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TERMINATION OF NONDETERMINISTIC PROGRAMS*) 

by 

J.W. de Bakker 

ABSTRACT 

A new formalism to deal with program termination in the presence of 

both nondeterminacy and recursion is presented. For the denotational 

(least-fixed-point) semantics of programs involving these concepts, we 

cannot use the customary set-theoretical ordering between the input-

output relations associated with programs. A new ordering definition, due 

to Egli, is applied instead. Next, we describe our method of expressing 

termination of programs built up using sequential composition, nondeterministic 

choice, selection and recursion. The method is justified in the framework 

of denotational semantics. Finally, it is compared to the theory of 

Hitchcock & Park - which uses well-founded relations and program deriva

tives - and a new proof of an extended vers.ion of their main theorem is 

presented. 

KEY WORDS & PHRASES: Program teT'l11ination, nondeteT'l11inacy, recursion, 

Zeast-fixed-point semantics, weZZ-founded relations, 

program derivatives. 

*) This paper is not for review; it is meant for publication elsewhere. ,,, 
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NOTATIONS 

Section 2 

A= {Al'A 2 , ••• } 

elements denoted by A,A., ••• 
1 

B = {b I'b 2, ••• } 

elements denoted by b,b., ••• 
1 

X = {X1,Xz,.~.} 

elements denoted by X,X., ••. 
1 

y = {YI ,Y 2' ••• } 

elements denoted by y 'y., ••• 
1 

0 E S, 1T E p 

al U a
2

, al;az, if b then a
1 else a2} 

µX[a] 

1T I A 1T2' a -+ 1r, if b then 1r 1 else 1r2} 
µY[1r] 

al = az, al t az, 1Tl = 7T2' 7Tl t 7T2 
a[T/X], 1T[T/X], 1r[1r 1/Y] 

Section 3 

V = v
0 

u {.L} 

W = {true,false} 

R,S, ••. 

p,q, ••• 

R;S, Ru S, 

~ V X V 

V+W 

if p then R else S, 

p A q, R-+ P, 

if p then q else r 

rc 

program scheme constants 

boolean scheme constants 

program scheme variables 

boolean scheme variables 

program schemes, boolean schemes 

program scheme construction 

rules 

boolean scheme construction 

rules 

syntactic (non)identity 

substitution 

domain of states, with i the 

undefined state 

binary relations 

predicates 

operations upon relations 

and predicates 
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TR(V) 
HE(V) 

M = <V,C,E> 
M

0
(a) 

M(a), M(1r) 

Section 4 

µ~, µ'i' 

/\ p. 
iEI 1 

M{R/X} 

M{P/Y} 

;\R• . . . 
Ap• ... 

00 

.V0 R. 
1= 1 

0 

Section 5 

e(R) 

Section 6 

n, t::,, 

o, I, 

w, 

f, 

R ... 
p . .. 

e 
t 

} 

a u 1T' 1T, a o 1r, 

s u P, -P, SO p, 

a, q, <a, a) 
0 

1T I V 1T2 

p V q 

total extended binary relations over V 

extended predicates: V + W 

interpretation 

operational interpretation 

denotational interpretation 

ordering relation on TR(V) and HE(V) 

operators: TR(V) + TR(V) 
HE(V) + HE(V) 

least fixed points of~, 'i' 

greatest lower bound 

variants of an interpretation 

;\-notation 

least upper bound 

least element of TR(V) 

R terminates properly 

boolean termination scheme for a 

special constants in A, B 

special relations and predicates 

extended construction rules and 

operators 

upper- and lower derivatives (taken 

"in µX[cr]") 



l(cr) 

l=M cr = T (I= cr = T) 

well-founded part of a scheme 

cr and Tare equivalent under M (all 

consistent M) 

3 
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1 • INTRODUCTION 

In a paper presented by P. HITCHCOCK & D. PARK at the first Colloquium 

on Automata, Languages and Programming [7], a very interesting method was 

proposed to attack the problem of proving program termination. Two main in

novations of this paper were: First, the introduction of well-founded rela

tions as a tool; this necessitated consideration of non-continuous - though 

monotonic - operators, and was an important conceptual extension of hitherto 

proposed methods. Secondly, the paper introduced the notion of (upper- and 

lower-) derivative of a program (or, rather, a program scheme) and introduced 

a formalism to express termination in terms of these derivatives. However, 

this formalism wa~ applied only to detePministia programs (i.e., programs 

determining single-valued state-transforming functions). Moreover, for a 

long time we have felt that it should be possible to replace the derivative

formalism with a more direct approach. 

The present paper is an attempt at solving both problems: Firstly, to 

develop a formalism which can deal with termination of nondetePministia 

programs as well. Secondly, to avoid the notion of derivative and to use a 

more intuitively appealing technique. 

The first problem could be solved only after we became aware of a paper 

of EGLI [6] which turned out to be essential for our investigation. We here 

sketch in which way Egli's idea is applied: Programs o determine state 

transformations S, and the presence of nondeterminacy implies that it is 

necessary to use binary relations to describe these transformations: For 

states x,y1,y2 one may have xsy1 and xsy2 with y1 # y2• However, the simple 

presence of some y such that xSy holds, does not guarantee termination of 

all computations determined by o. It may well be that one path of the com

putation delivers a value, whereas some other path leads to a nonending 

computation. So we add - as is often done in this type of considerations -

one new state - denoted by J., say - which stands for "undefined", and we 

define our computations such that if o determines some nonterminating 

computation, then xSJ. holds, besides, possibly, xsy1,xsy2, •• However, 

this renders it impossible to use set-theoretic inclusion between relations 

as a model of approximation between programs. If o1,o2 determine relations 

s 1,s2 such that s 1 ~ s 2, then there is no reason to view o2 as providing 
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more information than a
1

: Observe that, e.g., {<x,y>} s {<x,y> <x,.L>}. Thi.s 

has the following undesirable effect: Adding the possibility of an undefined 

computation for input x increases the information about the program. Hence, 

the ordering "s" is not appropriate to capture the intuition we want to 

model. On the other hand, some ordering is needed in order that the usual 

techniques of denotational semantics - interpreting recursive programs as 

Zeast fixed points of certain operators; note that this implies some 

ordering - be applicable, and it is precisely at this point that Egli's idea 

gives the desired solution. His ordering definition - discussed in section 

4 - enables us to give a denotational semantics of programs involving both 

nondeterminacy and recursion. 

This having been satisfactorily settled, we can then turn to our main 

problem: To develop a formalism describing pro~ram termination which is 

intuitively appealing and which also allows us to clarify some aspects of 

the Hitchcock & Park theory. We present our method in the framework of 

program schemes - with sequential composition, nondeterministic choice, 

selection and recursion as construction rules - and we define a way of 

describing, with each program scheme, a (boolean) scheme expressing its 

termination properties. It seems to us that the simplicity of this defini

tion is a main advantage of our theory. E.g., a certain new operation intro

duced in order to deal with termination of schemes constructed through 

sequential composition, leads quite naturally to an explanation of the role 

of well-foundedness of relations in the theory of [7]. Finally, the main 

theorem of [7] can be rather nicely derived on the base of our method, 
yielding an extended version which also covers the nondeterministic case. 

The paper is organized as follows: 

Section 2 gives the syntax of program schemes and of boolean schemes. 

Moreover, the concept of substitution is introduced. 

Section 3 deals with the semantics of schemes. Two ways of interpreting a 

program scheme are provided. First, the operationai definition which uses 

the notion of computation sequence, and which stays close to the customary 

way of explaining the meaning of the programming concepts involved. Next, 

we turn to the denotationai semantics of both program schemes and boolean 

schemes. This becomes interestingly different from operational semantics 

only in the case of recursion, dealt with in 

Section~- The more or less standard material on the least-fixed-point 



6 

interpretation of recursion is presented. However, a rather careful devel

opment of this is needed since first of all a new ordering is involved - the 

above mentioned one of Egli - and, secondly, because in our definition of 

boolean schemes we have introduced a non-continuous - though monotonic 

operation. 

Section 5 is the central one of our paper. It presents our definition of a 

process of associating, with each program scheme, a boolean scheme express

ing its termination properties. Moreover, the validity of the definition is 

proved using the techniques of section 4. 

Section 6 finally contains a description of the Hitchcock & Park formalism 

and our method of proving their main theorem. 

