
AFDELING INFORMATICA

ltJ. P. de ROEVER

stichting

mathematisch

centrum

ID 1/74

OPERATIONAL, MATHEMATICAL AND AXIOMATIZED SEMANTICS
FOR RECURSIVE PROCEDURES AND DATA STRUCTURES

~
MC

FEBRUARY

2e boerhaavestra_at 49 amsterdam

PJun:te.d a,;t :the. Mathe.ma.Uc.a.t Ce.n:t'1.e., 49, 2e. BoeJihaaveo.tJuta:t, Amo:teJui.a.m.

The. Mathe.ma.Uc.al. Ce.n:t'1.e., 6ou.nde.d :the. 11-:th 06 Fe.bfl.uevz.y 1946, -iA a n.on
pfl.o6U i.n6.ti...tu.,ti,on cumi.n.g a,;t :the. pfI.omoUon. 06 pU!l.e. mathe.ma.UC6 and ..l.t6
a.pp.U.c.a.Uon/.1. I;t -iA .6pon6ofl.e.d by :the. Ne.:thw.a.nd.6 Govell.n.me.n:t .thfl.ou.gh .the.
N e.:thw.a.n.d.6 Ofl.g ani.za.Uo n. 6 ofl. :the. Advan.c.e.me.n..t o 6 PU!l.e. Reo e.evz.c.h (Z • W. 0) ,
by :the. Muni.c.i.pali.ty 06 Am-0.teJidam, by :the. Uni.ve.MU.y 06 Am-0.teJidam, by
:the. Ffl.e.e. Uni.ve.MU.y a,;t Amo:teJidam, and by i.ndu..6.tlueo.

ACM - Computing Reviews - category: 5.24

AMS (MOS) subject classification scheme (1970): 02J10, 68AOS

ABSTRACT

The language PL for first-order recursive program schemes with call-by-value

as parameter mechanism is developed, using models for sequential and indepen

dent parallel computation. The language MU for binary relations over carte

sian products which has minimal fixed point operators is formally defined

and the validity of the monotonocity, continuity and substitutivity proper

ties and Scott's induction rule is proved. An injection between PL and MU
is specified together with the conditions subject to which this injection

induces a translation. Then MU is axiomatized using a many-sorted generali

zation of Tarski I s axioms for binary relations,. Scott's induction rule and

fixed point axiom, and new axioms to characterize projection functions,

whence, by the translation result, a calculus for first-order recursive

program schemes is obtained. Next we define an operator composing relations

with predicates, the so-called " 0 "operator, relate the properties of this

operator axiomatically to the structure of the relations and predicates

composed, and demonstrate the relevance of this operator to correctness

proofs of programs in general and proofs involving the call-by-value para~

meter mechanism in particular. Axiomatic proofs are given.of numerous pro

perties of recursive program schemes, some of which involve different mo

dular decompositions of a program. Our calculus is then applied to the

axiomatic characterization of the natural numbers, lists, linear lists and

ordered linear lists, and used to prove many properties relating the head,

tail and append list-manipulation functions to each other. Finally both

an informal and an axiomatic correctness proof is given of the well-known

recursive solution of the Towers of Hanoi problem.

,,

ACKNOWLEDGEMENTS

First of all I am grateful to J.W. de Bakker, Robin Milner, David Park

and Dana Scott, who, by their respective works made my research in this di

rection possible.

I am deeply indebted to J.W. de Bakker for his continuous help, advice and

criticism.

The original incentive which led to this work arose out of the lectures of

E.W. Dijksta, C.A.R. Hoare and N. Wirth at the International Summer School

on Program Structures and Fundamental Concepts of Programming, organized

by F.L. Bauer, H.J. Helms and M. Paul in 1971.

I thank (in alphabetical order) P.C. Baayen, Peter van Emde Boas, Joost

Engelfriet, Michael Gordon, Peter Hitchcock, Giles Kahn, Erik Krabbe,

Robin Milner, Maurice Nivat, David Park and Paul Vitanyi for their various

suggestions, and Astrid Schuyt-Fasen for the Sisyphean labor of typing my

arduous manuscript.

CONTENTS

O. INTRODUCTION

0.1. Objectives

0.2. Structure of the paper

0.3. Related work

1 . A FRAMEWORK FOR PROGRAM CORRECTNESS

I.I. Introduction .
1.2. A frconework for progrcon correctness

1. 3. The formulation of specific correctness properties

progrcons

2. THE PROGRAM SCHEME LANGUAGE PL

2. 1. Definition of PL

2.2. The union theorem

3. THE CORRECTNESS LANGUAGE MU

of

I

III

V

4

7

10

16

3. 1. Definition of MU 24

3.2. Validity of Scott's induction rule and the translation

theorem 29

3.3. Rebuttal to Manna and Vuillemin on call-by-value 35

4. AXIOMATIZATION OF MU

4. I. Axiomatization of typed binary relations 36

4.2. Axiomatization of Boolean relation constants 38

4.3. Axiomatization of binary relations over cartesian products 40

4. 4. Axiomatization of the "µ • " operators 45
1,,

5. APPLICATIONS

5.1. An equivalence due to Morris

5.2. An equivalence involving nested while statements

5.3. Wright's regularization of linear procedures

5.4. Axiomatization of the natural numbers

5.5. The primitive recursion theorem

49

51

52

53

57

6. AXIOMATIC LIST PROCESSING

6.1. Lists3 linear lists and ordered linear lists

6.2. Properties of head and tail

6.3. Correctness of the TOWERS OF HANOI

59

65

6.3.a. Infoy,rrzal part 68

6.3.b. An axiomatic correctness proof for the TOWERS OF

HANOI 71

7 . CONCLUSION 77

APPENDIX 1: SOME TOOLS FOR REASONING ABOUT COMf'UTATION MODEL~ 79

APPENDIX 2: PROOFS OF MONOTONICITY, CONTINUITY AND SUBSTITUTIVITY 89

APPENDIX 3: PROOFS OF THE ITERATION AND MODULARITY PROPERTIES 96

REFERENCES 99

I

O. INTRODUCTION

0.1. Objectives

The objectives of the present paper are to provide a self-contained

description of :

1. A conceptually attractive framework for studying the foundations of

program correctness.

2. An expedient axiomatization of the properties of first-order recursive

programs with call-by-value as parameter mechanism.

Ad 1.

In reasoning about programs and their properties one is always con

fronted with the following two aspects:

1.1 A program serves to describe a class of computations on a possibly

idealized computer. In consequence, a prograrmner always conceptualizes

its execution. Whether this conceptualization figures on the very con

crete level of bit manipulation or on the very abstract level of an

ALGOL 68 machine, it always uses some model of computation as vehicle

for the process of understanding a program. (However 1 the level on

which this conceptualization takes place does matter when considering

the ease with which one reasons about the outcome of a program: the

less the amount of detail necessary to understand the operation of a

program, the better the insight as to whether a program serves its

purpose).

l.2 If we abstract from this variety in understanding a program, we arri

ve at the relational structure which embodies the mathematical essence

of that program: its properties.

This leads one to consider two notions of meaning:

operational and mathematical semantics.

How do these notions relate?

II

First one has to chose a language, whose operational semantics are defined

by some interpreter. Then one decides which properties of the computations

defined by this interpreter to investigate. Finally one gives an indepen

dent mathematical characteriztion of these properties.

Our choice has been in this paper

a. To introduce an idealized interpreter for a language for first-order

recursive program schemes with caZZ-by-vaZue as parameter mechanism

(first-order recursive programs manipulate neither labels nor proce

dures as values).

b. To consider the input-output behaviour of programs as property subject

to investigation.

c. To use Scott's minimal fixed point characterization for the input

output behaviour of recursive procedures in the setting of binary

relations and projection functions.

However, other choices are very well possible, e.g., Bekic [5],

Blikle [6], Kahn [2Il and Milner [32] incorporate also the intermediate

stages of a computation into their mathematical semantics. *) This does not

necessarily imply that then all properties of a computation have been taken

into account (whence equivalence becomes equality). For instance, the two

sequences (A
1

(A
2
A

3
)) and ((A

1
A

2
)A

3
) may be considered equivalent, as their

execution amounts to executing the same elementary statements in the same

order: first A
1

, then A
2

and finally A
3

, although these elementary state

ments are differently grouped together.

Ad 2.

Once the appropriate mathematical semantics have been defined, a pro

per framework for proving properties of programs is obtained. As the proofs

of these properties may be quite cumbersome and lengthy, one might wish to

investigate into the possibilities of computer assisted proofs, cf. King

[23], Milner [31] and Weyrauch and Milner [45]. One then has to caZcuZate

*) A possible approach in this direction is suggested in appendix 1.

III

the correctness of a program, whence a formal system is needed. Our system

is an extension of the one given in de Bakker and de Roever [2] in that we

consider binary relations over cartesian products of domains, i.e., our

domains are structured.

Other formal systems are considered in Milner [31], which axiomatizes

higher order recursive functionals with call-by-name as parameter mech

anism, and Scott [40], which contains an axiomatization of the universal

:>..-calculus model called "logical space".

0. 2. Structure of the paper

Chapter 1

Expression of properties of programs as properties of relations. Introduc

tion to the correctness operator 11011 between relational terms and predi

cates: ~ satisfies X0 p iff X terminates for input ~ with output n and out

put n satisfies p.

Chapter 2

Formal definition of PL, a language for first-order recursive program

schemes with call-by-value as parameter mechanism, which allows for mutual

ly dependent recursive declarations. Rigorous investigation of the input

output behaviour o of the program schemes of PL, consisting of proofs for

(1) a is a homomorfism with respect to the algebraic structure of PL,

(2) the main theorem, the union theorem, using monotonicity, substitu

tivity and transformation of a computation into a normal form, (3) the

modularity property, using the minimal fixed point property; the modularity

property relates to the modular design of program schemes and is applied to

yield a two-line proof for the tree traversal result of section 4.5 of

de Bakker and de Roever [2].

This chapter is a generalization of chapter 3 of de Bakker and Meertens

[3].

IV

Chapter 3

Form.al definition of MU, a language for binary relations over cartesian

products, which has "simultaneous" minimal fixed point operators. Rigorous

investigation of the mathematical semantics of MU, consisting of proofs

for (1) the monotonicity, substitutivity and continuity properties, (2)

the union theorem (3) validity of Scott's induction rule (4) the trans

lation theorem, which relates the input-output behaviour o of the recur

sive program schemes defined in chapter 2 to the mathematical interpreta

tion of certain terms of MU. Rebuttal to Manna and Vuillemin [27] on the

subject of call-by~value.

Chapter 4

Axiomatization of MU in four successive stages: (I) a many-sorted version

of Tarski's axioms for binary relations; derivation of, amongst others, the

fundamental lennna r R;S n T = R; (R;T n S) n T, (2) axiomatization of

boolean relation constants; derivation of the properties of the 11
0

11 oper

ator, (3) axiomatization of projection functions; derivation of another

characterization of the converse of a relation, involving the application

of the conversion operator to projection functions, but not to that rela

tion, (4) axiomatization of the minimal fixed point operatorsµ., resulting
l.

in a calculus for first-ord,er recursive program schemes with call-by-value

as parametey,,nechanism; derivation of the monotonicity, fixed point, minimal

fixed point, iteration and modularity properties; statement of a result on

functionality of terms.

This chapter is a generalization of chapter 4 of de Bakker and de Roever

[2].

Chapter 5

Application of the calculus for recursive program schemes developed in

chapter 4 to the form.al derivation of (I) an equivalence due to Morris

[33], (2) a property involving nested while statements, contained in sec-

V

tion 5.1 of de Bakker and de Roever [2], using modular decomposition and

simultaneous µ-terms, (3) the regularization of linear procedures follow

ing Wright [47]. An applied calculus for the natural numbers N featuring

an improved axiom system for Nanda derivation of the characterizing

property of the equality relation between natural numbers.

Chapter 6

Formal list manipulation, applied calculi for lists, linear lists and

ordered linear lists. Linear lists are a special case of ordered linear

lists. Proofs for (1) a characterization of termination of and associa

tivity of the concatenation function with ordered linear lists as argu

ments, (2) many properties relating the head, tail and concatenation func

tions with ordered linear lists as arguments to each other, (3) both in

formal and formal versions of correctness'of the TOIJ)ers of Hanoi program.

Chapter ?.

Conclusion consisting of (1) a listing of the four main (technical) accom

plishments of this paper and (2) three open problems.

0.3. Related work

First we discuss the relational approach to program correctness.

Dominant in this approach is the minimal fixed point characterization,

which is initiated by Scott and de Ba~ker in [41], elaborated by de

Bakker in [1,48] and crossbred with Tarski's algebra of relations [43] in

de Bakker and de Roever [2] to yield an axiomatic framework for proving

equivalence, partial correctness and termination of first-order recursive

program schemes with one variable. The present paper amplifies on the lat

ter in that (1) the restriction to one variable is removed by considering

arbitrary subdivisions of the state and (2) the distinction on the one

hand and the connection on the other between operational and mathematical

semantics has been clarified. In de Roever [36] relational calculi are

developed for recursive procedures, of which each parameter may be either

VI

called-by-value or called-by-name, with the restriction that at least one

parameter is called-by-value; in case all parameters are called-by-name the

A-calculus oriented approach of Manna and Vuillemin [27] should be used.

Subdivisions of the state are incorporated within the relational framework

by considering relations over cartesian products of domains; these were

introduced in unpublished work of Milner [30] and Park [35].

The connection between induction rules and termination proofs is described

by Hitchcock and Park in [18] and elaborated in Hitchcock's dissertation

[17], which also contains a correctness proof of a translation of recur

sive programs into flowcharts with stacks and clarifies the notion of re

presentation of (recursive) data structures.

Ma.zimal fixed points, introduced by Park in [34], are applied in

Mazurkiewicz [28] to obtain a mathematical characterization of divergent

computations and may lead to the axiomatization of Hitchcock and Park's

results within an extension of our framework.

In a different setting Blikle and Mazurkiewicz [7] also use an algebra

of relations to investigate programs.

The equivalence between the method of inductive assertions and the

minimal fixed point characterization is the subject of de Bakker and

Meertens [3]. In general, the number of inductive assertions required to

characterize a system of mutually dependent recursive procedures turns out

to be infinite; however, in the regular case this number is finite, as

proved in Fokkinga [50]. The completeness of the method of inductive as

sertions for general recursive procedures, as opposed to the merely regular

ones, is the subject of de Bakker and Meertens [49].

The relation between the minimal fixed point characterization and

various rules of computation is studied by Manna, Cadiou, Ness and

Vuillemin in a number of papers: Manna and Cadiou [25], Manna, Ness and

Vuillemin [26], Manna and Vuillemin [27], Cadiou [9] and Vuillemin [44].

In section 3.3 we demonstrate that Manna and Vuillemin are mistaken in

their conclusion that call-by-value does not lead to the computation of

minimal fixed points; de Roever [36] explains the reason why.

VII

The distinction between operational and mathematical semantics and the

need for mathematical semantics has been convincingly argued in Scott

[38,39] and Scott and Strachey [42].

Rosen [37] studies conditions under which nomal foms for computa

tions exist; implicitly, normal forms are used in appendix 1 to derive the

"difficult" half of the union theorem.

The works of Dijkstra [10,11], Hoare [19,20] and Wirth [46] relate to

the present paper in that we provide a possible axiomatic basis for some

techniques of structured prograIIlllling; e.g., our correctness operator 11
0

11

is independently described in Dijkstra [12].

I • A FRAMEWORK FOR PROGRAM CORRECTNESS

I. J. Introduction

This report is devoted to a calculus for recursive programs written in

a simple first-order programming language, i.e., a language in which

neither procedures nor labels occur as values.

In order to express and prove properties of these programs such as equiva

lence, correctness and termination, one needs a more comprehensive language.

We shall abstract in that language from the usual meaning of programs

(characterized by sequences of computations) by considering only the input

output relationships established by their execution.

Thus we are interested only in the binary relation described by a program,

its input-output behaviour:

the collection of all pairs of an initial state of the memory, for

which this program terminates, and its corresponding final state of

the memory.

EXAMPLE I.I. Let D be a domain of initial states, intermediate values and

final states.

a. The undefined statement L: goto L describes the empty relation n over D.

b. The dumrrry statement describes the identity relation E over D.

c. Define the composition R1;R2 of relations R1 and R2 by

In order to express the input-output behaviour of the conditional if p
-1

then s
1

else s2 one first has to translitterate p: Let n1 be p (true)

and n
2

be p-l (false) then the predicate pis uniquely determined by the

pair <p,p'> of disjoint subsets of the identity relation defined by:

<x,x> E p iff x E n1, and <x,x> E p' iff x E n2• This way of looking at

predicates is attributed to Karp [22]. If Riis the input-output behav

iour of S., i = 1,2, the relation described by the conditional above is
l.

p;R1 u p' ;R2.

2

d. Let TT. : Dn + D be the projection fwiction of Dn on its i-th component,
1

i = 1, ... ,n, let the converse R of a relation R be defined by
V

R = {<x,y>

Consider

<y,x> ER} and let R1, ••• ,Rn be arbitrary relations over D.

n • • • n
...,

R "TT n' n

This relation consists exactly of those pairs <x,<y 1 , ••• ,yn>> such that

<x,y.> ER. for i = 1, ••. ,n. Thus(*) terminates in x iff all its com-
1 1

ponents Ri terminate in x. Observe the analogy with the following: The

evaluation of a list of parameters called-by-value terminates iff the

evaluation of all its constituent actual parameters terminates. This

suggests the possibility of describing the call-by-value parameter mech

anism relationally, an idea which will be realized in chapters 2 and 3.

Note that the input-output behaviour of recursive procedures has not been

expressed above; this will be catered for by extending the language for

binary relations with minimal fixed point operators, introduced by Scott

and de Bakker in [41].

Once the input-output behaviour of a program has been described in rela

tional terms, its correctness properties should be proved within a relation

al framework, e.g., properties of conditionals such as listed in McCarthy

[29 J are proved as properties of p; R1 u p' ; R2 •

Suitably rich programming- and relational languages, called PL and MU, and

a precise formulation of the connections between the two by means of a

translation will be specified in the next section and will justify that the

axiomatization of MU results in a calculus for recursive programs.

The problem which correctness properties of programs can be formulated

within MU will be discussed in section 1.3 and is closely related to the

expressiveness of this language itself.

EXAMPLE 1.2. With Das above, let the wiiversal relation Ube defined by

u =DX D.

a. R1 s R£ and R2 s R1 together express equality of R1 and R
2

, and will be

abbreviated by R1 = R2• If programs s1 and s2 have input-output behav

iour R
1

and R
2

, respectively, then s
1

and s
2

are called equivalent iff

Rl = R2.
V

b. E ~ R;R and E ~ R;U both express totality of R.

c. R;R ~ R expresses transitivity of R.

d. R;R ~ E expresses that R describes the graph of a function, i.e., funa

tionaZity of R.

V

e. R;R n E = {<x,y> <x,y> € E and <x,y> E R;R}

= {<x,y> x = y and 3z[<x,z> €Rand <z,y> ER]}

= {<x,x> I 3z[<x,z> ER]}.

V

Hence R;R n E determines that subset of E which consists of all pairs

<x,x> such that there exists some z with <x,z> ER: this indicates a

correspondence with a predicate expressing the domain of convergence
v

of R. Note that R;R n E = R;U n E.

3

f. Let p ~ E. Then p;U n U;p ~ p expresses that p contains one pair <a,a>

only. This can be understood by deriving a contradiction from the assump

tion that both <a,a> E p and <b,b> E p for different a and b: for that

implies that both <a,b> E p;U and <a,b> E U;p, whence <a,b> E p;U n U;p

and therefore <a,b> E p for different a and b, contradicting p ~ E. This

requirement therefore states the correspondence of p with the character-
*) istic function of an atom.

The axiomatization of MU proceeds in several stages.

First a sublanguage for binary relations over cartesian products is axiom

atized by adding the following two axioms to typed versions of Tarski's

axioms for binary relations (see [43]):

n • Ill • n
V

1T '7r = E n' n

R1 ; SI n • • • n R • S n' n

*) This observation is due to Peter van Emde Boas.

4

with n. denoting the projection function of an n-fold cartesian product on
1.

its i-th component, i = 1, ••. ,n, and Ethe identity relation over this

product.

In the resulting formal system one can derive properties such as

R = (R;R n E);R, obtained from example 1,2.e, and R1;TI1 n R2;i2 =
= (R1;R1 n E);(R2;R2 n E);(R1;¥1 n R2 ;TT 2), obtained by combining examples

l • 1 • d and 1 • 2 • e •

Secondly we axiomatize the minimal fixed point operators by (1) Scott's in

duction rule and (2) an axiom stating essentially the fixed point property

of terms containing these operators. Both of these were formulated for the

first time in [41].

The addition of further axioms to the system for MU yields various

applied calculi, used, e.g., for the characterization of a number of spe

cial domains such as: finite domains with a fixed number of elements

(axiomatized below), finite domains ([17]), natural numbers (chapter 5) and

various kinds of li_sts (chapter 6).

EXAMPLE 1.3. Following example 1.2.f an atom a is characterized by

a= E and a;U n U;a ,S:: a.

Now D contains precisely n elements iff E ,S:: D x Dis the disjoint union of

n atoms a 1, .•• ,an, i.e., iff

(1) a. ;U n U;a. .S:: ai' i = l ,e •.• ,n,
l. l.

(2) al u a2 u u a = E, n

(3) a. n a. = Q, < i < J < n.
l. J

I • 2. A framework for program correctness

In the previous section we discussed program correctness as follows:

Starting with a scheme T, one considers its input-output behaviour and re

alizes that this is a relation, whence its properties should be expressed

and deduced within a relational framework.

The present section presents an outline of the formalization of this point

of view as contained in chapters 2 and 3.

In section 2.1 we define PL, a language for first-order recursive program

schemata.

5

First-order recursive program schemata are abstractions of certain classes

of programs. The statements contained in these programs operate upon a

state whose components are isolated by projection functions; a new state is

obtained by (1) execution of elementary statements, the dummy statement or

projection functions (2) calls of previously declared and possibly recur

sive procedures (3) execution of conditional statements (4) the parallel

and independent execution of statements s1, .. ; ,Sn in the caU-by-va'lue

product [s
1

, .•• ,Sn], a novel construct which unifies properties of the

assignment statement and the call-by-value parameter mechanism and allows

for the expression of both of these concepts and (5) composition of state

ments by the";" operator.

The definition of the operationai semantics of these schemata involves an

abstraction fro~ the actual processes taking place within a computer by

describing a mod,e'l for the computations evoked by execution of a program.

This leads to the characterization of the input-output behaviour or opera

tiona'l interpretation a(T) of a program scheme T.

In section 3.1 we define MU, a language for binary relations over

cartesian products which has minimal fixed point operators in order to

characterize the input-output behaviour of recursive programs.

As the binary relations considered are subsets of the cartesian product of

one domain or cartesian product of domains and another domain or cartesian

product of domains, terms denoting these relations have to be typed for the

definition of operations.

E'lementary tems are individual relation constants, boolean relation con

stants, logical relation constants (for the empty, identity, and universal

relations Q, E, U and projection functions~.) and relation variables.
l.

Corrrpowid tems are constructed by means of the operators";" (relational or

Peirce product), "u" (union), "n" (intersection), 11
'-'

11 (converse) and"-"

(complementation) and the minimal fixed point operators"µ.", which bind
l.

6

for i = 1, .•• ,n, n different relation variables inn-tuples of terms pro

vided none of these va:r'iables occu:r>s in any complemented subterm, i.e.,

these terms are syntactically continuous in these variables.

Terms of MU are elementary or compound terms.

The well-formed formulae of MU are called assertions and are of the form

IP r-- 1:l', where ~ and 1:l' are sets of inclusions between terms.

A mathematical interpretation m of MU is defined by:

(1) providing arbitrary (type-consistent) interpretations for the individ

ual relation constants and relation variables, interpreting pairs

<p,p'> of boolean relation constants as pairs <m(p),m(p')> of disjoint

subsets of identity relations (cf. Karp [22]). and interpreting the

logical relation constants as empty, identity and universal relations

and projection functions,

(2)

(3)

interpreting";", "u", "n", n.....,11

' "-" as usual,

interpreting µ-terms µ.X 1 ••• X [a 1, ••• ,cr J as the i-th component of
i n n

the minimal fixed point of the functional <a 1, .•. ,crn> acting on

n-tuples of relations.

An assertion IP I- 1¥ is vaUd provided for all m the following holds:

If the inclusions contained in IP are satisfied by m, then the inclusions

contained in 1:l' are satisfied by m.

The precise correspondence between the operational semantics of PL and

the mathematical semantics of MU is specified by the translation theorem of

chapter 3:

After defining an injection :/:Jc_ between. schemes and terms we prove that :tJc.

induces a meaning preserving mapping, i.e., a translation, provided the in

terpretation of the elementary statement constants and predicate symbols

specified by o "agrees" with the interpretation of the individual relation

constants and boolean relation constants specified by m. If these require

ments are fulfilled the resulting correspondence between PL and MU is il

lustrated by

T 1--r .VZ. (T)

I

+
O(T) =

+
m(.VZ.(T)).

Thus we conclude that, in order to prove properties of T, it suffices to

prove properties of tr(T), whence axiomatization of MU leads to a calculus
. *)

for first-order recursive program schemata.

1.3. The formulation of specific correctness properties of programs

7

Globally, in order to formulate the correctness of a program one has

to state certain criteria which have to be satisfied in a specific environ

ment. If these criteria depend on input-output behaviour only, one might

hope to express them in the present formalism.

Sometimes this condition is not satisfied. Then these criteria concern in

trinsic properties of the computation processes involved. As these are the

very features we· abstracted from, one cannot expect to formulate them in MU.

For instance, when trying to formulate the correctness criteria for the

TOWERS OF HANOI program discussed in chapter 6, it turns out that the re

quirement of moving one disc at a time cannot be expressed in our language.

Accordingly we restrict ourselves to criteria which can be formulated in

terms of input-output behaviour only.

These may be subdivided as follows:

(a) Equivalence of or inclusions between programs.

(b) Termination provided some input condition is satisfied.

(c) Correctness in the sense of Hoare [19]:

Given partial predicates p and q and a relation tr(T) describing
*) (the input-output behaviour of) a program T , this criterion is

expressed by

Vx,y[p(x) AX tr(T) y ➔ q(y)]

*)By an abuse of language we suppress any mentioning of interpretations o
and'm satisfying o(T) = m(tr(T)).

8

and amounts to

if x satisfies p and T terminates for x with output y, then y
. f. *) sat1.s 1.es q.

These criteria can all be formulated as inclusion between terms:

For (a) this is evident. As to (b): Let p be represented by <p,p 1 > satis

fying p EE, p' ~ E and p n p' = n, and tr(T) describe program T, then

...____.,..,
p ~ tr(T);tr(T)

or, equivalently,

p E tr(T) ;U

both express (b) (note that p E R;R is equivalent top E R;U).

As to (c): Let p and q be represented by <p,p'> and <q,q'>, then (c) is ex

pressed by

p;tr(T) ~ tr(T);q.

It will be clear that the underlying supposition for the expression of these

criteria is that we are able to express all the predicates involved indeed.

