oceurrences oj’Pj, i e J, and ws e S8
be for every j € J of the same type as Pj’ then transformation £ 18 a mor—
fiem (in the sense indicated above) of the algebra of computation models
(defined in def. A.1.1) into itself, which transforms CM into a computation
model for SIW./X.1, ..

for SLW; /X315

Proof. By induction on the complexity of the statement schemes concerned.
We use the notation indicated above in our analysis of the notion "to iden-—
tify".

a. S=R, Re AU C (R ¢ X does not apply, S being closed): Obvious from

definitions 2.2 and 2.6,

b. 8 Pj: Does not apply as CM contains no executable occurrences of Pj'

c. § = Vl;wlz Step 1 of t results in considering for all j ¢ J those oc-

currences of Pj in CM which are identified by occcurrences of Pj in VI;WI'
These occurrences are:
(1) The occurrences of Pj in CM identified by occurrences of Pj in V].

These correspond exactly with the occurrences of Pj in CMl identi-

fied by occurrences of Pj in V1 in CM]’

{2) The occurrences of Pj in CM identified by occurrences of Pj in W] as

];WI. These are:
(2a) The occurrences of Pj in CM corresponding with the occurrences
p in CM2.

(2b) The remaining occurrences of Pj in cs? identified by occur~-

rences of Pj in W1 as contained in V];WI.

contained in V

of Pj in CM2 identified by occurrences of P, in W

These formulae hold only in case W is closed.
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Then step 2 is performed; the occurrences of group 1 above are replaced
by W. — this corresponds exactly with tl(CMl) - then the occurrences of
group 2a are replaced by Wj — this corresponds exactly with tl(CMz) -
and finally the occurrences of group 2b are replaced by W. — corres-—
ponding exactly with the extra occurrences of ﬁltwjlxj];gJ necessary for
the construction of t](CMl);tl(CMZ) from tl(CMl) and t](CMZ).
It follows that tl(CM) = tl(CMl);t](CMZ).
By the induction hypothesis t](CMl) and tl(CMZ) are computation models
for x V][Wj/Xj]j€J z and z W][W'J./Xj]jEJ y for appropriate z, whence, by
definitions 2.2 and 2.6, tl(CM) is a computation model for
—
(Vl;wl)[w5/xj]j€J.

d. 8§ = (Vl);wl: Step 1 of t,; results in considering for all j € J those
occurrences of Pj in CM which are identified by occurrences of Pj in
(Vl);wl‘ These are:

(1) The occurrences of Pj in CM, identified by occurrences of Pj inV,.

(2) The:occurrences of Pj in cs% or CM2 identified by occurrences of ;jin
W] - these correspond exactly with the occurrences of Pj in CM2
identified by occurrences of Pj in Wl in CM2.

(3) The occurrences of Pj in (V]);W].

Then step 2 is applied; the occurrences of group 1 above are replaced by

Wj -~ this corresponds exactly with tl(CM]) - then the occurrences of

group 2 are replaced by VG - this corresponds exactly with t](CMz) -

and finally the occurrences of group 3 are replaced by W. - correspond-

ing exactly with the occurrence of (ZGTS?W;SEWj/legiJ necessary for the

construction of (tl<CMl));tl(CM2) from tl(CMl) and tl(CMZ)'

It follows that ¢ (CM) = (t,(CM,));t, (CM,).

By the induction hypothesis tl(CM]) and tl(CMZ) are computation models

for x Vltwj/xj]jeJ z and z Wl[Wj/Xj]j€J y for appropriate z, whence, by

definitions 2.2 and 2.6, tl(CM) is a computation model for

/\'—/
((Vl)’wl)[wj/xj]jGJa

e. S=(p~>V

VZ) or S = [Vl"'

T .,Vn]: Similar to above.

COROLLARY: LEMMA 2.5.