The present paper is specifically devoted to theoretical considera

tions, aiming at an understanding of the interrelationship between the three 

important concepts of recursion, nondeterminacy and termination, rather than 

at the introduction of new practical techniques for program proving. 

As related work dealing with formalisms for program termination we 

mention: Manna's notion of total correctness, described e.g. in [8] (see 

also a comment on this we make at the end of [5]) Furthermore, there is 

the axiomatic presentation given by MANNA & PNUELI (see e.g. [8]) of the 

classical idea of using well-founded sets (Turing, Floyd). The connection 

between the Manna & Pnueli proof rule and the Hitchcock & Park theory was 

clarified in our [3]. Altogether, only a small number of formalisms have 

been proposed sofar, and we hope that the present paper will stimulate 

further work in this interesting and difficult problem area. 

2. SYNTAX 

We introduce a class of formal constructs, called program schemes, 

which are, in general, intended as a tool for investigating properties of 

the control structure of programs 1 and, in the present paper, more specif

ically to study program termination. A program scheme is a linguistic 

object - i.e., a sequence of symbols structured in a certain way - which 

serves as an abstract version of an ordinary program. This should be taken 

in the sense that in a scheme one abstracts from an analysis of the elemen-



tary statements which make up the program: There is a class of elementary 

actions - program scheme constants as they will be called - which in our 

system are considered atomic whereas in a real-life program they would be 

further specified as, e.g., assignment statements. 

For reasons which are more of technical than of fundamental nature -

they stem from our way of incorporating recursion in the system - we also 

need to have available a class of program scheme variables. 

Furthermore, we introduce, besides the class of program schemes, also 

the class of boolean schemes. Whereas program schemes are to be interpreted 

(section 3) as state-transforming functions - or, rather, as binary rela

tions, because of nondeterminacy - boolean schemes are interpreted as func

tions from the set of states to the set of truth values, {true,false}, say. 

It should be emphasized that in our approach boolean schemes are introduced 

only as a tool to investigate termination properties of program schemes. In 

particular, they enable us to make certain formal statements about these 

properties. The boolean schemes are not themselves to be seen as abstrac

tions of ordinary programs: their definition includes a non-continuous 

(section 4) - and, therefore, by "Scott's thesis" [IO], non-computable -

operation. 

We first give the notation for constants and variables: 

NOTATION 2. I (Constants and variables). 

a. The set A = {A1,A2, ... } is the set of program scheme constants. 

Arbitrary elements of A are denoted by A,A., ••• . 
1 

b. The set B = {b I ,b 2' ••• } is the set of boolean scheme constants. 

Arbitrary elements of B are denoted by b,b., ••• . 
1 

c. The set X = {Xl'X2, ••• } is the set of program scheme variables. 

Arbitrary elements of X are denoted by X,X., ••• 
1 

. 
d. The set Y = {Yl'Y2, ... } is the set of boolean scheme variables. 

Arbitrary elements of y are denoted by Y,Y., ••• . 
1 

From these classes of symbols, program schemes and boolean schemes 

are made up according to certain construction rules given in 

DEFINITION 2.2 (Schemes). The class of program schemes Sand the class of 

boolean schemes Pare defined as follows: 

7 



8 

a. Each program scheme constant and each program scheme variable is an 

element of S. 
b. Each boolean scheme constant and each boolean scheme variable is an 

element of P. 
c. If cr,o

1 
,o

2 
(01;02) 

(o
1

uo
2

) 

ES, b EB, XE X, then 

if b then cr 1 ~ cr2 fi 

µX[cr] 

are elements of S. 

: sequential composition 

nondetePministic choice 

selection 

recursion 

d. If n,n
1
,n

2 
E P, o ES, b EB, YE Y, then 

(n
1

An
2

) conjunction 

(a ➔ n) to be explained later 

if b then n
1 

else n
2 

fi 

µY[n] 

are elements of P. 

Examples. 

selection 

recursion 

c. if b then (A1;X) else A2 fi, µX[X], µX[(((A 1;X);A
2

) u A
3
)J. 

d. (b
1

Ab 2), if bl then (A+b2) else Y fi, µY[A+Y)]. 

By way of explanation of this definition we remark that 

I. Sequential composition, conjunction and selection define the usual 

operations which need no further connnent. 

2. Nondeterministic choice is a central operation in the system: (o
1

ucr
2

) 

specifies that either o1 or cr2 is to be performed (not both!), but which 

of the two is left open. 

3. The reader who is not accustomed to the µ-notation for recursion (see 

[1,2,7]) may be helped by the following explanation: Consider the scheme 

µX[cr]. Here CJ is any scheme which may have occurrences of the variable 

X, i.e., a= a[X], writing informally. Now the intended meaning of 

µX[o] is the same as that - in a more customary notation - of a call of 

the recursive procedure P declared by proc P; o[P], where o[P] results 

from cr[X] by replacing all occurrences of X by P. For example, execution 

of µX[if b then (A1;X) else A2 fi] amounts to a call of the procedure P 

declared by proc P; if b then (A1 ;P) else A2 fi. 
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4. Anticipating the definitions to be given below, where schemes a are 

interpreted as binary relations S, and schemes n as predicates p, we 

already mention that the predicate (S ➔ p) - as interpretation of (a ➔ n) -

will obtain the following meaning: (S ➔ p)(x) iff Vy[xSy ➔ p(y)J. 

Before we can give our next definition which introduces substitution, 

we need two more notations: 

NOTATION 2.3 (Syntactical identity). 

a 1 = a
2 

(a 1 'I- a
2

) denotes that a1 and a
2 

are identical (not identical) 

sequences of symbols. 

n1 = n2 and n1 t n2 are defined similarly. 

NOTATION 2.4 (Bound and free occurrences). 

All occurrences of a program scheme variable X in a scheme µX[a] are bound. 

An occurrence of a variable x1 in a scheme cr 1 is called free iff it is not 

a bound occurrence. A scheme µX 1[a 1J which results from a scheme µX[a] by 

replacing all occurrences of X in the latter by some x1 which does not 

occur free in a, is called a rewritten version of µX[a]. Two schemes such 

that one is a rewritten version of the other will always be identified in 

the sequel. Mutatis mutandis these definitions also hold for boolean schemes. 

DEFINITION 2.5 (Substitution). For cr,T ES, XE X, we define the operation 

a[T/X]: T is substituted for X in a, by induction on the structure of a: 

a. 

b. 

c. 

d. 

e. 

f. 

a - X . a[T/X] - T . 
a E Au X, a t X . a[T/XJ - a . 
a - (al ;cr2) a[,/X] - (cr

1
[T/X];a2[T/X]) 

a - (a 1ucr2) cr[T/X] - (crl[T/X]ua2[,/XJ) 

cr - if b then cr 1 else cr2 fi: cr[T/X] - if b then cr 1h/X] else cr2[T/X] fi. 

cr - µX1 [ cr l J . cr[T/X] - µX
1
[a1[T/X]] . 

provided that X t x1, and that x1 does not occur free in T; these con

ditions can always be made to be satisfied by suitably rewriting the 

bound variable x1 in µX 1[cr1J. 

Now let n,n 1 E P and YE Y. The definitions of n[n 1/YJ and n[T/X] are 

straightforward variations on that of cr[T/X] and therefore omitted. Note 

that a boolean scheme may have free occurrences of a program scheme variable, 

due to the construct (a ➔ n). 
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3. SEMANTICS 

3.1. Introduction 

Schemes are provided with meaning by a process of interpretation, which 

maps schemes o ES to binary relations S, and schemes TT E P to predicates 

(unary relations) p. 

First we introduce the notation for relations and predicates, and for 

some operations upon these we find useful. 

NOTATION 3.1 (Relations and predicates). 

I. Let V be any nonempty set - in the sequel always called the set of 

states - with elements x,y, ••• , and let W be the set of truth values: 

W =· {~,false}. Binary relations (over V), denoted by R,S, ••• , are 

subsets of V x V, and predicates (over V), denoted by p,q, ••• , are totaZ 

functions from V to W. 
2. For R,S, ••• binary relations, p,q,r, ••• predicates, x,y,z EV, we define 

a. R;S = {<x,y> 3z[xRz A zRy]} 

Ru S = { <x, y> xRy v xSy} 

if p then R else S fi = {<x,y> p(x)AxRy v 7 p(x)AxSy}. 

b. (pAq)(x) iff p(x) A q(x) 

(R+p)(x) iff Vy[xRy + p(y)J 

if p then q else r fi iff p(x)Aq(x) v 'p(x)Ar(x). 