This was not the case in the formalism described by Scott and de Bakker in

[41] in which predicates were only expressible by primitive symbols, no

operations on these symbols or other ways of constructing them being avail

able.

Our main vehicle for the construction of~ predicates is the 11
0 11

operator defined by

Vx[(X 0 p)(x)+-+-3y[xXy and p(y)JJ. **)

*) This corresponds with p{T}q in Hoare's notation and with {p}T{q} in
Dijkstra's notation (cf. [11]).

**) Let X' denote the function f, then (Xop)(x) = p(f(x)).

9

Accordingly, if X = tr(T) then (tr(T)•p)(x) is true iff T produces for in

put x ~ output y which satisfies p.

In the present formalism Xop can be expressed by

Xop = X;p;U n E.

\,.I

In example 1.2 we showed that X;X n E = X;U n E = X0 E describes the domain

of convergence of X. Thus X0 E is the minimal predicate p satisfying

X = p;X.

In Chapter 4 we obtain the following characte~ization of X0 p:

Xop = n{q I X;p S q;X}.

Therefore X0 p is the minimal predicate q, sometimes called the weakest pre

condition, satisfying X;p ~ q;X.

This observation raises the following question:

When does

X;p = Xop ;X

hold?

We shall prove that(*) holds iff X;X s E, i.e., X denotes the graph of a

function.

Therefore the translation theorem implies that

one is aZZowed to retract predicates ocaurring in beween statements

on input conditions provided these statements describe functions 3

i.e. 3 are deterministic.

10

2. THE PROGRAM SCHEME LANGUAGE PL

2.1. Definition of PL

PL is a language for first-order recursive program schemes using call

by-value as parameter mechanism.

A statement scheme of PL is constructed from basic symbols using these

quencing, conditional, call-by-value product operations and recursion, and

contains a type indication in the form of a superscript <n,~> in order to

distinguish between input domain Dn and output domain D~. The call-by-value

product [s 1, ••• ,Sn] expresses the independent parallel execution of state

ments s
1

, ••• ,sn, yielding for input x an output <y 1, ••• ,yn> composed of the

individual outputs of S., i = l, ... ,n, and is used to describe the assign-
i

ment statement and the call-by-value parameter mechanism as follows:

Assignment statement. An assignment statement x.:= f(x.
1

, ••• ,x.) occurring
i i im

in an environment x
1

, ••• ,xn of variables is expressed by

[TI
1

, ••• ,TI.
1

,[TI.
1

, ••• ,TI.];S,TI.
1

, ••• ,TI], where S denotes f.
i- i . im i+ n

CaZZ-by-vaZue parameter mechanism. A procedure call

proc(f
1

(x 1, ••• ,xn), .•• ,fn(x
1

, ••• ,xn)) with parameters which are called-by

value is expressed by [s 1 , ••• ,sn];P, were Sk denotes fk, fork= l, ••• ,n,

and P declares proc.

A d,eaZaration scheme of PL is a possibly empty collection of pairs

P. <= S. which are indexed by some index set J; for each j E J such a pair
J J

contains a procedure symbol P. and a statement scheme S. of the same type
J J

as P .•
J

A program scheme of PL is a pair consisting of a declaration and a state-

ment scheme.

The well-formed formulae of PL are called assertions.

DEFINITION 2.J (Syntax of PL)*)

Types. Let G be the collection {a,a1, ••• ,S,6 1 ••• } of possibly subscripted

*) Sections 2.1 and 2.2 follow closely section 3 of de Bakker and Meertens
[3] which deals, however, with schemes operating upon one variable.

greek letters, A domain type is (1) an element of G, (2) any string

of domain types.

Basic symbols. The class of basic symbols is the union of the classes of

relation and procedure symbols.

Relation symbols. The class of relation symbols R is the union of the

classes of elementary statement symbols, predicate symbols, constant sym

bols and variable symbols.

I I

a. The class of elementa'l'/f statement symbols A contains for all types <n,s>

h b 1 An,1; An,s t e sym o s , 1 , . • . .

b. The class of predicate symbols B contains for all n the symbols
n,n n,n n,n n,n p ,pl , ••• ,q ,ql , ••••

c. The class of constant symbols C contains the symbols Qn,s for all types
nlx .•• xnn,nl nlx, •• xnn,nn

<n,s>, En,n for all n and TIJ , ••• ,Tin for all types

d. The class of variable symbols X, introduced for purposes of substitution,
. f 11 ~ h b 1 xn,s xn,s yn,s zn,s contains ora types<n,.,>tesymos , 1 , .•• , , ••• , , ••••

Procedure symbols. The class of procedure symbols P contains for all types

<n,s> the symbols Pn,s,P~'s, .•••

Schemes.

a. Statement schemes. The class of statement schemes SS (arbitrary elements

Sn,s,S~'s, •• ,Vn,s, •.• ,Wn,s, •••) is defined as follows:

1. A u C u X u P s. SS. *)

2. If sn,e s 8 'S E ss then (S
1
;s

2
)n,s E SS. **)

1 ' 2

3. If Pn,n E Band S~'s,s~,s E ss then (p + s
1
,s

2
)n,s E ss.

4. If
n '/; I

s 1 ' .. 's
n ,i;n

E SS then [s 1, ••• ,sn] n

n,/;lx • .,Xsn
E SS.

Hence, a predicate symbol is no statement scheme.

These parentheses will be often deleted, using the following conventions:
,1) the outer pair of parentheses is suppressed, (2) right preferent pa-

. . . . f d . f th II ii t renthes1.s 1.nsert1.on 1.n case o a Jacent occurrences o e ; opera or.
E.g., s 1;s2 stands for (S 1;s2) and s 1;s2;S3 stands for S1;(S2;S3) which
stands on its turn for (S1;(S2;S3)).

12

b. DecZaration schemes. The class of declaration schemes VS (arbitrary

elements D,D1, .••) contains all sets {pn,~ <;:= Sn'~} 'th J · d j j jEJ wi any in ex
set, and, for each j E J, P. E P and S. E SS, such that no S. contains

J J J
any XE X.

c, Program schemes. The class of program schemes VS (arbitrary elements

T,T1, ••.) contains all pairs <D,S> with DE VS and SE SS. If D = 0,
<D,S> will be written as S.

Assertions. An atomic fonrruZa is of the form T1 s T2 with T1,T2 E PS. A

forrrruZa is a set of atomic formulae {Tl,l s T2 , 1 }1EL with L any index set.

An assertion is of the form <I> r '¥ with <I> and '¥ formulae.

Remarks. 1. T1 = T2 will be used as abbreviation for T
1

s T
2

, T
2

s T
1

•

2. Any type indication will be omitted if no confusion arises.

DEFINITION 2.2. (Substitution)

Suhstitution operator. Let SE SS and J be any nonempty index set such

that, for j E J, R. ·EX u P and V. E SS are of the same type, then
J J

S[V./R.]. J is defined as follows:
J J J E

a. If S = R. for some j E J, then S[V./R.]. J = V ..
J J J JE J

b. If S =Rand, for all j E J, RI R., then S[V./R.]. J = R.
J J J JE

c. If S = Sl;S2, (p + sl,S2) or [S1,···,Sn], then S[Vj/Rj]jEJ =

= s 1[V./R.]. 3 ;s2[V./R.]. J' (p + s1[V./R.]. 3 ,s2[V./R.]. 3) or
J J JE J J JE J J JE J J JE

[S 1[V./R.]. 3 , ••• ,s [V./R.].
3

J, respectively.
J J JE n J J JE

~ S. Sis defined as S[X./P.]. J"
J J JE

CZosed. If no XE X occurs in SE SS, Sis called closed.

Remarks. 1. From now on the substitution operator is used in the following

forms: taking for J the index set of some declaration scheme, we (a)

restrict ourselves to R. EX,
1

tor for substitution with R. E
J

substitution in Sis performed

cZosed statement scheme.

for j E J, and (b) reserve the 11~11 opera

P and V. EX, for j E J. Hence, explicit
J

as in (a). This explains our notion of

2. The substitution operator can be generalized to formulae by writing

{Vl l S v2 l}l L[V./X.]. J for {VI l[V./X.]. JS v2 l[V./X.]. J}l L' , , E J J JE , J J JE , J J JE E
restricting ourselves as above,

13

3. If J = {1, •.• ,n}, S[V./X.]. J is written as S[V./X.]._1 or
J J J E J J J- , , • • ,n

S(V
1

, ••• ,Vn). If J = {1} we also use S[V/X].

4. S[V./X.]. J is defined according to the complexity of S. Therefore prop
J J JE

erties such as the chain rule, S[V./X.]. J[W./X.]. J =
J J JE J J JE

= S[V.[W./X.]. J/X.]. J can be proved by induction on the complexity of
J J J JE J JE

s.

An inte-rpretation of the schemes of PL is determined by an initial

interpretation o
0

which extends to an operational interpretation o of pro

gram schemes using models for sequential and independent parallel (to char

acterize the call-by-value product) computation.

DEFINITION 2.3. (Initial interpretation). An initial interpretation is a

function o
0

, such that

a. For each n E G, o0(n) is a set denoted by Dn' and for each compound

domain type (n 1 x ••• x nn), o0 (n 1 x ••• x nn) is the cartesian product

of o0 (n 1), ••• ~o0(nn).

b. For An,s EA and xn,s EX, oo(An's) and oo(Xn's) are subsets of

o
0

(n) x o
0

Cs),

c. For pn,n EB, o
0

(pn'n) is a partial predicate with arguments in o
0

(n).

d. For each projection function symbol

the projection function of o
0

(n 1) x

coordinate.

nix •.• xn ,n.
(n 1) .

, 00 ni 1S

on its i-th constituent

e. For all constants Qn,s and En,n, o~(Qn,s) and o
0

(En'n) are the empty

subset of o0 (n) x o
0

(s) and the identity relation over o
0

(n), respec

tively.

The main problem in defining the semantics of a program scheme opera

tionaZZy is the fact that the resulting computation cannot be represented

serially in any natural fashion: factors s1, .•• ,Sn of a product [s 1, ... ,Sn]

first all have to be executed independent of another, before the computa

tion can continue. Therefore the computations involved are described as a

parallel and sequentially structured hierarchy of actions, a computation ,,
modeZ.

14

At the first level of such a hierarchy any execution of a factor of a prod

uct is delegated to the second level; assuming this results in an output,

this output becomes available as a component of the input for the still-to

be-executed part of the original scheme, if present. When all these compo

nents have been computed, the remaining computation at the first level, if

present, is initiated on the resulting vector. The same holds, mutatis

mutandis, for the relative dependency between computations on any n-th and

n+l-st level of this hierarchy, if present.

Provided one has a finite computation, this delegating will end on acer

tain level. On that level the execution (of a factor of a product on a pre

vious level) does not anymore involve the computation of any product on a

state, whence this computation can be characterized by a sequence of, in

our model, atomie actions of the following forms: (1) computation of a by

some-initial-interpretation-interpreted relation symbol (2) replacing a

procedure symbol by its body, without changing the current state and (3)

making a choice between two possible continuations of a computation, de

pending on whether~ by-some-initial-interpretation-interpreted predicate

symbol is true or false on the current state.

The extension of an initial interpretation o0 to an operational inter

pretation o is defined in

DEFINITION 2.4. (Computation model). *)

Relative to an initial interpretation o
0

and a declaration scheme D, a com

putation model for xSy is pair <x
1
s1x~ ••• x S x

1
,CM> with S. E SS for

k n n n+ i

i = l, ••• ,n, s1 = S, x 1 = x and xn+l = y, consisting of a computation se-

quence and a set of computation models relative to o
0

and D, called asso

ciated computation models, satisfying the following conditions:

a. If S. = R or S. = R;V with RE Au Cu X, <x.,x. 1> E o0 (R) and i = n
i i i i+

*)

or S. 1 = V.
i+

As described in appendix 1, this definition implies that the set of com-
putation models can be structured as an algebra. This superposition of
structure allows for simple proofs about certain transformations, by in
duction arguments on the complexity of these models, in case these
transformations are morfisms w.r.t. this structure.

15

b. If S. =
1.

P. or S. =
J 1.

x. and S .
1

= S .
1. 1.+ J

or si+l = S. ;V.
J

c. If Si = (V l ; V 2) ; V 3
then CM contains a computation model for xi v1;v

2
xi+l

and Si+I = v2 •

d. If Si= (p + v
1
,v

2
) or Si= (p + v

1
,v

2
);V

3
and a

0
(p)(xi) is either true

or false, then xi+I = xi and, if o0 (p)(xi) = true then Si+l = v1 or

si+l = v1;v3 , and, if o0 (p)(xi) = false then si+l = v2 or si+I = v2 ;v3 •

e. If Si= [V 1, ••• ,Vk] or Si= [V 1 , ••• ,Vk];V, xi+l = <y1 , ••• ,yk> such that

CM contains computation models for x.V.y1, for 1 = 1, .•• ,k, and i = n
l. 1.

or S. 1 = V.
1.+

Remark. A computation model represents the entire computation of program

<D,S> on input x (= x 1) resulting in output y (= xn+I' for some n). At each

step of its constituent computation sequence, S. is the statement which re-
l.

mains to be executed on the current state x .. Clause a describes the execu-
1.

tion of elementary statements, clause b reflects the aopy ruZy for proce-

dures, clause c describes preference in execution order, clause d describes

the conditional and clause e describes the independent execution of state

ments, terminating iff all its constituent statements have terminated. The

meaning of";" is expressed by clause c and the second part of clauses a,

b, d and e, and expresses continuation of a computation with appointed suc

cessor.

Suppose one defines a computation model as a set of computation se

quences such that each "delegated" co'!llputation sequence occurs in this set.

This leads to undesirable results, as demonstrated by the program scheme

T = <P <:== [P,P];TI 1,P>. Clearly, T defines n. However the set

{xPx[P,P];TI 1<x,x>TI 1x} is a computation model for xTx in the sense of this

definition (P. van Emde Boas).

DEFINITION 2.5.

OperationaZ interpretation. Let T = <D,Sn,s> be a program scheme and o
0

be

an initial interpretation, Then the operational interpretation of this

schem! is the relation o(T) defined as follows: for each <x,y> E o
0

(n) x

x o0 (s), <x,y> E o(T) iff there exists a computation model w.r.t. o
0

and D

for xSy.

16

VaZidity.

a. T1 s T2 satisfies o iff o(T 1~ s o(T2) holds. If T1 s T2 satisfies all

o, it is called valid.

b. ~ satisfies o (is valid) iff all its inclusions satisfy o (are valid).

c. An assertion ~ r 'l' such that, for all o, if ~ satisfies o, then 'l'

satisfies o, is called valid.

2.2. The union theorem

First we mention properties of the opera~ional interpretation o such

as o(Sl;S2) = O(Sl);o(S2), o(p ➔ sl,S2) = m(p);o(S1) u m(p');o(S2),

o([S 1 , ••• ,Sn]) = o(S 1);~ n ••• n o(Sn);~), the fixed point property

o(P.) = o(S.) and the monotonicity property. Then the union theorem is
J J

proved as a culmination of these results. Finally we establish the minimal

fixed point property, which is a generalization of McCarthy's induction

rule (cf. [29]), and prove a lemma legitimating the modular design of pro

gram schemes.

LEMMA 2. I.

a. Ifs EA u Cu X then o0(s) = o(S).

b. o(Sl;S2) = o(Sl);o(S2).

c. o(p ➔ s
1
,s2) = m(p);o(s 1) u m(p');o(s 2), with m(p) and m(p') defined as

follows: <x,x> E m(p) iff o0 (p)(x) .= true and <x,x> E m(p') iff

o
0

(p)(x) = false.

-- --d. o ([S 1 , ••• , Sn J) = o (S 1) ; o ('IT 1) n • • • n o (Sn) ; o(7T n) •

e. (Fixed point property, fpp) o(P.) = o(S.), for each j E J.
J J

Proof. By induction on the complexity of the statement schemes concerned.

Rema:r'ks. 1. From the definitions and parts a, b, c and d of lemma 2.1 the

validfty of standard properties of program schemes, such as the validity

of n ~Sand E;S = S easily follows. These and similar properties will

be used without explicit mentioning.

17

2. As execution of [s 1, ••• ,Sn] corresponds to computation of a list of a

actual parameters which are called-by-value, part d of lemma 2.1 implies

the relational description of the call-by-value parameter mechanism.

LEMMA 2.2. (Monotonicity).

{Vl . c v2 .}. JI- S[Vl ./x.J. J::. S[V2 ./X.]. J" ,J - ,J JE ,J J JE ,J J JE

Proof. By induction on the complexity of S.

a. s = xj, then o(s[v1,j/XjJjEJ) = o(v1,j) ~ a(v2 ,j) = o(s[v2 ,j/xjJjEJ.

b. S =(Ru P) - {X.}. J' then o(S[V 1 ./X.].
1

) = o(S[V2 ./X.].
1
).

]]E ,J]]E ,J]]E

c . S = S 1 ; S 2 , then a ((S 1 ; S 2)[V 1 , j /X j \ E J) =
= o(S 1[v 1 ./X.].

1
;s 2[v

1
./X.].

1
) = (lemma 2.1)

,J]]E ,]]]E

o(S 1[v1 ./X.].
1

);o(S2[v1 ./X.].
1

) ~ (induction hypothesis)
,]] _] E ,J]] E

o(S 1[v2 ./X.].
1

);o(S2[V2 ./X.].
1

) = (lennna 2.1)
,J]]E ,J]]E

o(Sl[V2 ./X.]. J;S2[V2 ./X.]. J) = o((Sl;S2)[V2 ./X.]. J). ,J]]E ,J]]E ,]]]E

d. S = (p + s 1,s2) or S = [s 1 , ••• ,Sn], similar to c.

COROLLARY 2.2. (Substitutivity rule).

{v 1 . = v 2 . } . J I- s cv 1 . /x. J . J = s cv2 . /x . J . J. ,] ,JJE ,J]]E ,J]]E

Next we state a technical result concerning substitution.

LEMMA 2.3.

a. For cZosed S, S[P./X.]. J = S.
]]]E

b , For arbitrary S , { V . c P . } . J 1-
J -]]E

,,-----.___--
S [P. / X.]. J[V./X.]. Jc S[V./X.]. J"]] JE]]]E -]]]E

~ _, ,..._,

c. For arbitrary S, S[V./X.]. J = S[V./X.]. J'
]]]E]]]E

Proof. Follows from the definitions, properties of substitution and mono

toni~ity, by induction on the complexity of S.

18

Informally, if a recursive procedure Pn,~ tenninates for a given ar

gument, this happens after a finite number of "inner calls" of this proce

dure. We may think of these calls as being nested (where a call on a deeper

level is invoked by a call on a previous level). By the recursion depth of

the original call we mean the depth of this nesting. At the innermost level,

calls of Pn'~ are not executed again, whence they may be replaced by nn,~

without affecting the computation.

This process of replacement can be generalized to calls of sirrrulta:neously

declared recursive procedures: Let s6'' be a statement scheme. Then S(n)

is obtained from S by uniformly replacing calls of P~'~ at level n by Qn,~

for j E J with S(O) defined as n6''· We may th~nk of
3
o(S(n)) as restrict

ing o(S) to those arguments which during execution of S cause execution of

calls of P. with recursion depth less than n.
J

Thus we conclude that

x o(S) y iff 3n[x o(S(n)) y].

THEOREM 2.1. (Union theorem). Let S be a closed statement scheme. Then, for

all operational intey,pretations a,

00

o(S) = u
n=O

In order to prove the union theorem we need some auxiliary definitions

characterizing (1) which occurrences of procedure symbols are executed in a

computation model, (2) the relation between occurrences of the same proce

dure symbol in proceeding computations, (3) statement schemes obtained by

successive uniform replacement of procedure calls by their bodies and

(4) s(n).

DEFINITION 2.6.

Executable occurrence. A procedure symbol P. occurs executable in a compu
J

tation model CM if it occurs in some computation sequence xI SI x2 •.•

•.. x S x 1 contained in CM, such that for some i, I~ i ~ n, n n n+
or S. = P.; S.

l. , J

S. = P.
l. J

19

To identify. Let CM be a computation model with constituent sequence

x 1 s1 x2 ••• x S x 1. Consider an occurrence of P. in some S, with S n n n+ J
occurring in S .• 1 ~ i ~ n. This occurrence direatZy identifies the corre

i

spending occurrence of Pj in S occurring in Si+l ors; below, in each of

the following cases:

(a)

(b)

(c 1)

(c2)

(dl)

(d2)

(d3)

(el)

(e2)

s. = R;S ands. l = S with Re Au Cu x~ i i+
Si= Pk;S and si+l = sk;s, k E J,
Si= (S);v

3
and S occurs as first statement Sj of the associated com-

. **)
putation model for xiSxi+l'

Si= (V 1;V2);S and Si+I = S,

Si= (p + S,V) or Si= (p +V,S), and Si+·l = S,

Si= (p + S,V1);V2 or Si= (p + V1,S);V2 , and Si+l = S;V
2

,

Si= (p + v 1 ,V2);S and Si+l = v 1;s or Si+l = v2 ;s,

Si= [V 1, ... ,Vm] or Si= [V 1, ... ,Vm];V, and S = Vk for some k,

1 ~ k ~ m, CM contains an associated computation model CM' for

xiSxi+'t,k' and S occurs as first statement Sj of the constituent com

putation sequence of CM',

S . = [V l , ••• , V] ; S and S . l = S . i m i+

The relationship to identify is defined as the reflexive and transitive
*) closure of the relationship to identify directly, defined above.

= s, s[k+lJ=S[S~kJ/x.J. fork= 0,1,2, ..••
J J JEJ

= n, S(k+l) = ~s[S(.k)/X.]. f k O 1 2 ~• or = , , , •••
J J JEJ

The connections between P(n+l), S(n) and S[n] are established in

LEMMA 2.4. Let n be a naturai nwnber. Then P~n+l)

= ~[Q./X.]. J and s[k+l] = s[k][IJ_ J
J J J E

Proof. We prove the second result only. Use induction on n.

(1) ~ LO]
1. k = O. S = S[Q./X.]. J = S [Q./X.J. J'

J J JE J J JE

*) . Hence ifs· = P· or Si= Pj;V, the only or first occurrence, respec-
tivel;, of ij inJSi identifies no occurrence in Si+l·

**) ' Hence, for some v 1 and v2, S = v 1;v
2

•

20

2. Assume the result for n = k. We have

Lk+lJ ~ S [Q./X.]. J = S[S. /X.]. J[Q./X.]. J = (lemma 2.3)
,,---' J J JE J J JE J J JE---=-----c'

~ [k] . ~ [k]
S[S. /X.]. J[Q./X.]. J = (chain rule) S[S. [Q./X.]. J/X.]. J =

J J JE J J JE J J J JE J JE
= (induction hypothesis) S[S~k+l)/X.]. J = s(k+2).

J J J E

In order to prove o(S) ~ n~O o(S(n)) we shall transform a computation

model for xSy for some n into a computation model for xS(n)y.

Let S be closed and CM be a computation model for xSy with constituent se

quence x 1 s 1 x2 ••• xn Sn+l xn+I' If no 'occurrences of Pj in Sare executed

to compute y, all occurrences of P. identified by occurrences of P. in s 1 J J
may be replaced by arbitrary statements of appropriate type for all j E J

without affecting the computation of y:

LEMMA 2.5. Let CM and S be as stated above. If CM contains no executable

occurrences of P., the following holds: If statement schemes V. are of the
J J

same type as P. for all j E J, there exists a corrrputation model for
~ J

xS[V./X.]. JY•
J J JE

Observe as a corollary that by choosing Q for V.
(1) J

model for xS y. If P. is executed in CM, there

one obtains a computation

exists at least one occur-
J

rence of P. identifying an earliest executable occurrence of P. with res
J J

pect to a certain order. CM can then be transformed into a computation

model in which all occurrences of P. in CM identified by such an occurrence
J

are replaced by S., except the executable one, which is deleted together
J

with the x. S. part in which it is contained. The resulting model still
1 1

computes the same output as CM, but contains at least one executable occur-

rence of some P. less than CM, as at least one application of the copy-rule
J

has been dealt with:

LEMMA 2.6. (van Emde Boas). Let CM and S be as stated above. If for some

j E J an occurrence of P. in S 1 identifies an executable occurrence of P.,

there exists a corrrputati;n model for xS[t]Y which contains at least one J

executable occurrence of P. less than CM.
J

21

A [k][I] [k+l] b 1 2 4 d 1· . f 1 2 6 s S = S y emma . , repeate app ication o emma . leads

finally to a computation model for xS[n]y in which aZZ executable occur-

rences of P. have been removed
J.

for all j E J. Therefore lennna 2.5 applies,
Tu]

yielding a computation model
(n+l)

for xS [Q./P.]. Jy and hence, by lennna 2.4,
J J J E

for xS y:

LEMMA 2. 7. Let CM and S be as stated above. Then there exists for some n a

computation model for xS(n)y.

The proofs of these three lemmas are contained in appendix 1.

Next we prove ~ o (S (n)) ~ o (S):
n=O

First we show that for each J. E J and each k, P~k) c P .• Use induction on
J - J

k.

1. k = O. Clear.

2. Assume the result (k+l) (k) ~ (k-1) fork. P. = (lemma 2.4) S. = S.[S. /X.]. J =
~ (k) - J J J J~ J JE

= S.[P. /X.]. JC
J J J JE -

(induction hypothesis and lennna 2.2) S.[P./X.]. J =
J J J JE

= S. = (lemma 2.1) P.e
J J

Next we show that S(k) ~ S : s(k) = scs~k-l) /x.J. J
J J J E

~ (k)
= S[P. /X.]. J ~

J J J E
~ (lemma 2.2) S[P./X.]. J = (lemma 2.3) S.

J J JE
oo (n)

Thus u S ~
n=O

S follows.

Remark. In the sequel we abbreviate "For all o, o(S) =

s =
oo (n)
u s .

n=O

As a corollary to theorem 2.1 we innnediately obtain the minimal fixed

point property (called mfpp) of procedures:

COROLLARY 2.3. {S.[V./X.]. Jc V.}. J j- {P. c V.}. J'
J J J JE - J JE J - J JE

00

Proof. Use P. = u P~k) and induction on k.
J k=O J

1 P (_O) V • 1 . c . is c ear.
J - J ,

22

2. Assume the result fork,

s (induction hypothesis)

then P~k+l) = S~k)
~ J J

~ (k)
= S. [P. /X.]. J S

J J J JE
s . [V. /X. J . J C V .•

J J J JE - J

Remark. Combination of the fixed point and minimal fixed point properties

yields, for all i E J,

where <o(Vk)>kEJ denotes the sequence with elements o(Vk), k E J, and

(<o(Vk)>kEJ)i denotes the i-th component o(Vi) of this sequence.

This characterization of o(P.) is the key to the definition of the mathe-
1.

matical interpretation of µ-terms in the next section.

The following lerrnna legitimates the modular approach to programming

and is a simple consequence of fpp (lemma 2.1.e), the substitutivity rule

(corollary 2.2) and mfpp (corollary 2.3).

