
stichting

maihematisch

centrum

DEPARTMENT OF COMPUTER SCIENCE

J • W. DE BAKKER

TERMINATION OF NONDETERMINISTIC PROGRAMS

First printing October 1975

Second printing July 1976

~
MC

IW 50/76 JUNE

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEK MATHEMATISCH CEf'i!TRUM
-AMSTERDAM-

PJunted a.t ;the, Ma.the.ma.Uc.al Cenvr.e, 49, 2e BoeJLhaa.vu.tJw.at, A.m.6:teJLda.m.

The Ma.thema.Ucai. Centll.e, 6ou.nded :the 11-:th 06 Feb/f.u.aJLy 1946, 1-t, a. non
p/f.o6U -ln1>.tUu:tion cum-lng a.t :the p/f.omo.Uon Oo pUll..e ma.thema.UC6 a.nd w
a.ppUc.a.Uon1>. 1.t 1-t, .t:.pon6o/f.ed by :the NetheJrhindo GoveJLnment :th/f.ough :the
Neth<Vli.a.ndo 01t.ga.n-lza..t.ion 60/f. :the Adva.nc.ement o O PU/l.e Ru ea./f.c.h (Z. W. 0) ,
by :the Mun-lc.-lpa.U:ty 06 A.m.6:teJLda.m, by :the Un-lveM-l:ty 06 A.m.6:teJLda.m, by
;the F/f.ee Un-lveMUy a.t A.m.6:teJLda.m, a.nd by -lndu.t:.:tti.et>.

AMS(MOS) Subject classification scheme (1970): 68A05

ACM-Computing Reviews-categories: 5.24

CONTENTS

Notations.

1 • Introduction. 4

2. Syntax. 6

3. Semantics . 10

4. Recursion. 17

5. Termination . . 25

6. Derivatives " . 30

References . 36

TERMINATION OF NONDETERMINISTIC PROGRAMS*)

by

J.W. de Bakker

ABSTRACT

A new formalism to deal with program termination in the presence of

both nondeterminacy and recursion is presented. For the denotational

(least-fixed-point) semantics of programs involving these concepts, we

cannot use the customary set-theoretical ordering between the input-

output relations associated with programs. A new ordering definition, due

to Egli, is applied instead. Next, we describe our method of expressing

termination of programs built up using sequential composition, nondeterministic

choice, selection and recursion. The method is justified in the framework

of denotational semantics. Finally, it is compared to the theory of

Hitchcock & Park - which uses well-founded relations and program deriva

tives - and a new proof of an extended vers.ion of their main theorem is

presented.

KEY WORDS & PHRASES: Program teT'l11ination, nondeteT'l11inacy, recursion,

Zeast-fixed-point semantics, weZZ-founded relations,

program derivatives.

*) This paper is not for review; it is meant for publication elsewhere. ,,,

'·1

NOTATIONS

Section 2

A= {Al'A 2 , ••• }

elements denoted by A,A., •••
1

B = {b I'b 2, ••• }

elements denoted by b,b., •••
1

X = {X1,Xz,.~.}

elements denoted by X,X., ••.
1

y = {YI ,Y 2' ••• }

elements denoted by y 'y., •••
1

0 E S, 1T E p

al U a
2

, al;az, if b then a
1 else a2}

µX[a]

1T I A 1T2' a -+ 1r, if b then 1r 1 else 1r2}
µY[1r]

al = az, al t az, 1Tl = 7T2' 7Tl t 7T2
a[T/X], 1T[T/X], 1r[1r 1/Y]

Section 3

V = v
0

u {.L}

W = {true,false}

R,S, ••.

p,q, •••

R;S, Ru S,

~ V X V

V+W

if p then R else S,

p A q, R-+ P,

if p then q else r

rc

program scheme constants

boolean scheme constants

program scheme variables

boolean scheme variables

program schemes, boolean schemes

program scheme construction

rules

boolean scheme construction

rules

syntactic (non)identity

substitution

domain of states, with i the

undefined state

binary relations

predicates

operations upon relations

and predicates

2

TR(V)
HE(V)

M = <V,C,E>
M

0
(a)

M(a), M(1r)

Section 4

µ~, µ'i'

/\ p.
iEI 1

M{R/X}

M{P/Y}

;\R• . . .
Ap• ...

00

.V0 R.
1= 1

0

Section 5

e(R)

Section 6

n, t::,,

o, I,

w,

f,

R ...
p . ..

e
t

}

a u 1T' 1T, a o 1r,

s u P, -P, SO p,

a, q, <a, a)
0

1T I V 1T2

p V q

total extended binary relations over V

extended predicates: V + W

interpretation

operational interpretation

denotational interpretation

ordering relation on TR(V) and HE(V)

operators: TR(V) + TR(V)
HE(V) + HE(V)

least fixed points of~, 'i'

greatest lower bound

variants of an interpretation

;\-notation

least upper bound

least element of TR(V)

R terminates properly

boolean termination scheme for a

special constants in A, B

special relations and predicates

extended construction rules and

operators

upper- and lower derivatives (taken

"in µX[cr]")

l(cr)

l=M cr = T (I= cr = T)

well-founded part of a scheme

cr and Tare equivalent under M (all

consistent M)

3

4

1 • INTRODUCTION

In a paper presented by P. HITCHCOCK & D. PARK at the first Colloquium

on Automata, Languages and Programming [7], a very interesting method was

proposed to attack the problem of proving program termination. Two main in

novations of this paper were: First, the introduction of well-founded rela

tions as a tool; this necessitated consideration of non-continuous - though

monotonic - operators, and was an important conceptual extension of hitherto

proposed methods. Secondly, the paper introduced the notion of (upper- and

lower-) derivative of a program (or, rather, a program scheme) and introduced

a formalism to express termination in terms of these derivatives. However,

this formalism wa~ applied only to detePministia programs (i.e., programs

determining single-valued state-transforming functions). Moreover, for a

long time we have felt that it should be possible to replace the derivative

formalism with a more direct approach.