Our definition of the interpretation of a scheme is organized as 

follows: First we give an intuitive explanation of the issues involved in 

the definition. Then we give (section 3.2) a definition of operationaZZy 

interpreting schemes o ES through the introduction of the notion of 

computation sequence. The operational definition is intended to embody the 

meaning of the various programming concepts in a manner which is as close 

as possible to the way the programmer understands them. Thus, it serves as 

a transition to the more abstract definition which follows in section 3.3, 

and which will remain our main tool in the rest of the paper. This denota

tionaZ interpretation avoids the use of computation sequences, and is 

justified by some of the results in section 3.2. The difference between 

the two approaches is in particular noticeable for recursive schemes. Due 
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to the need for more elaborate preparations, a separate section is devoted 

to these (section 4). Section 3.3 brings also the denotational interpreta

tion rules for boolean schemes. (Remember that boolean schemes - which in 

our paper serve only as a tool to investigate program schemes - cannot be 

given an operational definition of their own.) 

A first attempt at interpreting schemes o might be to use state

transforming functions as intended meaning. However, because of the presence 

of nondeterminacy, we need multi-valued functions, so the relational 

formalism is the appropriate one. As we shall see, each scheme o determines, 

in general, a number of possible computations, and, for S the interpreta

tion of o, and x any input state, we may have xSy for zero, one or more 

output states y. Because of our special interest in termination, we want 

to incorporate in the system one special state, for which we use the 

element denoted by 11.L", with the convention that xS.L holds iff some compu

tation sequence specified by o does not terminate properly. By this we mean 

that either the computation sequence is infinite, or that one of the 

elementary actions (interpreted elements of A or X) is undefined at some 

intermediate state. Thus, in the most general case we may have that both 

xS.L, and xsy 1,xsy2, ••• hold for given x, this meaning that there is (at 

least) one computation sequence specified by o which does not terminate 

properly, and a number of other ones terminating with outputs y 1,y2, •••• 

In fact, the device used here is rather well-known in systems dealing 

with partial functions. Adding 11 .L 11 as outcome is there also used to turn 

partial functions into total ones, which often is advantegeous. See [11] 

for further information. 

However, in the relational approach there is one serious difficulty: 

Anticipating some of the considerations presented below to deal with re

cursion, we already mention that for the denotational treatment of this 

we need a partial ordering of the relations, written say as R ~ S, such 

that, in an intuitive sense, R ~ S holds if (the program with interpreta

tion) R approximates (the program with interpretation) s, i.e., iff S 

provides more information on the computation than R. However, in the 

approach using binary relations over the extended domain Vu {.L}, it is 

not possible to take for"~" the usual set-theoretic inclusion"~". Note 

that, e.g., {<x,y>} ~ {<x,y>,<x,.L>}, i.e., using this ordering a program 
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would provide more information when the possibility of a nonterminating 

computation were added, and that is certainly not in accordance with the 

intuition we want to capture. Therefore, we need a different definition 

of ":o;;". This we found in a recent paper by EGLI [6], and it will be dealt 

with in detail in section 4. 

We close this introductory section with a few more notations, the 

first of which slightly changes the notation for the set of states. 

NOTATION 3.2 (Set of states). The set of states Vis given as V= V0 u {i}, 

where ii v
0

, and V
0 

is the set of proper states. 

NOTATION 3.3 (Ext.ended relations). For Vas above, TR(V) is the set of all 

total, extended binary relations over V, i.e., it consists of all binary 

relations over V such that both a and b hold: 

a. Vx EV 3y E V[xRy] 

b. Vx E V[iRx ➔ x=i] 

(i.e., R is everywhere defined on V, and, for input i, i is the only possi

ble output). 

NOTATION 3.4 (Extended predicates). For Vas above, HE(V) is the set of all 

(total,) extended predicates over V, i.e., it consists of all functions from 

V to W such that both a and b hold: 

a. Vx E Vo 3y E W[p(x)=y] 

b. p(i) = false 

(the motivation for clause bis discussed in section 5). 

The introduction of Vas V = V0 u {i} necessitates a slight adaptation 

of the definition of 11 ➔ 11 (the reasons for which will become clear later 

in the paper). 

NOTATION 3.5 (Adapted definition of 11 ➔ 11 ). Let RE TR(V), p E HE(V). We put 

- for XE Vo: (R ➔ p)(x) if£ Vy E Vo[xRy ➔ p(y)] 

- for x = i: (R ➔ p) (i) = false. 

3.2. Operational semantics 

In our definition of operational semantics we use the notion of compu-
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tation sequence in a way which is very similar to that of some of our 

previous papers ([2,4,5], see also [9]). In fact, the definition given 

presently is a straightforward extension of its predecessors, and included 

here only for completeness sake. The reader who is already familiar with 

the kind of considerations we are concerned with here, may well skip the 

present section and inunediately go on with the definition of denotational 

semantics (section 3.3) which is the only one to be used in the remainder 

of the paper. 

An interpretation Mis given as a triple M = <V,C,E>, where 

- V = V
0 

u {~} is as above. 

C (for constants) is a mapping from elements A EA to binary relations 

over V
0

, and from elements b EB to predicates over v
0

• 

- E (for environment is a mapping from elements XE X to binary relations 

over v
0

, and from elements YE Y to predicates over v
0

• 

(Note that the definitions of C and E are with respect to V
0 

only, i.e., 

the undefined element~ plays no role.) 

Our task is now to specify, for given V,C,E, how to define M to 

yield, for each a ES, a total binary relation Sin TR(V). For this we 

need the notion of computation sequence: 

DEFINITION 3.6 ( Computation sequence). A computation sequence with respect 

to M = <V,C,E> is a construct of one of the following three forms: 

(3. 1) 

with xi E v0, i = O,1, ••• ,n, and cri ES, i = O,I, ••• ,n-1 

( (3. I) is a sequence which properly terminates), or 

(3.2) 

with xi E Vo, i = O,1, ••• ,m, and (Ji ES, i = O,1, ••• ,m 

((3.2) is a sequence which improperly terminates), or 

(3.3) X CJ 
p p 



14 

with x. E Vo, i = 0,1, ••• ,p, ••• , and a. Es, i = 0,1, ••• ,p, ••• 
i i 

((3.3) is a sequence which is nonterminating), such that the following 

requirements are satisfied: For each 3-tuple xn_lon_lxn, occurring at the 

end of a sequence (3.1), we have that either 

- a n-1 - A, for some A E A, and x 1C(A)x, or n- n 
- a n-1 - X, for some X E X, and x 1E(X)x. n- n 
For each pair xmom, occurring at the end of a sequence (3.2), we have that 

either 

- a - A, for some A E A, and there is no y E V
0 

such that X C(A)y, or 
m m 

- a - X, for some X E X, and there is no y E v
0 

such that xmf(X)y. m 
For each 4-tuple x.o.x.+ 1o.+l' occurring in (3.1), (3. 2) or (3.3), we 

'i i i i 

have that (exactly) one of the following conditions is satisfied: 

a. oi = (o'uo"), xi+l = xi' and oi+l = a' or oi+l = a". 
(This clause allows a nondeterministic choice between two ways of 

continuing the computation.) 

b. oi = if b then o' else a" fi, xi+l = xi, and oi+l - a' if C (b)(x) = true, 

oi+l = 0 11 if C (b) (x) = false. 

c. oi = µX[o], xi+l = xi' and oi+I - cr[µX[o]/X]. 

(This clause is the copy-rule for procedure execution: Compare the case 

of the procedure declared by proc P;o[P], where a call of Pleads to 

execution of o[P].) 

d. oi _ (A;o), xiC(A)xi+l' and oi+l - a. 

e. oi _ (X;cr), xiE(X)xi+l' and oi+l - a. 

f. oi - ((0';011 );0), xi+l = xi, and oi+l - (o';(o";cr)). 

g. oi - ((o'uo");cr), xi+l = xi' and oi+l - ((o';o) u (o";cr)). 

h. oi _ (if b then o' else a" fi;o), xi+l = xi, and oi+l = 
if b then (o' ;a) else (o" ;a) fL 

i. oi = (µX[cr'J;o), xi+I = xi, and oi+l - (o'[µX[o']/X];o). 