LEMMA 2.8. (Modularity lemma). Let J and K be disjoint ind.ex sets, let S.
J

for all j E J be a closed statement scheme of which the procedure symbols
are ind,exed by K, and let Sand, for all <j,k> E J x K, S. k be closed

J '
statement schemes the procedure symbols of which are ind.exed by J, then

<{P. ¢:= S.[S. k/X.. Jk K}. J'S>= J J J , -K E J E

= <{P. k
J,

is valid.

s. k[S.[P. k/Xk]k K/X.]. J}<. k J K,S[S.[P. k/X. Jk K/X.]. J> J , J J , E J J E J, >E X J J , -K E J J E

PROOF. The case J = {0} and K = {1,2} is considered to be representative.

Then one has to prove <PO<== s 0(s 1(P0),S2(P0)),P0> =

= <Pl <l= Sl(So(Pl,P2)),P2 ¢=. s2<so<P1,P2)),So(P1,P2)>.

Consider the following declaration scheme:

{Po<:= Sa(Sl(Po),S2(Po)),Pl ~ Sl(So(Pl,P2)),P2 <= S2(So(Pl,P2)),

p3 ¢= so<P1,P2),P4 ¢= Sl(Po),Ps <;=- S2(Po)}.

With respect to this declaration scheme one proves P0 = P3 by applying mfpp

on {P0 S P3 , P1 s P4 , P2 S PS, P3 S P0 , P4 S P1, PSS P2}.

23

E.g., s0 (s 1 (P3),s2(P3)) ~ P3 is derived by s
0

(s 1(P
3
),s

2
(P

3
)) =

= (fpp and substitution rule) s0(s 1(s0(P 1,P2)),s2(s
0

(P
1

,P
2
))) = (similarly)

s
0

(P 1,P2) = (fpp) P
3

•

As P3 = (fpp) s0(P 1,P2), the desired result is obtained by deleting decla

rations for uncalled procedures.

First the following convention is introduced: Calls of recursive pro

cedures P, with P declared by P .;::= (p -+ S; P, E), are written as p * S. Hence

declarations of such Pare omitted.

Next we demonstrate how to apply this lennna to obtain a simple proof

for a tree-traversal result in de Bakker and de Roever [2], section 4.5,

and mention that the equivalences between certain procedures which do not

have the form of while statements and nested while statements, contained in

the same paper, section 5.1, can be proved as simple application of modu

larity, too. We quote, mutatis mutandis:

"The following problem, which at first sight appeared to be a problem

of tree searching, was suggested to us ••• by J.D. Alanen.

Suppose one wishes to perform a certain action A in all nodes of all

trees of a forest (in the sense of Knuth [24], pp. 305-307). Let, for

x any node, s(x) be interpreted as "has x a son?", and b(x) as "has x

a brother?". Let S(x) be: "Visit the first son of x", B(x) be: "Visit

the first brother of x", and F(x): "Visit the father of x". The problem

posed to us can then be formulated as:

<P ¢= A;(s-+ S;P;F,E);(b-+ B;P,E),P> =
= <P ¢=. A;(s-+ S;P; b* (B;P);F,E),P; b* (B;P)>. 11

This equivalence can be obtained from lennna 2.8 by taking P1;P2 for s0 ,

A;(s-+ S;P
0

;F,E) for s1 and (b-+ B;P
0

,E) for s2•

24

3. THE CORRECTNESS LANGUAGE-MU

3.1. Definition of MU

MU is a formal language for binary relations over cartesian products

which has minimal fixed point operators in order to characterize the input

output behaviour of recursive program schemes. Its semantics will be des

cribed using elementary model-theoretic concepts. This involves a mathemat

ical, as opposed to operational, characterization of its semantics, and re

sults in a rigorous definition of its interpretations m, which will be

axiomatized in the next chapter.

DEFINITION 3.1. (Syntax of MU)

Basia symbols. The class of basic symbols is the union of the classes of

symbols for individual relation constants, boolean relation constants, log

ical relation constants and relation variables.

a. The class of individual relation constant symbols A contains for all
~ h b 1 An,s An,s An,s types <n,~> t e sym o s , 1 , ••. , i , ••• •

b. The class of boolean relation constant symbols B contains for all n the

b 1
n,n n,n n,n d ,n,n ,n,n ,n,n sym o s p ,p 1 , ••• ,q , ••• an p ,p 1 , ••• ,q , ••••

c. The class of logical relation constant symbols C contains for all types
nlx •.. xn ,n.

d b 1 n,s n,s n,n n i • _ l concerne the sym o s Q ,U ,E ,~. , i - , .•• ,n.
i

d. The class of relation variable symbols X contains for all types <n,l;>

h b 1 Xn , s xn , s yn , s •zn , s t e sym o s ,
1

, ••• , , ••• , , • • • •

Terms. The class of terms T, with arbitrary elements

is defined as follows:

a. Au Bu Cu X ~ T

b.

c.

If (Jn,s ET, then crs,n and crn,s ET.

If (Jn,s,,s,S ET then (cr;T)n,e ET, and if (Jn,s,,n,l; ET then

(cr U T)n,s,(cr n T)n,s E T. *)

In acaordance with the convention, that";" binds stronger than 11 n" and
"n" binds stronger than "u", the parentheses around cr;T, cr n T and cr u T
will be often deleted. If the reader so wishes, he may stipulate any con
vention for parenthesis insertion in case the same binary operators occur
adjacently. However, by associativity of these operators, the need for
this is limited.

"1'~1 "n'~n
d. If cr

1
, ••• ,o ET and n . n. ,~.

l. l. µ.X
1
••. X [o

1
, ••• ,cr J ET, for i = 1, ••• ,n. 1. n n

25

Free variables. An occurrence of a relation variable Xis free 1.n o iff it

occurs in no sub term of cr of the form µ. • • • X • • • [•• ·.].
l.

Syntactically continuous. A term cr is syntactically continuous in X if no

free occurrence of X in cr lies within any subterm Tor within any subterm

µiX
1
••• Xn[T 1 , ••• ,Tn] with some Tj not syntactically continuous in~,

k = l, •.. ,n.

Well-formed terms. A term o is well-formed if, for all terms

µ.X 1 ••• X [cr
1

, ••• ,cr J occurring as subterms of cr, each o. is syntactically
1. n n J

continuous in each~, j,k = 1, ••• ,n.

Assertions. An atomic formula is of the form cr 1 s cr2 with cr 1,cr 2 E T. A for

mula is a set of atomic formulae {cr1, 1 s cr 2 , 1}lEL with L any index set. An

assertion is of the form IP I- 'l' with IP and 'l' formulae.

Remarks. 1. o1 = -0 2 is an abbreviation for o 1 s cr 2 , cr 2 s cr 1 and µ 1X1[o 1J

is written as µX[cr].

2. For empty ¢, ¢ r lfl is written as r 'l'.

DEFINITION 3.2. (Substitution)

Let cr ET and J be any index set such that, for j E J, X. EX and T, ET
J J

are of the same type, then cr[T./X.]. J is defined as follows:
J J J E

a. If cr = X. for some j E J then cr[T./X.] = T .•
J J J J

b. If J = 0 or a EA u Bu Cu (X - {X.}. J) then cr[T./X.]. J = cr.
J JE J J JE

c. If cr = cr 1 or o 1 then cr[T./X.]. J=~l T. X.]. J or cr 1[T./X.]. J' respec-
J J JE J J JE J J JE

tively.

d. If cr = cr 1;cr 2, cr 1 u cr 2 or cr 1 n cr 2 then cr[Tj/Xj]jEJ =

= crl[T./X.]. J;crz[T./X.]. J' crl[T./X.]. Ju crz[T./X.]. J or
J J JE J J JE J J JE J J JE

cr 1[T./X.]. J n cr 2[T./X.]. J' respectively.
J J JE J J JE

26

e. If a= µ.x 1 ••• x [a
1

, ••• ,a J then
i n n

cr[t./X.]. J = µ.Y 1 ••• Y [cr 1[Y1/x1J1 {l }[t./X.]. J*''"'
J J JE i n E , ••• ,n J J JE

••• ,a [Y1/x1J1 {I }[,./X.]. J*J, for * n e , ••• ,n J J J e
i = l, ••. ,n, where J = J - {1, ••• ,n}, whence {X.}. J* =

J JE
= {X.}. J - {X, ••• ,X },

J JE n
and Y1, ••• ,Yn are any relation variables differ-

and which do not occur in any crk, k = I, ... ,n, or ent from any X., j e J,
J

T •' J
* j E J •

Remarks. I. Thus cr[t./X.]. J is obtained from a by simultaneous substitu-
J J J E

tion of T, for X., replacing bound variables whenever necessary in order
J J

to prevent binding of free occurrences of~ in any substituted 'j' and

omitting substitution for bound variables (cf. Hindley, Rogers and

Seldin [16], definition 1.4), for j e J.

2. Definition 3.2 is extended to formulae by writing

{al 1 ~ cr2 1}1 L[t./X.]. J for {al 1[,./X.]. J ~ cr2 1[,./X.]. J}l L.
, , E J J JE , J J JE , J J JE E

3. Properties involving the substitution operator such as the chain rule

can be proved by·induction on the complexity of a.

4. If J = {I, ••• ,n}, cr[,./X.J. J is written as cr[,./X.J._
1

or
J J JE J J J- , •• ,,n

cr(,
1

, ••• ''n). If J = {I} we also use cr[t/X].

Compared with the everyday relational language the µ-terms

µ.X
1
••• X [,

1
, ••• ,t J represent the only new feature of MU and its predeces-

i n n
sors (cf. Scott and de Bakker [41], de Bakker [1] and de Bakker and

de Roever [2]). In order to explain their interpretation we first describe

the concept of continuity.

A term t induces upon interpretation of its constants a functional of

tuples of relations to relations by selecting a fixed component of these

tuples as interpretation for each free variable occurring in,. Therefore

interpretations of variables, called variable valuations v, have to be

separated from interpretations of constants, called initial interpretations

1. Thus a pair <t,1> determines a functional; this functional is called

model function and denoted by~<,>.
1

Continuity of~ <t> in x
1

, ••• ,X can now be defined as follows: Let T be a
1 n

term, x
1

, ••• ,Xn be variables, 1 be an initial interpretation and v and, for

27

each j EN, v., be variable valuations satisfying, for i = 1, ••• ,n,
00 J

v(X.) = .u
0

v.(X.), v.(X.) c v.
1

(X.) and v(X) = v.(X) for X different from
l. J= J l. J l. - J+ l. J

X., for all j. Then~ <T> is continuous in x1, ... ,X iff ~ <T>(v) =
1. 00 t

00
n t

= .u
0

~ <T>(v.) for all v and <v.>._0 considered above and all t.
J= t J J J-

This concept derives its importance from the fact that only if

~ <T
1
>, .•• ,~ <T > are continuous in x

1
, ••• ,X, Scott's induction rule for

t t n n
establishing properties of~ <µ.X 1 ••• X [T 1, ••• ,T]>(v) is valid.

t 1. n n
A syntactically sufficient, although not necessary· condition for continuity

of~ <T> in x1,···,x, is the following one: free occurrences of X1,···,X
t n n

are not contained in complemented subterms of T, i.e., Tis syntactically

continuous in x 1, .•• ,Xn.

We therefore define the interpretation of µ.X
1
••• X [T 1,.,.,T J only if

1. n n
T

1
, ••• ,Tn are syntactically continuous in x

1
, ••• ,Xn, and refer to Hitchcock

and Park [18] for more general considerations.

DEFINITION 3.3. (Semantics of MU)

Assignment of types. An initial assignment of types is a function

t 0: G + V, where G is the collection of possibly subscripted greek letters

and Vis a class of domains. An assignment of types, relative to a given

initial assignment of types t 0 , is a function t defined by (1) for n E G,

t(n)=t0 (n), and (2) for any compound (domain type, cf. definition 2.1)

(n 1 x .•. xnn), t(n) = t(n
1

) x .•. x t(nn). For n E G, t(n) will be referred

to as D, and for n= (n 1 x ••• xn) with n. E G, i = 1, .•• ,n, t(n) will be n n 1.

referred to as D x •.• x D
nl nn

Initial interpretation. Relative to a given assignment of types t, an ini
o1xo2

tial interpretation is a function

for all types involved.

a. t(An'~) ~ t(n) x t(~).

1.: Au Bu C ➔ u 2 satisfying
D1 ,D2EV

b. For pn,n,P,n,n EB, t(pn'n) and t(p'n'n) are disjoint subsets of the

identity relation over t(n).

c. t(nn'~) is the empty subset of t(n) x t(~), t(En'n) is the identity

re~ation over t(n), t(Un'~) is t(n)
n 1 x •.. xn 'n.

x t(~) itself and t(rr. n 1.)
l.

28

is the projection function of t(n
1
) x ••• x t(nn) on its i-th consti

tuent component.

Variable valuation. Relative to a given assignment of types t, the class of
n1xn2 •

variable valuations V contains the functions v: X ➔ u 2 , satis-
s s D1 ,DzEV

fying v(Xn') ~ t(n) x t(E;.) for all xn, EX.

Model function. Relative to a given assignment of types t and an initial

interpretation t, the model function$ <crn's>
t

follows for well-fanned tenns crn's:

a. $ <R> (v) = t (R), R E A u B u C.
1

b. $ <X>(v) = v(X), XE X.
1

D XD
V + 2 n sis defined as

c. $1<cr 1;cr2>(v) = $1<cr 1>(v);$1<cr 2>(v), $
1

<cr
1

ucr2>(v)=$t<cr
1
>(v) U$

1
<cr

2
>(v),

$1<cr 1 n cr 2>(v) = $1<cr
1
>(v) n $

1
<cr 2>(v), $

1
<cr>(v) = ~'

$ <cr>(v) = $ <cr>(v).
1 l

d. $ <µ.X
1
••• X Ccr

1
,~ •• ,cr]>(v) =

1 1 n n

(n{ <v' (Xk)>~=l I $
1

<crk>(v') 5:: v' (~), k=I, ••• ,n, and v' (X)=v(X)

for XE X - {X 1 , ••• ,X } }) .•
n 1

Intey,pretation of tenns. An interpretation of terms is a triple <t
0

,1,v>

where each term cr is interpreted as$ <cr>(v). This triple will often be
l.

referred to as m. Then$ <cr>(v) is abbreviated by m(cr).*)
1

Satisfaction. An atomic formula cr
1
~ cr 2 satisfies an interpretation of

terms miff m(cr 1) ~ m(cr2). A formula {cr 1 , 1 s cr 2 ,
1

}
1 1 satisfies an inter

pretation of terms miff cr
1

,
1

s cr 2 ,
1

satisfies m for all 1 EL,

VaUdit;y. An assertion ¢ I- ':I! is valid iff for every interpretation of

terms m such that¢ satisfies m, ':I! satisfies m.

Remark. The definition of µ-terms can be straightforwardly generalized to

the case where the µ-operators bind an infinite number of variables in an

infinite sequence of terms.

The results of the next section are formulated and proved in such a way

that the¥ still apply if this generalization is effected.

*) In the sequel mis often called the mathematical interpretation, as op
posed too, the operational interpretation.

29

3.2. VaZidity of Scott's induction ruZe and the transZation theorem.

First the union theorem for MU is proved. This theorem is then applied

to proving (1) validity of Scott's induction rule and (2) the translation

theorem.

The reader who has followed the technical development of the previous chap

ter will observe a certain analogy between the results contained therein

and the results of the present section. Notably, monotonicity is used in

both chapters in proving union theorems. The substitutivity property, how

ever, plays a more important role in this section and the continuity prop

erty is only defined in section 3.1. We state ~hese properties in the fol

lowing lemmas and refer to appendix 2 for proofs.

LEMMA 3.1. (Monotonicity).*) Let J be any index set, {Xj}jEJ EX, a ET be

syntacticaZZy continuous in Xj' j E J, and variabZe vaZuations v 1 and v2
satisfy (I) v 1 (Xj) E v2(xj) forj E J and (2) v 1(x) = v2(x) for

XE X - {X.}. J" Then the foZZowing hoZd,s:
J J E -

¢<cr>{v
1

) E ¢<cr>(v
2
).

LEMMA 3.2. (Continuity). Let J be any index set, {Xj}jEJ EX, a ET be

syntacticaZZy continuous in X., j E J, and v and, for i EN, v.,be variabZe
J 00 i

vaZuations which satisfy, for i EN and j E J, (1) v(X.) = .u
0

v.(X.),
J 1.= l. J

(2) v.(X.) c v.+
1

(X.)
l.J-1. J

and (3) v{X) = v.(X) for XE X - {X.}. J" Then the
l. J J E

foZZowing hoZd,s:
00

¢<cr>(v) = u ¢<cr>(v.).
i=O 1.

LEMMA 3.3. (Substitutivity). Let J be any index set, a ET, X. EX and
J

T • E T f Or j E J,
J

¢<Tj>(v2) for j E

f o Z Zowing ho Zd.s:

and variabZe vaZuations v 1 and v 2 satisfy (1) v
1
(xj) =

J and (2) v 1(x) = v2(X) for XE X - {Xj}jEJ. Then the

¢<cr>(v 1) = ¢<cr[T./X.]. J>(v2).
J J JE

*) Reference to a given initial interpretation is tacitly assumed. Accord
ingly, ¢ <a> will be written as ¢<a>.

, 1

30

COROLLARY 3.1. (Change of bound variables). If Y1, ••• ,Yn do not occur free

in cr 1, •.. ,crn,

¢<µ.X
1
••• x [cr

1
, ••• ,cr J>(v) =

i n n

= ¢<µ.YI •.• Y [crl[Yl/Xl]l=l , •.• ,cr [Yl/Xl]l=l]>(v).
l. n , ••• ,n n ,e .• ,n

Proof. Follows by definition 3.2 from lemma 3.3.

The union theorem for MU states that minimal fixed points

<¢<µ
1
x

1
,. ,Xn[cr 1 , ••• ,crn]>(v), •.• ,¢<µnXl .•• Xn[cr (, ••• ,crn]>(v)> of continuous

functionals Av<¢<cr 1>(v), •.• ,¢<crn>(v)> can be obtained as unions of sequences

of finite approximations <¢<cr~>(v), ... ,¢<cr!>(v)>, i=O,I, ..• ,

larly defined as S~i), k = l, ••• ,n, cf. definition 2.6.

i nl ,l;l nn,l;n
DEFINITION 3. 4. crk • Let x1 , •.• ,Xn E X be the free variables in
nl,l;l nn,l;n - i o nk,l;k

cr 1 , ••• ,crn ET, then crk is defined by (1) crk = n and

i+l i
(2) crk = crk[cr1/x1Jl=l, ..• ,n' fork= 1, ... ,n.

THEOREM 3.1. (Union theorem for MU). Let cr 1, ..• ,crn ET be syntactically

continuous in x1, ••• ,xn EX. Then the following hold.s for all variable

valuations v:

k = 1, ... ,n.

Proof. The proof splits into three parts. In the first part we prove

part
i i+l .

~<crk>(v) ~ ~<crk >(v) for i EN, in the second
i ¢<crk>(v), and

(X)

¢<µkX1···Xn[crl''''' 0 n]>(v) ~ i~O
(X)

?. .uo i=
i ~<crk>(v) (the

in the third part

reverse inclusion).

Part 1. By induction on i. Obviously, ¢<cr~>(v) c ¢<cr!>(v~.
. i-1 i i

Assume by hypothesis ¢<crk >(v) ~ ¢<crk>{v) and prove ¢<crk>~v) ~ i+l ¢<crk > (v),

k = I, ••. ,n. Define variable valuation v
1

by v 1 (~) = ¢<cr~> (v) for

31

k = 1, •.• ,n and v 1(X) = ~(X), otherwise.
i+l i

Then ~<crk >(v) = ~<crk[cr1/x1J1=l, ••• ,n>(v) = (substitutivity) ~<crk>(v 1).

i i-1
Similarly, ~<crk>(v) = ~<crk>(v2) with v2 defined by v2(~) = ¢<crk >(v) for

k = 1, ••• ,n and v
2

(X) = v(X), otherwise.

As cr 1, ••• ,crn are syntactically continuous, ~<cr!~(v) = ~<crk>(v2) ~
.=. (monotonicity and hypothesis) ¢<crk>(v1) = ~<cr~+l>(v), fork= l, ••• ,n.

Part 2. s: Define variable valuations v' and, for i EN, v., as follows:
i

00 i
v'(X.) = .u ~<ok>(v) fork= l, ... ,n, and v'(X) = v(X), otherwise, and

--k i=O •
similarly vi(~)= ~<cr~>(v) fork= l, ... ,n, and vi(X) = v(X), otherwise.

00

Then

part

v'(~) = i~O vi(~) fork= 1, ••• ,n and v'(X) = vi(X), otherwise. In
i i+l . . .

1 we proved ¢<crk>(v) S ~<crk >(v), whence vi(~) S vi+l(~). As crk is

syntactically continuous in x
1

, ••• ,X, the assumptions for continuity are
oo n

fulfilled, whence ~<crk>(v') = i~O ~<crk>(vi) = (substitutivity)
00 i+l 00 i

i~O ~<crk >(v) = i~O ¢<crk>(v) =v'(~). Thus v' satisfies ¢<crk>(v')sv'(~)

fork= I, ... ,n and v'(X) = v(X), otherwise, whence

(n{<V"(x
1

)>~=l I ¢<cr
1
>(v") s v"(X1), l=l, ••. ,n, and v"(X)=v(X)

for XE X - {x 1, ••• ,xn}} \ s

00 i
u ¢<crk> (v).

i=O

Part 3. ~: Let v' satisfy ¢<crk>(v') s v'(~) fork= 1, ••• ,n and v'(X) =

= v(X), otherwise.
i Then we prove ¢<crk>(v')

0
s v'(~) for i EN by induction on i. Obviously,

¢<crk>(v') sv'(~).

k=l, ••• ,n.

Define variable valuation v" by v"(~) 1 , ••• ,n and

v" (X) = v' (X), otherwise.
i+l (') [i/] (') (. . .) (") Then ¢<crk > v = ¢<crk cr1 x1 l=l, ••• ,n> v = substitutivity ¢<crk> v s

i
s (monotonicity, as v"(~) = ~<crk>(v') s v'(~) by hypothesis and v"(X) =

00

= v'(X), otherwise) ¢<crk>(v')sv'(~). Thus i=O

occur~ing in cr!) i~O ¢<er!> (v') s v' (~). As this

above,

i
¢<crk>(v) = (X1, •.. ,Xn not

holds for all v' considered

32

(n{<v' (X
1

)>~=l I q,<cr1>(v') S:. v' (X1), l=l, •.. ,n, and v' (X)=v(X)

for XEX-{Xl' .•. ,xnH\.

Scott's induction rule is the main innovation of Scott and de Bakker

[41], represents a general formulation for inductive arguments which does

not assume any knowledge of the integers, and unifies methods for proof by

induction such as recursion induction (McCarthy [29]), structural induction

(Burstall [8]) and computational induction (Manna and Vuillemin [27]).

Its formulation is given by

nk,sk
<P 1-. '¥[µkXl ••• X [al' ••• ,cr]/X. Jk=l • n n --k , ••• ,n

with <P only containing occurrences of X. which are bound (i.e., not free)
l.

and'¥ only containing occurrences of X. which are not complemented.
l.

THEOREM 3.2. (Validity of Scott's induction rule, I). If <P and'¥ are for

rrruZae such that <P does not contain any free occurrence of~• k = l, ••• ,n,

and aZZ terms contained in'¥ are syntacticaZZy continuous in~•

k = l, ••• ,n, then I is valid.

Proof. Let v be any variable valuation satisfying <P, let v' be defined by

v' (~) = q,<µkXI?, ,Xn[a 1 , ••• ,crn]> (v) for k = 1, ••• ,n and v' (X) = v(X),

otherwise, and let TI,l S:. T2 , 1 be any atomic formula contained in

'¥ = {Tl,l S:. T2,1}1EL 0

We prove q,<T 1 1[µkX 1 ••• X [cr 1, ••• ,cr]/X. Jk=l >(v) S:. , n n -K , • • • , n

S:. q,<T2 l[µkXI'''x [cr1,···, 0]/X. Jk=l >(v). , n n -K , ••• ,n
By substituvity, <f,<T. 1[µkX 1 ••• X [cr 1, ••• ,cr]/X. Jk-l >(v) = <f,<T. 1>(v'), J , n n -K - , ••• ,n J ,
j = 1,2. .

33

By the union theorem for MU, v'(~) = ~<µkX 1 •.• Xn[cr 1, ••• ,crn]>(v) =
00 i

= .u ~<crk>(v).
1.=0 i

Let variable valuations vi be defined by vi(~)= ~<crk>(v) fork= l, ••• ,n,

and v.(X) = v(X), otherwise, i EN.
].

00

Then ~<T.
1
>(v') = .u ~<T.

1
>(v.), J = 1,2, by continuity.

J' 1.=0 J,].
00 00

Therefore we must prove .u ~<T 1 1
>(v.) ~ u ~<T2 ,

1
>(vl..) in order to ob-

1.=0 , 1. i=O
tain the desired result.

It is sufficient to prove ~<T 1, 1>(vi) ~ ~<T2 , 1>(vi) by induction on i.
i nk,l;k

For i = O, crk = Q , whence ~<T 1, 1>(v0) ~ ~<T2 , 1>(v0) follows by sub-

nk' l;k ·
stitutivity from validity of <p r '¥[Q /X. Jk=l ' as (I) V and Vo -K , ••• ,n
differ only in their assignments of relations to x1, ••• ,Xn, (2) 'P satisfies

v and x 1, •.. ,Xn do not occur free within 'P, whence (3) cp satisfies v
0

•

Assume by hypothesis ~<T 1, 1>(vi) E ~<T2 , 1>(vi) and prove ~<T 1, 1>(vi+l) E

~<T2 , 1>(vi+l), 1 EL.

Validity of cp, '¥ r '¥[crk/~Jk=l, .•• ,n implies in particular that if cp and '¥

satisfy v., 1¥[crk/X. Jk-J satisfies v .• Now 'P satisfies v. by an argu-l. -7.t - ' • • • , n l. l.
ment similar to the one above for i = O. By hypothesis,'¥ satisfies v .•

].

Therefore we conclude that '¥[crk/X. Jk=l satisfies v. and in particular --k , ••• ,n 1

~<Tl 1[ak/X..]k=l >(v.) ~ ~<T 2 1[ak/X_]k=l >(v.). By definitions , -K , ••• , n 1 , -K , ••• , n 1

i
of vi+l and crk, ~<crk>(vi) = ~<~>(vi+l) follows by substitutivity, whence

~<Tj,l[crk/~Jk=l, ••• ,n>(vi) = ~<Tj,l>(vi+l), j = 1,2, by substitutivity,

too.

Finally we define the mapping tr: PL+ MU (compare section 1.2) and

prove the translation theorem.

DEFINITION 3.5. (tr). The mapping tr of program schemes of PL into terms of

MU is defined as follows: consider a program scheme

T =<{Pk~ S} ,S>, then tr(T) is inductively defined by kk=l, ••• ,n

a. tr(R) = R, for RE Au Cu X.

b. tr(P.) = µ.X
1
••• X [tr(S

1
), ••. ,tr(S)], i = l, ••• ,n.

1. 1. n n

34

c, tr(S 1;s2) = tr(S 1);tr(S2), tr(p ➔ s
1
,s

2
) = p;tr(S

1
) u p';tr(S

2
) and

n,slx ••• xs
tr([s 1, ••. ,Sn] n) = tr(S 1);¥1 n ••• n tr(Sn);¥n, with ~i of

type <s
1
x.,,xs ,s,>, i = 1, ••• ,n.

n l.