The present paper is an attempt at solving both problems: Firstly, to

develop a formalism which can deal with termination of nondetePministia

programs as well. Secondly, to avoid the notion of derivative and to use a

more intuitively appealing technique.

The first problem could be solved only after we became aware of a paper

of EGLI [6] which turned out to be essential for our investigation. We here

sketch in which way Egli's idea is applied: Programs o determine state

transformations S, and the presence of nondeterminacy implies that it is

necessary to use binary relations to describe these transformations: For

states x,y1,y2 one may have xsy1 and xsy2 with y1 # y2• However, the simple

presence of some y such that xSy holds, does not guarantee termination of

all computations determined by o. It may well be that one path of the com

putation delivers a value, whereas some other path leads to a nonending

computation. So we add - as is often done in this type of considerations -

one new state - denoted by J., say - which stands for "undefined", and we

define our computations such that if o determines some nonterminating

computation, then xSJ. holds, besides, possibly, xsy1,xsy2, •• However,

this renders it impossible to use set-theoretic inclusion between relations

as a model of approximation between programs. If o1,o2 determine relations

s 1,s2 such that s 1 ~ s 2, then there is no reason to view o2 as providing

5

more information than a
1

: Observe that, e.g., {<x,y>} s {<x,y> <x,.L>}. Thi.s

has the following undesirable effect: Adding the possibility of an undefined

computation for input x increases the information about the program. Hence,

the ordering "s" is not appropriate to capture the intuition we want to

model. On the other hand, some ordering is needed in order that the usual

techniques of denotational semantics - interpreting recursive programs as

Zeast fixed points of certain operators; note that this implies some

ordering - be applicable, and it is precisely at this point that Egli's idea

gives the desired solution. His ordering definition - discussed in section

4 - enables us to give a denotational semantics of programs involving both

nondeterminacy and recursion.

This having been satisfactorily settled, we can then turn to our main

problem: To develop a formalism describing pro~ram termination which is

intuitively appealing and which also allows us to clarify some aspects of

the Hitchcock & Park theory. We present our method in the framework of

program schemes - with sequential composition, nondeterministic choice,

selection and recursion as construction rules - and we define a way of

describing, with each program scheme, a (boolean) scheme expressing its

termination properties. It seems to us that the simplicity of this defini

tion is a main advantage of our theory. E.g., a certain new operation intro

duced in order to deal with termination of schemes constructed through

sequential composition, leads quite naturally to an explanation of the role

of well-foundedness of relations in the theory of [7]. Finally, the main

theorem of [7] can be rather nicely derived on the base of our method,
yielding an extended version which also covers the nondeterministic case.

The paper is organized as follows:

Section 2 gives the syntax of program schemes and of boolean schemes.

Moreover, the concept of substitution is introduced.

Section 3 deals with the semantics of schemes. Two ways of interpreting a

program scheme are provided. First, the operationai definition which uses

the notion of computation sequence, and which stays close to the customary

way of explaining the meaning of the programming concepts involved. Next,

we turn to the denotationai semantics of both program schemes and boolean

schemes. This becomes interestingly different from operational semantics

only in the case of recursion, dealt with in

Section~- The more or less standard material on the least-fixed-point

6

interpretation of recursion is presented. However, a rather careful devel

opment of this is needed since first of all a new ordering is involved - the

above mentioned one of Egli - and, secondly, because in our definition of

boolean schemes we have introduced a non-continuous - though monotonic

operation.

Section 5 is the central one of our paper. It presents our definition of a

process of associating, with each program scheme, a boolean scheme express

ing its termination properties. Moreover, the validity of the definition is

proved using the techniques of section 4.

Section 6 finally contains a description of the Hitchcock & Park formalism

and our method of proving their main theorem.

The present paper is specifically devoted to theoretical considera

tions, aiming at an understanding of the interrelationship between the three

important concepts of recursion, nondeterminacy and termination, rather than

at the introduction of new practical techniques for program proving.

As related work dealing with formalisms for program termination we

mention: Manna's notion of total correctness, described e.g. in [8] (see

also a comment on this we make at the end of [5]) Furthermore, there is

the axiomatic presentation given by MANNA & PNUELI (see e.g. [8]) of the

classical idea of using well-founded sets (Turing, Floyd). The connection

between the Manna & Pnueli proof rule and the Hitchcock & Park theory was

clarified in our [3]. Altogether, only a small number of formalisms have

been proposed sofar, and we hope that the present paper will stimulate

further work in this interesting and difficult problem area.

2. SYNTAX

We introduce a class of formal constructs, called program schemes,

which are, in general, intended as a tool for investigating properties of

the control structure of programs 1 and, in the present paper, more specif

ically to study program termination. A program scheme is a linguistic

object - i.e., a sequence of symbols structured in a certain way - which

serves as an abstract version of an ordinary program. This should be taken

in the sense that in a scheme one abstracts from an analysis of the elemen-

tary statements which make up the program: There is a class of elementary

actions - program scheme constants as they will be called - which in our

system are considered atomic whereas in a real-life program they would be

further specified as, e.g., assignment statements.

For reasons which are more of technical than of fundamental nature -

they stem from our way of incorporating recursion in the system - we also

need to have available a class of program scheme variables.