*)

The Teader should not be confused in case lelJ.
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LEMMA 2.6". Let S be a closed statement scheme and CM be a computation
model for x S y, then t, i8 a morfism (in the sense indicated above) of the
algebra of computation models (defined in definition A.1.1) into itself,

which transforms CM into a computation model for x S[l:| y

Proof. By induction on the complexity of CM.
We use the notation indicated in our analysis of the notions 'to identify"

and "executable occurrence".

a. S=R, Re AuC (R e X does not apply, S being closed): Obvious from

definitions 2.2 and 2.6.

b. S = Pj: CM has the following form: <x Pj X Sj cee ¥, CM>.
+~—— cs'—>
Thus t2(CM) = <cs',CM>, as in step 1 only the first occurrence of Pj is
considered, which is executable, whence in step 2 this occurrence is
marked, step 3 does not apply, and step 4 results in the deletion of the

part P; X

];WIS Step 1 of t2

currences of Pj in CM which are identified by occurrences of Pj in V

c. S =V results in considering for all j ¢ J those oc-

1;W1,

These occurrences are:

1
These correspond exactly with the occurrences of Pj in CM, identi-

(1) The occurrences of Pj in CM identified by occurrences of Pj inVv,.

1

fied by occurrences of Pj in v, in CMIB

(2) The occurrences of Pj in CM identified by occurrences of Pj in W1 as

contained in V These are:

137
(2a) The occurrences of Pj in CM corresponding with the occurrences

of Pj in CM2 identified by occurrences of P. in W, in oM, .
(2b) The remaining occurrences of Pj in cs' identified by occur-

1
rences of Pj in W, as contained in V

1 1;wl, which are all non~

executable,

Next step 2 is performed: the executable occurrences of groups ! and 2a
above are marked, group 2b containing no executable occurrences.

Hence we obtain

* * * * * * * *
<xp VW, %y VosW eew x Vo5Wy x W gy Wy eow y W Voe? CM] U CM2>,
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with V;, W: and CM; indicating the result of marking the executable occur-

rences of Pj in V. , W, and CMi’ k=1,000,0, 1 =1,...,my i = 1,2, which

are considered in step 1.

Then step 3 is performed, whence we obtain

[1] [1] [l]
<Xl V [S /P. ]JGJ’ 1 [S /P. jjeJ’Wl .;;-X V [S /P ] 1
cSs s 00
1
% K% *%
. ) WIESj/Pj] 7179 2[5 /P ] .;;:y W [S /P. ]J 7 Yome1? CM1 UCM2 >,
CSZ ~>

. *
with Vk[Sj/Pj]jeJ’

the non—executable (unmarked) occurrences of Pj considered in step 1 by Sj’

in Vk’ Wl and CM sk=1,,0.,0, 1 =1,..,,m, i = 1,2,

The problem w1th the construct obtained in step 3 is that parts occur of

* *k L L. . .
wl[Sj/Pj]jeJ and CMi indicating the result of replacing

%*
the form ... zq V,Sj Z141 Pj z1+2 FIRREY v1o%?§1ng definition 2.4 of com—*
putation model (e.g., if V1 =W, = Pj’ then Wy SJ but W [s. /PJ]JEJ Pj)'

In step 4 these parts are deleted in order to obtain a proper computation
model.
Finally step 4 is performed:

Application of this step to csj* and CM?* results in

[1] [1] [l]
X, v [s /P.]. W X. V [s /P.]. W cee X, V [s /P 1. W X.
i, 1 j jed i, 1, j jed i, 1 jeJ 1S+1
and CM;,
with
* *
= ¥
tZ(CMl) <= v, [Sj/Pj]jEJ X; V [S /P, ]JeJ°" x, V. [Sj/Pj]jeJ X, +I’CM1>
1 1 2 2 s s s
by the induction hypothesis, whence V [S /P. ]JEJ VEl], X, = x and
1 1
= [l]
Xis X ,p° a8 the set of indices k for which parts V [S /P. ]JeJ’ 1 Feaq

are deleted from csl is the same set as the set of indices k for which

*
parts Vk[Sj/Pj]jeJ X, . 2re deleted from

R *
X vl[sj/Pj]jeJ [S /PJ]J 3 %a \' [S /P. JeJ X 41 the result of

applying steps 1, 2 and 3 to s .

%
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Application of step 4 to cs;* and CM;* results by the induction hypothesis

in
y. We [s /P ] . We [S./P.0. - ... V. W, [s /P 1. and CM!,
ip iy eJ J2 iy 377iT5ed i g jed J +1 2
the two constituent parts of tZ(CMZ)’ whence yjl i S yj =Y and
51] Elj. Thus we conclude that t (CM) = t (CM )t (CM ). As V[IJ 51] =
1
= (Vl;wl)[l] by definitions 2.2 and 2.6, tZ(CM) is a computation model for
S[l] .

d. § = (VI;VZ);VB’ (p » VI’VZ) or [Vl,...,Vn]; Proved similarly.