COROLLARY 3.2. tr(S[V./X.]. J) = tr(S)[tr(V.)/X.]. J'
J J JE J J JE

THEOREM 3.3. (Translation theorem). Leto be an operational interpretation

of PL., m be a mathematical interpretation of MU., and o and m satisfy (1) if

RE Au Cu X then o(R) = m(R) and (2) if p EB then o(p)(x) = true iff

<x,x> E m(p) and o(p)(x) = false iff <x,x> E m(p'). Then o(T) = m(tr(T))

for all TE PS., i.e • ., tr is meaning preserving relative too and m.

Proof. By induction on the values under a certain measure of the complex

ities of the program schemes concerned and relative to some declaration

scheme D = {P. <= S.}. _1 . Let N u N x { O} be well-ordered by e>(, with
J J J- , •• • ,n

o< defined by:

x ~ y iff (1) x EN and y EN and x $ y, or (2) x EN and y EN x {0}, or

(3) x = <u,O> and y = <v,O> and u $ v.

Then this measure of complexity is the function c

defined by

a. If SE Au Cu X then c(S) = 1.

b. If SEP, then c(P) = <O,O>.

PS ➔ Nu N X {O},

c. If S = s 1;s2 , S = (p ➔ s 1,s2), let x or <x,O> be the maximum of c(s
1

)

and c(S 2) under the well-order • Then c(S
1
;s

2
) and c(p ➔ s

1
,s

2
) are

defined as x+l or <x+l,O>.

d. If S = [s 1, •.• ,Sn] let x or <x,O> be the maximum of c(S 1), ••• ,c(Sn)

under the well-order~. Then c(S 1 , ••. ,Sn) is defined as x+l or <x+l,O>.

Thus c(Si) ~ c(s 1;s2) and c(Si) 1 c(p + s 1,s2) for i = 1,2,

c(S.) ~ c([s 1, .•. ,S]), i = t, ... ,n, and c(S~k)) ~ c(P.) fork EN and
J. n J J

j = l, ... ,n.

35

Hence c provides the basis for the inductive proof of the translation theo

rem below:

a. Ifs EA u Cu X then o(S) = m(tr(S)) is obvious.

b. If S = s
1

;s2 then o(S 1;s2) = (lennna 2.1) O(S 1);o(s2) = (induction hypo

thesis) m(tr(S 1));m(tr(S
2
)) = m(tr(s 1);tr(s2)) = m(tr(s 1;s2)).

c. Ifs= (p + s 1,s2) then o(p + s 1,s2) = (lennna 2.1) m(p);o(s 1) u

u m(p');o(s
2

) = (induction hypothesis) m(p};m(tr(s 1)) u

u m(p');m(tr(S2)) = m(p;tr(S 1) u p';tr(s2)) = m(tr(p + s 1,s2)).

----d. If S = [~.,Sn] then o(S) = (lemma 2.1) o(s 1);~ n ••• n

n o(Sn);o(rrn) = (induction hypothesis) m(tr(S 1));m(rr 1) n ••• n

n m(tr(S));~) = m(tr(s 1);*
1

n ••• n tr(S);i) = m(tr([s 1 , .•. ,s])). n n n n n

e. If S = P. then O(P.) = (union theorem for PL) .u o(P~i)) = (lennna 2.4)
J J 1.=0 J

.~
0

o(s~i)) = (induction hypothesis) .u
0

m(tr(S~i))). Using corollary 3.2,
1.= J 1.= J
tr(S~i)) = tr(S.)(i) is easily proved by induction on i. Hence,

.u ~(tr(S~i)_))J= .u m(tr(S.)(i)) = (union theorem for MU)
1.=0 J 1.=0 J
m(µ.X

1
.•. X [tr(S

1
), ••. ,tr(S)] = m(tr(P.)), j = 1, ••• ,n.

J n n J

3.3. RebuttaZ of Manna and VuiZZemin on caZZ-by-vaZue

In [27] Manna and Vuillemin discard call-by-value as a computation

rule, because, in their opinion, it does not lead to computation of the

minimaZ fixed point. Clearly, our translation theorem invaZidates their

conclusion. As it happens, they work with a formal system in which minimal

fixed points coincide with recursive solutions computed with caZZ-by-name

as rule of computation; this has been demonstrated in de Roever [36]. Quite

correctly they observe that within such a system call-by-value does not

necessarily lead to computation of minimal fixed points. We may point out

that observations like this one hardly justify discarding call-by-value as

rule of computation in general.

For more remarks on the topic of parameter mechanisms (or rules of computa

tion) and minimal fixed point operators we refer to de Roever [36].

36

4. AXIOMATIZATION OF MU

The axiomatization of MU proceeds in four successive stages:

1. In section 4.1 we develop the axiomatization of typed binary relations.

2. This axiomatization is extended in section 4.2 to boolean constants.

3. The axiomatization of projection functions in section 4.3 then results

in the axiomatization of binary relations over cartesian products.

4. The additional axiomatization of µ-terms in section 4.4 completes the

axiomatization of MU.

4. 1. Axiomatization of typed bina,py reZations ·

Consider the following sublanguage of MU, called MU
0

:

The elementary terms of MU0 are restricted to the individual

relation constants, relation variables and logical constants

Qn,s, En,n and un,sof MU, i.e., boolean constants and projection

functions are excluded.

The compound terms of MU
0

are those terms of MU which are con

structed using these basic terms and the";", "u", 11 11 11
, """" and

11
-

11 operators, i.e., the "µ. 11 operators are excluded.
l.

The assertions of MU
0

are those assertions of MU whose atomic

formulae are inclusions between terms of MU
0

•

MU0 is axiomatized by the following axioms and rules:

1. The typed versions of the axioms and rules of boolean algebra.

2. The typed versions of Tarski's axioms for binary relations (cf. [43]):

Tl 1-- (xn,e;Ye'~);z~,s = xn,e;(Ye'~;z~'s)

T2 1--in,s = xn,s

T3 r (Xn ,e ;Ye, s)v = ye,s.xn,8 ,

r4 l-xn,s;Es,s = xn,s

rs (xn,e;Ye,s) /) 2n,s = Qn,s j-- (Ye , s; zn, s) /) xn, e = ne ,n

3. u 1--un,s ~ un,e;ue,s

'

37

In the sequel we omit parentheses in our formulae, based on the asso-

ciativity of binary operators and on the convention that

over "n", which has in turn priority over "u".

LEMMA 4. 1.

11 • II , has priority

a. xn,s s yn,s I- Xn,s C yn,s Xn,s.zs,0
- ' ' s yn,s.zs,e ze,n.xn,s

' ' '
.s ze,n;Yn,s

b. I- nn,s;xs,e = nn,e xn,s,ns,e
' ' '

= Qn,e

c. I- En'n;xn,s = xn,s

d. I- un,s;us,e = un,e

e. I- Qn ,s = Qs 'n, En,n = En,n un,s = us,n
'

f. I- xn,s;(Ys,e u zs,e) = xn,s;Ys,e u xn,s;zs,e,(xs,e u ys,e);ze,n =
= xs,e;ze,n u ys,e;ze,n

g. f- (Xn,s u yn,s)v = Xn,s u yn,s ,(Xn,s n yn,sr = Xn,s n yn,s Jn,s = ~n,s.

Proof. Except for the proof of lemma 4.1.d which is obtained using U and a

law of boolean algebra, the proofs for the typed case are similar to the

proofs for the untyped case as contained in Tarski [43].

Lemma 4. I.a expresses monotonicity of 11
'"'" and ";". Together with the

obvious monotonicity of "u" and "n", this will be used in lemma 4.9 to

establish monotonicity of syntactically continuous terms in general.

Remarks. 1. Henceforward the laws of boolean algebra are used without ex

plicit reference.

2. Type indications are orrritted provided no confusion arises.

LEMMA 4.2. ~X;Y n Z = X;(X;Z n Y) n z.

Proof. X;Y n Z

= {X; (X;Z n Y)

X; (Z;X)"' n ! =

= X; (U

n Z} u

Q, thus

n Y) n z = X;((X;Z u X;Z) n Y) n z =

{X;(X;Z n Y) n z}. Also Z;X n Z;X =
by T2, T3 and lennna 4.1, (X;X;Z) n

Q, whence by r
5

,

z = Q.

Therefore, X;(X;Z n Y) n Z=n, whence X;Y n Z = X;(X;Z n Y) n Z follows.

38

The first applications of lennna 4.2 follow in the proof of lennna 4.3,

in which a number of useful properties of relations and functions are for

mally derived. Remember that X0 E has been defined as X;U n E (section 1.3).

By convention the 11011 operator has a higher priority than the ";" operator.

LEMMA 4.3.

a. X;X E E I- X; (Y n Z) = X;Y n X;Z
V

b. XS E r X = X

I- V V

c. X = XoE ;X, X = X; X0 E, X0 E = X;X n E, X;U = XoE ;U
V r d. XS Y, Y;Y s E XoE; y = X

n n
V V

e. ~ n X. ;Y. = X oE•
• " e :t X oE• (n X.;Y.); Y oE• e • • ,

y oE.
i=l l. l. 1 ' n ' i=l l. l. 1 , n

Proof. a. S· Clear.
V

2• X;Y n X;Z = (lennna 4.2) X;(X;X;Z n Y) n X;Z E (assumption) X;(Y n Z).

b. X = X n E = (lemma 4.2) X;(X;E n E) n Es X;X s X. Thus X s X, whence
V ~

X S X = X.

x V .., ...,
c. X = X0 E ;X: = X n u = (lemma 4.2) X; (X;U n E) n u = X; (X;U n E).

Thus, by T3 , X = (X;U nE)'--';X= (part b) XoE ;X.
v

X0 E = X;X n E: Direct from lennna 4.2.

X;U = X0 E ;U: X;U = (from above) (X;U;U n E);X;U E (lennna 4.1) X0 E ;US

S X;U;U = X;U.
V V v

d. 2• XS Y implies Y;X S Y;Y S (assumption) E,X;X;Y E

and (X;X n E);Y s X;X;Y s X.

S• Immediate from part c.

e. We prove X;Y n Z = X0 E ;(X;Y n Z) only. 2• Obvious.

S· X;Y n Z = (part c) X0 E ;X;Y n Z = (part band lennna 4.2)

X0 E ;(X 0 E ;Zn X;Y) n ZS XoE ;(X;Y n Z).

4.2. Axiomatization of boolean relation constants

Partial predicates are represented within MU by pairs <pn,n,p,n,n>

whose interpretation is restricted to pairs of disjoint subsets of the

identity relation corresponding to inverse images of true and false. MU
O

is extended to MU
1

by adding the boolean relation constants of MU to the

basic terms of MU0. MU 1 is axiomatized by adding the following two axioms

to those of MU
0

:

pl r pn,n E En,n, p,n,n ~ En,n

p
2

I- Pn,n n P,n,n = Qn,n.

39

The translation theorem implies o(p + s
1
,s2) = m(p;.tn.(s 1) u p;.tn.(s2)),

provided o(S.) = m(.tn.(S.)), i = 1,2,and o(p) is. represented by <m(p),m(p')>.
1 1

Thus leads axiomatization of MU 1 to a theory of conditionals. This will be

demonstrated by deriving the usual axioms for conditionals, cf. McCarthy

[29], as a corollary from

LEMMA 4. 4 . I- p = p , p; q = p n q •

Proof. p = p: Follows from lemma 4.3.b, and axiom P1•

p;q = p n q: E· Since r p E E,q E E,monotonicity implies

r p ; q ~ q , p ; q ~ p • Thus r p ; q s_ p n q.

;;:• r p n q = (lemma 4. 2) p; (p;q n E) n q E p; (p;q n E) E
v

p;p;q E p;q.

COROLLARY 4.1. Using the notation (p + X,Y) = p;X u F;Y, we have

r (p + (p + X,Y),Z) = (p + X,Z),(p + X,(p + Y,Z)) =
= (p + X,Z),(p + (q + xl,X2),(q + Yl,Y2)) = (q + (p + xl,Yl),(p + x2,Y2)).

Proof. Immediate from lemma 4.4, using P1 and P2•

COROLLARY 4. 2 . r p; X n Y = p; (X n Y) •

Proof. p;X n Y = (lemma 4.2) p;(p;Y n X) n Y = (lemmas 4.3.a and 4.4)

p;Y n p;X = (lemma 4.3.a) p;(X n Y).

In section 1.3 we already mentioned the 11011 operator, defined by
*)

X0 p = X;p;U n E. The basic properties of this operator are collected in

*) So~e connections between µ-terms and the 11011 operator are collected in
section 5.3.

40

LEMMA 4.5.

a. r (X;Y) 0 p = Xo(Yop)

b. r (X u Y)op = Xop u Yop

I-
V'

c. (X n Y)op = X;p;Y n E

d. r X;p S Xop ;X
V r e. X;X SE X;p = Xop ;X

£. X;p S q;X r Xop sq

Proof. a. By definition, (X;Y) 0 p = X;Y;p;U n E-and X0 (Y 0 p) =

= X;(Y;p;U n E);U n E. Since by lennna 4.3.c I- X;p;U = (X;p;U n E);U,

the result follows.

b. Innnediate from the definitions and lennna 4.1.

c. X;p;Y n E = (lemmas 4.2 and 4.4) X;p;(p;X n Y) n E = (corollary 4.2
v V v

and lemma 4.4) X;p;(X n Y) n E = (lennna 4.3.b) (X n Y);p;X n E =
= monotonicity and lemma 4,3.c) (X n Y);p;U n E.

d. Applying lemma 4.3. c we obtain t"" X;p = (X;p;U n E) ;X;p S (X;p;U n E) ;X =

= Xop ;X.

e. S· By part d above.
V

~- X0 p ;X = (lennnas 4.2 and 4.4) X0 p ;X;(X; X0 p ;Un E) s (lemma 4.3.c)
V

X;(X;X;p;U n E) .'.:. (assumption) X;(p;U n E) = (corollary 4.2) X;p.

f. Assume X;p S q;X. Then r X0 p = X;p;U n ES q;X;U n ES (corollary 4,2) q.

Observe that from parts d and f of lemma 4.5, we obtain that the fol

lowing equality holds in all interpretations (compare section 1.3):

Xop = n{q I X;p s q;X}.

4. 3. Axiomatization of binary re Zations over cartesian products

The language MU 2 for binary relations over cartesian products is ob

tained from MU
1

by adding, for i = 1 1 ••• ,n, projection function symbols

41

n IX ••• xn 'n.
1fi n 1 to the basic terms of MU1 , for all types concerned. MU2 is

axiomatized by adding the following two axiom schemes to the axioms and rules

of MU
1

:

~ x1 ;YI n

= (XI ;'IT I n

v
n 1r ·1r = E n' n

nlx ••• xn ,nlx ••• xn
where 1fi is of type <n 1 x ••• x nn,ni>' E stands for E n n and

X. and Y. are of types <0,n.> and <n.,s>, respectively.
1 1 1 1

An assignment x. := f(x 1, ••• ,x) is expressed by a statement scheme V of
1 n

the form [1r 1, ••• ,1ri-l'S,1ri+l'"""'1fn]. Hence HQare's a.xiom for the assign-

ment (cf. [19])

corresponds with the assertion I- tlt(V) 0 p ;tlt(V) .=. tlt(V) ;p, as {q 1 }V{q2} is

expressed by q1;tlt(V) 5:.tlt(V);q2, and (tlt(V) 0 p)(x1, ••• ,xn) =

= p(x1, ••• ,x.
1
,f(x1, ••• ,x),x. 1, ••• ,x) (compare section 1.3). As func-

1 - -.._E,, 1 + n
tionality off implies tlt(V);tlt(V) .=.Eby lennna 4.11 below, this assertion

follows from (the more general) lemma 4.5.e. Thus leads the axiomatization

of MU
2

to a theory of assignments.

The following lemma establishes some necessary relationships between

projection functions and the E and U constants.

LEMMA 4.6. For i=l, ••• ,n:

n l X ••• xn 'n 1 X ••• xn
= E n n

n l X ••• xn , s
= U n

n . , n
1
x ••• xn n

1
x .•. xn , n . n . , n .

L .., 1 n n 1 1 1
c. 1 1f. ;1r. = E

1 1

n . 'n I x ... xn n 1 x .•. xn , n . n . 'n .
v1 n n J u1 J 1f. ;1r. =

1 J
for 1 ,f: j, j = I , ••• ,n.

Proof. a. Let E denote
n

then E = (C 1)1r.;~. n E
n 1 1 n

=

= (lennna 4.3.c)

42

n. ,s
l. b. 1r. ;U

l. nlx ••• xn ,E;
U n .

c. Consider, e.g., n = 2 and i = I:

= (part a above)

n1 ,n 1 nl'nl n1 ,n1 n1 ,n 1 n1 ,n 1 E = (lemma 4.1.d) E ;E n U ;U

n1,n1 ~ n1,n2 v nl,nl nz,nt
= (C2) (E ;1r 1 n U ;1r 2);(1r 1;E n 1r2;u) =

= (lemma 4.1 and part b above) n1;1r 1•

d. Consider, e.g., n = 2, i = I and j = 2:

nl ,nl nl ,n2 n1 ,n2 n2,n2
= E ;U n U ;E

n1,n1 v n1,n2 v n1,n2 n2,n2
= (C2) (E ;1r 1 n U ;1r2);(1r 1;u n 1r2 ;E) =

= (part b above) TT
1

;1r
2

•

n ...,,
Already in example 1.1 we signalled the analogy between n X.;1r. and

i=n 1. 1.

a list of parameters called-by-value. From this point of view properties
n n I X ••• xn 'n I X ••• xn

~ n n
such as (n X.;1r.) 0 E

i=l 1. 1.

n n. ,n.
i. i. h . = n X. 0 E - t e computation

i=l 1.

of such a list terminates if£ the computations of its individual members
n V

terminates - and (n X.;1r.);1r. =
i=l 1. 1. J

n ni,ni
(.n X. 0 E);X. - the request for the
i.=l l. J

value of a parameter contained in such a list amounts to computation of the

individual value of this parameter plus termination of the computations of

the other parameters - are intuitively evident. These and similar proper

ties follow from the following lemma and its corollary.

LEMMA 4.7. For k,l ~ n,

V

X. 0 E; (n X. ;Y) ; Y oE
1 k . . I k 1 3· st s 1 i.. =s 'J = , ••• '

J t
t=l, .•• ,l

k 1
= (n X. ;~.);(n 1r ;Y), with 1r

1
. of type <.nl x

j=l 1 j 1 j t=l st st

and Y of types <0,n. >and <n ,E;>, respectively.
s 1.

3
• st t ,

xn ,n.>,an,dX. n l. i..
J

43

Proof. The case of n = 3, k = 1 = 2, i 1 = l, i 2 = 2, s 1 = 2, s 2 = 3 is rep

resentative. Hence we prove

V V
By lemma 4.6, x

1
;rr

1
n x2;rr2 =

n 1 ,~
rr2;Y2 n rr3;Y3 == rr

1
;u n rr 2;Y2

(X
1

;~
1

n x2;n2);(rr2;Y
2

n

;u8'~ n Ue'~;
.., ... = (lennna 4.3.c) x1 oE x2;Y2 n Y3oE

... = (lemma 4.3.e)

x1oE ;x2oE ;(X2oE ;U8'~ n x2;Y2
n u8'~;

...., v V

Y3oE); Y2oE; Y3oE,

By corollary 4.2, x1°E ;u8'~ n x2;Y2 n U8'~; Y3°E = x1°E ;X2;Y2; Y3°E,

whence the result follows by lemma 4.4.

COROLLARY 4. 3,
n n

I-· (n x.;*.)o(n rr.;p.;,r,)
·111 ·1111 1 1111 1 1111

and p. of type <n, ,n.>.
1 1 1

. .
' ID Ill O '

X op , with X. n n 1

n n n n
1
x ••• xn ,a

8 P f (..,) ("') (C) (..,) n n E ' 8 roo . n X • ; rr . 0 n rr . ; p . ; rr . = 2 n X . ; p . ; rr . ; U
i=l 1 1 i=l 1 1 1 i==l 1 1 1

n v nl,e a a
... = (lemma 4.6.b) (n X.;p.;rr.);rr

1
;u

1
n E' ==

• l 1 1 1 1==

= (corollary 4.2 and lemma 4.5.a) x1°p 1
. .
' e • • '

One of the consequences of lemma 4.7 is

n-1 r (n
i=l

n-1
x.;~.);(n rr.;Y.) =

1 1 • 1 1 1 1=

n-1
n X. ;Y.,

i=l 1 1

X op.
n n

with rr., X. and Y. of types <n 1 x ••• x n ,n.>, <0,n,> and <n. ,~>, respec-
1 1 1 n 1 1 1

tively.

Assume n 1 = n 2 = • • • == n.n for s imp 1i city, then, apart from the in tended

44

interpretation of rr. as special subset of Dn x D,
l.

"axiom C2 for n-1, in which 1r1, ••• ,1rn-l are interpreted as subsets of

Dn-l x D "follows from" axiom c
2

for n, n > 2".

This line of thought may

Change the definition of

and introduce projection

n > 2 define (n x ••• xn)
1 n

be pursued as follows:

type in that only compounds (n 1xn2) are considered,

function symbols 1r
1
(nxs),n and rr

2
(nxs),s only. For
nix ••• xn ,n. n l. as (••• ((n 1xn2)xn3)x ••• xnn) and ni as,

. ((n1xn2)xn3),(n1xn2) (nlxn2),nl
e.g., for n = 3 and 1. = l,2,3,n 1 . ;n 1 ,

((nlxn2)xn3),(n1xn2) (n1xn2),n2 ((nlxn2)xn3),n3
1r

1
;n2 and 1r

2
• Then it is a

simple exercise to deduce C1 and C2 for n = 3 from axioms C1 and C2 for

n = 2. This indicates that our original approach may be conceived of as a

"sugared" version of the more fundamental set-up suggested above. These con

siderations are related to the work of Hotz on X-categories (cf. Hotz [51]).

Arbitrary applications of the 11
"'

11 operator can be restricted to pro

jection functions, as demonstrated below; this result will be used in sec

tion 5.3 to prove Wright's result on the regularization of linear proce

dures.

Proof. We prove X = ¥1;(E n 1r 1;X;~2);1r2• The result then follows by lennna

4.3.b.

= (lennnas 4.6.c and 4.3.a) n1;(X;n2 n n1) n 1r
2

;TI
2

•

Hence, :;;1;(n1;X;~2 nE);n2 = (lennna 4.7) (X;-rr'2 nn1);n2 = (lemma 4.7 again) x.

4.4. Axiomatization of the "µ." operators
1.

45

MU is obtained from MU2 by introducing the"µ/ operators, and is

axiomatized by adding Scott's induction rule, formulated in section 3.2 and

referred to as I, and the following axiom scheme to the axioms and rules

of MU2:

M : ~ {cr.[µ.x1 ••• x [cr 1, ••• ,cr J/x.J._ 1 £
J 1. n n 1. 1.- , ••• ,n

£ µ.x 1 ••• x [cr 1, ••• ,cr J}._1 •
J n n J- , ••• ,n

The axiomatization of MU is motivated by the need to provide a_ con

venient axiomatization of PL. Thus one expects axiomatic proofs of (the·

translations of) properties of PL such as the fixed point (lennna 2.1.e) and

minimal fixed point (corollary 2.3) properties, monotonicity (lennna 2.2)

and modularity (lemma 2.8), as the union theorem is embodied in Scott's in

duction rule and substitution is by lemma 3.3 a valid rule of inference.

These proofs are provided by the following lennnas:

LEMMA 4.9.

a. If -r 1(xp••·,Xn,Y), ••• ,-rn(X1, ••• ,Xn,Y) are monotonic in x1, ••. ,~ and Y,

i.e.' Al .=. Bl'··· ,An+l .::. Bn+l I- T 1 (Al'· .. ,An+l) .=. '2(Bl' • • • ,Bn+l)'

then Y1 £ Y2 1- {µjX 1 ••• Xn[T/X1' ••• ,xn,Yl ••• 'n(XI' ••• ,xn,Yl)J £

£ µ.X1···x [-r1<x1,···,x ,Y2) ••• -r (X1,···,x ,Y2)]}._l • J n n n n J- , ••• ,n

b. (Monotonicity). If -r(x1, ••• ,Xn) is syntactically continuous in

x1, ••• ,xn then -r is monotonic in x1, ••• ,Xn, i.e.,

XI£ Y1,···,xn £ Yn I- -r(X1,···,Xn) £ -r(Yl' ••• ,Yn).

c. (Fixed point property). I- {T.[µ.X 1 ••• X [,1, ••• ,-r]/X.J._1 J 1. n n 1. 1.- , ••• ,n
= µ.X1•••X [-rt'"""'' J}._1 • J n n J- , ••• ,n

d. (Minimal fixed point property, Park [34]).

=

{ -r . (Y l , ••• , Y) £ Y. }. _ I f- { µ . X l ••• X [-r I , ••• , -r] c Y. }. I •
J n J J- , ••• ,n J n n - J J= , ••• ,n

Proof. a. Use I, taking {Y1 £ Y2} for~ and ,,
{x. £ µ.x 1 ••• x [-r1(x1, ••• ,x ,Y2), ••• ,-r (x1 , ••• ,x ,Y2)Jl._1 for'¥,

J J n n n n J- , ••• ,n

46

and T.(x1, ••• ,X ,Y1) for a., j = I, ••• ,n.
J n J

I. r- {D. S µ.X1···x [Tl(X1,···,x ,Y2), ••• ,T (X1,···,x ,Y2)]}._1 • J J n n n n J- , ••• ,n
Obvious.

2. iP,'¥ r- {Tj(XI' ••• ,Xn,YI) S µjX 1 ••• Xn[Tl(XI' ••• ,Xn,Y2), •••

••• ,T (X1, ••• ,X ,Y2)J}._1 •
n n J- , ••• ,n

By monotonicity of T. in x 1, ••• ,X and Y, and M.
J n

b. Follows by induction on the complexity of T, using lemma 4.1.a. and

part a above.

c. s. Use I, with iP empty and taking {X. s T.(x1, ••• ,X)}._ 1 for'¥,
J J n J- , ••• ,n

proving the induction step with part b above.

d. Use I, taking {T.(Y1, ••• ,Y) ~ Y.}._ 1 for iP and {X. c Y.}.
J n J J- , ••• ,n J - J J=l, ••• ,n

for'¥, proving the induction step with part b above.

Modularity is but one of the many consequences of the iteration lemma

below. This lemma asserts that sirrruZtaneous minimalization by µ.-terms is
1

equivalent to successive singuZar minimalization by µ-terms. Its proof and

the proof of modularity, corollary 4.4, are both contained in appendix 3.

LEMMA 4.10. (Iteration, Scott and de Bakker [41], Bekic [4]).

r- µ x 1 ••• X. 1x.x.+ 1 ••• X [a
1

, ••• ,a.
1
,a.,a.

1
, ••• ,a J =

j J- J J n J- J J+ n
= µX}a }µiXI • • .xj_lxj+l' '.xn[0 I'.•• ' 0 j-l ,a j+I '• • • ,an]/Xi JiEI'

with I = { I , ••• , j- I, j +I, ••• , n}.