Furthermore, we introduce, besides the class of program schemes, also

the class of boolean schemes. Whereas program schemes are to be interpreted

(section 3) as state-transforming functions - or, rather, as binary rela

tions, because of nondeterminacy - boolean schemes are interpreted as func

tions from the set of states to the set of truth values, {true,false}, say.

It should be emphasized that in our approach boolean schemes are introduced

only as a tool to investigate termination properties of program schemes. In

particular, they enable us to make certain formal statements about these

properties. The boolean schemes are not themselves to be seen as abstrac

tions of ordinary programs: their definition includes a non-continuous

(section 4) - and, therefore, by "Scott's thesis" [IO], non-computable -

operation.

We first give the notation for constants and variables:

NOTATION 2. I (Constants and variables).

a. The set A = {A1,A2, ... } is the set of program scheme constants.

Arbitrary elements of A are denoted by A,A., ••• .
1

b. The set B = {b I ,b 2' ••• } is the set of boolean scheme constants.

Arbitrary elements of B are denoted by b,b., ••• .
1

c. The set X = {Xl'X2, ••• } is the set of program scheme variables.

Arbitrary elements of X are denoted by X,X., •••
1

.
d. The set Y = {Yl'Y2, ... } is the set of boolean scheme variables.

Arbitrary elements of y are denoted by Y,Y., ••• .
1

From these classes of symbols, program schemes and boolean schemes

are made up according to certain construction rules given in

DEFINITION 2.2 (Schemes). The class of program schemes Sand the class of

boolean schemes Pare defined as follows:

7

8

a. Each program scheme constant and each program scheme variable is an

element of S.
b. Each boolean scheme constant and each boolean scheme variable is an

element of P.
c. If cr,o

1
,o

2
(01;02)

(o
1

uo
2

)

ES, b EB, XE X, then

if b then cr 1 ~ cr2 fi

µX[cr]

are elements of S.

: sequential composition

nondetePministic choice

selection

recursion

d. If n,n
1
,n

2
E P, o ES, b EB, YE Y, then

(n
1

An
2

) conjunction

(a ➔ n) to be explained later

if b then n
1

else n
2

fi

µY[n]

are elements of P.

Examples.

selection

recursion

c. if b then (A1;X) else A2 fi, µX[X], µX[(((A 1;X);A
2

) u A
3
)J.

d. (b
1

Ab 2), if bl then (A+b2) else Y fi, µY[A+Y)].

By way of explanation of this definition we remark that

I. Sequential composition, conjunction and selection define the usual

operations which need no further connnent.

2. Nondeterministic choice is a central operation in the system: (o
1

ucr
2

)

specifies that either o1 or cr2 is to be performed (not both!), but which

of the two is left open.

3. The reader who is not accustomed to the µ-notation for recursion (see

[1,2,7]) may be helped by the following explanation: Consider the scheme

µX[cr]. Here CJ is any scheme which may have occurrences of the variable

X, i.e., a= a[X], writing informally. Now the intended meaning of

µX[o] is the same as that - in a more customary notation - of a call of

the recursive procedure P declared by proc P; o[P], where o[P] results

from cr[X] by replacing all occurrences of X by P. For example, execution

of µX[if b then (A1;X) else A2 fi] amounts to a call of the procedure P

declared by proc P; if b then (A1 ;P) else A2 fi.

9

4. Anticipating the definitions to be given below, where schemes a are

interpreted as binary relations S, and schemes n as predicates p, we

already mention that the predicate (S ➔ p) - as interpretation of (a ➔ n) -

will obtain the following meaning: (S ➔ p)(x) iff Vy[xSy ➔ p(y)J.

Before we can give our next definition which introduces substitution,

we need two more notations:

NOTATION 2.3 (Syntactical identity).

a 1 = a
2

(a 1 'I- a
2

) denotes that a1 and a
2

are identical (not identical)

sequences of symbols.

n1 = n2 and n1 t n2 are defined similarly.

NOTATION 2.4 (Bound and free occurrences).

All occurrences of a program scheme variable X in a scheme µX[a] are bound.

An occurrence of a variable x1 in a scheme cr 1 is called free iff it is not

a bound occurrence. A scheme µX 1[a 1J which results from a scheme µX[a] by

replacing all occurrences of X in the latter by some x1 which does not

occur free in a, is called a rewritten version of µX[a]. Two schemes such

that one is a rewritten version of the other will always be identified in

the sequel. Mutatis mutandis these definitions also hold for boolean schemes.

DEFINITION 2.5 (Substitution). For cr,T ES, XE X, we define the operation

a[T/X]: T is substituted for X in a, by induction on the structure of a:

a.

b.

c.

d.

e.

f.

a - X . a[T/X] - T .
a E Au X, a t X . a[T/XJ - a .
a - (al ;cr2) a[,/X] - (cr

1
[T/X];a2[T/X])

a - (a 1ucr2) cr[T/X] - (crl[T/X]ua2[,/XJ)

cr - if b then cr 1 else cr2 fi: cr[T/X] - if b then cr 1h/X] else cr2[T/X] fi.

cr - µX1 [cr l J . cr[T/X] - µX
1
[a1[T/X]] .

provided that X t x1, and that x1 does not occur free in T; these con

ditions can always be made to be satisfied by suitably rewriting the

bound variable x1 in µX 1[cr1J.

Now let n,n 1 E P and YE Y. The definitions of n[n 1/YJ and n[T/X] are

straightforward variations on that of cr[T/X] and therefore omitted. Note

that a boolean scheme may have free occurrences of a program scheme variable,

due to the construct (a ➔ n).