By way of general explanation of the structure of the definition, we 

remark that at each moment during the computation, the scheme a. contains 
i 

that part of the program scheme which is still to be executed with current 

state x .• Computation may either terminate properly - with the execution 
i 

of the final elementary action (interpreted element of A or X), terminate 

improperly (C(A) or E(X) being undefined at the current state), or not 
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terminate at all. Once the reader has digested the formalism, we hope he 

will agree that all clauses of the definition are in accordance with his 

usual operational understanding of the programming concepts involved here. 

We now define 

DEFINITION 3.7 (Operational semantics). Leto ES, and let M = <V,C,E> be 

an interpretation. We define the operational meaning M
0

(o) of the scheme o 

as follows: For each x,y EV we put xM
0

(o)y iff (at least) one of the 

following conditions is satisfied: 

a. x E v
0

, y E V
0

, and there exists a computation sequence (3.1) with 

XO= x, X = Y, and 00 - o. n 
b. X E Vo, y = . .L, and there exists a computation sequence (3. 2) or (3 .3) 

with x
0 = X and 00 - o. 

c. X = .L and y = .L • 

That this definition has the desired properties can be seen from the 

following lemma's which we state without proof - which would proceed by a 

fairly straightforward induction on the structure of the schemes: 

LEMMA 3.8. For each M, 

a. M
0

(((o
1
;o

2
);o

3
)) = M

0
((o

1
;(o

2
;o

3
))) 

(this associativity result allows us to omit parentheses). 

b. M
0

((o
1
;(o

2
uo

3
))) = M

0
(((o

1
;o

2
) u (o

1
;o

3
))) 

(and similarly for right-distributivity). 

c. M
0
((if b then o1 else o

2 
fi;o)) = M

0
(if b then (o

1
;o) else (o

2
;o) fi). 

PROOF. Omitted. □ 

Remark: Outermost parentheses will often be omitted in the sequel. Also, 

we omit parentheses in cases such as if b then o1;o
2 

else o
3 

u 0
4 

fi, 

µX[o
1
;o

2
], µY[o ➔ 'IT], etc. Moreover, we write, e.g., o1;o

2 
u o

3
, using the 

convention that " ; " is assigned higher priority than "u 11
• 

LEMMA 3 9. For each M, 
a. xM

0
(A)y iff one of the following holds: 

- XE Vo, y E Vo, and xC(A)y 

- x E v0, '3z[xC(A)z], and y = .L 

- X = ,Y = .L. 
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b. SimiZaro for xM0 {X)y. 

c. M
O

(cr 1;cr2) = MO(cr 1);MO(cr2). 

d. M
0

(cr
1

ucr2) = M
0

(cr
1

) u M
0

(cr2). 

e. M
0

(if b then cr
1 

else cr2 fi) = if C(b) then M
0

(cr
1

) else M
0

(cr2) fi. 

f. M
0

(µX[cr]) = M
0

(cr[µX[cr]/XJ). 

PROOF. Omitted. 0 

Lemma 3.9 will be the starting point of the definition of denotational 

semantics, which now follows. 

3.3. DenotationaZ semantics 

Let M = <V,C,E>, with V = V0 u {L}, C and E as above. In denotational 

semantics, one directly defines the mapping determined by M, from cr E S to 

SE TR(V), without using computation sequences. It is then not immediately 

clear how to interpret a recursive scheme. The definition for this case -

which will turn out to yield the usual least fixed point (though with 

respect to an unusual partial ordering) - needs some preparation and is, 

therefore, postponed to section 4. The other cases, for schemes cr ES and 

TIE P, are straightforward - for program schemes they should be compared 

with lemma 3.9 - and now follow: 

DEFINITION 3.10 (Denotational semantics). Let M = <V,C,E> be as above, 

cr ES and 1r E P. We define the mappings MD(cr) and MD(1r), or M(cr) and 

M{1r), for short, with M{cr) E TR(V) and M(1r) E HE(V), as follows: 

1. Program schemes 

cr - A 

cr - X 

cr - crl;cr2 
cr - crl u cr 2 

: M(cr) = C(A) u {<L,L>} u {<x,L> 

M(cr) = E(X) u· {<L,L>} u {<x,L> 

M(cr) = M(cr 
1

) ;M(cr2) 

M(cr) = M(cr I) u M(cr2) 

cr - if b then cr
1 

else cr
2 

fi: H(cr) = if C (b) 

cr = µX[ cr 
1

] : postponed. 

2. BooZean schemes 

1T = b H(1r)(x) = C(b)(x), XE Vo 

M(1r) (L) = false 

XEV
0 

A '3yEV
0

[xC(A)y]} 

x E Vo A '3y E Vo[xE(X)y]} 

then M(cr
1

) else M(cr2) fi 



1T - y M(1r)(x) = E(Y)(x), XE Vo 
M(1r)(.1) = false 

1r - 1rl "1r2: M(1r) = M(1rl) "M(1r2) 

1r _a+ 1r
1 

: M(1r) = M(a) + M(1r 1) 

a_ if b then 1r
1 

else 1r 2 fi: M(1r) = if C(b) then M(1r
1

) else H(1r
2

) fi 

1r _ µY[1r
1
J : postponed. 

Thus, we see that 

- The definition of M applied to constants and variables follows directly 

from our desire to work with total, extended relations and predicates. 

- The definition of M applied to program schemes constructed according to 

the rules of composition, choice and selection, is the natural one, and 

in accordance with lemma 3.9. 
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- The definition of M for boolean schemes is also the expected one - though 

a corresponce with an operational definition is now not available. 

- The definition of M for the two recursive cases is postponed. 

4. RECURSION 

This section contains the definition of the denotational semantics of 

recursive schemes. The first subsection brings the introduction of the 

partial ordering between relations due to Egli, and the usual material on 

monotonicity, least fixed points of monotonic operators, etc. The second 

subsection is devoted to the definition proper of the interpretation of 

recursive schemes, and to the introduction and application of the notion 

of continuity of an operator. 

4.1. Preliminaries 

DEFINITION 4.1 [Egli] (Ordering between relations). 

Let V = V0 u {.1}, and let R,S E TR(V). We define 

{ 

if xR.1 then Vy[xRy A y # .1 ➔ xSy] 
R ::;; S iff Vx 

if 7x:R.1 then Vy[ xRy +-+ xSy] • 
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E:cpZanation: We see that Rs S holds if£, for all x, 

either xRi holds - and, possibly, also xRy 1,xRy2, ••• - in which case there 

is a possibility that the information about the computation is not yet 

complete, and in a better approximation S we may add new outputs, i.e., we 

always have that xSy
1
,xsy2, ••• also holds, and we may have that xSz, ••• 

holds for some new z (and, also, that still xSi holds), 

- or 'xRi holds. Then the information is complete, there are no longer 

computation sequences which still have to decide about their answer; hence, 

no additional new outputs are allowed in S, i.e., Rand Snow coincide 

on x. 

Maybe it is helpful to add here a quotation from [6] as well, where 

Egli motivates his definition as follows: " ••• Let us look at the notion of 

approximating the value of a computation. We think of it as follows: We 

compute for a certain finite amount of time. If we have not found the value, 

we approximate by saying that it is i at this point. Then we compute further. 

If we ever find a value, then we know the result. Now let us think of a 

nondeterministic such computation from a recursive program. Suppose we know 

all the outcomes along all finite paths of say at most length n. We may 

then know certain numbers as possible values. Certain paths may not have 

returned a value. For those we have to compute further. On the other hand, 

if we have found a number value for every possible path, then we are done. 

So the point we want to make here is that if a (nonempty) subset of V
O 

u {i} 

approximates the set of outcomes of a program, then either it is the out

come of the program or else it has to contain i ••• " [Last sentence of the 

quotation slightly adapted, dB.] 

A necessary property of "s" is that it is preserved by the relational 

operations. This is stated in 

LEMMA 4.2. If Rs S then 

a. R;T s S;T, and symmetric 

b. Ru T s Su T, and symmetric 

c. if b then R else T fi s if b then S else T fi, and symmetric. 