Proof. By application of the minimal fixed point and fixed point properties

and substitutivity (cf. [18]).

COROLLARY 4.4. (Modularity)

Define µi by µiX 1 ••• Xn[a 1 (a 11 (x 1, ••• ,Xn), ••• ,a1n(X1, ••• ,Xn)), •••

••• ,a (a 1(x1, ••• ,x), ••• ,a (X1, ••• ,x))] andµ .. by n n n nn n iJ
µ .. XI I ••• X ..••• X [a l I (a I (XI I , ••• , X l) , ••• , a (X I , ••• , X)) , ••• 1J 1J nn n n n nn
••• ,a .. (a 1(x11 , ••• ,x1), ••• ,a (X 1, ••• ,x)), ••• ,a (•••)]. Then the fol-1J n n n nn . nn
lowing holds, for i = 1, ••• ,n,

47

I- µ. = o.(µ.
1

, ••• ,µ.).
i i i in

Modularity itself has some interesting applications, too, e.g., corollary

4.5 below and the tree-traversal result of de Bakker and de Roever [2]. The

proof of this result, using modularity in MU, is a straightforward trans

formation of the proof given at the end of section 2.2, which uses modular

ity in PL

COROLLARY 4.5. I- {µ.X
1
••• X fo

1
, ••• ,o]v =

i n n
V V \J V V V

= µ.x 1 ••• x [o 1(x
1

, ••• ,x) , ••• ,o (x
1

, ••• ,x) J}._
1

•
i n n n n i- , ••• ,n

V V ~

Proof. Let T(X) be X and T.(x
1

, ••• ,x) be o.(x
1

, ••• ,X), i = 1, ••• ,n. Then
i n i n

corollary 4.5 can be formulated as the following consequence of modularity:

I- T (µ . X l ... X [T l (T (X l) , • .. , T (X)) , ••• , T (T (X l) , • .. , T (X))]) =
i n n n n

= µ.x
1
~ •• x [T(T

1
(x

1
, ••• ,x)), ••• ,T(T cx

1
, ••• ,x))J.

i n n n n

The last lennna of this chapter states some sufficient conditions for

provability of~ I- cr;o EE, i.e., funationaUty of o, and is frequently

applied in combination with
...,

I-lemma 4.5.e (X;X EE X;p = Xop ;X) •

LEMMA 4. 1 I • (Fune tionali ty) • The assertion ~ I- a; o c E is provab Ze if one

of the foZZowing assertions is provabZe:
n

a. If o = i~l oi then ~ I- {a . o E
1

U {cr.,•o. C
1 1 - E}. 1 • i= , ••• ,n

c. If o = 01;02 then ~ I- ol;ol
..,

;o.
J

EE,

d. If o = 01 n o2 then ~ I- o I ;o I E
or~ I- V

EE. 02;01

e. If o = µ.X
1
••• X [o

1
, ••• ,o] then

i n n

{cr.;o. 5=.E}._
1

•
i i i- , ••• ,n

V

EE. 02;02

E or~ I- V

E or~ 02;02 E

~,{X.;X. E E}._l I- {cr.;o. EE}. l •
i i i- , ••• ,n i i i= , ••• ,n

Proof.' Straightforward.

I-

48

In the following chapters we shall often use the following notations:

J
V v

I . [cr I , .. • , cr n for cr I ; 1T I n • • • n cr n; 1T n •
..,,

1T ;cr ;1r •
n n n

49

5. APPLICATIONS

5. l • An equivalence due to Morris

In [33] Morris proves equivalence of the following two recursive pro

gram schemes:

f(x,y) <:= if p(x) then y else h(f(k(x) ,y))

and

g(x,y) <== if p(x) then y else g(k~x),h(y)).

We present a proof in our framework.

The following equivalence is stated without proof:

LEMMA 5.1. I- [A
1

! ••• IA.
1

jA.jA.
1

1 ••• IA]pr.=
i- i i+ n i

= [A1l• ■■ IA. 1IEIA•+1l ■■■ IA];1r.;A .• i- i n i i

THEOREM 5.1. (Morris)

Let F = µX[[p!EJ;1r 2 u [p' IEJ;[KIEJ;X;H] and G = µX[[plEJ;1r 2 u [p' IEJ;[KIHJ;XJ.

Then

I- F = G, [EIHJ;G = G;H.

Proof. Let~ be empty, 1(X,Y) = {X = Y, [EIHJ;Y = Y;H},

cr(X) = [p!EJ;1r2 u [p'IEJ;[KjE];X;H and T(Y) = [p!EJ;1r2 u [p'IEJ;[KIHJ;Y.

Hence, we must prove

~ 1(µX[cr (X)], µY[T (Y)]) (5.1.1)

We intend to use Scott's induction rule. Unfortunately, this rule (as formu

lated in section 3.1) does not apply to (5.1.1), as, in case of a sirrrul

taneous induction argwnent, it only yields results about corrrponents of one

simultaneous µ-te:mz.

However, the observation that

50

and

are straightforward applications of the iteration lennna (lennna 4.10), gives

us the equivalent assertion

to which Scott's induction rule does apply.

Henceforth, such transitions wiZZ be tacitZy assumed.

Thus, we have to prove:

I. r 1f' (Q ,Q). Obvious.

2. X = Y, [EjH];Y =·Y;H r cr(X) = T(Y), [EjH];T(Y) = T(Y);H.

a. cr(X) = T(Y) [pjE];n2 u [p'jE];[KjE];X;H = (hyp.)

[pjE];n2 u [p'IEJ;[KjE];Y;H = (hyp.)

[pjE];n2 u [p'IEJ;[KjE];[EjH];Y = (C2)

[pjE];n2 u [p 1 jEJ;[K!HJ;Y.

b. [EjH];T(Y) = T(Y);H: [EIHJ;([p!EJ;n2 u [p'jE];[K!HJ;Y) =

= [EjH];[p!EJ;n2 u [EjH];[p'jE];[K!HJ;Y = (C2)

= [pjH];n2 u [p';KjH;H];Y =

= (lennna 5.1) [p!EJ;n2;H u [p';KjH];[EjH];Y =

= (hyp.) [pjE];n2;H u [p'IEJ;[KjH];Y;H =

= ([p!EJ;n2 u [p'IEJ;[KjH];Y);H.

51

5.2. An equivalence involving nested while statements

A proof of the following equivalence appeared, in a slightly different

formulation, in [2]:

(5. 2. 1)

where A*E stands for µX[A;X u E] and "*" has priority over "; ".

The present author feels, however, that the proof contained therein ob

scures some of the issues involved; these are: moclular d.ecomposition and

the use of simultaneous recursion (compare mo~ularity: lemma 2.8 and corol

lary 4.4). This can be understood as follows:

1. The modular decomposition of A1;x u A2;x u E as cr 1(x,cr2(X)), with

cr
1

(X,Y) = A
1

;X u Y and cr2 (X) = A2;X u E, leads to

µ)XY[Al;X u Y, Az;X u E] = (iteration) µX[Al;X u µY[Az;X u E]] =
= (fpp) µX[A

1
;X u A2;X u E].

2. A1*E ;(Az; A1*E)*E = µlXY[Al;XuE, Az;X;YuE];µzXY[Al;XuE, Az;X;YuE],

which is also a consequence of iteration (lemma 4.10).

These observations suggest that (5.2.1) is a consequence of the following

equivalence:

THEOREM 5.2. j- µ1 = µI ;µz, µ2 = ilz,

with µi - µiXY[A 1;x u Y, A2;X u E] and µi - µiXY[A 1;X u E, A2;X;Y u E],

i = 1,2.

Proof. ~: Follows by the minimal fixed point property (lennna 4.9.c) from:

a. 0 1<il1;µz,ii2) = Al;µ1;µ2 u 02 = (Al;µl u E);µ2 = (fpp) µl;µz,

b. cr2(µ1;µ2) = A2;µ1;µ2 u E = (fpp) µ2.

::= We prove I- 01;µ 2 .5. µ1, 0:-2 .5. µ2 ,

with 01;02 .5. 01;µ 2 .5. µ1 as obvious consequence.

52

Let T
1

(X) = A1;x u E and T2 (X,Y) - A2;X;Y u E. Then we must prove, using

Scott's induction rule:

I. t"" Q S µ2 , Q;µ 2 S µ
1

• Obvious.

2. X,µ 2 S µl' Y S µ2 t"" T 1(X);µ 2 S µ 1, TiCX,Y) S µ2•

a. T1(X);µ 2 = (A
1

;X u E);µ 2 S (hyp.) A1;µ 1 u µ2 = (fpp) µ 1•

b. T2 (X,Y) = A2;X;Y u ES (hyp.) A2;X;µ 2 u ES (hyp.) A2 ;µ
1

u E =
= (fpp) µ2.

5.3. Wright's regularization of linear procedures

In [47] Wright obtains the following results:

a. The class of recursively enumerable subsets of N2
is the smallest class

of sets with the successor relation Sas member and closed under the

operations 11
'-'

11
, ";" and "µX[Q u P;X;R]", where Q, P and Rare subsets of

N2
which· are contained in this class.

b. In the proof of part a the main auxiliary result can be generalized to a

setting in which N is replaced by any abstract domain V. This general

ization is:

(5.3.1)

In the present calculus (5.3.I) can be proved axiomatically.

The following two auxiliary lennnas ar~ needed:

Proof. Straighforward from lemma 4.5.c.

LEMMA 5. 3. t µX[A;X u B] op = µX[AoX u Bop J.

Proof. Amounts to a straightforward application of Scott's induction rule.

Now Wright's result (5.3.1) follows by applying lennna 5.3 twice from
'

THEOREM 5.3. (Wright)

r µX[Q u P;X;R] = TTl;µX[(E n 1Tl;Q;rr2) u [PIRJ;X] 0 E ;1r2

L R

Proof. ~: Follows by the minimal fixed point property from:

¥
1

; RaE

¥
1

; (E n
...,

Q u 1T 1;

;1r2 = (fpp)

1r 1 ;Q;7r2) ;1r2
[PIRJo(RoE)

Q u ¥
1
;(E n 1r

1
;P;TI

1
;

Q u P;rr1; R0 E ;1r2;R.

·n\;{(E n 1rl;Q;i2) u [PIRJ;R} 0 E ;1r2 = (lemma

U ¥1; [PIRJe(R 0 E) ;1r2 = (lemma 4.8)

;1r
2

= (lemma 5.2)

R0 E ;1r2;R;~2);1r2 = (lemma 4.8)

2: One derives by similar techniques:

whence by lemmas 4.8 and 5,2

and by the minimal fixed point property

By lemma 4.6.c one therefore obtains

53

4.5.a)

The reader might notice that ~l;µX[(1rl;Q;rr2 n E) u [PIRJ;X] 0 E ;1r2 does not

correspond with any program scheme. Using work of Luckham and Garland [14]

this has been remedied in I. Guessarian [15] by replacing this term by an

equivalent one which does correspond with a program scheme.

5.4. Axiomatization of the natural nwribers

In general, programs manipulate data of a special structure, such as

natural numbers, lists and trees. Consequently, proofs about the input-

54

output relationships of these programs often make use of the specific

structural properties of these data. In order to axiomatize such proofs, we

have to axiomatize relations over special domains. This is effected by

adding certain axioms, characterizing the structural properties of these

data as properties of certain relation constants (cf. example 1.3), to the

general system of chapter 4. As the relational language MU is particularly

suited to express induction arguments, the sequel is devoted to (1) the

axiomatization of domains satisfying some induction rule and (2) the axiom

atic derivation of properties of recursive programs manipulating data which

belong to these domains.

To begin with, we discuss below an axiom system for the natural num

bers N which improves on a similar system described in de Bakker and

de Roever [2]. In the next section an axiomatic proof of the primitive re

cursion theorem is presented involving a simple termination argument; the

reader should consult Hitchcock and Park [18] for a more elaborate theory

of termination. Chapter 6 contains axiom systems for various types of trees

and correctness proofs of programs, such as the TOWERS OF HANOI, which ma

nipulate these structures.

In [2] the natural numbers N were axiomatized as follows:

Nonlogical constants are a boolean relation constant

ual relation constant Sn,n. These satisfy:

I- V s;s n Po = Q.

f-
V

S;S 5=. E,

f-
V

S;S = E,

I-
V

E 5=. µX[p O u S;X;S].

pn,n and an individ-
0

Clearly, the intend.ed interpretation of Po is {<O,O>} and of Sis

{<n,n+l> In EN}. However, these axioms model also any nwriber of disjoint

copies of N:

Let J be any nonempty index set, DJ be the disjoint union j~J Nj of

!JI copies of N, mJ(p0) be {<<O,j>,<O,j>> I j E J} and mJ(S) be

{<<n,j>,<n+l,j>> In EN, j E J}.

* Then <DJ,mJ(p0),mJ(S)> satisfies N1 , N2, N3 and N4 •

Let R* = µX[R;X u E]. Note that

55

r- µX[R;X u E] = µX[X;R u E] (5. 4. 1)

is a consequence of Scott's induction rule.

Then we exclucle disjoint copies of N from bein(J moclels by replacing N; by

This can be understood as follows:

Assume to the contrary that the underlying domain of some model for

N1, N2, N3 and N4 contains two disjoint copies of N, say Na and Nb.
N . . v* * N Certainly <Qa,Oi,> Eu, whence 4 implies <Oa,Ob> ES ;p0;s. By 1

N "'* 0 0 * · · and
2

, <Oa,Oa> ES and< b' b> ES are the only pairs contained

ins* ands* with Oa as first and Ob as second element, respectively.

Therefore, by definition of "·" <0 0 > E p and this contradicts ' ' a' b O'

Henceforth, N clesignates the type of the natural nwribers., i.e • ., of any

structure satisfying N1., N2, N3 and N~.

As first consequence of these axioms atomicity of p0 is derived. Fol

lowing example 1.2.f this is expressed by

Proof. v* * p
0

;u n U;p0 = (lemma 4.3.e) p0 ;U;p0 ~ (N4) p
0

;s ;p
0

;s ;p
0

=
V * * = (fpp and (5.4.l)) p0 ;(S;S u E);p0;(S ;Su E);p0 =

, = (N 1 and N2) p0 ;p0 ;p0 = (lemma 4.4) Po•

56

N* Secondly, 4 follows from

LEMMA 5.5. I- E = µX[p 0 u s;x;sJ.

I- v* * v Proof. ~= Derive Ens ;p0 ;s ~ µX[p 0 u S;X;SJ by Scott's induction rule.

Then the result follows from N4 •

We prove

As

,J * V' * * E n (S;X u E);p0 ;s = (En S;X;p0;s) u (En p0 ;s),

the proof of this splits into two parts:

* (lemma 4.3.e) a. E n p
0
;s = Po n * (fpp) µX[p

0
u S;X;S]. pO;S ~ Po~

V * b. En S;X;p
0
;s = (N

1
and N2, (5.4.1) and

V V' *

V V *
fpp) S; S n S ;X; p O; (S ; S u E) =

= (N
1

) S;S n S;X;p
0
;s ;S ~ (hyp., lemma 4.3.a) S;µX[po u S;X;S];S ~

~ (fpp) µX[p
0

u s;x;sJ.

~= Straightforward from Scott's induction rule.

Let eq stand for µX[[polPo] u [s!sJ;X;[S,S]J.

Clearly, <<n,m>,<n,m>> E eq iff n = m. In relational formulation, this

amounts to

LEMMA 5 • 6 • j- e q; 1T l = 1T
2

a. [p0 jp0];1T 1 = (lemma 4.6.b) (1T 1;p0 ;TT1 n 1T 2;p0 ;~2);(1T 1 n 1T 2 ;u) =

= (C2) Til;po n rr2;po;U = (lemma 4~3.e) TII;po n TI2;po;U;po =

= (lerrnna 5.4 and monotonicity) 1T 1;p0 n 1T 2 ;p0 .

b. [p
0

jp
0

];1T2 = 1T
1

;p
0

n 1T2 ;p
0

is similarly derived.

c. Combination of parts 2 and b then yields (5.4.3).

(5.4.2)

(5 4.3)

Next we prove (5.4.2).

~: Use Scott's induction rule on eq. By lemma 5.5 we have to prove parts

d and e below:

d. r- [p0 1p0J;1f 1 .:::: [µY[p 0 u s;Y;sJl11Y[p0 u s;Y;sJJ;'lT2

L

Use (5.4.2) and the fixed point property in L.

e. X;1fl ~ L;'lT2 I- [slsJ;X;[sjs];1fl ,:::: L;1T2·

[sjs];X;[sjs];1fl = [SISJ;X;'!Tl;S.::: (hyp.) [slsJ;L;'lT2;S =

= [s!sJ;L;[sjsJ;1f
2

.:::: (fpp} L;'lT
2

•

.:?_: Similarly.

5.5. The primitive recursion theorem

This is the following theorem:

THEOREM 5.4. Let G: Nn + N and H: Nn+2
+ N be primitive recursive fu:na

tions. Then there exists an u:nique total fu:nction F: Nn+l + N such that,

for all x1, ••• ,xn,Y EN:

57

(5.5.1)

Proof. To simplify the notation we taken= 1.

The minimal solution of (5.5.I) is

We prove below that µTis total. By the minimal fixed point property, then

certainly µT,:::: F, if Fis any solution of (5.5.1). If Fis a function, then

58

µTE F implies by lemma 4.3.d that µT = µT 0 E;F, whence µT = F follows from

totality of µT. It remains to be demonstrated that such an F exists, i.e.,

µTis functional; this follows from Scott's induction rule by repeated

application of lemma 4.11.

LEMMA 5.7. GoEI,I = El,I, HoEl,l = E3,3 j- E2,2 E µT;Ul,2,

with
0
j , k = cr NxNx ••• xN, +iJxNx •: • xN, •

j times k times

Proof. Assume G0 E1 'l = El' l and HoEl 'I = E3 , 3

Then

holds by lennna 5.5 and

(5.5.2)

follows from Scott's induction rule as proved below, whence the result.

We prove the induction step only:

...

= (lemma 4.6.b)

I 2 2 ~ I" I 2 1 2 1 2 [E Po];U' u [TI1,TI2;S,[E S];µT];(TTl;U' n TI2;U' n TI3;U')

... = [Ejpo];u
2

'
2

u (TI2;s;u 1'
2

n [EjS];µT;U 1' 2)

~ [Ejp
0

J;u2 ' 2 u [EjsJ;µT;u 1, 2 ;CElsJ

2 (hyp.) [Ejp0 u s;x;sJ.

Rema.rk. Since in the proof above the induction argument applies to the very

structure, of the underlying domain, we run here up against the axiomatic

counterpart of Burstall's struatural induation (cf. [8]).

59

6. AXIOMATIC LIST PROCESSING

6.1. Lists, Zinear Zists and ordered Zinear Zists

For our purpose it is sufficient to characterize a domain of Zists as

a collection of binary trees which is closed w.r.t. the following opera

tions:

(1) taking a binaY1{f tree t apart by applying the car and cdr functions, re

sulting in its constituent subtrees car(t) and cdr(t), if possible;

otherwise, tis an atom and satisfies the predicate at, whence

at(t) = t,

(2) construating a new binaY1{f tree from two oZd ones by application of the

function cons,

where car, cdr and cons are related by car= cons;1r 1 and cdr
._,,

= cons;1r2 .

Thus we introduce one (applied) individual constant consnxn,n and one (ap

plied) boolean constant atn,n and postulate these to satisfy the following

axioms:
LI f- ~ Enxn,nxn . cons;cons = .
L2 f- ~ En,n cons;cons s

L3
. f- at n

,.._,.. = nn,n . cons;cons

L4 f- En,n S µX[at u [cons;1r1;X,cons;1r2;X];cons].

Remarks. 1. L1 implies that cons is total and cons, whence cons;1r 1 and

ccms;1r2 (by lemma 4.11), are functions, L
2

that cons is a function, L3
that an atom can never be taken apart and L4 that any list is either an

atom or can be first taken apart and then fitted together again.

2. Satisfaction of these axioms establishes <D ,at,cons> as a structure of
n

lists. This leads us to introduce a new type, L, reserved for lists, re-

sulting in <L,L> and <LxL,L> as new types for at and cons. If there is

no confusion between different domains of lists, Lis also used to in

dicate a domain of lists.

3. ccms;1r1 and cons;1r2 will be referred to as car and cdr. (6.1.1)

60

Linear lists are lists with the additional property that car(l) is

always an atom.

Thus we obtain axioms for linear lists by replacing L
1

by

postulating L2 and L
3

, and replacing L
4

by

LL
4

: I- En,n ~ µX[at u [car,cdr;X];cons].

LL is then introduced as type for linear lists-.

With linear lists as domain and range some interesting properties can be

proved, such as

(1) if cone stands for µX[cons u [Il
1
;car,[rr

1
;cdr,rr2];X];cons], i.e.,

conc(1
1
,12) <== if atom(l

1
) then cons(1

1
,12) else cons(car(l

1
),

conc(cdr(1 1),12)), ••• (6.1.2)

then cone is associative, i.e., conc(conc(1
1
,12),1 3) =

= conc(1
1

,conc(12 ,1
3
)), cf. McCarthy [29],

(2) if first and last stand for (at u car) and µX[at u cdr;X], ••• (6.1.3)

respectively, then conc;first = rr 1;£irst and conc;last = rr2 ;1ast,

(3) cone is a total function.

It is proved in lemma 6.3 that these properties of linear lists can be ob

tained as corollaries of the analoguous properties for ordered linear lists.

Ord.ered linear Zists are linear lists with the additional property

that some relation holds between the subsequent atoms of these lists.

For convenience, we do not use a relation o<.' ,holding, e.g., between 1
1

and

12 : 1
1

o<..' 12 , but introduce the characteristic predicate o< of this relation:

<1 1,12> o< <11'12> if£ 1
1

<><' 12 , i.e., ol. = rr 1;.,(_';i2 n E. • .• (6.1.4)

In principle"<' need not be a partial order at all; many interesting prop

erties can be proved without this requirement: theorems 6.1 and 6.3 estab

lish (1) and a variant of (2) above for ordered linear lists and theorem

6.2 establishes conc 0 E =-<,i.e., conc(1
1

,1 2) is defined if£ 1
1

o<' 1
2

•

61

In order to axiomatize ordered linear lists we introduce therefore a
nxn nxn LL I- [J boolean constant o< ' , replace 1 by cons ;cons = ~ 1 ;at,1r2 ;o<, i.e.,

<car(l),cdr(l)> o<. <car(l),cdr(l)>, and stipulate that <at.,at. 1> o<
l. 1+

o<. <ati,ati+l> holds for all subsequent atoms ati and ati+l which constitute

an ordered linear list. This leads to the following axioms for ordered

linear lists:

OLL
1 I- \,_,.,

[,r 1 ;at,1r2];o< cons;cons =

OLL
2 I- '-" En,n cons;cons ~

OLL
3 I- at n '-" = nn,n cons;cons

OLL4 I- En,n ~ µX[at u [car,cdr;X];cons]

OLL
5 I- o(= [,r

1
;last,1r2;first] 0 o<,

with last and first as defined in (6.1.3).

Remarks. OLL is introduced as type for ordered linear lists and

(at u [car,cdr;X];cons) will be referred to as TOLL" Then OLL4 reads as

I- En' n .=. µX[TOLL].

First some simple properties of at, car, cdr, cons and~ are collected

in

LEMMA 6.1. Let at' d.enote [car,cdr];cons (or cons;cons, which is equiva

lent) then the foUowing properties hold for

a. Lists: I- E = µX[at u [car;X,cdr;X];cons], at u at' = E, cons;at' = cons,

cons;at = n.

b. Linear Usts: I- E = µX[at u [car,cdr;X];cons], cons;cons = 1r 1°at,

car;at = car, car;at' = n.

c. Ord.ered linear Usts: I- cons;cons = 1r 1 °at;o<.

Proof. a. E = µX[at u [car;X,cdr;X];cons]: ~- Axiom L4•

~- Use 1 with~ empty, taking {X ~ E} for~ and (at u [car;X,cdr;X];cons)

for cr.

at u at'= E E = µX[at u [car;X,cdr;X];cons] =

= (fpp) at u [car,cdr];cons.

62

cons;at' = cons;c6ns;cons = (L 1) cons. cons;at' = cons

cons;at = Q cons;at = cons;coo.s 0 E ;at = (L2) cons; (cons;cons n at)=

= (L3) Q.

b. E = µX[at u [car,cdr;X];cons]: Similar to above.

c.

'-,/ cons;cons =

car;at =

car;at' =

'-./ cons;cons =

1T 0 at
1

car

Q

1T 1 oat

Obvious from LL 1•
...__,,,

cons;1r 1 ;at = (lemma 4.5.e)
....,.

cons;cons 0 E ;1rloat

(from above) cons;consoE '--' = ; 1T 1 = cons; 1r 1•
-...,.,

ccms;[1r 1;at,1r2];1r 1;at' cons;1r1;at' = =

= cons;1r 1;(at n at') = (LL3) Q.

. Obvious from OLL
1

• ;« .

; 7T 1 =

In the proofs of this chapter the following property, lemma 4.5.e, is

often implicitly applied: X;X ~ E r X;p = X0 p ;X. Functionality of the

terms involved is proved by repeated application of lemma 4.11 and may re

quire in the induction steps X;X ~ E as additional hypothesis and .__..,..
-r
01

lX) ; -r
011

(X) ~ E as additional conclusion.

Next we establish an auxiliary lemma.

LEMMA 6. 2. r [[1r l ; at, 1r 2] ; cons, 1r 3]; cone =

= [1r 1;at,1r2] 0 < ;[1r 1,[1r2 ,1r3J;conc];cons.

Proof. r [[1r 1;at,1r2J;cons,1r3J;conc =

= [[n
1

;at,w
2

J;cons,w
3

J;[n
1
;car,[~

1
;cdr,~2J;conc];cons =

= [[1r 1;at,1r2J;cons;cons;1r 1,[[1r 1;at,1r2~;cons;c'on.s;1r2 ,1r3J;conc];cons, as may

be proved using C2 and (6.1.1),

••• = (0LL 1) [[1r 1;at,1r2J;~;1r 1,[[1r 1;at,1r2];~;1r2 ,1r 3J;conc];cons, whence by

lemma 4.5.e and cor. 4.2 the result follows.

The fundamental theorem of this section is

THEOREM 6.1. r conc;first = o<;1r 1;first,conc;last = o<.;1r2 ;last.

Proof. We derive r cone; first = o<;1r l; first as an example; the proof of

r conc;!ast = o<;1r2;last uses similar techniques.

By lemma 6.1 it is sufficient to prove I- [1r 1;µX[TOLLJ,1r 2J;conc;first =

= [1r 1;µX[TOLLJ,1r 2J;o<.;1r
1
;first. Use I with~ empty, taking

{[1r
1

;x,1r2J;conc;first = [1r
1

;x,1r2];~;1r
1
;first} for 1 and TOLL for cr. *)

I- 1 (Q). Obvious.

1(X) I- 1(TOLL(X)).

1. [1r
1
;at,1r2J;cons;first = (lemma 6.1) [1r 1;at,1r2J;cons;car =

= (0LL
1

) [1r
1
;at,1r2J;o<,;1r 1 = [1r 1;at,1r2J;~;1r 1;first.