IO

3. SEMANTICS

3.1. Introduction

Schemes are provided with meaning by a process of interpretation, which

maps schemes o ES to binary relations S, and schemes TT E P to predicates

(unary relations) p.

First we introduce the notation for relations and predicates, and for

some operations upon these we find useful.

NOTATION 3.1 (Relations and predicates).

I. Let V be any nonempty set - in the sequel always called the set of

states - with elements x,y, ••• , and let W be the set of truth values:

W =· {~,false}. Binary relations (over V), denoted by R,S, ••• , are

subsets of V x V, and predicates (over V), denoted by p,q, ••• , are totaZ

functions from V to W.
2. For R,S, ••• binary relations, p,q,r, ••• predicates, x,y,z EV, we define

a. R;S = {<x,y> 3z[xRz A zRy]}

Ru S = { <x, y> xRy v xSy}

if p then R else S fi = {<x,y> p(x)AxRy v 7 p(x)AxSy}.

b. (pAq)(x) iff p(x) A q(x)

(R+p)(x) iff Vy[xRy + p(y)J

if p then q else r fi iff p(x)Aq(x) v 'p(x)Ar(x).

Our definition of the interpretation of a scheme is organized as

follows: First we give an intuitive explanation of the issues involved in

the definition. Then we give (section 3.2) a definition of operationaZZy

interpreting schemes o ES through the introduction of the notion of

computation sequence. The operational definition is intended to embody the

meaning of the various programming concepts in a manner which is as close

as possible to the way the programmer understands them. Thus, it serves as

a transition to the more abstract definition which follows in section 3.3,

and which will remain our main tool in the rest of the paper. This denota

tionaZ interpretation avoids the use of computation sequences, and is

justified by some of the results in section 3.2. The difference between

the two approaches is in particular noticeable for recursive schemes. Due

1 1

to the need for more elaborate preparations, a separate section is devoted

to these (section 4). Section 3.3 brings also the denotational interpreta

tion rules for boolean schemes. (Remember that boolean schemes - which in

our paper serve only as a tool to investigate program schemes - cannot be

given an operational definition of their own.)

A first attempt at interpreting schemes o might be to use state

transforming functions as intended meaning. However, because of the presence

of nondeterminacy, we need multi-valued functions, so the relational

formalism is the appropriate one. As we shall see, each scheme o determines,

in general, a number of possible computations, and, for S the interpreta

tion of o, and x any input state, we may have xSy for zero, one or more

output states y. Because of our special interest in termination, we want

to incorporate in the system one special state, for which we use the

element denoted by 11.L", with the convention that xS.L holds iff some compu

tation sequence specified by o does not terminate properly. By this we mean

that either the computation sequence is infinite, or that one of the

elementary actions (interpreted elements of A or X) is undefined at some

intermediate state. Thus, in the most general case we may have that both

xS.L, and xsy 1,xsy2, ••• hold for given x, this meaning that there is (at

least) one computation sequence specified by o which does not terminate

properly, and a number of other ones terminating with outputs y 1,y2, ••••

In fact, the device used here is rather well-known in systems dealing

with partial functions. Adding 11 .L 11 as outcome is there also used to turn

partial functions into total ones, which often is advantegeous. See [11]

for further information.

However, in the relational approach there is one serious difficulty:

Anticipating some of the considerations presented below to deal with re

cursion, we already mention that for the denotational treatment of this

we need a partial ordering of the relations, written say as R ~ S, such

that, in an intuitive sense, R ~ S holds if (the program with interpreta

tion) R approximates (the program with interpretation) s, i.e., iff S

provides more information on the computation than R. However, in the

approach using binary relations over the extended domain Vu {.L}, it is

not possible to take for"~" the usual set-theoretic inclusion"~". Note

that, e.g., {<x,y>} ~ {<x,y>,<x,.L>}, i.e., using this ordering a program

12

would provide more information when the possibility of a nonterminating

computation were added, and that is certainly not in accordance with the

intuition we want to capture. Therefore, we need a different definition

of ":o;;". This we found in a recent paper by EGLI [6], and it will be dealt

with in detail in section 4.

We close this introductory section with a few more notations, the

first of which slightly changes the notation for the set of states.

NOTATION 3.2 (Set of states). The set of states Vis given as V= V0 u {i},

where ii v
0

, and V
0

is the set of proper states.

NOTATION 3.3 (Ext.ended relations). For Vas above, TR(V) is the set of all

total, extended binary relations over V, i.e., it consists of all binary

relations over V such that both a and b hold:

a. Vx EV 3y E V[xRy]

b. Vx E V[iRx ➔ x=i]

(i.e., R is everywhere defined on V, and, for input i, i is the only possi

ble output).

NOTATION 3.4 (Extended predicates). For Vas above, HE(V) is the set of all

(total,) extended predicates over V, i.e., it consists of all functions from

V to W such that both a and b hold:

a. Vx E Vo 3y E W[p(x)=y]

b. p(i) = false

(the motivation for clause bis discussed in section 5).

The introduction of Vas V = V0 u {i} necessitates a slight adaptation

of the definition of 11 ➔ 11 (the reasons for which will become clear later

in the paper).

NOTATION 3.5 (Adapted definition of 11 ➔ 11). Let RE TR(V), p E HE(V). We put

- for XE Vo: (R ➔ p)(x) if£ Vy E Vo[xRy ➔ p(y)]

- for x = i: (R ➔ p) (i) = false.

3.2. Operational semantics

In our definition of operational semantics we use the notion of compu-

13

tation sequence in a way which is very similar to that of some of our

previous papers ([2,4,5], see also [9]). In fact, the definition given

presently is a straightforward extension of its predecessors, and included

here only for completeness sake. The reader who is already familiar with

the kind of considerations we are concerned with here, may well skip the

present section and inunediately go on with the definition of denotational

semantics (section 3.3) which is the only one to be used in the remainder

of the paper.