PROOF. We show only case a. Assume Rs S, and take any x. First assume 

xR;Ti, and xR;Ty with y ii. Then, for some z ~ i, xRz A zTy. Since Rs S, 

xSz follows, and, therefore, also xS;Ty. Next assume xR;Ti. Hence 'xRi, 
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and since R $ S, Yy[xRy -+--l- xSy]. Thus, Vy[xR;Ty -+--l- xS;Ty] follows. D 

We also need to define a partial ordering for the predicates. This is 

straightforward and given in 

DEFINITION 4.3 (Ordering between predicates). For V = V0 u {i}, and 

p,q E HE(V) we define 

p $ q 'iff Vx E V[p(x) ➔ q(x)J. 

(Of course, on the right-hand side"+" denotes the usual implication from 

predicate logic;) 

Clearly, we have 

LEMMA 4.4. If p $ q then 

a. p Ar $ q Ar., and symmetric 

b. R+p $ R+q 

c. if r then p else p' fi $ if r then q else p' fi., and symmetric. 

PROOF. Clear. 0 

The next step is the introduction of the notion of monotonic operators 

and their Zeast fixed points: 

NOTATION 4.5 (Monotonic operators). A monotonic operator¢ on TR(V) is a 

mapping from TR(V) to TR(V) such that ¢(R) $ ¢(S) whenever R $ S. Monotonic 

operators f on HE(V) are defined similarly. 

NOTATION 4.6 (Least fixed points). The Zeast fixed point of an operator¢, 

denoted byµ¢, is a relation with the properties that 

a. Hµ¢) = µ¢ 

b. For all R, if ¢(R) = R, thenµ¢$ R. 

Least fixed points µf of operators fare defined similarly. 

The question of the existence of least fixed points for operators¢ 

will be dealt with in section 4.2. The case for the operators~ is easier, 

and given in 
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LEMMA 4.7. Let 1¥ be a monotonic operator over HE(V). Then 1¥ has a Zeast 

fixed pointµ'¥. 

PROOF. Consider the set {p I 1¥(p) ~ p}. This set is nonempty, since the 

predicate t, defined by: t(x) = true, all x E V 0, and t(.1) = false, is a 

member of it. Now let us define, for any index set I, ./\Ip. as follows: 
l.€ l. 

( ) { 
true , if pi (x) = ~ for all i EI 

i~\:Pi (x) = 
false, otherwise. 

Then the predicate/\ {p I 1¥(p) ~ p} has the desired properties of µ1¥, as 

follows by a standard application of the Knaster-Tarski argument. (See 

e.g. [1,2].) O 

It should be observed that this proof does not carry over to the ~'s, 

since neither a greatest element (counterpart oft), nor the operation .AI 
l.€ 

are guaranteed to exist. 

As a corollary of lemma 4.7 we have 

COROLLARY 4.8. Let q be any predicate satisfying 1¥(q) ~ q. Thenµ'¥~ q. 

PROOF. Follows from the construction of µ1¥ in the proof of lemma 4.7. 0 

4.2. Denotational semantics of reaursive schemes 

Why the interest in least fixed points? Because in a sense to be made 

precise presently, a recursive scheme µX[o] is the least fixed point of a 

certain operator associated with a. 

In order to explain this, we first introduce the notation for these 

operators which, in turn, needs the definition of a variant of an inter

pretation M. 

NOTATION 4.9 (Variants of M). Let M = <V,C,E> be as usual, and let XE X. 
The interpretation M{R/X} is such that M{R/X}(X) = R, and M{R/X} coincides 

with M for each A EA, b EB, x1 EX with x1 t X, and YE Y. Similar defi

nitions hold for M{p/Y}. Variants of M can also be used for the operational 

interpretation, leading to the notation M{R/X}
0

(o), etc. 
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NOTATION 4.10 (Operators from schemes). Let RE TR(V), XE X and a ES. The 

operator AR•M{R/X}(o) maps the element RE TR(V) to the element M{R/X}(o) E 

TR(V). A similar definition holds for Ap•M{p/Y}(n). The meaning of 

AR•M{R/X}
0

(o) and of Ap•M{p/Y}
0

(n) should also be clear. 

We now state - again without full proof - two more lemma's on the 

operational interpretation, one of a general nature, and the other one 

providing the central characteristic of recursion: 

LEMMA 4.11. For eaah a,T ES, XE X, we have 

PROOF. Induction on the structure of a. D 

LEMMA 4.12 (Least fixed point lemma). 

PROOF. 

a. We show that M
0

(µX[o]) is a fixed point of AR•M{R/X}
0

(o): 

(AR•M{R/X}
0

(o))(M
0

(µX[o])) = 
M{M

0
(µX[o])/X}

0
(o) = (lennna 4.11) 

M
0

(o[µX[o]/X]) = (lennna 3.9f) 

M
0

(µX[o]). 

b. The proof of: If M{R/X}
0

(o) = R, then M
0

(µX[o]) $ R, is omitted here. 

It can be given essentially along similar lines as the proof of the 

main theorem of our paper [4] though the formalism used there is rather 

different. 0 

LEMJ:>fA 4.12 motivates our next definition, which is the central one of (our 

treatment of) denotational semantics: 

DEFINITION 4.13 (Denotational interpretation of recursive schemes). 

I. M(µX[o]) = µ[AR•M{R/X}(o)J 

2. M(µY[n]) = µ[Ap•M{p/Y}(n)] 

BIBLIOTHEEK MATHEMATISCH CENiAUM 
,....___, -AMSTERDAM-



22 

This definition - inspired as it is by lennna 4.12 - seems straight

forward. However, we need some additional argument to establish the exis

tence of the least fixed points concerned. This we now proceed to do. First 

we take the second - simpler - case. By lennna 4.7, it is sufficient to show 

that Ap•M{p/Y}(rr) is a monotonic operator: 

LEMMA 4.14. Fol' aZZ M, and aZZ rr € P, if p s q, then M{p/Y}(rr) s M{q/Y} (rr). 

PROOF. Induction on the structure of rr. If rr € 8 u Y, the assertion is 

clear. If rr is of the form rr 1 A n
2

, o ➔ n, or if b then n1 else n2 fi, the 

proof is direct from lemma 4.4. There remains the case that n = µY[n 1J. The 

argument for this - which is well-known, see e.g. [I] - is the following: 

We have to show M{p/Y}(µY 1[n 1J) s M{q/Y}(µY 1[rr1]), or, by definition 4.13, 

thatµ[Ap 1•M{p/Y}{p1/Y 1}(rr1)Js µ[).p 1•M{q/Y}{p1/Y1}(n1)J. By the proof of 

lemma 4.7, this is equivalent to showing that 

/\{p1 I M{p/YHp/Y 1}(n1) S p1} S l\{p1 I M{q/Y}{p 1/Y 1}(rr1)}, and this 

inequality follows directly from the induction hypothesis and the defini

tion of /\. 0 

There remains the justification of the first part of definition 4.13. 

For this, we need a new property of operators, their continuity, which, in 

turn, uses the notion of ahains of relations and their least upper bounds 

(lubs). 

NOTATION 4.15 (Chains and their lubs). 
00 I 

a. A chain over TR(V) is a sequence {Ri}i=O' such that 

s •.• s R. 
1. 

s • • • • 

of a chain 
00 

{R.}~ 0, denoted by .V0 R., is a relation such that 
1. 1.= l"" 1. 

R. s .V
0 

R., j = 0,1, ••• 
00 

(i) 

(ii) 
J 1.= 1. 

For all s, if R . s S , j = 0, I , ••• , then .Vo R. s S • 
J ~ l 

Chains do have lubs: 

00 

LEMMA 4.16. Each chain {R.}~ 0 has a Zub .V0 R .• 
1. 1.= 1.= l 

00 

PROOF •. V0 R. is defined as follows: For each x 
1.= 1. 

- either xR.i holds for all i = 0,1, ••• , Then we put, for each y € V, 
oo l 

x( .V0 R.)y iff xR.y for some i. 
1= 1. 1. 
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- or xR.~ holds 
00 l. 

x(/fo Ri)y 

for some i = i O• We then put, for each y EV, 
• > • some l. - l.o. iff xR.y for 

l.oo 
Verification that .Vo R. 

1.= l. is indeed the lub is left to the reader. □ 

Remark. It is not true that each two relations R,S have a lub R v S. In 

particular, it is not true that R u S could be taken as such a (" :s; "-) lub. 