2. The nucleus of the proof:

[1r
1
;car,[1r

1
;cdr;X,1r2J;conc]oo< =

= (0LL5) [1r
1
;car,[1r

1
;cdr;X,1r2J;conc;first] 0 o<.= (induction hypothesis)

[1T
1
;car,[1r

1
;cdr;x,1r2];o<.;1r

1
;first]ooC =

= (lennna 4.5.e, cor. 4.2) [1r 1;car,1r1;cdr;X]oo<. ;[1r 1;cdr;X,1r2Jo~.

3. [[1r 1;car,1r 1;cdr;X];cons,1r2J;conc;first = (lemmas 6.1 and 6.2)

[1r
1
;car,1r

1
;cdr;X] 0 ~ ;[1r 1;car,[1r

1
;cdr;X,1r2J;conc];cons;first =

= (using cons;first = <><::;1r
1
;at, lennna 4.5.e and part 2)

[1r
1

;car,1r
1

;cdr;X]oo(;[1r 1;cdr;X,1r2] 0 o<. ;1r 1;car.

4. [[1r
1

;car,1r
1
;cdr;X];cons,1r2J;o<.;1r 1;first = (lennna 4.5.e)

[[1r
1

;car,1r
1

;cdr;X];cons,1r2] 0 o<. ;[1r
1
;car,1r 1;cdr;X];cons;first =

= (using cons;first = o<;1r
1
;at, lennna 4.5.e and cor. 4.2)

[[1r
1

;car,1r
1

;cdr;X];cons,1r2] 0 o<: ;1r 1;car.

5. [[1r
1
;car,1r

1
;cdr;X];cons,1r2] 0 o<. = (0LL5 and cor. 4.2)

[7T
1

; car, 7T
1

; cdr;X] 0 o<. ; [1T 1; cdr;X,1r 2] 0 o<.

6. The proof of the induction step fqllows from part 1 and

[1r
1
;[car,cdr;X];cons,1r2J;conc;first =

= [[1r
1

;car,1r
1

;cdr;X];cons,1r2J;conc;first = (part 3)

[1r
1

;car,1r
1

;cdr;X] 0 o<. ;[1r
1

;cdr;X,1r2] 0 o< ;1r 1;car = (parts 4 and 5)

[1r
1
;[car,cdr;X];cons,1r2];o<.;1r 1;first.

We apply this theorem for the first time in

THEOREM 6 • 2. I- cone O E = o<.

63

*) This corresponds with structural induction on the first coordinate, cf.
section 5.5.

64

Proof.

1. conc 0 E = (fpp)

([rr 1;at,rr2J;cons u [rr 1;car,[rr1;cdr,rr2J;conc];cons)oE.

2. ([rr 1;at,rr2 J;cons) 0 E = [rr 1;at,rr2Jo~.

3. ([rr 1;car,[rr1;cdr,rr2J;conc];cons)oE =

= (0LL5 and theorem 6.1) [rr 1;car,[rr1;cdr,rr2];o<;rr
1
] 0 ~ =

= [1T
1

; car, rr
1

; cdr] 0 o< ; ['1T
1

; cdr, ,r
2

] 0 o< =

= [1r
1
;[car,cdr];cons,n

2
] 0 c<:..

By combining parts I, 2 and 3 one obtains the result from lemmas 4.5.b and

6. 1.

Next wa prove the classical

THEOREM 6.3. (Associativity of cone).

Proof. By lemma 6. 1 it is sufficient to prove

I- [[rr 1;µX[TOLLJ,rr 2J;conc,TI 3];conc = [TI 1;µX[TOLLJ,[rr 2 ,TI 3];conc];conc. Use I

with~ empty, taking {[[rr 1;x,rr2J;conc,rr3J;conc = [rr 1;X,[rr2 ;rr
3
J;conc];conc}

for o/ and TOLL for a,

r o/(Q). Obvious.

o/ (X) r o/ (ToLlX)) • Follows from parts 1 and 2 be low.

= [rr 1;at,[rr2 ,rr3J;conc];cons.

2. [[[rr
1
;car,rr 1;cdr;X];cons,TI2];conc,rr3J;conc =

= (fpp, OLL5, theorem 6.1) [[rr1;car,[rr1;cdr;X,rr2J;conc];cons,rr 3J;conc =

= (similarly) [rr
1
;car,[[rr 1;cdr;X,rr2J;conc,rr 3J;conc];cons =

= (hypothesis) [rr 1;car,[TI
1
;cdr;X,[rr2 ,rr3J;conc];conc];cons =

= [rr 1;[car,cdr;X];cons,[rr2 ,rr3J;conc];conc.

Finally we observe that, although intuitively not obvious, linear

lists are a special case of ordered linear lists.

This folfows from

(1) totality of last and first for linear lists, the proof of which is a

matter of routine,

and

(2) the fact that substitution in OLL 1, ••• ,0LL5 of Enxn,nxn for ~nxn,nxn

• LL LL L nxn,nxn _ [. • . J nxn,nxn results in 1, ••• , 4 and r E - rr 1,last,rr2,first 0 E ,

which is proved by [rr
1
;last,rr2;first] 0 Enxn,nxn = (corollary 4.3)

(rr
1
;last)oEn,n ;(rr

2
;first)oEn,n = rr

1
o(last 0 En,n) ;rr2o(firstoEn'n) =

= (part l above) rr
1
oEn,n ;rr

2
oEn,n = (lemma 4.6) Enxn,nxn.

Hence we have, a fortiori,

65

LEMMA 6.3. Any property of ordered linear Usts holds upon substitution of
./ b ELLxLL,LLxLL ~ -, . -, . t
~ y Jor &~near v~S s.

6. 2. Properties of head and tai Z

+ The head and tail functions hd and tZ, both of type <N xOLL,OLL>,
+ where N is the type of the positive natural numbers and OLL the type of

ordered linear lists, are defined by

(1) hd(n,l) is the ordered linear list of n elements which constitutes the

initial part of 1 of length n, if extant, and

(2) tl(n,l) is the ordered linear list which constitutes the remainder of

1, after hd(n,1) has been chopped off, if possible.

If both sides are defined, clearly properties such as

conc(hd(n,l),tl(n,l)) = 1, tl(n+l,1) = cdr(tl(n,l)),

conc(hd(n,l),car(tl(n,1))) = hd(n+l,1), tl(n,conc(hd(n,1 1),12)) = 12 and

hd(n,conc(hd(n,1
1
),12)) = hd(n,1

1
) are valid and therefore amenable to

proof within our system.

+ First we observe that the axioms for N are the axioms for N which are

modified by "renaming" Po as pl (p0 is renamed as p;, too).

Next we introduce some notation:

66

hd denotes µX[rr 1°p 1 ;rr2;car u [rr2;car,[rr1;s,rr2 ;cdr];X];cons],

tl denotes µX[rr 1°p 1 ;TI2;cdr u [TI 1;S,TI2;cdr];X],

rr. . denotes [rr. , ••• ,rr.].
i1,···,in il in

Then the above mentioned properties are established in

(6.2.I)

(6.2.2)

(6.2.3)

THEOREM 6.4.

a. I- [hd, tlJ; cone = [hd, t 1] 0 o(; TI 2, of type + <N xOLL,OLL>.

I- [TI 1;S,TI2];tl of type +
b. tl;cdr = , <N xOLL,OLL>.

I- [hd,tl;carJ;conc [TI I ; S , rr 2] ; hd. of type +
c. = , <N xOLL,OLL>.

d. f- [rr 1,[TI 1, 2 ;hd,rr3J;conc];tl = [TII 2;hd,rr3Jo~ ;rr3,
' + of type <N xOLLxOLL,OLL>.

= [hd,tlJ 0 o<
+ + , of type <N xOLL,N xOLL>.

Proof. The techniques required for proving this theorem are illustrated by

proving parts a and e.

a. First we prove f- [hd,tlJ;conc s rr 2• Then the result follows from

[hd,tl];conc = (lemma 4.3.d) ([hd,tl];conc) 0 E ;rr2 = (theorem 6.2)

[hd,t1] 0 c< ;TI2 •

Apply I, with~ empty and taking {[hd,tl];X s TI2} for P and

(cons u [TI 1 ;car,[TI 1 ;cdr,rr2J;X];cons) for cr. Then P(X) f- P(cr(X)) follows

from parts I and 2 below.

I. [hd,tl];cons = (0LL 1) [hd;at,tl];o(;cons = (fpp and lemma 6.1)

rr 1°p 1 ;[rr2 ;car,TI2 ;cdr];c<;cons s (OLL2) rr 2•

2. [hd,tl];[rr 1;car,[TI 1;cdr,TI2];X];cons = [hd;car,[hd;cdr,tl];X];cons =
= (fpp and lemma 6.1)

V V

[TI2;car,[[TI1;S,TI2 ;cdr];hd,[TI 1;s,TI2;cdr];tl];X];cons s (hypothesis)

[TI2;car,[TI 1;S,TI2;cdr];TI2];cons s (0LL2) TI 2•

67

e. Apply I, with <I> empty, taking {[1r1 ,[1r1 2;hd,1r3J;conc];X = ,
= [1r

1 2;hd,1r3] 0 "'--;1r
1 2;X} for'¥ and {1r

1
°p

1
;car u

' ...,. , 1-u [1r2;car,[1r
1

;s,1r2;cdr];X];cons) for cr. Then 'P(X) 'P(cr(X)) follows from

part 1 and 4 below.

I. It follows from lennna 4.3.d that [1r
1 2;hd,1r3];conc;car ~ {fpp) 1r2;car ,

and {[1r
1

, 2 ;hd,1r3];conc;car) 0 E = [1r
1

, 2 ;hd,1r3] 0 (concoat') = (fpp)

[1r
1 2 ;hd,1r3] 0 {conc 0 E) = (theorem 6.2) [1r

1 2 ;hd,1r3J 0 ~ together imply , ,
[1r

1 2;hd,1r3J;conc;car = [1r
1 2 ;hd,1r3J 0 o< ;1r2;car. , ,

2. [1r
1 2;hd,1r3];conc;cdr = ,

= [1r 1, 2;hd,1r 3]oo<. ;(1r 1°p 1 pr3 u 1r 1°pi ;[1r.1, 2;hd;cdr,1r3J;conc) is

proved similarly.
..,,

3. 1r
1 2;hd;cdr = {fpp) [1r

1
;s,1r2;cdr];hd. ,

4. [1r 1 ,[1r
1 2;hd,1r3];conc];1r 1°pj ;[1r2;car,[1r

1
;s,1r2;cdr];X];cons = ,

= {parts l and 2)

[1T 1 , 2'; hd, 1T 3] 0 ..,c ; 1T
1
° p 1 ; [1T 2; car, [1T

1
; S, [1T

1
, 2; hd; cdr, 1T

3
J ; cone] ; X] ; cons =

= {part 3) ·

[1Tl 2;hd,1T3]oo(;1rlop; ;
, v

[1r2;car,[1r
1

;s,1r2;cdr,1r3];[1r 1 ,[1r
1 2 ;hd,1r

3
];conc];X];cons =

, 'v

= (hypothesis) [1r 1 , 2 ;hd,1r3] 0 o< ;1r 1°pj ;[1r2;car,[1r
1

;s,1r2;cdr];X];cons.

Since o(. = 1r
1

;«'....';i2 n E (6.1.4), transitivity of the relation-=<...', i.e.,

the property o<.. ' ; o(,' .=. ...(, ' , imp lies 1T 1 , 2 °-=l..; 1T 2 , 3 °<>(_ .=. 1T 1 , 3 ° c(,, transitivity

of the predicate o{., in its two arguments or transitivity of<><., for short.

This follows from 1r
1

, 2°c<:,;1r2 , 3°o<.. = (1r
1
;-(.';~2 n E);(1r2 ;"'<-';TI

3
n E) =

= 1T •-,,L' ·n n 1T ·«:,' •7r n E C 1T . c<.'. _,. I •,r n E C (assumption) I' '2 2' ' 3 - I' ,~' 3
1T . _,. I • v1T n E - 1T O o<., (6 2 l) l'....__,' 3 - 1,3 • ••• • •

COROLLARY 6.1. Let o(be transitive (in its two arguments)., then

a. f- [[1r l ; S , 1r 2] ; hd, 1r
3

] o c(=

= [1r 1, 2;hd,1r 1, 2;tl;car] 0 ~ ;[1r 1, 2;tl;car,1r3Joo(;[1r
1

,
2

;hd,1r
3

Jo<.

b. f- {[1r 1;s,1r2J;tl) 0 E = [hd,tl;car] 0 ~ ;[tl;car,tl;cdr]o~ ;[hd,tl;cdr]oo<.

68

Proof.

a. [[n
1
;s,n

2
J;hd,n

3
Jo<>< = (theorem 6.4.c) [[n1, 2 ;hd,n1, 2;tl;car];conc,n3J 0 ~=

= (theorem 6.1) [n ;hd,n 2;tl;car] 0 ~ ;[n1 2;tl;car,n3] 0 ~, whence the
1,2 I, ,

result can be deduced from the assumption.

b. ([n
1
;s,n

2
J;tl) 0 E = (theorem 6.4.f) [[n 1;s,n2J;hd,[n 1;s,n2J;tl] 0 ~ =

=(theorem 6.4.b and 6.4.c) [[hd,tl;car];conc,tl;cdr] 0 ~= (theorem 6.1

and transitivity of oC) [hd,tl;car] 0 o< ;[tl;car,tl;cdr] 0 P(;[hd,tl;cdr] 0 o(.

6.3. Correctness of the TOWERS OF HANOI

6. 3. a. Informal part

We present an informal argument for the correctness of a certain ver

sion of the TOWERS OF HANOI program. This version looks in ALGOL-like nota

tion as follows:

procedure TVH(n,x,y,lt,l2,l3); integer n,x,y; ordered linear list l1,l2,l3;
if n=l then MOVE(n,x,y,ll ,l2,l3) else

begin n:= n-1; y:= alt(x,y); TVH(n,x,y,l1,l2,l3);

end· _,

y:= alt(x,y); MOVE(n,x,y,ll,l2,l3); x:= alt(x,y);

TVH(n,x,y,ll,l2,l3); n:= n+I; x:= alt(x,y)

procedure MOVE(n,x,y,ll ,l2,l3); integer n,x,y; ordered linear list ll ,l2,l3;

u x=JAy=2

if x=]Ay=3

then begin l2:=

~ begin l3:=

cons(car(ll),l2); ll:= cdr(ll) end else

cons(car(ll),l3); ll:= cdr(ll) end else

if x=2Ay=3 then begin l3:= eons(car(l2),l3); l2:= cdr(l2)

if x=2Ay=l then begin l t : = cons(car(l2),ll); l2:= cdr(l2)

if x=3Ay=l then begin ll := cons(car(l3),ll); l3:= cdr(l3)

if x=3Ay=2 then begin l2:= cons(car(l3),l2); l3:= cdr(l3)

integer procedure alt(x,y); integer x,y; if x~l A x~3 A y~l A y~3 then

alt:= 6-x-y else undefined .--
To which conditions does correctness of TVH amount?

end else

end else

end else

end else

undefined;

First we have to assume the transitivity of the relation ordering the order

ed linear lists considered above. We do not wish to elaborate this assump

tion in the present informal setting; for this the reader is referred to

the next section.

Let us assume x I y, then execution of TVH(n,x,y,ll,l2,l3), if defined,

I. Has to result in the removal of the top n discs of the pin "identified

by" x, to the pin identified by y.

2. These discs are moved in correct order, i.e., never a larger disc is

placed on a smaller disc.

3. The discs are moved one at a time.

As to (3): we cannot formalize this requirement, as the present formalism

deals only with input-output relationships and not with inter

mediate stages: cf. section 1.3.

69

As to (2): this condition is implicit in our approach as all functions are

only defined for ordered linear lists. Thus, the question

whether or not the order is disturbed amounts to whether or not

the execution is defined.

As to (I): let us declare R(n,x,y,ll,l2,l3) by

procedure R(n,x,y,lI,l2,l3); integer n,x,y; ordered linear list l1,l2,l3;

if x=1Ay=2 then begin l2:= conc(hd(n,ll),l2); ll:= tl(n,ll) end else

if x=1Ay=3 then begin l3:= conc(hd(n,ll),l3); lt:= tl(n,ll) end else

if x=2Ay=3 then begin l3:= conc(hd(n,l2),l3); l2:= tl(n,l2) end else

if x=2Ay=l then begin lt:= conc(hd(n,l2),ll); l2:= tl(n,l2) end else

if x=3Ay=l ~ begin ll:= conc(hd(n,l3),ll); £3:= tl(n,l3) end else

if x=3Ay=2 then begin l2:= conc(hd(n,l3),l2); l3:= tl(n,l3) end else

If we assume x I y, (1) amounts to

TVH(n,x,y,ll,l2,l3) = R(n,x,y,ll,l2,l3),

provided both sides are defined.

undefined.

As TVH(l,x,y,ll,l2,l3) = R(I,x,y,ll,l2,l3) follows from the declarations,

we concentrate on the case n > 1:

The induction hypothesis is TVH(n-1,x,y,ll,l2,l3) = R(n-1,x,y,ll,l2,l3),

provided both sides are defined. Start with statevector

~o = <n,I,2,l1,l2,l3>.

I. Execution of n:= n-1; y:= aZt(x,y); TVH(n,x,y,Zl,Z2,ZJ) with ~Oas input

results in

70

~l = <n-1,l,3,tl(n-l,ll),l2,conc(hd(n-l,ll),l3)~,

by the induction hypothesis.

2. Execution of y:= alt(x,y); MOVE(n,x,y,l1,l2,l3) with ~l as input results

in

~2 - <n-1,l,2,cdr(tl(n-1,ll)),cons(car(tl(n-1,ll)),l2),

conc(hd(n-1,ll),l3)>

3. Execution of x:= alt(x,y); TVH(n,x,y,l1,l2,l3); n:= n+1; x:= alt(x,y)

with ~2 as input results in

~2 - <n,l,2,cdr(tl(n-1,ll)),

Expr I

conc(hd(n-1,conc(hd(n-1,ll),l3)),cons(car(tl(n-1,ll),l2))),

Expr 2

tl(n-1,conc(hd(n-1,ll),l3))>.

Expr 3

We demonstrate that·, provided ~3 is defined, ~3 equals

<n,1,2,tl(n,ll),conc(hd(n,ll),l2),l3>.

Expr I: cdr(tl(n-1,ll)) = tl(n,ll) by theorem 6.4.b.

Expr 2: 1. hd(n-1,conc(hd(n-1,ll),l3)) = if hd(n-1,ll) o<: l3 then hd(n-1,ll)

~ undefined,

by theorem 6.4.e.

2. conc(hd(n-l,ll),cons(car(tl(n-I,ll)),l2)) =

= conc(conc(hd(n-1,ll),car(tl(n-l,ll))),l2), by associativity of

cone, theorem 6.3.

3. conc(hd(n-I,ll),car(tl(n-1,ll))) = hd(n,ll), by theorem 6.4.c.

Thus Expr 2 = if hd(n-1,ll) ~ l3 then conc(hd(n,ll),l2)

else undefined.

Expr 3: tl(n-I,conc(hd(n-I,ll),l3)) = if hd(n-1,ll)-< l3 then l3
else undefined,

by theorem 6.4.d.

Thus ~3 =;. if hd(n-I,ll)-< l3 then <n,I,2,tl(n,ll),conc(hd(n,ll),l2),l3>

else undefined, whence the result.

71

6. 3. b. An ariomatic correctness proof for the TOWERS OF HANOI

First we introduce some auxiliary notions:

By example 1.3 it is possible to axiomatize a three-element set {a,b,c}

of type l• Furthermore we need the function ait of type <1.,l> defined by:

if x I y then alt(x,y) E {a,b,c} - {x,y}, and alt(x,y) is undefined, other

wise. Then alt has the following properties: alt(x,y) = alt(y,x),

alt(alt(x,y),x) = y and alt(alt(x,y),y) = x. The formal definition of alt,

using the predicates a, band c, and the subsequent derivation of these pro

perties is a matter of routine.

, for i < j.

Secondly we define TVH, of type <N+x1,x3xOLLxOLLxOLL,N+x3x2_xOLLxOLLxOLL>,

by

and

[rr 1_2 ,rr2, 3;alt,rr4_6J;MOVE;[rr 1,rr2,
3
;alt,rr

3
_

6
J;X;

T2

[rr 1;s,rr2, 3 ;alt,rr
3
_6JJ

'(3

MOVE DEF Pa,b;[rr1_3 ,rr4 ;cdr,[rr4 ;car,rr5J;cons,rr6J u

u Pa,c;[rr1_3,rr4 ;cdr,rr5 ,[rr4 ;car,rr6J;cons] u

u Pb,c;[rr 1_4 ,rr5 ;cdr,[rr5 ;car,rr6J;cons] u

u Pb,a;[rr 1_3,[rr5;car,rr4J;cons,rr5 ;cdr,rr6J u

u pc a;[rr1_3,[rr6 ;car,rr4J;cons,rr5 ,rr6 ;cdr] u ,

••• (6.3.l)

72

with

P 1f ox "1f oy
x,y DEF 2 '3 for x,y E {a,b,c}. .. • (6.3.2)

Thirdly we define p~q' 0 and R in order to express correctness of TVH:

and

cf. (6.3.2).

0
a

u 1r2ob ;[1r1, 5 ;hd,1r4 Jo~ ;[1r
1

, 5 ;hd,1r6Jo~ u

ob

u 1r 2 o c ; ; [1r I ,6 ; hd , 1r 4 J o o< ; [1r I , 6 ; hd , 1r SJ o o<.

oc

R DEF Pa,b;[1rl-3'1rl,4;tl,[1rl,4;hd,1r5];conc,1r6] u

u Pa,c;[1r1-3'1rl,4;tl,1r5,[1rl,4;hd,1r6];conc] u

u Pb,c;[1rl-4'1rl,S'tl,[1rl,S;hd,1r6];conc] u

u Pb,a;[1r 1_3,[1r 1, 5 ;hd,1r4J;conc,1r 1, 5 ;tl,1r6J u

u Pc,a;[1r 1_3,[1r 1, 6 ;hd,1r4J;conc,1r5 ,1r 1, 6;tl] u

u Pc,b;[1rl-4'[1rl,6;hd,1r5];conc,1rl,6;tl].

Then the correctness of TVH is established by

••• (6.3.3)

THEOREM 6.5. (Correctness of TOWERS OF HANOI). Let<><'.- be transitive

(in the sense indicated in {6.2.1)), then

I- p' • O • TVH = p 1
; 0; R.

eq' ' eq

+ The proof of this theorem proceeds by induction on N, i.e., we prove

r P;q;c1r 1;µX[p 1 u s;x;s],1r2_6J;o;TVH =

= P;q;[1rl;µX[pl u S;X;S],1T2-6J;O;R

by applying 1 as follows: let~ be empty, f be

73

{p~q;[1r
1

;x,1r2_6J;O;TVH = p;q;[1r1 ;x,1r2_6J;O;R} and cr be (p 1 u S;X;S). Then
..., N+ N+

the result follows from µX[p
1

u S;X;S] = E ' , cf. lennna 5.5.

We adopt the following strategy:

Using the notation introduced in (6.3.1) we associate in the proof of the

induction step terms P0 , •.• ,P3 and Q0 , ... ,Q3, _which are defined below, with

Then our correctness proof consists in proving, with fas hypothesis,

and

P1;, 1;TVH;,2;TVH;,3 =

= (parts 1 and 2) Q1;TVH;,2;TVH;,3 =

= (part 3) P2;,2;TVH;,3 =

= (parts 4, 5 and 6) Q2;TVH;,3 =

= (part 7) P
3
;,

3
= (part 8) Q

3
, *)

••• (6.3.4)

••• (6.3.5)

since po= P~q;O, Qo = 1Tl 0 pl;p~q;O;R, pl= p~q;[1rl;S;X;S,1r2-6];0 and

Q
3

= p~q;[1r 1;s;x;s,1r2_6J;O;R, whence (6.3.4) and (6.3.5) together imply

*) Parts l to 8 refer to the formal proof at the end of this section.

74

Without of generality we prove

p~q;[1r 1;x,1r2_6J;O;TVH = p;q;[1r 1;x,1r2_6J;O;R I

I- [1rl;(pl u S;X;S),1rz;a,1r3;b,1r4-6];0a;TVH =

...,
= [1r 1;(p 1 u S;X;S),1r2;a,1r3;b,1r4_6J;Oa;R.

Next terms P. and Q. are defined as below, i = 0, •.. ,3.
l. l.

Let Oa(X) DEF [[1r 1;x,1r4];hd,1r5] 0 ~ ;[[1r 1;x,1r4J;hd,1r6J 0 ~, whence Oa(E) = Oa

(see (6.3.b)), and let oa,b DEF [1r 1, 4;hd,1r5 J0
~ and oa,c DEF [1r 1, 4;hd,1r6] 0 "'(.,

whence Oa = 1r2°a ;oa,b;oa,c· For Ob and Oc we introduce similar notations.

PO DEF [1rl;p1,1rz;a,1r3;b,1r4-6J;Oa.

QO DEF [1rl;pl,1r2;a,1r3;b,1r4_6J;Oa;MOVE.

·"' Pl DEF [1rl;S;X;S,1r2;a,1r3;b,1r4-6J;Oa.

QI DEF 0a(S;X;S);[1rl;S,1r2-6];[1rl;X,1rz;a,1r3;c,1r4_6J;Oa.

Pz DEF 0a(S;X;S);[1rl;S,1r2-6];
[1r

1
;x,1r2;a,1r

3
;c,[1r 1;x,1r4J;tl,1r5 ,[[1r 1;x,1r4];hd,1r6J;conc].

Q2 DEF 0a(S;X;S);[1rl;S,1r2-6];[1r1,1r2;c,1r3;b,[1rl;X;S,1r4];tl,

[[1r
1

;x,1r
4
J;tl;car,1r5J;cons,[[1r 1;x,1r4 J;hd,1r6J;conc];

[1rl;X,1r2-6J;Oc.
V __,

p3 DEF Oa(S;X;S);[1rl;S,1r2-6];[1rl;X,1rz;c,1r3;b,[1rl;X;S,1r4J;tl,
[[1r

1
;X,[[1r 1;x,1r4J;hd,1r6J;conc];hd,

[[1r 1;x,1r4J;tl;car,1r5J;cons];conc,

[1r 1;X,[[1r 1;x,1r4 J;hd,1r
6
J;conc];tl].

Finally we prove the induction step as indicated in (6.3.4) and (6.3.5).

Assume transitivity of o(., i.e., 1r 1 2°o<:;1r2 3°0.:::. .=_1TI 3°<>(., and the induc-' , ,
tion hypothesis f.

The proof of P0 ;TVH = Q0 is a matter of routine and therefore omitted.

+ + ..., ... N N •
1. [1r 1;S;X;S,1r2;a,1r3;b,1r4_6];T 1 = (S;S = E ' , cf. axiom N

3
)

[1rl;S,1r2-6];[1rl;X,1r2;a,1r3;c,1r4_6].