An interpretation Mis given as a triple M = <V,C,E>, where

- V = V
0

u {~} is as above.

C (for constants) is a mapping from elements A EA to binary relations

over V
0

, and from elements b EB to predicates over v
0

•

- E (for environment is a mapping from elements XE X to binary relations

over v
0

, and from elements YE Y to predicates over v
0

•

(Note that the definitions of C and E are with respect to V
0

only, i.e.,

the undefined element~ plays no role.)

Our task is now to specify, for given V,C,E, how to define M to

yield, for each a ES, a total binary relation Sin TR(V). For this we

need the notion of computation sequence:

DEFINITION 3.6 (Computation sequence). A computation sequence with respect

to M = <V,C,E> is a construct of one of the following three forms:

(3. 1)

with xi E v0, i = O,1, ••• ,n, and cri ES, i = O,I, ••• ,n-1

((3. I) is a sequence which properly terminates), or

(3.2)

with xi E Vo, i = O,1, ••• ,m, and (Ji ES, i = O,1, ••• ,m

((3.2) is a sequence which improperly terminates), or

(3.3) X CJ
p p

14

with x. E Vo, i = 0,1, ••• ,p, ••• , and a. Es, i = 0,1, ••• ,p, •••
i i

((3.3) is a sequence which is nonterminating), such that the following

requirements are satisfied: For each 3-tuple xn_lon_lxn, occurring at the

end of a sequence (3.1), we have that either

- a n-1 - A, for some A E A, and x 1C(A)x, or n- n
- a n-1 - X, for some X E X, and x 1E(X)x. n- n
For each pair xmom, occurring at the end of a sequence (3.2), we have that

either

- a - A, for some A E A, and there is no y E V
0

such that X C(A)y, or
m m

- a - X, for some X E X, and there is no y E v
0

such that xmf(X)y. m
For each 4-tuple x.o.x.+ 1o.+l' occurring in (3.1), (3. 2) or (3.3), we

'i i i i

have that (exactly) one of the following conditions is satisfied:

a. oi = (o'uo"), xi+l = xi' and oi+l = a' or oi+l = a".
(This clause allows a nondeterministic choice between two ways of

continuing the computation.)

b. oi = if b then o' else a" fi, xi+l = xi, and oi+l - a' if C (b)(x) = true,

oi+l = 0 11 if C (b) (x) = false.

c. oi = µX[o], xi+l = xi' and oi+I - cr[µX[o]/X].

(This clause is the copy-rule for procedure execution: Compare the case

of the procedure declared by proc P;o[P], where a call of Pleads to

execution of o[P].)

d. oi _ (A;o), xiC(A)xi+l' and oi+l - a.

e. oi _ (X;cr), xiE(X)xi+l' and oi+l - a.

f. oi - ((0';011);0), xi+l = xi, and oi+l - (o';(o";cr)).

g. oi - ((o'uo");cr), xi+l = xi' and oi+l - ((o';o) u (o";cr)).

h. oi _ (if b then o' else a" fi;o), xi+l = xi, and oi+l =
if b then (o' ;a) else (o" ;a) fL

i. oi = (µX[cr'J;o), xi+I = xi, and oi+l - (o'[µX[o']/X];o).

By way of general explanation of the structure of the definition, we

remark that at each moment during the computation, the scheme a. contains
i

that part of the program scheme which is still to be executed with current

state x .• Computation may either terminate properly - with the execution
i

of the final elementary action (interpreted element of A or X), terminate

improperly (C(A) or E(X) being undefined at the current state), or not

15

terminate at all. Once the reader has digested the formalism, we hope he

will agree that all clauses of the definition are in accordance with his

usual operational understanding of the programming concepts involved here.

We now define

DEFINITION 3.7 (Operational semantics). Leto ES, and let M = <V,C,E> be

an interpretation. We define the operational meaning M
0

(o) of the scheme o

as follows: For each x,y EV we put xM
0

(o)y iff (at least) one of the

following conditions is satisfied:

a. x E v
0

, y E V
0

, and there exists a computation sequence (3.1) with

XO= x, X = Y, and 00 - o. n
b. X E Vo, y = . .L, and there exists a computation sequence (3. 2) or (3 .3)

with x
0 = X and 00 - o.

c. X = .L and y = .L •

That this definition has the desired properties can be seen from the

following lemma's which we state without proof - which would proceed by a

fairly straightforward induction on the structure of the schemes:

LEMMA 3.8. For each M,

a. M
0

(((o
1
;o

2
);o

3
)) = M

0
((o

1
;(o

2
;o

3
)))

(this associativity result allows us to omit parentheses).

b. M
0

((o
1
;(o

2
uo

3
))) = M

0
(((o

1
;o

2
) u (o

1
;o

3
)))

(and similarly for right-distributivity).

c. M
0
((if b then o1 else o

2
fi;o)) = M

0
(if b then (o

1
;o) else (o

2
;o) fi).

PROOF. Omitted. □

Remark: Outermost parentheses will often be omitted in the sequel. Also,

we omit parentheses in cases such as if b then o1;o
2

else o
3

u 0
4

fi,

µX[o
1
;o

2
], µY[o ➔ 'IT], etc. Moreover, we write, e.g., o1;o

2
u o

3
, using the

convention that " ; " is assigned higher priority than "u 11
•

LEMMA 3 9. For each M,
a. xM

0
(A)y iff one of the following holds:

- XE Vo, y E Vo, and xC(A)y

- x E v0, '3z[xC(A)z], and y = .L

- X = ,Y = .L.