COROLLARY: LEMMA 2.6: Let CM be a computation model for x S y, with S

closed and with constituent sequence x; V| x, V, «oo x V. x .. If for

identifies an executable oc—

1]

some j € J at least one occurrence of Pj in v,

eurrence ofij, tZ(CM) 18 a computation model for x S y which contains

at least one executable occurrence of Pj less than CM.

is a

Proof. Follows from lemma 2.6" by a simple induction argument, as t,

morfism.

LEMMA 2.7. Let CM be a computation model for x Sy and S be closed. Then
(k)
y

there exists for some k a computation model for x S

Proof., By applying lemma 2.6 n times in succession one obtains a computa-—

tion model for x S[n] ys this follows from lemma 2.4 (S[m][l] = S[m+]]) and
the fact that, if S[m] is closed, S[m+1] is also closed.
Let 1 be the smallest number such that S[lj contains no executable occur—-

rences of Pj. This number exists as every application of lemma 2.6 de~
creases the number of executable occurrences of Pj’ if any. Then the con-
digiggs of lemma 2.5 are satisfied, whence some computation model for
[l]
[Q X.J.
/ j7ied
As by 1emma 2.4 8

exlstso

[1] _ o(1#1)

, it suffices to take 1+1 for k.
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APPENDIX 2: PROOFS OF MONOTONICITY, CONTINUITY AND SUBSTITUTIVITY FOR MU

LEMMA 3.1. (Monotonicity). Let J be any index set, {Xj}jeJ cX,0eTbe
syntactically continuous in all Xj’ j € J, and variable valuations v and

v, satisfy

2
(1) vl(Xj) < VZ(Xj), jed,

(2) VI(X) = VZ(X), XeX- {Xj}jeJ’

then the following holds:
$<0>(v,) ¢ ¢<0>(v,).

Proof. By induction on the complexity of o.
a. o e AuBu Cu X: Obvious.

b. o = 01;02, 9 U Oys g, N 02, o,

¢<ol;02>(vl) = ¢<ol>(él);¢<02>}vl) and <x,y> € ¢<cl>(vl);¢<oz>(vl) iff
Jz[<x,2> € ¢<ol>(vl) and <z,y> ¢ ¢<02>(v1)],

By the induction hypothesis, ¢<ci>(v1) E‘¢<ci>(v2), i=1,2,

Thus <x,y> € ¢<01>(v1);¢<02>(v1) implies <x,y> € ¢<cl>(v2);¢<02>(v2),
whence ¢<01;02>(v1) [ ¢<01;02>(v2) follows from the definitionms.

The cases ¢ = Gy U gy, 0; N0, and 51 are proved similarly.

c. 0= 5}: By syntactic continuity of ¢ in all Xj’ j eJ, no Xj occurs in
o, for any j ¢ J, whence ¢<01>(v1) = ¢<01>(v2)w
Therefore'¢<ol>(vl) = ¢<c]>(vl) = ¢<cl>(v2) = ¢<01>(v2).

d. 0= Xl"°Xn[cl’°°”°n];

M
$<o>(v,) =

n
(n{<v§(X1)>1=l | ¢<01>(v§) c vé(Xl), 1=1,...,n, and

VE(X) = VZ(X), Xe X~ {Xl””°“3xn}})k eos (a.2.1)

Let vé satisfy the conditions mentioned in (a.2.1).

Define V; by: V;(Xl) = V;(Xl), 1=1,...,n, and v;(X) = VI(X)’
X e X = {Xl,.«a,Xn}o

Then, the conditions for monotonicity, w.r.t. the index set J u {1,...,n},
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and v; and vé, are fulfilled, whence by the induction hypothesis:

¢<01>(V;) < (monotonicity) ¢<01>(V§)

In

Thus,

n
ﬂ{<v;(X1)>1=1 l ¢<01>(vi) < Vi(Xl), 1=1,...,n, and

vi(X) = vl(X),~X e X - {X

n
Eﬂ{<vé(X1)>1=1 I ¢<01>(vé) < vé(Xl), 1=1,...,n, and

1 — —
VZ(X) = VZ(X), X ¢ X' {x
whence

-
¢<“kX1"'XnLgl"'°’On]>(vl) [= ¢<ukX],..Xn[o],..,,cn]>(v2).