75

2. P1;,1 = [1r 1;S;X;S,1r2 ;a,1r3;b,1r4_6 J;Oa;[1r 1;s,1r2 ,1r2_3 ;alt,1r
4

_
6

J = (lemma4.5.e)

= Pl;Tl;Oa(S) = (corollary 6.1.a,o(.. being transitive, and part 1)
0a(S;X;S);[1rl;S,1r2-6];[1rl;X,1r2;a,1r3;c,1r4-6J;Oa = QI.

3. Q1;TVH = (hypothesis)
..., ,J

Oa(S;X;S);[1r 1;s,1r2_6J;

[1r1;x,1r2;a,1r3;c,[1r 1;X,1r4J;tl,1r5 ,[[1r1;X,1r4];hd,1r6J;conc] = P
2

:

= P2;[1rl-2'1T2 3;alt,1r4-6J;MOVE;[1rl ,1r2· 3,alt,1r4-6] =
, V V ,

(theorem 6.4) Oa(S;X;S);[1r 1;s,1r2_6J;

[1r 1;X,1r2;c,1r3;b,[1r1;X;S,1r4J;tl,[[1r 1;x,1r4J;tl;car,1r5J;cons,

[[1r 1;x,1r4];hd,1r6J;conc].

5. Q2;[1rl,6;hd,1r4Jo~ =

= [['lf I ;X, [[TT I ; X, 'lf
4

]; hd, 1T
6

]; cone] ; hd, [7f l ;X; S ,-rr
4
]; t 1] 0 o<_ ; Q2 =

= (theorem 6.4) [[1r 1;x,1r4J;hd,1r6J 0 ~;

[[1r 1;x,1r4J;hd,[1r 1;X;S,1r4J;tl]o~ ;Q2.
6. (i) Qi= ([1r1;X;S,1r4J;tl) 0 E ;Qi=

[[1r 1;x,1r4];hd,[1r1;x;s,1r4J;tl]o~ ;Qi•

(ii) Oa(S;X;S);[n
1
;s,n

2
_

6
J = Oa(S;X;S);[1r 1;s,n2_6J;[[1r 1;X;S,1r4J;hd,1r6J 0 o(. =

= (corollary 6.1) ••• ;[[1r 1;x,1r4J;hd,1r6Joo(..

By combining parts 4, 5 and (i), (ii) above,we obtain

7. Q2;TVH = (hypothesis) Q2;R = P3•

8. (i) [[1r 1;X,[[1r 1;x,1r4J;hd,1r6J;conc];hd,[[1r 1;x,1r4 J;tl;car,1r5J;conc];conc =

= (theorem 6.4) [[1r 1;x,1r4J;hd,1r6] 0 «:..;

[[1r
1

;x,1r
4

J;hd,[[1r 1;x,1r4J;tl;car,1r5J;conc];conc =

= (theorems 6.3 and 6.4) [[1r 1;x,1r4J;hd,1r6J 0 <;

' [[1r 1;X;S,1r4J;hd,1r5J;conc.

76

(ii) [n 1;X,[[n 1;x,n4J;hd,n6J;conc];tl = (theorem 6.4)

[[n 1;x,n
4

J;hd,n
6

Joo<..;n
6

.
V v

(iii) By part 6(ii), Oa(S;X;S);[n 1;s,n2_6 J = •.• ;[[n1;X,n4J;hd,n6] 0 ~.

By combining parts (i), (ii) and (iii) above, we obtain
~ ~

p =
3 Oa(S;X;S);[n1;s,n2_6J;

[n 1;x,n2;c,n3;b,[n 1;X;S,n4J;tl,[[n1;X;S,n4];hd,n5J;conc,n
6
J,

whence P3;.3 = [n 1;s;x;s,n2;a,n3;b,n4_6J;Oa;R = Q
3

.

7. CONCLUSION

The present investigation shows that:

1. A conceptually attractive framework for a mathematical theory of cor

rectness of programs comprises:

1.1. The notion of execution of a program by introducing an idealized

interpreter.

1.2. An operational semantic function a which abstracts the relevant

information from the computations defined by this interpreter.

1.3. A mathematical language (with semantic function m) in which to

express and derive properties of programs.

1.4. A translation :!:Jr. between programs and terms of this mathematical

language, i.e., a mapping satisfying

.•O(T) = m(:1:Jr.(T))

for every program T.

2. A theory of correctness of programs requires an operator describing

the interaction between programs and predicates; in the present theo

ry this is the 110
" operator.

77

3. The 11011 operator is crucial to an expedient axiomatization of the call

by-value parameter mechanism.

4. The axiomatization of correctness proofs of recursive programs can be

applied to the axiomatization of recursive data structures; this leads

to a unified theory of recursive programs and recursive data.

Our system of proof is based on the minimal fixed point characteriza

tion, as opposed to Floyd's method of inductive assertions [13]; the mini

mal fixed point characterization descends from McCarthy's recursion induc

tion [29]. We restricted ourselves to the axiomatization of first-order

programs with a particular parameter mechanism, call-by-value. Conse

quentl,y, the following problems remain open:

78

1. An axiomatization of call-by-value for higher-order programs.

2. A comparison of formal systems for call-by-name, call-by-value and the
. *) like.

3. The equivalence of the minimal fixed point characterization with a gen

eralization of the method of inductive assertions is proved by de Bakker

and Meertens in [3] in case of a simple language for recursive programs

with one variable.

Generalize this result to more complicated progrannning languages.

*) An attempt towards a solution of this problem has been made in de Roever
[36].

79

APPENDIX 1: SOME TOOLS FOR REASONING ABOUT COMPUTATION MODELS

Definition A.I.I below imposes an algebraic structure upon the set of com

putation models relative to some initial interpretation o
0

and some decla

ration scheme D, thus making this set into an aZgebra. Next we propose an

alternative to our method of defining the operational interpretation of a

program scheme, an alternative which captures the whole structure of the

computations involved in executing a statement scheme. Then we prove that

certain transformations essential to the proofs of letmna 2.5, 2.6 and 2.7

are morfisms with respect to the algebra of computation models. These

letmnas then follow as simple corollaries of this fact.

DEFINITION A.I.I. Let CM be a computation model relative to some initial

interpretation o
0

and some declaration scheme D.

a. If CM is a computation model for x v1;v2 y with v1 = R,Pj, (p + w1,w
2

)

or [WI,.· •• ,Wn], then CM = CM 1 ;CM2 with CMI a computation model for

x VI z and CM2 a computation model for z V2 y, where z is the interme

diate state in the computation of v1;v2 described by CM, which results

from executing VI on input x.

b. If CM is a computation model for x (VI;V2);V3 y, then CM= (CM1);CM2
with CM1 a computation model for x v1;v2 z and CM2 a computation model

for z v
3

y, where z is the intermediate state in the computation of

(VI;V2);v3 described by CM, which results from executing v1;v2 on input x.

c. If CM is a computation model for x (p + v1,v2) y, then

(1) if a0 (p)(x) is true, CM= (o
0

(p) + CM1,v2) with CM1 a computation

model for x v1 y.

(2) if a0 (p){x) is false, CM= (o0(p) + v 1,CM2) with CM2 a computation

model for x v2 y.

d. If CM is a computation model for x [V 1, ••• ,Vn] <y
1

, ••• ,yn> then CM=

= [CM1, ••• ,CM J with CM. a computation model for x V. y., i = I, ••• ,n. n i i i

80

Remark. With definition A.1.1 in mind, one may conceive of the following

notion of operational interpretation, which differs from the one defined in

def. 2.5:

The operational interpretation w0<S>(o0) of a statement scheme S

relative to the initial interpretation o
0

and the declaration

scheme Dis the set

{CM I 3x,y[CM is, relative o
0

and D, a computation model for x Sy]}.

This definition captures the whole structure of the computations involved

in executing Sand resembles the method of defining the semantics of MU as

given in def. 3.3, in that both w0 and w0<S> a~e conceived of as functions.

Definition 2.5 of the operational interpretation o(S) of a statement scheme

S relative to o0 and D can be recovered from i/JD<S>(o0) by forgetting the

internal, structure of the computation models constituting i/JD<S>(o
0

) and pre

serving the external, input-output relationship of these models.

After defining the appropriate operations one can establish results such as:

1/JD <Sl ;S2>(o0)

1/JD <(Sl;S2) ;S3>(o0)

1/JD<(p + s1,s2)>Coo)

= i/JD<Sl>(o0);1/JD<S2>(00)

= (i/Jn<S1;s2>Coo>>;it,D<S3>Coo>

= Coo(p) + i/Jn<S1>Coo>,s2> u Coo<P) + s1,i/Jn<S2>Coo>>

from which the proofs of parts b, c and d of lemma 2. I can be derived.

Let us now analyse how the notions "to identify" and "executable occur

rence", defined in def. 2.6, relate to this way of structuring computation

models:

a. CM = CM1;CM2 :

CMI = <xi vi x2 v2 ... xn Vn xn+l' CM1>,
cs 1

CM2 = <yl WI Y2 W2 ym Wm Ym+l' CM2>' xn+l = Y1 and
cs2

81

It follows from the definitions that

(1) Two occurrences of some procedure symbol, which are both contained

in CM., identify each other w.r.t CM. iff the corresponding occurences
1 1

in CM, i.e., in cs~ or CM., identify each other w.r.t. CM, i = 1,2; an
1 1

occurrence of some procedure symbol contained in w
1

identifies also the

corresponding occurrences of this symbol in then copies of w
1

contained

* in cs I.

(2) An occurrence of some procedure symbol contained in CM. is execut-
1

able w.r.t. CM. iff the corresponding occurrence in cs~ or CM. is
1 1 1

executable., i = 1,2; these are the only executable occurrences.

b. CM= (CM 1);CM2 :

CMI = <xI VI x2 V2 xn Vn xn+I' CM 1>, VI= V;W for some statement

schemes V and W,

Y W y · CM > x - y and m m m+ I ' 2 ' n+ I - I

It follows from the definitions that

(1) Two occurrences of some procedure symbol, which are both contained

in CMI (or CM2) identify each other w.r.t. CM1 (or CM2) iff these

occurrences (or, the corresponding occurrences contained in cs; or

CM2) .identify each other w.r.t~ CM; an occurrence of some procedure

symbol contained in v1 or w1 also identifies the corresponding oc

currence of this symbol in (VI);w1•

(2) An occurrence of some procedure symbol contained in CM1 (or CM2) is

executable w.r.t. CMI (or CM2) iff this occurrence as contained in

CM (or, its corresponding occurrence in cs; or CM2) is executable

w.r.t. CM; these are the only executable occurrences.

82

CM

It follows from the definitions that

(1) Two occurrences of some procedure symbol which are both contained in

CM
1

identify each other w.r.t. CM
1

if£ the corresponding occurrences

in cs; or CM
1

identify each other w.r.t. CM; an occurrence of some

procedure symbol in w
1

identifies also the corresponding occurrence

of this symbol in (p + w1 ,v
2
).

(2) An occurrence of some procedure symbol contained in CM
1

is execut

able w.r.t. CM 1 iff its corresponding occurrence in cs7 or CM
1

is

executable w.r.t, CM; these are the only executable occurrences.

CM.
J

X. • V • • X. • + I ' CM • > , j =
J,mJ J,mJ J,mJ J

1, ••• ,n,

CM = <x
1
[v

1 1
,,,.",V

1
J<x

1
l 1,.e.,x

1
>,{CM

1
, ••. ,CM }> , n, ,m + n,mn+ n

and x 1 = xj,l' j = l, ... ,n.

It follows from the definitions that

(1) Two occurrences of some procedure symbol both contained in CM. iden
J

tify each other w.r.t. CM. iff·they identify each other w.r.t. CM,
J

j = l, ••. ,n; an occurrence of some procedure symbol contained in

V. 1 as occurring
J ,

ing occurrence of

in [v 1, 1, ... ,vn,IJ also identifies the correspond

this symbol contained in CM., j = I, ••• ,n.
J

(2) An occurrence of some procedure symbol contained in CM. is execut
J

able w.r.t. CM. iff it is executable w.r.t. CM, j = I, ••. ,n; these
J

are the only executable occurrences.

Next we define two transformations of computation models, t 1 and t 2 , which

are essential to the proofs of lemmas 2.5 and 2.6:
'

83

In the following definition x 1 v1 x2 v2 •.• xn Vn xn+l stands for the con

stituent computation sequence of any model CM.

Let CM contain no executable occurrences of any P., j E J, and W. E SS be
J J

for every j E J of the same type as Pj, then t 1(CM) is obtained from CM by

executing the following steps:

Step 1:

Step 2:

Consider for everry j E J all, occurrences of P. in CM identified by
J

occurrences of Pj in V1•

Replace all considered occurrences by W., for all j E J.
J

For arbitrary CM, t 2 (CM) is obtained from CM by executing the following

steps:

Step 1:

Step 2:

Step 3:

Step 4:

Consider for everry j E J aU occurrences of P. in CM identified by
J

occurrences of P j in V
1

•

Mark aU those considered occurrences which are executable.

Rep iace aU other considered occurrences of P. by S. (with P. <== S.) •
. * J J J J

Replace ever-y combination ••• ~ Pj ~+l Sj ~+2 •.• by •••

.•• ~ sj ~+2 and ever-y combination~ Pj;s ~+I sj;s ~+2

••• by ••• ~ Sj;S ~+2 ••• , where Pj denotes the marking of Pj

performed in step 2.

Transformations t
1

and t 2 are morfisms w.r.t.the operations defined above

(in def, A.1.1), i.e.,

(1) t
1

(CM
1

;CM
2

) = tl (CMI); tl (Ct12)'

t l ((CM
1

) ;CM2) = (tl (CMI)); tl (CM2),

t1«oo(p) -+ CM,W)) (o
0

(p) + t 1(CM),w[w./x.J. 3),
*)

=
J J J E

t1 ((oo<P) ➔ W,CM)) (o
0

(p) + wcw./x.J. J,t1(CM)) *) and =
J J J E

t I ([CM 1, ... ,CMn]) = [tl(CMl), ... ,tl(CMn)J,

These formulae hold only in case Wis closed.

84

(2) tzCCM1 ;CM2)

t 2 ((CM1);cM2)

t
2

((o
0

(p) + CM,W))

t2((oo(p) + W,CM))

tzC[CMI' .•. ,CMn])

= (t2(CMl));t2(CM2),

[I] *)
= (o

0
(p) + t 2 (CM),W),

[I]
= (o

0
(p) + w ,t2(CM)) *) and

* LEMMA 2.5. Let S be a closed statement scheme, CM be a computation model

for x S y containing no executable occurrences of P. , j E J, and W. E SS
J J

be for eveyY j E J of the same type as P j, then transformation t 1 is a mor-

fism (in the sense indicated above) of the algebra of computation models

(defined in def. A.1.1) into itself, which transforms CM into a computation

model for S[W./X.]. J'
] J J E

Proof. By induction on the complexity of the statement schemes concerned.

We use the notation indicated above in our analysis of the notion "to iden

tify".

a. S = R, RE Au C (REX does not apply, S being closed): Obvious from

definitions 2.2 and 2.6.

b. S = P.: Does not apply as CM contains no executable occurrences of P ..
J J

c. S = v1;w1: Step I of t 1 results in considering for all j E J those oc-

*)

currences of Pj in CM which are identified by occurrences of Pj in v1;w1.

These occurrences are:

(1) The occurrences of P. in CM identified by occurrences of P. in v1•
J . J

These correspond exactly with the occurrences of Pj in CM 1 identi-

fied by occurrences of Pj in v1 in CM1•

(2) The occurrences of Pj in CM identified by occurrences of Pj in w1 as

contained in v1;w1. These are:

(2a) The occurrences of P. in CM corresponding with the occurrences
J

of Pj in CM2 identified by occurrences of Pj in w1 in CM2 .

(2b) The remaining occurrences of Pj in cs7 identified by occur

rences of Pj in w1 as contained in v1;w1.

These formulae hold only in case Wis closed. ,,

85

Then step 2 is performed; the occurrences of group 1 above are replaced

by Wj - this corresponds exactly with t 1(CM1) - then the occurrences of

group 2a are replaced by Wj - this corresponds exactly with t 1(CM2) -

and finally the occurrences of group 2b are replaced by W. - corres-
~ *)J ponding exactly with the extra occurrences of w1[W./X;]. J necessary for

J J]E
the construction of t 1(CMI);t 1(CM2) from tI(CMI) and t 1(CM2).

It follows that t 1(CM) = tI(CM1);t1(cM2).

By the induction hypothesis t 1(CMI) and tI(CM2) are computation models

for x v1[W./X.]. J z and z w1[W./X.]. J y for appropriate z, whence, by
] J JE J] JE

definitions 2.2 and 2.6, t 1(CM) is a computation ·model for ________,,
(V l ; WI) [W. /X •] • J.

J J JE

d. S = (VI);w1: Step 1 of t 1 results in considering for all j E J those

occurrences of P. in CM which are identified by occurrences of P. in
J J

(V 1);w1• These are:

(1) The occurrences of P j in CMI identified by occurrences of P j in VI.

(2) The ,occurrences of Pj in cs; or CM2 identified by occurrences of Pj in

WI - these correspond exactly with the occurrences of Pj in CM2
identified by occurrences of Pj in WI in CM2.

(3) The occurrences of Pj in (V 1);W1•

Then step 2 is applied; the occurrences of group 1 above are replaced by

Wj - this corresponds exactly with t 1(CM1) - then the occurrences of

group 2 are replaced by Wj - this corresponds exactly with t 1(cM2) -

and finally the occurrences of group 3 are replaced by W. - correspond-
----- *) J ing exactly with the occurrence of ((V 1);W1)[W./X.]. J necessary for the

J J J E
construction of (t 1(CMI));t 1(CM2) ~rom t 1(CM 1) and t 1(CM2).

It follows that t 1(CM) = (t 1(CM1));t1(CM2).

By the induction hypothesis t 1(cM1) and t 1(CM2) are computation models

for x V1[W./X.]. J z and z w1[W./X.]. J y for appropriate z, whence, by
J J JE] J JE

definitions 2.2 and 2.6, t 1(CM) is a computation model for
,,,,---___,,-
((V l); W 1) [W. /X.]. J"

J J JE

e. S = (p + v1,v
2

) or S = [V1, .•• ,Vn]: Similar to above.

COROLLARY: LEMMA 2.5.

*) The reader should not be confused in case lEJ.

86

* LEMMA 2.6 • Let S be a closed statement scheme and CM be a corrrputation

model for x S y, then t
2

is a morfism (in the sense indicated above) of the

algebra of computation models (defined in definition A.1.1) into itself,

which transforms CM into a computation model for x S[l J y.

Proof. By induction on the complexity of CM.

We use the notation indicated in our analysis of the notions "to identify"

and "executable occurrence".

a. S = R, RE Au C (REX does not apply, S being closed): Obvious from

definitions 2.2 and 2.6.

b, s = p.: CM has the following form: <x P. X ·s. ... Y, CM>.
]]] - cs'-+

Thus t 2 (CM) = <cs' ,CM>, as in step] only the first occurrence of P. is
]

considered, which is executable, whence in step 2 this occurrence is

marked, step 3 does not apply, and step 4 results in the deletion of the

* part P. x.
]

c. S = v
1

;w1: Step of t 2 results in considering for all j E J those oc

currences of Pj in CM which are identified by occurrences of Pj in v1;w1•

These occurrences are:

(1) The occurrences of P. in CM identified by occurrences of P. in v1•
]]

These correspond exactly with the occurrences of Pj in CM1 identi-

fied by occurrences of Pj in v1 in CM 1•

(2) The occurrences of Pj in CM identified by occurrences of Pj in w1 as

contained in v1;w1• These are:

(2a) The occurrences of P. in CM corresponding with the occurrences
J

of Pj in CM2 identified by occurrences of Pj in w1 in CM2•

(2b) The remaining occurrences of Pj in cs7 identified by occur

rences of Pj in w1 as contained in v1;w1, which are all non

executable.

Next step 2 is performed: the executable occurrences of groups I and 2a

above are marked, group 2b containing no executable occurrences.

Hence we obtain

87

* * * with Vk, w
1

and CMi indicating the result of marking the executable occur-

rences of Pj in Vk, w
1

and CMi, k = I, ••• ,n, I= I, ••• ,m, i = 1,2, which

are considered in step I.

Then step 3 is performed, whence we obtain

· *c I J *c I J cM** · · · with Vk S. P .. J' w1 S. P .. J and . indicating the result of replacing
J J JE J J JE i

the non-executable (unmarked) occurrences of P. considered in step I by S.,
. * * * J J in Vk, w1 and CMi, k = 1, ••• ,n, 1 = 1, ••• ,m, i = 1,2.

The problem with the construct obtained in step 3 is that parts occur of

the form ••• z1 V;S. zl+I P~ z1+2 S .••• , violating definition 2.4 of com-
. J . J J [1] * *

putation model (e.g., if v1 = w1 = P., then w1 = S. but W1[S./P.]. J = P.).
J J J J JE J

In step 4 these parts are deleted in order to obtain a proper computation

model.

Finally step 4 is performed:

· . ** CM** Application of this step to cs 1 and 1 results in

* [I] * [1] x. V. [S./P.]. J;W x. V. [S./P.]. J;W
i] i l J J J E i 2 i 2 J J J E

with

••• x.
i

s

* [I]
V. [S • /P •] • J; W

i J J JE s

* * * t 2(CM1)=<x-:
1

V. [S./P.]. J x. V. [S./P.]. J ••• x. V. [S./P.J. J x.: +l'CM 7

1>
L i 1 J J JE i 2 i 2 J J JE is is J J JE Ls

* [1]
by the induction hypothesis, whence V. [S./P.]. J = v1 , x. = x and

it J J JE il
* [l]

xi = xn+l' as the set of indices k for which parts Vk[Sj/Pj]jEJ;w1 ~+l
s

1 **. are de eted from cs 1 is the same set as the set of indices k for which

parts v*[s./P.]. J x. I are deleted from
k J J JE k+

* * * XI Vl[S./P.]. J x2 V2[S./P.]. J ••• X V [S./P.]. J xn+l' the result of J J JE J J JE n n J J JE

applying steps 1, 2 and 3 to cs 1•

88

Application of step 4 to cs;* and CM;* results by the induction hypothesis

in

* * * y. W. [S./P.]. J y. W. [S./P.]. J ••. y. W. [S./P.]. J yJ. +l and CM2, Jl JI J J JE J2 J2 J J JE Jt Jt J J JE t

W[l] = W[I]
• I •
J 1

= (V ·W) [l]
1 ' 1

S
[1]

X Y•

by definitions 2.2 and 2.6, t 2(CM) is a computation model for

=

COROLLARY: LEMMA 2.6: Let CM be a computation modeZ for x Sy, with S

cZosed and with constituent sequence x 1 v1 x2 v2 ••• xn Vn xn+l. If for

some j E J at Zeast one occurrence of P. in v1 identifies an executabZe oc

currence of P., t 2(CM) is a computationJmodeZ for x S[l] y which contains
. J

at Zeast one executabZe occurrence of P. Zess than CM. . J

* Proof. Follows from lermna 2.6 by a simple induction argument, as t 2 is a

morfism.

LEMMA 2.7. Let CM be a computation model, for x Sy and S be cZosed. Then

there exists for some k a computation model, for x S(k) y.

Proof. By applying lemma 2.6 n times in succession one obtains a computa

tion model for x S[n] y; this follows from lemma 2.4 (S[m][l] = S[rn+l]) and
[m]

8
[m+l] .

the fact that, if S is closed, is also closed.

Let 1 be the smallest number such that S[l] contains no executable occur-

rences of P .• This number exists as every application of lemma 2.6 de
J

creases the number of executable occurrences of P., if any. Then the con
]

ditions of lemma 2.5 are satisfied, whence
Tu x S [D./X.]. J

J J J E
As by lemma 2.4

y exists. w
S [Q . /X .] . J =

]]]E

some computation model for

it suffices to take l+l fork.

89

APPENDIX 2: PROOFS OF MONOTONICITY, CONTINUITY AND SUBSTITUTIVITY FOR MU

LEMMA 3.1. (Monotonicity). Let J be any index set, {Xj}jEJ ~ X, a ET be

syntacticaZZy continuous in aii Xj' j E J, and variabZe vaZuations v1 and

v
2

satisfy

(1) vl(Xj) ~ v2(Xj),

(2) v 1(X) = v2(X), X

] E J'

E X - {X.}. J'
]]E

then the foZZooing hoZds:

Proof. By induction on the complexity of er.

a. er EA u Bu Cu X: Obvious.

V

b. er= cr 1;cr2 , cr
1

u cr 2 , er
1

n er
2

, a
1

:

cJ><cr
1

;er
2

>_(v
1

) = cJ><er
1
>(v

1
);cJ><er

2
>(v

1
) and <x,y> E cJ><a

1
>(v

1
);cJ><er

2
>(v

1
) iff

3z[<x,z> E cJ><er
1
?(v

1
) and <z,y> E cJ><er

2
>(v

1
)J.

By the induction hypothesis, cJ><er.>(v 1) c cJ><er.>(v
2
), i = 1,2.

J. - 1.

Thus <x,y> E cJ><a
1
>(v

1
);cJ><er

2
>(v1) implies <x,y> E cJ><er 1>(v

2
);cJ><a

2
>(v

2
),

whence cJ><a 1 ;er 2>(v
1
) ~ cJ><a 1;cr2>(v2) follows from the definitions.

The cases er= er 1 u er2 , er 1 n er 2 and cr
1

are proved similarly.

c. er= er 1: By syntactic continuity of er in all X., j E J, no X. occurs in
]]

er 1 for any j E J, whence cJ><er
1
>(v

1
) = cJ><a 1>(v

2
).

Therefore cJ><er 1>(v
1
) = cJ><er 1>(v

1
) = cJ><er

1
>(v2) = c!><er

1
>(v

2
).

d. er= µkX 1 ••• Xn[er 1 , ••• ,crn]:

cJ><er>(v
2

) =

(n{ <vz(Xl)>~=l cl> <er
1

> (v 2) ~ v 2 (X1
) , 1 = 1 , •• , n, and

v2(X) = v
2

(X), XE X - {Xp•••,Xn}}\ •.• (a.2.1)

Let v2 satisfy the conditions mentioned in (a.2.1).

Define vj by: vi(X1) = v2(x1), 1 = l, ... ,n, and vi(X) = v 1(X),

x EX - {x1, ••• ,xn}.

Then,the conditions for monotonicity, w.r.t. the index set Ju {I, ... ,n},

90

and vi and v2, are fulfilled, whence by the induction hypothesis:

1 = l, ... ,n.

Thus,

~<a1>(vj) ~ vi(X1), 1 = l, ... ,n, and

v;(x) = vl(X), XE X - {X1,···,Xn}} ~

~n{<vz(Xl)>~=l I ~<crl>(vp ~ vi(Xl), 1 = l, ... ,n, and

v2(X) = v2(X), XE X - {X1, ... ,Xn}},

whence

LEMMA 3.2. (Continuity). Let J be a:ny index set, {X.}. JEX, a ET be
J J E

syntacticaZZy continuous in aZZ Xj, J E J, v a:nd vi' for aZZ i EN, be

variab Ze valuations satisfying., for i E N a:nd j E J,

00

(1) v (X.) = U V. (X.) ,
J i=O 1 J

(2) v. (X.) c v. l (X.) ,
l. J - 1+ J

(3) v(X) = v.(X) for XE X - {X.}. J'
l. J J E

then the foZZowing hoZds:

00

~<cr>(v) = u
i=O

~<cr>(v.).
l.