16

b. SimiZaro for xM0 {X)y.

c. M
O

(cr 1;cr2) = MO(cr 1);MO(cr2).

d. M
0

(cr
1

ucr2) = M
0

(cr
1

) u M
0

(cr2).

e. M
0

(if b then cr
1

else cr2 fi) = if C(b) then M
0

(cr
1

) else M
0

(cr2) fi.

f. M
0

(µX[cr]) = M
0

(cr[µX[cr]/XJ).

PROOF. Omitted. 0

Lemma 3.9 will be the starting point of the definition of denotational

semantics, which now follows.

3.3. DenotationaZ semantics

Let M = <V,C,E>, with V = V0 u {L}, C and E as above. In denotational

semantics, one directly defines the mapping determined by M, from cr E S to

SE TR(V), without using computation sequences. It is then not immediately

clear how to interpret a recursive scheme. The definition for this case -

which will turn out to yield the usual least fixed point (though with

respect to an unusual partial ordering) - needs some preparation and is,

therefore, postponed to section 4. The other cases, for schemes cr ES and

TIE P, are straightforward - for program schemes they should be compared

with lemma 3.9 - and now follow:

DEFINITION 3.10 (Denotational semantics). Let M = <V,C,E> be as above,

cr ES and 1r E P. We define the mappings MD(cr) and MD(1r), or M(cr) and

M{1r), for short, with M{cr) E TR(V) and M(1r) E HE(V), as follows:

1. Program schemes

cr - A

cr - X

cr - crl;cr2
cr - crl u cr 2

: M(cr) = C(A) u {<L,L>} u {<x,L>

M(cr) = E(X) u· {<L,L>} u {<x,L>

M(cr) = M(cr
1

) ;M(cr2)

M(cr) = M(cr I) u M(cr2)

cr - if b then cr
1

else cr
2

fi: H(cr) = if C (b)

cr = µX[cr
1

] : postponed.

2. BooZean schemes

1T = b H(1r)(x) = C(b)(x), XE Vo

M(1r) (L) = false

XEV
0

A '3yEV
0

[xC(A)y]}

x E Vo A '3y E Vo[xE(X)y]}

then M(cr
1

) else M(cr2) fi

1T - y M(1r)(x) = E(Y)(x), XE Vo
M(1r)(.1) = false

1r - 1rl "1r2: M(1r) = M(1rl) "M(1r2)

1r _a+ 1r
1

: M(1r) = M(a) + M(1r 1)

a_ if b then 1r
1

else 1r 2 fi: M(1r) = if C(b) then M(1r
1

) else H(1r
2

) fi

1r _ µY[1r
1
J : postponed.

Thus, we see that

- The definition of M applied to constants and variables follows directly

from our desire to work with total, extended relations and predicates.

- The definition of M applied to program schemes constructed according to

the rules of composition, choice and selection, is the natural one, and

in accordance with lemma 3.9.

17

- The definition of M for boolean schemes is also the expected one - though

a corresponce with an operational definition is now not available.

- The definition of M for the two recursive cases is postponed.

4. RECURSION

This section contains the definition of the denotational semantics of

recursive schemes. The first subsection brings the introduction of the

partial ordering between relations due to Egli, and the usual material on

monotonicity, least fixed points of monotonic operators, etc. The second

subsection is devoted to the definition proper of the interpretation of

recursive schemes, and to the introduction and application of the notion

of continuity of an operator.

4.1. Preliminaries

DEFINITION 4.1 [Egli] (Ordering between relations).

Let V = V0 u {.1}, and let R,S E TR(V). We define

{

if xR.1 then Vy[xRy A y # .1 ➔ xSy]
R ::;; S iff Vx

if 7x:R.1 then Vy[xRy +-+ xSy] •

)8

E:cpZanation: We see that Rs S holds if£, for all x,

either xRi holds - and, possibly, also xRy 1,xRy2, ••• - in which case there

is a possibility that the information about the computation is not yet

complete, and in a better approximation S we may add new outputs, i.e., we

always have that xSy
1
,xsy2, ••• also holds, and we may have that xSz, •••

holds for some new z (and, also, that still xSi holds),

- or 'xRi holds. Then the information is complete, there are no longer

computation sequences which still have to decide about their answer; hence,

no additional new outputs are allowed in S, i.e., Rand Snow coincide

on x.

Maybe it is helpful to add here a quotation from [6] as well, where

Egli motivates his definition as follows: " ••• Let us look at the notion of

approximating the value of a computation. We think of it as follows: We

compute for a certain finite amount of time. If we have not found the value,

we approximate by saying that it is i at this point. Then we compute further.

If we ever find a value, then we know the result. Now let us think of a

nondeterministic such computation from a recursive program. Suppose we know

all the outcomes along all finite paths of say at most length n. We may

then know certain numbers as possible values. Certain paths may not have

returned a value. For those we have to compute further. On the other hand,

if we have found a number value for every possible path, then we are done.

So the point we want to make here is that if a (nonempty) subset of V
O

u {i}

approximates the set of outcomes of a program, then either it is the out

come of the program or else it has to contain i ••• " [Last sentence of the

quotation slightly adapted, dB.]

A necessary property of "s" is that it is preserved by the relational

operations. This is stated in

LEMMA 4.2. If Rs S then

a. R;T s S;T, and symmetric

b. Ru T s Su T, and symmetric

c. if b then R else T fi s if b then S else T fi, and symmetric.