LEMMA 3.2. (Continuity). Let J be any index set, {X } e X, 0 T be
syntactzcally continuous in all XJ, jed, vand v, fbr all i € N, be
variable valuations satisfying, for i ¢ N and j « J,

1 Xo= uv v.X.),

(1) v( J) . 1( J)

3) vix) = v, (X) for X ¢ X - {X. }JGJ,

then the following holds:

d<o>(v) = U ¢<a>(v.).
i=0 t

Proof. >: By monotonicity (lemma 3.1).

in

¢ By induction on the complexity of o.
a. 0 e AuBu Cu X: Obvious.

b. ¢ = 01;02,01 U 0550, N 0,503
¢<01;02>(V) = ¢<G]>(V);¢<62>(V) = (induction hypothesis)

Ys ¢fo]>(vi);jgo ¢<62>(vj) =\igo jgo ¢<°1>(Vi);¢<02>(vj{’

—
by a property of relations. El

1 = <1 -
vz(Xl) VI(XI)’ 1 1,00

S0
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i:O ¢<c]>(vi);¢<02>(vi) c E] is obvious and
120 ¢<01>(vi);¢<02>(vi) 3‘51 follows from
¢<01>(vi);¢<62>(vj) c (monotonicity) ¢<Gl>(vmax(i,j));¢<02>(Vmax(i,j))'

o]

Thus, igo ¢<c];02>(vi) = ¢<01;02>(v).
The cases 0 = g, U0y, 0 00y and 51 are proved similarly.

. g = E}: By syntactic continuity of ¢ in all Xj’ j € J, no Xj occurs in

9 for any j € J, whence ¢<01>(v) = ¢<cl>(vi).

Therefore ¢<5}>(v) = ¢<01>(v) = ¢<Gl>(vi) = ¢<5}>(Vi) for all i € N,
whence ¢<ol>(v) = igo q><cl>(vi).

. 0= ukXI..,Xn[o],,.,,cn]:
i *0e) =
igo (n{<_vi(X1)>r11=1 | ¢<°1><V£) < Vi(Xl)’ 1=1,...,n, and
v]!L(x) =vi(X), XeX-{Xl,...,Xn}})k =
(h{<i§0 vix)>] | | for any ieN, ¢<o>(v]) € v}(X)),
1=1,...,0, and vi(X)==vi(X),
. X(EX"{Xl,o..,Xn}})k, , veo (2.2.2)
v
EZ

by a property of relations.
First we demonstrate that one can restrict oneself in (a.2.2) to inter-

. . T H ¥ - »
sectlonsmof unions of Vi(xl) such that vi(Xl) c Vi+1(X1)’ 1=1,...,n:
Let <v]3_>i=0 be a sequence consisting of valuations which satisfy for
every i € N, ¢<01>(vi) [ vi(Xl), 1=1,...,n, and vi(X) = Vi(X)’ for
XeX={X,....x}
Define <v'>7 _ as follows:

i i=0 "
. " = ¥ - " = !

For every i € N, vi(Xl) jgi vj(Xl), 1=1,...,n, and vi(X) Vi(X)’
Xe X~ {Xl’°°"Xn}°

This sequence of valuations satisfies the following properties:



|. For every 1 ¢ N, ¢<Gl>(v2) c vg(Xl), 1=1,...,n.

This can be deduced from the fact that, for all j =z i,

¢<01>(vg) < (monotonicity) ¢<01>(v3) = vj(Xl), 1=1,...,n.
2. For every i ¢ N, VE(Xl) c V;+1(X1)s 1 = 1y..0,m,
« n @ H -
3. igO Vi(Xl) c igo vi(Xl)’ 1 1,...,0.
_ < ® ' n . ' f . .

Therefore, as every n—tuple igO vl(X1)>1=1 with Vi g satisfying the
conditions mentioned above contains coordinatewise an n-tuple

0 n n . n.® . . ., . . .
<i£0 Vi(X1)>1=l with <vi>i=0 also satisfying these conditions, in addi
tion to the extra condition v;(Xl) c VE+I(X1), 1t=1,...,n, i ¢ N, one

can restrict oneself in (a.2.2) to k-th components of intersections of

the latter.

Define v" by v"(Xl) = .U
1=

XeX-~ {Xl,...,Xn}.

Then the conditions for continuity, w.r.t. the index set J u {1,...,n},

0 V;(Xl)’ 1=1,...,0, and v"'(X) = v(X),

o0

and v'" and <vg>i=0’ are fulfilled, whence by the induction hypothesis:

¢<01>(v") = (continuity) v ¢<Gl>(v€) c (point 1 above)
i=0

v;(Xl) = V"(Xl)’ for 1 = 1,...,n.