Next we give the continuity definition. 

DEFINITION 4.17 (Continuity). A monotonic operator~ is called aontinuous 

iff, for each chain {R.}~ 
0

, we have l. 1.= 

00 

.V0 HR.). 
1.= l. 

The basic relational operations are continuous: 

00 00 

h. (i'io Ri) u s = i':fo (Riu S), and syrronetria 
00 00 

c. i'to (if b then Ri else S fi) = if b then i¥o Ri else S fi, 

and syrronetria. 

PROOF. Clear from the definitions. 0 

Caution: Of course, we can also introduce the notion of continuity with 

respect to the"::;;" ordering for predicates. However, the construction 

rules for boolean schemes do not guarantee continuity. Specifically, it 
00 00 

is not, in general, true that, for {p.}~ O a chain, .VO (R-+p.) = R-+ .VOp .• 
l. 1.= 1.= l. 1.= l. 

Hence, the results which follow hold only for program schemes; for 

boolean schemes we have monotonic, but not necessarily continuous operators. 

Continuous operators allow a nice way of obtaining least fixed points. 

For this we need 

NOTATION 4.19 (Least element for"::;;"). Leto E TR(V) be defined as follows: 



24 

Clearly, o ~ R for all R € TR(V). 

NOTATION 4.20 (Iterating$). $i(R) is defined by: $O(R) = R, 
$i+l(R) = $($i(R)). 

LEMMA 4.21. For eaah aontinuous $: 

PROOF. Clear from the definitions. D 

The next lemma asserts that operators derived from program schemes are 

continuous: 

LEMMA 4.22. For eaah M, X € X, cr € S, the operator AR•M{R/X}(cr) is aontin

uous. 

PROOF. We use induction on the structure of cr. The cases that cr €Au X, 
or cr is made up through composition, choice or selection, are clear from 

the definitions and lemma 4.18. If cr is itself a recursive scheme, cr = 
µX 1[cr1J~ we have, by induction, that for each M, >..R•AHR/X1}(cr1) is (mono

tonic and) continuous, hence µ[>..R 1•M{R1/x1Hcr1)J exists and can be obtained 
00 

as .'t_.O S., with sO = o, S.+I = M{S./X1}(cr1). The proof is then completed by 
J J . 00 J J co co 

showing that, for {R.}. O a chain, M{.VO R./X}(µX 1[cr 1J) = .V.OM{R./X}(µX 1[cr 1J). 
1. 1.= 1= 1 1= 1 

The proof of this is - again - essentially the same as given e.g. in [1,2], 

and omitted here. D 

Finally, we state one more lemma, which is the counterpart of lenuna 

4.11 for denotational interpretations: 

LEMMA 4.23. 

a. M(cr[T/X]) = M{M(T)/X}(cr). 

b. M(n[T/X]) = M{M(T)/X}(n). 

c. M(n[n 1/YJ) = M{M(n 1)/Y}(n). 

PROOF. Induction on the structure of cr or n. D 

We conclude this section with the following 



SUMMARY. 

I. For each recursive program scheme µX[cr] we have 

M(µX[cr]) = µ[AR•Af{R/X}(cr)J 
ClO 

= .V
0 

s., 
1.= ]. 

with sO = o, si+I = M{si/X}(cr) 

(this result is justified on the base of the continuity of the 

operator AR•M{R/X}(cr) ). 

2. For each recursive boolean scheme µY[TI] we have 

(this result is justified on the base of the monotonicity of the 

operator Ap•M{p/Y}(TI) ). 

5. TERMINATION 

This section is the central one of our paper. We propose a method of 

associating with each program scheme cr a boolean scheme TI expressing 

termination of cr. The definition is first motivated, then presented, and 

finally justified using the tools developed in the previous section. 

What do we want to achieve? In order to state our goal, we first 

give the notation for expressing "proper termination" of a relation: 

NOTATION 5.1 (Proper termination of a relation). We define the operation 

e: TR(V) + HE(V) by: For each RE TR(V), and x EV: 

e(R)(x) iff ~XRi. 
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Thus, we see that e(R)(x) is true whenever i is not a possible out

come of applying R to input x. It should be noted that, by the definition 

of TR(V), we always have iRi, whence we have e(R)(i) =false.Here we find 

the motivation for our choice of p(i) = false, for any predicate p 

(notation 3.4). (Of course, this can also be approached more generally: 

If our domain V were ordered such that i ~ x for all x EV, we would want 
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that, for each p, p(L) ~ p(x), and, taking"~" on Was the implication 

relation, the choice p(L) = false is seen to be the desired one.) 

Some properties of thee-operation are stated in 

LEMMA 5.2. 

a. If Rt ~ R2, then e(Rt) ~ e(R2) 

b. e(Rt;R2) = e(Rt) A (Rt+ e(R2)) 

c. e(Rlu R2) = e(R).) A e(R2) 

d. e(if b then Rt else R2 fi) = if b then e(R1) else e(R2) fi 
. (X) 00 (X) 

e. For {R.}. 0 a chain. e( .V0 R.) = .V.0 e(R.). 
1 1= ~ 1= 1 1= 1 

PROOF. We prove only case b. We have, for each x EV, 

xRl;R2L iff xRlL v 3z#L[XRlz A zR2L]. 

Hence, xRl;R2L iff ~xRlL A '3z#L[xRlz A zR2L] 

iff xRl L A Vz#L[xRl z+ .,zR2L] iff e(Rl )(x) A (Rl -+ e(R2)) (x). □ 

We are now sufficiently prepared for the statement of our main 

problem: 

For each program scheme a, define a syntactia operation, denoted by 

say, yielding a boolean scheme a, such that the foZZowing holds: 

For each M: 

(5. 1) M(o) = e(M(cr)). 

So what we have to do is: 

- Define 11 ~ 11 

"~ ,, , 

- Show that, when "~ 11 is used in combination with recursion, the results 

of section 4 remain valid 

- Prove (5.1). 

In our justification of the definition of "~ 11
, - and in the remainder 

of the paper - we shall omit the qualification "proper" in "properly termi

nating": From now on a terminating computation neither goes on indefinitely, 

nor aborts on an elementary action being undefined at some intermediate 

state. 

By way of preparation for the definition of"~ 11
, we consider the 



various rules of scheme-construction: 

- a= a
1

;a
2

: In order that a terminates for all computations we require that 

• cr 1 terminates for all computations, and 

• a
2 

terminates for all computations which have as input a possible 

(proper) output of cr
1

• 

a - a
1 

u cr 2: a terminates if£ both cr
1 

and a2 terminate. 

- a= if b then cr
1 

else cr2 fi: This case is clear. 

- a= µX[cr
1
J. In our explanation of o in this case we use the more intuitive 

procedure notation already referred to before (cotmnents following defini

tion 2.2). Let proc P;cr
1
[P] be a procedure declaration, i.e., we consider 

proc P; ••• P •••• By the fixed point property P = ••• P •••• Applying 
-- cr 1[P] ~ 
"~" on both sides: P = _ P _ P _, which is, informally again, a way 

of indicating that occurrences of Pin cr 1[P] lead to occurrences of both 

P and P in cr 1 [P]~ (e.g., (P;A) ~ = P A (P ➔ A)). We, therefore, expect that 

the boolean scheme we look for is given through the declaration 

proc Q; _ P Q _ , which is indeed what turns out to be the case. 

- We also have to define "~" for constants and variables. Since these are 

"atomic", we cannot reduce their termination properties to simpler ones, 

i.e., for each A EA and XE X, we assume the boolean schemes A EB and 

XE Y as given at the outset. 

Thus, we can now understand 

DEFINITION 5.3 (Syntactic termination operation). For each a ES, a is an 

element of P defined as follows: 
~ : a is some element A in B 

cr is some element X in Y 

- a - crl;cr2 a - 01 A (al + 02) 

- a al u 02 
. 0 01 A a-2 - . -

- a - if b then cr 1 else cr 2 fi: 0 - if b then o1 else o2 -
- a µX[cr 1J . o µX[crl[µX[crl]/X]J. - . -

The definition of " ~ 11 having been presented, we next turn to its 

justification. We precede this with the definition of the notion of a 

consistent interpretation. 
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NOTATION 5.4. An interpretation Mis called consistent iff, for each A EA 

and XE X, we have M(A) = e(M(A)), M(X) = e(M(X)). 