PROOF. We show only case a. Assume Rs S, and take any x. First assume

xR;Ti, and xR;Ty with y ii. Then, for some z ~ i, xRz A zTy. Since Rs S,

xSz follows, and, therefore, also xS;Ty. Next assume xR;Ti. Hence 'xRi,

19

and since R $ S, Yy[xRy -+--l- xSy]. Thus, Vy[xR;Ty -+--l- xS;Ty] follows. D

We also need to define a partial ordering for the predicates. This is

straightforward and given in

DEFINITION 4.3 (Ordering between predicates). For V = V0 u {i}, and

p,q E HE(V) we define

p $ q 'iff Vx E V[p(x) ➔ q(x)J.

(Of course, on the right-hand side"+" denotes the usual implication from

predicate logic;)

Clearly, we have

LEMMA 4.4. If p $ q then

a. p Ar $ q Ar., and symmetric

b. R+p $ R+q

c. if r then p else p' fi $ if r then q else p' fi., and symmetric.

PROOF. Clear. 0

The next step is the introduction of the notion of monotonic operators

and their Zeast fixed points:

NOTATION 4.5 (Monotonic operators). A monotonic operator¢ on TR(V) is a

mapping from TR(V) to TR(V) such that ¢(R) $ ¢(S) whenever R $ S. Monotonic

operators f on HE(V) are defined similarly.

NOTATION 4.6 (Least fixed points). The Zeast fixed point of an operator¢,

denoted byµ¢, is a relation with the properties that

a. Hµ¢) = µ¢

b. For all R, if ¢(R) = R, thenµ¢$ R.

Least fixed points µf of operators fare defined similarly.

The question of the existence of least fixed points for operators¢

will be dealt with in section 4.2. The case for the operators~ is easier,

and given in

20

LEMMA 4.7. Let 1¥ be a monotonic operator over HE(V). Then 1¥ has a Zeast

fixed pointµ'¥.

PROOF. Consider the set {p I 1¥(p) ~ p}. This set is nonempty, since the

predicate t, defined by: t(x) = true, all x E V 0, and t(.1) = false, is a

member of it. Now let us define, for any index set I, ./\Ip. as follows:
l.€ l.

() {
true , if pi (x) = ~ for all i EI

i~\:Pi (x) =
false, otherwise.

Then the predicate/\ {p I 1¥(p) ~ p} has the desired properties of µ1¥, as

follows by a standard application of the Knaster-Tarski argument. (See

e.g. [1,2].) O

It should be observed that this proof does not carry over to the ~'s,

since neither a greatest element (counterpart oft), nor the operation .AI
l.€

are guaranteed to exist.

As a corollary of lemma 4.7 we have

COROLLARY 4.8. Let q be any predicate satisfying 1¥(q) ~ q. Thenµ'¥~ q.

PROOF. Follows from the construction of µ1¥ in the proof of lemma 4.7. 0

4.2. Denotational semantics of reaursive schemes

Why the interest in least fixed points? Because in a sense to be made

precise presently, a recursive scheme µX[o] is the least fixed point of a

certain operator associated with a.

In order to explain this, we first introduce the notation for these

operators which, in turn, needs the definition of a variant of an inter

pretation M.

NOTATION 4.9 (Variants of M). Let M = <V,C,E> be as usual, and let XE X.
The interpretation M{R/X} is such that M{R/X}(X) = R, and M{R/X} coincides

with M for each A EA, b EB, x1 EX with x1 t X, and YE Y. Similar defi

nitions hold for M{p/Y}. Variants of M can also be used for the operational

interpretation, leading to the notation M{R/X}
0

(o), etc.

21

NOTATION 4.10 (Operators from schemes). Let RE TR(V), XE X and a ES. The

operator AR•M{R/X}(o) maps the element RE TR(V) to the element M{R/X}(o) E

TR(V). A similar definition holds for Ap•M{p/Y}(n). The meaning of

AR•M{R/X}
0

(o) and of Ap•M{p/Y}
0

(n) should also be clear.

We now state - again without full proof - two more lemma's on the

operational interpretation, one of a general nature, and the other one

providing the central characteristic of recursion:

LEMMA 4.11. For eaah a,T ES, XE X, we have

PROOF. Induction on the structure of a. D

LEMMA 4.12 (Least fixed point lemma).

PROOF.

a. We show that M
0

(µX[o]) is a fixed point of AR•M{R/X}
0

(o):

(AR•M{R/X}
0

(o))(M
0

(µX[o])) =
M{M

0
(µX[o])/X}

0
(o) = (lennna 4.11)

M
0

(o[µX[o]/X]) = (lennna 3.9f)

M
0

(µX[o]).

b. The proof of: If M{R/X}
0

(o) = R, then M
0

(µX[o]) $ R, is omitted here.

It can be given essentially along similar lines as the proof of the

main theorem of our paper [4] though the formalism used there is rather

different. 0

LEMJ:>fA 4.12 motivates our next definition, which is the central one of (our

treatment of) denotational semantics:

DEFINITION 4.13 (Denotational interpretation of recursive schemes).

I. M(µX[o]) = µ[AR•M{R/X}(o)J

2. M(µY[n]) = µ[Ap•M{p/Y}(n)]

BIBLIOTHEEK MATHEMATISCH CENiAUM
,....___, -AMSTERDAM-

22

This definition - inspired as it is by lennna 4.12 - seems straight

forward. However, we need some additional argument to establish the exis

tence of the least fixed points concerned. This we now proceed to do. First

we take the second - simpler - case. By lennna 4.7, it is sufficient to show

that Ap•M{p/Y}(rr) is a monotonic operator:

LEMMA 4.14. Fol' aZZ M, and aZZ rr € P, if p s q, then M{p/Y}(rr) s M{q/Y} (rr).