I < 8

i=0

Hence,

¢<ule...Xn[0],...,Un]>(v) =

]

(n{<v'(X1)>§1=1 ] ¢<01>(v') c v'(Xl), 1=1,...,n, and

viX) = vX), X € X - {Xl,...,xn}})k c

¢<ukX1,..Xn[01,...,an>(vi),

n
m
[

I <8

i=0
LEMMA 3.3. (Substitutivity). Let J be any index set, ¢ ¢ T, Xj e X and

T € T be of the same type for j € J, and variable valuations v, and v,
satisfy

(D) vl(X) = vz(x), X e X- {Xj}jeJ,

&



93

@) v (&) = ¢<t,2(v)), § e T,

then the following holds:

p<o>(v,) = ¢<c£rj/xj]j€J>(v2).

Proof. By induction on the complexity of o.
We only consider the case o = umxl...Xn[Ol,...,Un].

By definition,

ule...Xn[c],...,cn][Tj/Xj]jEJ =

= umY].. Y [o [Y /X]. 1= ] [Tj/Xj]jEJ*,...

[t./X.].

.o,anY /X]. 1= 1 R J J J J*]

with 3~ = J - {1,...,n} and Yl""’Yn relation variables different from Xj’

. ‘ . . . *
j € J , and not occurring in O k=1,...,n, OF Tj, jed.

Let
E1 =
(n{<v @ )>p g | 920> W] € v X)), k = 1,...,n,and
VT(X) = v](X), X e X- {Xl,...,Xn}})m,
E2 =
(nf<v} (@ | o<oy [Y, /%, Lo O €v((g), k= 1,...,n, and
vl(X) = vl(X), XeX~- {Y],..,,Yn}})m
and
E3 =
‘ n
(n{<vy (4>, | ¢<o 0¥, /%7, . "’nhTJ/X 1 x> (vy) € vy (1),

k=1,...,0, and v)(X) = v,(X), X ¢ X —'{Yl,...,Yn}})m.
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In order to prove ¢<G>(vl) = ¢<U[Tj/Xj]j€J>(v2), that 1s El = E3, we first

prove E2 = E3 and then El = E2:

st Let vj satisfy v)(X) = v,(X), for X e X - {¥;,...,Y }, and
¢<0£>(vé) < Vé(Yk)’ k=1,...,n.

Define vi by vi(X) = vy(X) for X ¢ X - {X } and v, (X ) = ¢<Tj>(vé)’
for j € J, and define v" by V"(X) =, '(X) for X e X - {X } eI and

1
"(X ) = ¢<T >(V ), for j ¢ J*

By the induction hypothesis, $<o, [y /X1]1 .. n>(v'i) = ¢<Gé>(v'2)-

As Xl""’X do not occur in o [Y /lel ,...,n’ ¢<Uk[Y1/X1]1=1,...,n>(vy) =
= oo LY Xy D

Moreover ¢<ok>(v2) < VZ(Yk) = vi(Yk), k=1,...,n, as

{XJ}JEJ n {Y ...,Yn} = @.

Thus ¢<0 [y /Xl]1 1 >(v;) [ v;(Yk), k=1,...,n.

Jl»

Furthermore vl(Xj) ¢<Tj>(vé) = (Yl""’Yn do not occur in Tj) ¢<Tj>(v2) =
=V, (X.), jed, and v;(X) = vé(X) = VZ(X) = (assumption) VI(X) for

X e X = {XJ}JEJ {Yl,...,Yn}, whence v; satisfies the conditions mentioned

in E2.
' n = ' n o
As <v1(Yk)>k=l <V2(Yk)>k=]’ we obtain EZ c E3.

o: Let v; satisfy vi(X)‘= VI(X)’ XeX- {Yl""’Yn} and

¥ T =
b<o [Yl/X1]1 ]’..'an;(v]) E_vl(Yk), k=1,...,n.
Define v2 by v (Yk) = v;(Yk), k = l,..f,n, and vé(X) = VZ(X), otherwise.
1 —_ = = 1
Now (1) vl(Xj) = Vl(Xj) ¢<Tj>(v2) (YI""’Yn do not occur in Tj)
¢<TJ>(V')9 j € J,
v - - = - -
(2) vi®) = v, (X)=v,(X) vy(X), X € X {X. }JEJ {¥,,...,Y }, and
(3) v;(Yk) = Vé(Yk)’ k = 1,.. s,y
imply together that the induction hypothesis may be applied, whence