Thus, through the notion of consistency we guarantee that (5.1) holds 

for elementary cr. 

THEOREM 5.5 (First main theorem). For each scheme a and interpretation M: 

t. For aZZ YE Y, and aZZ p,q with p sq: M{p/Y}(o) s M{q/Y}(o) 

2. M(o) = e(M(cr)), provided Mis consistent. 

(Note that the first assertion of the theorem is necessary to justify the 

definition of o for cr a recursive scheme: We have - implicitly - extended 

the definition of ·the class P with the construction rule: If cr ES, then 

cr E P. Therefore, we have to verify that this addition preserves monotoni

city.) 

PROOF. The proof proceeds by simultaneously showing assertions 1 and 2, 

using induction on the structure of cr. We use the terminology: ff is mono

tonic in Y
1

,Y2, ••• , iff, for p1 s q1, p 2 s q2, ••• , and each M, 

M{p
1

/Y
1

}{p2/Y2} ••• {}(v) s M{q
1

/Y
1
}{q2/Y2} ••• {}(ff). (The proof also 

uses an extension of lemma 4.23b, corresponding to our extension of the 

construction rules for ff. Properly speaking, this extension would have to 

be taken along as a third assertion in the present proof. However, we have 

preferred to avoid such further complicating the argument.) 

- cr = A or cr = X: Clear from the definitions, in particular because of 

the consistency condition. 

- cr = o1;o2 
I. Assume p sq. M{p/Y}((ol;o2)~) = M{p/Y}(crlA(oj+cr2)) 

= M{p/Y}(cr1) A (M{p/Y}(o1) + M{p/Y}(o2)) s 

M{q/Y}(crl) A (M{q/Y}(ol) + M{q/Y}(o2)), which follows from the 

induction hypothesis for o1 and cr2, from lemma 4.4, and from the 

fact that Y does not occur free in a
1

• 

2. M((al;cr2)~) = M(crl A (al+ 02)) = M(ol) A (M(o)) + M(o2)) 

= (ind.)e(M(a 1)) A (M(a 1)+e(M(a2))) = (lennna 5.2b)e(M(a1);M(a2)) 

= (def.M)e(M(a1;a2)). 

- a= a 1 u a2, or o = if b then a 1 else a2 fi. These cases follow 

similarly as the previous one using induction and lemma 5.2. 



- a= µX[a 1J. In this part of the proof we use the single symbolµ as an 

abbreviation for µX[a
1
J. 

1. Assume p ~ q. We have M{p/Y}(µX[crl]~) = M{p/Y}(µX[cr1[µ/X]]) 

= (by induction, o 1 is monotonic in each Y E Y. Then so is cr 1 [ µ/XJ) 

µ[Ap 1•M{p/Y}{p
1
/x}(a

1
Cµ/XJ)J ~ µ[Ap

1
•M{q/Y}{p

1
/x}(cr

1
Cµ/XJ)J, 

where the last inequality follows in a similar way as in the proof 

of lemma 4.14. 

2. We show that.M(µX[a
1
r) = e(M(µX[cr

1
])). 

00 
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By lemma 4.22, we have M(µX[o 1J) = i':fo Si' with s 0 = o, Si+l = M{si/X}(a 1). 

By definition 5.3, M(µX[o
1
J~) = M(µX[cr

1
[µ/XJJ) = µ[Ap•M{p/X}(cr

1
[µ/XJ)J 

= (lennna 4.23b) µ[Ap•M{p/X}{M{p/X}(µ)/X}(crl)J = (X not free inµ) 
. ~ M - ~ µ[Ap•M{p/X}{M(µ)/X}(cr

1
)J. Now let 'l' =. Ap•M{p/X}{M(µ)/X}(o

1
). We show that 

e(M(µ)) is the least fixed point of 'l'. 

(i) e(M(µ)) is a fixed point of 'l': 'l'(e(M(µ))) = M{e(M(µ))/X}{M(µ)/X}(cr
1
) 

= (we can use the induction hypothesis, since M{e(M(µ))/XHM(µ)/X} is 

consistent) = e(M{e(M(µ))/X}{M(µ)/X}(cr
1
)) = (X not in cr

1
) 

= e(M{M(µ)/X}(o 1)) = (lemma 4.23a) = e(M(o
1
[µ/XJ)) = e(M(µ)), by the 

fixed point property for the recursive scheme µX[a 1J. 

(ii) We prove that, whenever 'l'(p) ~ p, then e(M(µ)) ~ p. (Note the use of 

corollary 4.8.) So assume 'l'(p) ~ p. To show e(M(µ)) ~ p, i.e., 

(5.2) 

(5.3) 

e( VS.) ~ p, with S. as above. By continuity of e (lennna 5.2a), 
l. l. l. 

e( 'v S.) = V e(S.). Thus, it is sufficient to show e (S.) ~ p for all i. 
il. l. l. l. 

Clearly, e(S
0

) ~ p. Now assume 

e(S.) ~ p. 
l. 

We also have, by definition, 

s. ~ M(µ). 
l. 

We now show that e(M{Si/X}(cr 1)) ~ p, or, equivalently, since X does 

not occur free in cr
1

, e(M{Si/X}{e(Si)/X}(o 1)) ~ p, or, by the induc

tion hypothesis, that M{S./X}{e(S.)/X}(o1) ~ p, where we have used the 
l. l. 

consistency of M{S./X}{e(S.)/X}. Furthermore, we have that 'l'(p) ~ p, 
l. l. 

i.e. that 
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(5.4) 

The desired result: M{e(S.)/X}{S./X}(o
1

) s p now follows, using (5.2), 
1 1 

(5.3), (5.4) and monotonicity. 0 

This completes the proof of the first main theorem of our paper. 

6. DERIVATIVES 

This section is devoted to a comparison of our method of dealing with 

program termination as presented in section 5, and the approach of 

HITCHCOCK & PARK [7] using the notions of well-founded relation, and of 

derivative of a program scheme. In particular, we extend the main theorem 

of [7] to nondeterministic programs, and we give a new proof of it using 

our method. 

A number of new notations are first introduced. 

NOTATION 6.1 (Special constant schemes). 

a. n and 6 are two program scheme constants with the convention that, 

for all M, 
M(n) = o ~ {<x,L> 

M(6) = I df. {<x,x> 

X € V} 

X € V} 

b. wand 0 are two boolean scheme constants with the convention that, 

for all M, 
M(w) = 
M(e) = 

f, where f(x) = false, for all x EV 
t, where f(x) =~'all x E v0 

~(L) = false. 

NOTATION 6.2 (Extended construction rules for schemes). 

The following construction rules for schemes are added to the rules of 

definition 2.2: 

I. Program schemes 

a. If cr ES and TT E P then cr u n ES. 

2. Boolean schemes 

a. If n 1,TT2 E P then TT] v TT 2 E P 

b. If 1 E P then i E P 
c. If cr ES and TT E P then croTT E P. 



NOTATION 6.3 (Additional operations on relations and predicates). 

For SE TR(V), p,p 1,p2 E HE(V) we define 

a. x(S u p)y iff xSy v p(x) 

b. (p 1 v p2) (x) iff pl (x) v p2(x) 

c. p(x) iff 'p(x), for all x E V0; p(~) = false 

d. (So p)(x) iff 3y[xSy A p(y)]. 

Notations 6.2 and 6.3 are linked through: 

NOTATION 6.4 (Extended definition of M). 
For each M we define 

a. M(cr u 1r) = M(p-) u M(1r) 

b. M(1r
1

v1r
2
)= M(1r

1
) v M(1r

2
) 

c. M(rr) = "M(7iT 

d. M(cr o 1r) = M(cr) o M( 1r). 

Remarks. 

I. As will be seen in the sequel, our use of complementation is such that 

the monotonicity of those operators for which we need the existence of 

their least fixed points, is not disturbed. 
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2. It is easily seen that the relationship between " 0 " and " ➔" operations 
---= is the following: S ➔ p = S O p. 

3. From the definitions it follows that (Ro t) (x) iff 3y#~[xRy]. 

4. The construction rule leading to schemes of the form au 1r is somewhat 

ad hoc, and included only to make direct translation of the Hitchcock 

& Park formalism into ours possible. A more general approach would be 

to embed Pinto S, essentially through the convention that each p E 

HE(V) determines a P E TR(V) as follows: xPy iff p(x) A (x = y). 