Proof. ~: By monotonicity (lemma 3.1).

c: By induction on the complexity of a.

a. a EA u Bu Cu X: Obvious .
...,

b. a= a 1;cr 2,a1 u a
2

,a
1

n cr2 ,cr 1:

~<cr 1;cr 2>(v) = ~<cr 1>(v);~<a2>(v) = (induction hypothesis)
00 00 00 (X)

.u
0

~<a 1>(v.);.u
0

~<a2>(v.) = .u .u ~<cr 1>(vI..);~<cr2>(vJ.),
1= , 1 J= J 1=0 J=O '----..:e.._----v----------"'-J
by a property of relations. El

91

CX)

u $<cr >(v.);$<cr2>(v.) ~ E1 follows from
i=O 1 i i -

$<cr 1>(v;);$<cr2>(vJ.) ~ (monotonicity) $<cr 1>(v (' '));$<cr2>(v (' .)). _.. max i,J max i,J
CX)

Thus, i~O $<cr 1;cr2>(vi) = $<cr 1 ;cr2>(v).

The cases cr = cr
1

u cr2 , cr
1

n cr2 and cr1 are proved similarly.

c. cr = cr
1

: By syntactic continuity of cr in all Xj' j E J, no Xj occurs in

cr
1

for any j E J, whence $<cr 1>(v) = $<cr 1>(vi).

Therefore $<cr
1
>(v) = $<cr

1
>(v) = $<cr 1>(vi) ~ $<cr 1>(vi) for all i EN,

CX)

whence $<cr
1
>(v) = .u $<cr 1>(v.).

i=O 1

d. cr = µkXl •. xn[cr 1, ••• ,crn]:
CX)

u $<cr>(v.) =
i=O 1

CX)

u (n{<v1(Xl)>nl=l
i=O ...

$ <cr
1

> (v J_) ~ vi (X1) , 1 = 1 , ••• , n, and

V ! (X) = V. (X) , X E X - {XI , •.• ,x } })k =
i i n

oo n
(n{\~o vJ_(X1)>l=l I for any iEN, $<cr1>(vJ_) ~ vi(X1),

1 = 1 , ••• , n, and v ! (X) = v. (X) ,
1 1

.•• (a.2.2)

by a property of relations.

First we demonstrate that one can restrict oneself in (a.2.2) to inter

sections of unions of vi(X1) such that vi(X1) ~ vi+l(X1), 1 = l, ... ,n:
CX)

Let <vi>i=O be a sequence consisting of valuations which satisfy for

every i EN, $<cr1>(vi) ~ vi(X1), 1 = l, ... ,n, and vi(X) = vi(X), for

XE X - {X 1, ••• ,Xn}.

f • II oo f 11 De ine <v.>. 0 as o ows:
1 i= 00

For every i EN, v~'(X
1

) = .n. vJ!(X
1
), 1 = 1, ... ,n, and v1.'(X) = v!(X),

1]=1 1 1

XE X - {X
1

, ••• ,Xn}.

This sequence of valuations satisfies the following properties:

J. For every i EN, ~<cr1>(vi) ~ vi(X1), 1 = l, ... ,n.

This can be deduced from the fact that, for all j ~ 1,

~<cr1>(vi) ~ (monotonicity) ~<cr1>(vj) ~ vj(X1), 1 = l, ... ,n.

2. For every i EN, vi(X
1

) ~ vi+l(X1), l = l, ... ,n.
00 00

3 U v
1
~(X1) '(X) 1 = . i=O ~ i~O vi 1 ' 1, ... , n •

oo n oo
Therefore, as every n-tuple <.u v!(X

1
)>1_

1
with <v!>._

0
satisfying the

1=0 1 - 1 1-
conditions mentioned above contains coordinatewise an n-tuple

<.~ v~'(X
1

)>n
1

_
1

with <v1
•
1>rx:_

0
also satisfying these conditions, in addi-

1=0 1 - 1 1-

tion to the extra condition vi(X1) ~ vi+l(~1), 1 = I, .•• ,n, i EN, one

can restrict oneself in (a.2.2) to k-th components of intersections of

the latter.
00

Define v" by v"(X1) = i~O vi(X1), 1 = I, ••• ,n, and v"(X) = v(X),

XE X - {x
1

, ••• ,Xn}.

Then the conditions for continuity, w.r.t. the index set Ju {I, .•• ,n},
II 11 oo

and v and <vi>i=O' are fulfilled, whence by the induction hypothesis:

00

~<cr >(v") = (continuity) u ~<cr
1

> (v~') ~ (point I above)
l i=O i

Hence,

00

u vi(X
1

) = v"(X
1
),

i=O
for 1 = l , ... ,n.

= (n{<v'(X1)>~=l I ~<cr1>(v') ~ v'(X1), 1 = l, .•. ,n, and

v'(X) = v(X), XE X - {X1, ... ,Xn}})k ~

00

~ E2 = u ~<µkXI .•• Xn[cr1,···,crn]>(vi).
i=O

LEMMA 3.3. (Substitutivity). Let

T. E T be of the same type for j
J

satisfy

J be any index set, a E T, X. E X and
J

E J, and variab Ze va Zuations v
1

and v
2

= v2 (x), x Ex - {x.}. J'
J J E

(2) vl(Xj) = $<Tj>(vz), j E J,

then the following holds:

$<cr>(v
1

) = $<cr[•. /x.J. J>(v
2
).

J J J E

Proof. By induction on the complexity of cr.

We only consider the case cr = µ x
1
••• X [cr

1
, ••• ,cr].

m n n
By definition,

µ x1 ••• x [cr 1 , ••• ,cr J[•. /x.J. J =
m n n J J JE

= µ Yl ••. Y [crl[Yl/Xl]l-1 [•. /X.]. J*'''~ m n - , ... ,n J J JE

•.• ,cr [Y1Jx1J1_ 1 [T./X.]. J*],
n - , ..• ,n J J JE

93

* with J = J - {l, .•• ,n} and Y1, ••• ,Yn relation variables different from Xj,

j E J, ancl'not occurring in crk' k = I, ... ,n, or Tj' j E J*.

Let

and

$<crk>(v1) ~ v1(~), k = 1, ••• ,n,and

v1(x) = v 1(X), XE X - {x
1

, ••• ,Xn}})m,

$<crk[Y1 /x1 Jl=l,~ •• ,n>(vj) ~ v1(Yk), k = l, ... ,n, and

v1(X) = v 1(X), XE X - {Y 1 , ••• ,Yn}})m

$<crk[Yl/Xl]l-l [T./X.]. J*>(vz') ~ vz'(Yk), - , . , • ,n J J J E

cr'
k

94

In order to prove $<cr>(v1) = $<cr[Tj/Xj]jEJ>(v2), that 1s E
1

= E
3

, we first

prove E2 = E3 and then E
1

= E
2

:

~: Let v2 satisfy v2(X) = v2 (X), for XE X - {Y
1

, ••• ,Yn}' and

~<~'>(v') c '(Y) k 1 ~ vk 2 - v2 k' = , ••• ,n.

Define v 1' by v'
1

(X) = v
2
1 (X) for XE X - {X.}.

. J JEJ
for j E J, and define v11 by v1'(X) = v2(x) for x

v1'(Xj) = $<T/(v2), for j E J*.

and vi(X.) = $<T.>(v2), . J J
EX - {X.}. J* and

J JE

By the induction hypothesis, $<crk[Y/X1 Jl=l, •• ;,n>(v'i) = $<crk>(v'
2
).

As x 1, ••• ,xn do not occur in crk[Y/X1Jl=l, ••• ,n' $<crk[Y/X1Jl=l, ••• ,n>(v1') =

= $<crk[Yl/Xl]l=I, ••• ,n>(vi)•

Moreover ~<cr'>(v') c v'(Y) = v'
1

(Yk), k = l, ••. ,n, as
~ k 2 - 2 k

{X.}. J n {Y
1

, ••• ,Y} = (b.
J JE n

Thus $<crk[Y1/x1Jl=l, .•. ,n>(v1) ~ vi(Yk), k = l, •.• ,n.

Furthermore v1'(X.) =. $<T.>(v
2
') = (Y

1
, ... ,Y do not occur in T.) $<T.>(v

2
) =

J J n J J
= v

1
(Xj), j E J, and vj(X) = v2(X) = v

2
(X) = (assmnption) v

1
(X) for

XE X - {Xj}jEJ - {Y 1, ••• ,Yn}, whence vj satisfies the conditions mentioned

in E2•

'() n - '() n b · E E As <v 1 Yk >k=l - <v2 Yk >k=l' we o ta1n 2 ~ 3•

::): Let vi satisfy vi(X) = v 1(X), XE X - {Yl' ••• ,Yn} and

$<crk[Y1/x1Jl=I, ••• ,n>(vi) .'.:. vj(Yk), k = I, ••• ,n.

Define v2 by v2(Yk) = vj (Yk), k = 1, . . _. ,n, and v2(X) = v2(X), otherwise.

Now (1) vj(Xj) = v1(Xj) = $<Tj>(v2) = (Y 1 , ••• ,Yn do not occur in Tj)

$<T.>(v2), j E J,
J .

(2) vj(X) = v 1(X)=v2(X) = v2(X), XE X - {Xj}jEJ - {Yl'''''Yn}' and

(3) vj(Yk) = v2(Yk), k = l, ••• ,n,

imply together that the induction hypothesis may be applied, whence

Since crk[Yl/Xl]l=l, ••• ,n[Tj/Xj]jEJ = crk[Yl/Xl]l=l, ••• ,n[Tj/Xj]jEJ* = crk,

as no x1i•••,Xn occur in crk[Y1/x1J1=l, ••• ,n'

95

follows, k = 1, ••• ,n. As v2(X) = v2(X), XE X - {Y1, ... ,Yn}, it can be de

duced that E2 2 E3.

EI = E2:

2: Let v'1 satisfy qi<crk>(v1') ~ v1'(~), k = I, ••• ,n, and v1(X) = v
1

(X),

XE X - {X
1

, ••• ,Xn}.

Define vj by vi(Yk) = v1(~), k = l, ••• ,n, and vj(X) = v
1

(x),

XE X - {Y
1

, ••• ,Yn}.

By the induction hypothesis, qi<crk>(v1)
Therefore, qi<crk[Y1/x1J1=I, ••• ,n>(v1) =

k = I, ••• ,n. As vi(X) = v1(X), XE X -
E1 .=. E2 holds.

= qi<crk[Xl/Xl]l=I, ••• ,n>(vj).
qi<a >(v") c v"(X.) = v' (Y)

k I - l -K. I k '
{Y 1, ••• ,Yn}, it can be deduced that

c: As crk[Y1/x1Jl=l [X1/Y1Jl=l = crk, the proof of this part is , •.• ,n , ••. ,n
similar to 'the proof above.

96

APPENDIX 3: PROOFS OF THE ITERATION AND MODULARITY PROPERTIES

LEMMA 4.10. (Iteration, Scott and de Bakker [41], Bekic [4]).

I- µ • X
1
••• X .

1
X . X •

1
• • • X [cr

1
, ••• , cr .

1
, cr . , cr .

1
, • • • , cr J =

J r J J+ n J- J J+ n
= µX.Ccr.[µ.x

1
••• x.

1
x.+

1
••• x [cr

1
, ••• ,cr.

1
,cr.+

1
, ••• ,cr J/x.J. I'

J J 1 J- J n J- J n 1 1E

with I = { I , ... , j- I , j +I, ••• , n}.

Proof. The proof of this lennna is copied from Hitchcock and Park [18]. For

ease of notation, we establish this lemma just for the case n = i; the gen

eral version, for n Ii, should be clear.

We use the following notation:

µ.
J

p. (X)
J

- µ . x
1
••• x X[cr

1
, ••• , cr , a],

J n n
j = 1 , 2, ••• , n+ 1 ,

- µ.X
1
••• x [cr

1
, ••• ,cr J,

J n n
j=l,2, ••• ,n,

and prove

By the minimal fixed point property, we have

, j=I,2, ••• ,n,

(2) I- cr(µl,µ2, ••• ,µn,µn+l) .:.. µn+l '
(3) I- cr.(P

1
(µ), ••• ,P (µ),µ)

J n
c µ.(µ), j=I,2, ••• ,n,
- J .

(4) I- cr(Pl(µ), ••• ,µn(µ),µ) .:.. JJ.

Then

(i) I- P / µ n + 1) .:.. µ j' j = I , 2 , • • • , n ,

applying an n-ary minimal fixed point argument to the inequalities (I),

noting that

µ.X1···x [crl(Xl, ••• ,x ,µ l), ••• ,cr (X1,···,x ,µ I)],
J n n n+ n n n+

(ii) from (i) and monotonicity of cr

I- cr(µl(µn+l), •.• ,µn(µn+l)'µn+l) .=. cr(µ1,µ2,···,µn+l),

so I- cr(µl(µn+l), ••• ,µn(µn+l)'µn+l) .=. µn+l

97

and I- µX[cr (µ 1 (X), ••• , µn (X) ,X) J .=. µn+ 1, by a 1-ary minimal fixed

point argument, whence

I- µ .=. µn+ I
follows.

(iii) I- µn+l .=.µ,µI.=. µl(µ), .•• ,µn.::. µn(µ),

follows directly from (3) and (4) by an ·(n+l)-ary minimal fixed point

argument. The result follows then from inequalities (i), (ii) and

(iii).

COROLLARY 4.4. (Modularity). For i = l, ... ,n,

I- µ i XI • • • Xh [cr I (T 1 I (XI ' • • • 'X n) ' · • • 'T l m (X l ' • • • 'X n)) ' • • • '
cr (T 1(x1, ••• ,x), ••• ,T (x1, ••• ,x))J = n n n nm n

= 0 i (µilXI 1 • • .Xnm[T 11 (cr I (XI I'··· ,Xlm)' • • • ,crn (Xnl' • • • ,Xnm))'
,.,,T (, ••)], ••• ,µ .• ,,), nm im

Proof.

(I) n = I and m = I.

First we prove µ1XY[cr(Y),T(X)] = (iteration) µX[cr(µY[T(X)])] =

= (fpp) µX[cr(T(X))]. Then we have µIXY[cr(Y),T(X)] = (fpp)

cr(µ 2XY[cr(Y),T(X)]) = (iteration) cr(µY[T(µX[cr(Y)])]) = (fpp)

cr(µY[T(cr(Y))]) = cr(µX[T(cr(X))J), whence the result.

(2) n = I. By induction on m. Induction step:

a. µX[cr(Tl(X), ••• ,Tm(X))] = µ1X1···xm+l[cr(X2,···,xm+l),Tl(Xl), ..• ,Tm(Xl)].

Proof. µ 1x1 ••• Xm+l[cr(x2 , ••• ,xm+l),T 1(x1), ••• ,Tm(X1)J = (iteration)

µIXI[cr(µ1X2 .•• Xm+l[Tl(Xl), .•• ,Tm(Xl)], ••• ,µm •••)] = (fpp)

µXl[cr(Tl(Xl), ••• ,Tm(Xl))].

b. µ1X1···xm+l[cr(X2,···,xm+l),Tl(Xl), ••• ,Tm(Xl)] = (fpp)

cr (11 2X I •• "xm+ I [cr' T 1 ' ' ' • 'Tm]' ' ' • ' 11m+ 1 XI • 0
• xm+ I [cr' TI ' ' • ' 'Tm]) '

98

c. µ.x
1
••• x 1ca,T 1, •.• ,T J =

i m+ m
µ. lxl ••• x [Tl(a(Xl, ••• ,x)), ••• ,T (a(Xl, ••• ,x))],2:;;i:;;n.
i- m m m m

Proof. E.g., i = 2,

µ2X
1
••• Xm+l[a,T 1, ••• ,Tm] = (iteration)

µX
2

[T 1(µ 1x 1x
3
••• xm+l[a,T2, ••• ,Tm])] = (iteration and fpp)

µX
2

[T
1
(µ

1
X

1
[a(X

2
,T

2
(X

1
), ••• ,Tm(X

1
))])] = (induction hypothesis)

µX2[Tl(a(X2,µ1Yl ••• Ym-l[T2(a(X2,Yl, ••• ,Ym)), .•• ,

T (cr(X2 ,Y
1

, ••• ,Y))], ••• ,µ 1 •••))] = (iteration) m m m-
µ1x1x2 ••• Xm[T1(a(X1, ••• ,Xm)), ••• ,Tm(a(X1, ••• ,Xm))J.

Combination of a, band c yields the desired result for n = I.

(3) By induction on n. Induction step: Let

µ. -
1

µ. -1
µ .. -1J

µ .. -
1J

µiXI .•. Xn[al (T 11 (Xl ,. • • ,Xn)' 0
•• ,T lm(Xl '•. • ,Xn))' •• •

•.• ,a (T
1
(x

1
, ••• ,x), ••• ,T (x

1
, ••• ,x))J, n n n nm n

µ.x
1
••• x x

11
••• x [a 1, ••• ,a ,T 11 , .•• ,T J,

1 n nm n nm
µ{ i - 1) *n + j XI I • ' • X nm [T 1 I (a 1 (XI 1 ' ••• 'XI m) ' • • • 'an (X n I ' • ' • 'X nm)) ' • • •

••• ,T (•••)], nm
µ.* .x1 ••• x x 11 ••• x [a 1(x 11 , ••• ,x1), •• .,a (X 1,. •• ,x),

i n+J n nm m n n nm
T l I (XI , ••• , X n) ' ••• , T nm (XI ' ••• 'xn)] •

a. µ. = µ., i = 1, ••• ,n. By induction. E.g., consider i = I,
1 1

p
1

= (iteration)

µX l [0 I (µI ?2 • • • Xn X 11 • • • Xnm[0 2' • • • ' 0 n 'T 11 '· • • 'T nm]' • • • 'µ 1 n • • ·) J = (fpp)

µX 1 [a 1 (Tl l (X l 'µ l X2 • • • X n X 1 l • • • Xni a 2' • •• 'an' T 11 ' • • • 'T nm] ' • •.

••• ,µ 1x2···x [••• J), ... ,TI (•••))J = n- nm m
µXl[al(Tll(X1,µ1X2 ••• xnx2I" .Xnm[a2,···, 0 n'T21' 0 ""'Tnm], •••

••• ,µ 1x2···x x21···x [••• J), ..• ,Tl)J, n- n nm m
by repeated application of iteration,

••• = (induction hypothesis)

µ X I [a 1 (T 1 I (X 1 ' µ I x2 • " " X n [a 2 (T 2 1 (X 1 ' •• ' ' X n) ' " •• ' T 2m. • •) ' " •• ' an (' ' ')] ' •••
••• ,µ 1x2 ••• X [•••]), ••• ,T 1 (•••)]=(iteration)

n- n m

µ 1.

b. µ .. = µ ..• Similarly.
1J 1J

Henceµ.= (part a)µ. = (fpp)a.(µ. 1, ••• ,µ.) = (part b)a.(µ.
1

, ••• ,µ.).
i i i i im i i im

99

REFERENCES

[1] de Bakker, J.W., Recursive procedures, Mathematical Centre Tracts 24,

Amsterdam, 1971.

[48] de Bakker, J.W., Recursion, induction and symbol manipulation, in

Proc. MC-25 Informatica Symposium, Mathematical Centre

Tracts 37, Amsterdam, 1971.

[2] de Bakker, J.W., and W.P. de Roever, A calculus for recursive program

schemes, in Proc. !RIA Symposium on Automata, Formal languages

and Programming, M. Nivat (ed.), North-Holland, Amsterdam, 1972.

[3] de Bakker, J.W., and L.G.L.Th. Meertens, Simple recursive program sche

mes and inductive assertions, Mathematical Centre Report MR

142/72, Amsterdam, 1972.

[49] de Bakker, J.W., and L.G.L.Th. Meertens, On the completeness of the in

ductive assertion method, Prepublication, Mathematical Centre

Report IW 12/73, Amsterdam, 1973.

[4] Bekic, H., Definable operations in general algebra, and the theory of

automata and flowcharts, Report IBM Laboratory Vienna, 1969.

[5] Bekic, H., Towards a ma,thematical theory of processes, Technical Re

port TR 25.125, IBM Laboratory Vienna, 1971.

[6] Blikle, A., An algebraic approach to programs and their computations,

in Proc. of the Symposium and Summer School on the Mathemati

cal Foundations of Computer Science, High Tatras, Czechoslo

vakia, 1973.

[7] Blikle, A., and A. Mazurkiewicz, An algebraic approach to the theory

of programs, algorithms, languages and recursiveness, in Proc.

of an International Symposium and Summer School on the Mathe

matical Foundations of Computer Science, Warsaw-Jablonna, 1972.

[8] Burstall, R.M., Proving properties of programs by structural induc

tion, Comput. J., _!! (1969) 41-48.

[9] Cadiou, J.M., Recursive definitions of partial functions and their

~ computations, Thesis, Stanford University, 1972.

100

[IOJ Dijkstra, E.W., Notes on structured programming, in Hoare, C.A.R.,

Dijkstra, E.W., and O.J. Dahl, Structured Programming, Acade

mic Press, New York, 1972.

[11] Dijkstra, E.W., A short introduction to the art of programming,

Report EWD 316, Technological University Eindhoven, 1971.

[12] Dijkstra, E.W., A simple a,xiomatic basis for programming language

constructs, Report EWD 372, Technological University Eind

hoven, 1973.

[13] Floyd, R.W., Assigning meanings to programs, in Proc. of a Symposium

in Applied Mathematics, Vol, 19, M_athematicat Aspects of Com

puter Science, J.T. Schwartz (ed.), AMS, Providence R.I., 1967.

[50] Fokkinga, M.M., Inductive assertion patterns for recursive procedu

res, in Proc. of Symposium on Programming, Paris, April 9-11,

1974 (to appear).

[14] Garland, S.J., and D.C. Luckham, Translating recursion schemes into

program schemes, in Proc. of an ACM Conference on Proving As

sertions about Programs, Las Cruces, New Mexico, January 6-7,

1972.

[15] Guessarian, I., Sur une reduction des schemas de programmes potyadi

ques a des schemas monadiques et ses applications, Memo GRIT

no. 73. 05, Universite de Paris, 1973.

[16] Hindley, J.R., Lercher, B., & J.P. Seldin, Introduction to combinatory

logic, London Mathematical Society Lecture Note Series 7,

Cambridge University Press, 1972.

[17] Hitchcock, P., An approach to format reasoning about programs,

Thesis, University of Warwick, Coventry, England, 1973.

[18] Hitchcock, P., and D. Park, Induction rules and proofs of termination,

in Proc. IRIA Symposium on Automata, Formal Languages and Pro

gramming, M. Nivat (ed.), North-Holland, Amsterdam, 1972.

[19] Hoare, C.A.R., An axiomatic basis for computer programming,

Comm. ACM, 12 (1969) 576-583.

101

[20] Hoare, C.A.R., Proof of a program: FIND, Comm. ACM,·_!± (1971) 39-45.

[51] Hotz, G., Eindeutigkeit und Mehrdeutigkeit formaler Sprachen,

Electron, Informationsverarbeit. Kybernetik, 2 (1966) 235-246.

[21] Kahn, G., A preliminary theory of parallel programs, Rapport

LABORIA, !RIA, 1973.

[22] Karp, R.M., Some applications of logical syntax to digital computer

programming, Thesis, Harvard University, 1959.

[23] King, J.C., A program verifier, Thesis, Carnegie-Mellon University,

1969,

[24] Knuth, D.E., The Art of Computer Programming, Vol. 1, Fundamental

Algorithms, Addison Wesley, Reading (Mass.), 1968.

[251 Manna, Z., and J.M. Cadiou, Recursive definitions of partial functions

and their computations, in Proc. of an ACM Conference on Proving

Assertions about Programs;Las Cruces, New Mexico, January 6-7,

1972.

[26] Manna, z., Ness, S., and J. Vuillemin, Inductive methods for proving

properties of programs, ibidem.

[27]' Manna, z., and J. Vuillemin, Fix-point approach to the theory of compu

tation, Comm. ACM, .!1_ (1972) 528-536.

[28] Mazurkiewicz, A., Proving properties of processes, PRACE CO PAN

CC PAS Reports 134, Warsaw, 1973.

[29] McCarthy, J., A basis for a mathematical theory of computation, in

Computer Programming and Formal Systems, pp. 33-70, P. Braffort

and D. Hirschberg (eds.), North-Holland, Amsterdam, 1963.

[30] Milner, R., Algebraic theory of computable polyadic functions, Compu

ter Science Memorandum g, University College of Swansea, 1970.

[31] Milner, R., Implementation and application of Scott's logic for compu

table functions, in Proc. of an ACM Conference on Proving Asser

tions about Programs, Las Cruces, New Mexico, January 6-7, 1972.

102

[32] Milner, R., An approach to the semantics of paraZZeZ programs,

Edinburgh Technical Memo, University of Edinburgh, 1973.

[33] Morris Jr., J.H., Another recursion induction principle, Connn. ACM,

~ (1971) 351-354.

[34] Park, D., Fixpoint induction and proof of program semantics, in

Machine Intelligence, Vol.5, pp.59-78, B. Meltzer and D. Michie

(eds.), Edinburgh University Press, Edinburgh, 1970.

[35] Park, D., Notes on a formalism for reasoning about schemes, Unpubli

shed notes, University of Warwick, 1970.

[36] de Roever, W.P., A formalization of variaus parameter mechanisms as

products of relations within a calculus of recursive program

schemes in Seminaires IRIA, theorie des algorithmes, des langages , -
et de la programmation, 1972, pp. 55-88.

[37] Rosen, B.K., Tree-manipulating systems and Church-Rosser theorems,

.·J. Assoc. Comput. Mach., 20 (1973) 160- I 87.

[38] Scott, D., Outline of a mathema.tical theory of computation, in Proc.

of the Fourth Annual Princeton Conference on Information Scien

ces and Systems, pp. 169-176, Princeton, 1970.

[39] Scott, D., Mathematical concepts in programming language semantics,

in Proc. Spring Joint Computer Conference 1972, pp.225-234.

[40] Scott, D., Data types as lattices, Unpublishes lecture notes, Univer

sity of Amsterdam, 1973.

[41] Scott, D., and J.W. de Bakker, A·theory of programs, Unpublished notes,

IBM Seminar, Vienna, 1969.

[42] Scott, D,, and C. Strachey, Towards a mathematical semantics for com

puter languages, in Proc. of the Symposium on Computers and

Automata, Microwave Research Insitute Symposia Series Vol.21,

Polytechnic Institute of Brooklyn, 1972.

[43] Tarski, A,, On the calculus of relations, J. Symbolic Logic, 6 (1941)

73-89.

[441 Vuillemin, J., Proof techniques for recursive programs, Thesis,

Stanford University, 1972.

[45] Weyrauch, R.W., and R. Milner, Program correctness in a mechanized

logic, in Proc. of the First USA-JAPAN Computer Conference,

1972, pp. 384-390.

[46] Wirth, N., Program development by stepwise refinement, Comm. ACM,

_!i (1971) 221-227.

[47] Wright, J.B., Characterization of recursively enumerable sets,

J. Symbolic Logic, E._ (1972) 507-511.

103

','1