N = v
o< LY /% 1y AL/ Ry Yy () = s LY Xy ()
= = 1
Since o, [y /X1 1=1,...,0 [T./X.]. 3 ck[Y1/X1]1 1 [Tj/Xj]jeJ* o s
as no Xlgg.,,X occur in % [Y /X1 1=1,...,n°
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p<op>(vp) = ¢<oy LY /X dy L 27D = vi(Y) = v (%)

follows, k = 1,...,n. As VE(X) = vz(X), XeX- {Yl""’Yn}’ it can be de-

duced that E2 2 E3.

5: Let v? satisfy ¢<ck>(vY) c vT(Xk), k =1,...,n, and v?(X) = VI(X)’

XeX-~- {Xl,...,Xn}.

Define vi by vi(Yk) = vY(Xk), k=1,...,n, and v;(X) = v](X),

XeX- {Yl,...,Yn}.
. . . 1] - - ¥
By the induction hypothesis, ¢<0k>(vl) ¢<0k[X1/X1J1=1,...,n>(vl)'
"y = 1" " = 1
Therefore, ¢<ok[Y1/X1]1=l,...,n>(v1) ¢<0k>(v1) E_vl(Xk) Vl(Yk)’
k=1,...,n. As v{(X) = vl(X), XeX- {YI""’Yn}’ it can be deduced that
E].i E2 holds.

<t As Gk[Yl/X1]1=l,...,n[X1/Y1]1=1,...,n = o, the proof of this part is

similar to ‘the proof above.
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APPENDIX 3: PROOFS OF THE ITERATION AND MODULARITY PROPERTIES

LEMMA 4,10, (Iteration, Scott and de Bakker [41], Bekic [4]).

- X.oooeX, X.X.

| u3[1 ' il S IR

= uX.lo.lu.X
u 3% Ul

with I

j
1708 5-17541

. J
= {1,000sj=1,3%+1,...,n}.

1...Xn[ol,.,.,cj_l,c.,cj+1,...,on] =
X. X "'Xn[gl"'"O'—l’oj+l""’0n]/x

Proof. The proof of this lemma is copied from Hitchcock and Park [ 18]. For

ease of notation, we establish this lemma just for the case n

eral version, for n # i, should be clear.

We use the following notation:

M = ujxl...XnXEGI,...,on,c], j=1,2,...,n+l,
ﬁj(X) = }ijl.e.Xn[O'l,...,O'n], j=1’2’-oo’n,
u = uXlo(f (X),..., 0 (X,X) 1,

and prove

Fow=u 0G0 = Hyseewot (W) = wp .

By the minimal fixed point property, we have

(1 -
2) |-
3 |
4) |

Then

i) |

Oj(ul,u2,~o~sun,un+l) S_Uj s 3=1,2,5.0.,m,

) Su

n+l ?

0(“12“2"’ e o allnal-ln_*_l

0, (@ ()5 enes B (0)50)

In

ﬁj(“)a'j=la2:'°°sn’

In

o (T (W) seee, @ (W)5H) U

ﬁj(un+1) E_Ujs j=1,2,...,n,

i; the gen-

applying an n-ary minimal fixed point argument to the inequalities (1),

noting that

. ) = quI.Q,Xn[GI(Xl,...,Xn,u

j T+l n+l

)’°°”Gn(Xl’°°"Xn’u

)1,

n+l
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(ii) from (i) and monotonicity of ¢

) TS 1N € TR IS T ),

oo ey, S ) S 0(Hy sHyseensH

n+l n+l

)cu

)’un“l'l — n+]

so i‘ U(Ul(un+1),---,un(un+1

and |- wklo (B, (X), ..., 0 (X),X)] u

point argument, whence

| n

1 by a l-ary minimal fixed

|— M2 Hae

follows.

(iii) ]' Lln+1 EU,UI Eﬁl(U)’-"’u _C_ﬁn(U):

n
follows directly from (3) and (4) by an (n+1)-ary minimal fixed point
argument. The result follows then from inequalities (i), (ii) and

(iii).