The class of simple schemes to be defined next is actually somewhat 

smaller than the class with the same name of [7], where a form of rela

tional concatenation is also allowed. This construction rule could be 

incorporated without too much trouble, however. It should be noted that 

simple schemes do not allow "iterated" recursion, i.e., no constructs of 

the form µX 1[ ••• µX2[ ••• J ••• J. A remark on this restriction follows at the 

end of the present section. 
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DEFINITION 6.5 (Simple schemes). A program scheme o is X-simple iff it is 

constructed according to the following rules: 

a. o - X 

b. o - A, for some A EA 
c. 0 - 01;02, with o

1
,o2 both X-simple 

d. 0 - 01 u 02' with o1,o
2 

both X-simple 

e. 0 - if b then o 1 else o
2 

fi, with 01 ,02 both X-simple. 

For X-simple schemes, Hitchcock & Park define the notion of uppper

and lower derivative (with respect to X, this being silently understood in 

the remainder of this section). 

DEFINITION 6.6 (Derivatives). For an X-simple scheme o, the upper derivative 

; - yielding an element of S -, and the lower derivative o- yielding an . 
element of P - are defined as follows: 

1. Upper derivative: 

o - X 

o - A o _ n . .. 
0 - 01 ;02 

. 0 - 01 . . . 
0 - 01 u 02 0 - 01 . 
0 - if b then o1 else o2 fi: 0 - if 

2. Lower derivative 

0 - X 0 - w . 
0 - A 0 - A . 
0 - 01 ;02 0 - 'lt .. 
0 - 01 u 02 0 - 'l1 . 
0 - if b then o

2 
else o

2 
fi: 0 - if - . -

. 
u (o 1 ;02) 

• 
u 02 . . 
b then o

2 
else o

2 fi. 

V (gl O g2) 

V 'l2 
b then r:z 1 else g

2
• 

NOTATION 6.7 (Derivatives "in a recursive scheme"). For o an X-simple 

scheme, we write 

g ~ cr[µX[o]/X] 

o ~ o[µX[o]/XJ. 
0 • 

Next, we present another important tool in the approach of [7]: 
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DEFINITION 6.8 (Well-founded relations). Let RE TR(V). R is called well

founded in an element x EV iff x 1 Land there does not exist an infinite 

sequence x
0 

= x,x1,x
2

, ••• , all xi E v0 , such that xiRxi+I' i = O,I, •••• 

It is possible to connect the notions of well-foundedness and of least 

fixed point of an operator: 

LEMMA 6.9. The two assertions 

I. R is well-found·ed in x E V 

2. µ[Ap•i:-p](x) holds 

are equivalent. 

PROOF. See [7]. 

Remarks. 

I. Note that Ro p is monotonic - though not necessarily continuous [7] -

in p. 

2. There is a slight difference with the approach in [7] in that "L" does 

not play a part in that paper. However, it may be verified that the 

argument for lemma 6.9 remains valid. 

We shall use lemma 6.9 in its alternative form: 

COROLLARY 6. IO. R is weU-founded in x iff µ[Ap• (R ➔ p) J(x) holds. 

PROOF. Lerrnna 6.9 and a remark after notation 6.4. 0 

Three further pieces of notation are introduced: 

NOTATION 6.11 (Equality of schemes under some (all) interpretation(s) ). 

a. For program schemes cr,T and interpretation M, we write FM cr =Tiff 

M(o) = M(T). 

b. We write F o = T whenever FM cr = T holds for all consistent M. 

NOTATION 6.12 (Well-founded part of a scheme). For cr ES, we write 

l (o) ~ µY[cr ➔ Y] 

where Y is some boolean variable not occurring free in o. 
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The main theorem of Hitchcock & Park's approach to termination - in 

our version, extended for nondeterminacy - is 

THEOREM 6.13. For each X-sirrrpZe program scheme a 

PROOF. We present a proof using the tools developed sofar; we organize the 

proof in a number of lemma's: 

LEMMA 6.14. For a an X-sirrrpZe scheme: 

A CT • . 
PROOF. Induction on the structure of cr. Take any consistent M. 
a. cr = X. We have to show 

M(X) = M((6+X) Aw), or 

b. 

M(X) = (M(6) + M(X)) A M(w), or 

M(X) = (I+M(X)) A f, or 

M(X) = M(x) n t. 

a= A. We have to show 

M(A) 
== 

= M((n + X) A A ) , or 

M(A) = (M(n) + M(x)) A M(f), or 

M(A) = (o+M(x)) A M(A), or 

MCA) = t A M(A). 

c. cr = cr
1

;cr2• We have to show 

F (cr
1

;cr2)~ = ((cr
1

;cr2)
0 

+ X) A (cr
1

;cr2):. We rewrite the right-hand side: 

F (crl;cr2). + X) A (crl;cr2>: =(def.of cr,q) 

((crl u crl;cr2) + X) A (gl v crl 0 g2) =(see(*) below) 

(crl+X) A ((crl;cr2)+X) A gl A crlog2 =(see(**) below) 

(<\ +X) A (crl+ (cr2+X)) A 1?'1 A (crl+ g2) = (see (***) below) 

(cr I+ X) A q l A (cr I+ ((cr2+ X) A ~2)) = (ind. hyp.) 

o
1 

A (cr
1 
+o

2
) = (def."~") 

(crl ;cr2( 
where 

(*) : (R1uR2) + p = (R1+p) A (R2+p) 

(**) ~ (RI ;R2) + p = RI + (R2+ p) 

(***): For each R: (R+ p) A (R+ q) = (R + pAq). 



d. a - a 1 u a2; We have 

F cr = (crlucr2)~ = al Acr2 = (ind.) 

(;1 +X) A ci'1 A (;2 ➔ X) A g2 = 

(crlucr2 ➔ X) A (glvg2) = ((crlucr2)· + X) A (crlucr2): = 
<a+ x) A cr . . 

e. a= if b then a 1 else a
2 

fi. Straightforward by induction. D 

LEMMA 6.15. For a an X-simpZe scheme 

F cr[µX[a]/X] = <a+ x) 
0 

A 0 
0 

PROOF. Direct from the previous lenuna and notation 6.7. D 

LEMMA 6.16. For a an X-sirrrpZe scheme 

PROOF. Lennna 6.15. 0 

LEMMA 6.17. For each reZation Rand predicate q: 

µ[Ap•((R+p) n q)J = µ[Ap•((Ru q) + p)J. 
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PROOF. Call the left-hand side 2 and the right-hand sider. We show that 

r ~ 2, leaving the other half of the proof to the reader. By corollary 

4.8, it is sufficient to show: ((Ru q) + 2) :;; 2, or, by the fixed point 

property, ((Ru q) ➔ 2) ~ (R ➔ 2) A q. First we show ((Ru q) + 2) :;; q. Take 

any x, and assume that ((Ru q) + 2) (x) holds, but that q(x) does not hold, 

i.e., q (x) holds. Then, since ((Ru q) -+ 2) (x) by assumption, from q (x) we 

conclude that 2(x) holds, whence, by the fixed point property of£, 

q(x) holds. Contradiction. Next to show ((Ru q) + £) :;; (R ➔ 2). This follows 

innnediately from the definition of 11 + ". D 

Finally, we obtain our conclusion: For a an X-simple scheme: 

( 6. 1) F µX[a]~ = l(cr u a). 
0 
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This is shown as follows: Applying lermna 6.17, we get 

I= µX[(o+x) "crJ = µX[(o u cr) + xJ. 
0 0 

Combining this with lemma 6.16, and using the definition of "~" and i, we 

obtain (6.1), as was to be shown. 0 

This completes our discussion of the relationship between the approach 

of Hitchcock & Park, and ours, insofar as X-simple schemes are concerned. 

In [7], a sketch is also given of a way of extending the main theorem to 

systems of (simultaneously) recursive procedures. A comparison of this with 

our formalism would necessitate a replacement of our use of iterated recur

sion with that of simultaneous recursion. This having been performed, the 

additional argument to establish the analogue of (6.1) for systems does not 

require any essential new considerations, reason why we prefer to leave 

this problem to the interested reader. 
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