COROLLARY 4.4, (Modularity). For i = 1,...,n,
- ”in"Xh["l(Tll(Xl"”’Xn)""’Tlm(xl""’xn))""’
Gn(Tnl(Xl"'"Xn)"°"Tnm(Xl""’Xn))] =
= Oi(uilxll"'XnmLTll(cl(Xll""’le)"'°’On(xnl"'°’Xnm))’
..,,Tnm(...)],...,uim...).

Proof.

(1) n=1andm= 1.
First we prove uIXY[o(Y),T(X)]==(iteration) pXlo(uYLt(X) D1 =
= (fpp) uXLo(1(X))]. Then we have ulXY[O(Y),T(X)] = (fpp)
c(uZXYEG(Y),T(X)]) = (iteration) o(uY[t(uXLo(Y)1)I) = (£pp)
o(uYLt(o(¥))]) = o(uXlt(c(X))]), whence the result.

(2) n = 1. By induction on m. Induction step:
a. uX[G(T](X),...,Tm(X))] = u]Xl...Xm+1[U(X ""’Xm+l)’Tl(Xl)"'°’Tm(Xl)]'
Proof. ulxl"'Xm+1[G(X2""’Xm+1)’T1(Xl)"'”Tm(Xl)] = (iteration)
ulxl[o(ulxz...Xm+1[T](X1),...,Tm(X])],...,um...)] = (fpp)
qu[O(Tl(Xl),m..,Tm(Xl))].
b. ulxl"°Xm+l[G(X2”'"Xm+l)’Tl(Xl)"°"Tm(Xl)] = (fpp)

c(ule...Xm+1[0,11,...,rm],.,.,um*IXl...Xm*l[o,TI,O..,Tm]).

£
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. u.X .
¢ Ll1 1

pi_]X]...XmLTI(G(Xl,...,Xm)),...,rm(G(Xl,...,Xm))],Zglsn.

..Xm*IEO,Tl,...,Tm] =

Proof. E.g., 1 = 2,

ule"'Xm+l[0’T ,...,Tm] = (iteration)

UXZETI(“1X1X3"}Xm+l[0’T2""’Tm])] = (iteration and fpp)
qu[Tl(ulefo(Xz,rz(Xl),...,Tm(Xl))])] = (induction hypothesis)
UXZETI(O(XZ’UIYI"°me1[T2(c(X2’Yl"'"’Ym))""’
Tm(U(XZ’Yl"'"’Ym))]""’umrl"'))] = (iteration)

ulXIXZ...Xm[Tl(o(Xl,...,Xm)),...,Tm(o(Xl,...,Xm))].
Combination of a, b and c yields the desired result for n = 1.

(3) By induction on n. Induction step: Let

My E.uixl"'Xn[Gl(Tll(Xl"'"Xn)""’Tlm(Xl""’Xn))"°'

e..,Gn(rn](Xl,...,X.n),...,Tnm(Xl,...,Xn))],

)
[H]

uiXI...XnXll...Xnmﬁcl,.,.,on,rll,..,,Tnm],

L

M “(i-l)*n+jxl1“"Xnm[T11(“1(X11""’le)"°°’Gn(xnl""’x )3 P
- -00’T (o.c)]’

nm
coX XX To (R e Xy )0 ees0 (K psee X ),

LITLCIPIRRYS SDPRPINSINN ¢ SPRPS SPR B

1

=)

ij = Mimn+iS

a. yu, = ﬁi, i=1,...y0n. By induction. E.g., consider i = 1,

(iteration)

i
—
L]

qufol(u]le...anll..@Xnm[Oz,...,cn,Tll,e..,tnm],...,uln.@.)1= (fpp)

UXIEGI(TIl(Xl’u1X2’°'XnXll"'Xnm[GZ""’On’T11’°°°’Tnm]""
°.o,un_lxz,.,Xnm[..,])y.,.,Tlm(m..))] =
UXIEOI(TIl(Xl’“lX2°"XnXZI'“’Xnm[02’°"’On’TZI”°°’Tnm]’°”’
RTINS ST S SPPRES PRI F SN I B
by repeated application of iterationm,
seo = {(induction hypothesis)
uX][Gl(Tll(Xl,uIXZ.,an[Oz(TZI(Xl,..,,Xn),.a.,rzm..u)ﬁa..,on(...)],,..
°”’un-lxz'”'Xn[°“°])’°"’rlm('°°)] = (iteration)
U]»
b. “ij = uija Similarly.
Hence uy o= (part a)ui = (fpp)gi(uil"“°’“im) = (part b)ai(“il”“"”im)°

F3
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