PROOF. Induction on the structure of rr. If rr € 8 u Y, the assertion is

clear. If rr is of the form rr 1 A n
2

, o ➔ n, or if b then n1 else n2 fi, the

proof is direct from lemma 4.4. There remains the case that n = µY[n 1J. The

argument for this - which is well-known, see e.g. [I] - is the following:

We have to show M{p/Y}(µY 1[n 1J) s M{q/Y}(µY 1[rr1]), or, by definition 4.13,

thatµ[Ap 1•M{p/Y}{p1/Y 1}(rr1)Js µ[).p 1•M{q/Y}{p1/Y1}(n1)J. By the proof of

lemma 4.7, this is equivalent to showing that

/\{p1 I M{p/YHp/Y 1}(n1) S p1} S l\{p1 I M{q/Y}{p 1/Y 1}(rr1)}, and this

inequality follows directly from the induction hypothesis and the defini

tion of /\. 0

There remains the justification of the first part of definition 4.13.

For this, we need a new property of operators, their continuity, which, in

turn, uses the notion of ahains of relations and their least upper bounds

(lubs).

NOTATION 4.15 (Chains and their lubs).
00 I

a. A chain over TR(V) is a sequence {Ri}i=O' such that

s •.• s R.
1.

s • • • •

of a chain
00

{R.}~ 0, denoted by .V0 R., is a relation such that
1. 1.= l"" 1.

R. s .V
0

R., j = 0,1, •••
00

(i)

(ii)
J 1.= 1.

For all s, if R . s S , j = 0, I , ••• , then .Vo R. s S •
J ~ l

Chains do have lubs:

00

LEMMA 4.16. Each chain {R.}~ 0 has a Zub .V0 R .•
1. 1.= 1.= l

00

PROOF •. V0 R. is defined as follows: For each x
1.= 1.

- either xR.i holds for all i = 0,1, ••• , Then we put, for each y € V,
oo l

x(.V0 R.)y iff xR.y for some i.
1= 1. 1.

23

- or xR.~ holds
00 l.

x(/fo Ri)y

for some i = i O• We then put, for each y EV,
• > • some l. - l.o. iff xR.y for

l.oo
Verification that .Vo R.

1.= l. is indeed the lub is left to the reader. □

Remark. It is not true that each two relations R,S have a lub R v S. In

particular, it is not true that R u S could be taken as such a (" :s; "-) lub.

Next we give the continuity definition.

DEFINITION 4.17 (Continuity). A monotonic operator~ is called aontinuous

iff, for each chain {R.}~
0

, we have l. 1.=

00

.V0 HR.).
1.= l.

The basic relational operations are continuous:

00 00

h. (i'io Ri) u s = i':fo (Riu S), and syrronetria
00 00

c. i'to (if b then Ri else S fi) = if b then i¥o Ri else S fi,

and syrronetria.

PROOF. Clear from the definitions. 0

Caution: Of course, we can also introduce the notion of continuity with

respect to the"::;;" ordering for predicates. However, the construction

rules for boolean schemes do not guarantee continuity. Specifically, it
00 00

is not, in general, true that, for {p.}~ O a chain, .VO (R-+p.) = R-+ .VOp .•
l. 1.= 1.= l. 1.= l.

Hence, the results which follow hold only for program schemes; for

boolean schemes we have monotonic, but not necessarily continuous operators.

Continuous operators allow a nice way of obtaining least fixed points.

For this we need

NOTATION 4.19 (Least element for"::;;"). Leto E TR(V) be defined as follows:

24

Clearly, o ~ R for all R € TR(V).

NOTATION 4.20 (Iterating$). $i(R) is defined by: $O(R) = R,
$i+l(R) = $($i(R)).

LEMMA 4.21. For eaah aontinuous $:

PROOF. Clear from the definitions. D

The next lemma asserts that operators derived from program schemes are

continuous:

LEMMA 4.22. For eaah M, X € X, cr € S, the operator AR•M{R/X}(cr) is aontin

uous.

PROOF. We use induction on the structure of cr. The cases that cr €Au X,
or cr is made up through composition, choice or selection, are clear from

the definitions and lemma 4.18. If cr is itself a recursive scheme, cr =
µX 1[cr1J~ we have, by induction, that for each M, >..R•AHR/X1}(cr1) is (mono

tonic and) continuous, hence µ[>..R 1•M{R1/x1Hcr1)J exists and can be obtained
00

as .'t_.O S., with sO = o, S.+I = M{S./X1}(cr1). The proof is then completed by
J J . 00 J J co co

showing that, for {R.}. O a chain, M{.VO R./X}(µX 1[cr 1J) = .V.OM{R./X}(µX 1[cr 1J).
1. 1.= 1= 1 1= 1

The proof of this is - again - essentially the same as given e.g. in [1,2],

and omitted here. D

Finally, we state one more lemma, which is the counterpart of lenuna

4.11 for denotational interpretations:

LEMMA 4.23.

a. M(cr[T/X]) = M{M(T)/X}(cr).

b. M(n[T/X]) = M{M(T)/X}(n).

c. M(n[n 1/YJ) = M{M(n 1)/Y}(n).

PROOF. Induction on the structure of cr or n. D

We conclude this section with the following

SUMMARY.

I. For each recursive program scheme µX[cr] we have

M(µX[cr]) = µ[AR•Af{R/X}(cr)J
ClO

= .V
0

s.,
1.=].

with sO = o, si+I = M{si/X}(cr)

(this result is justified on the base of the continuity of the

operator AR•M{R/X}(cr)).

2. For each recursive boolean scheme µY[TI] we have

(this result is justified on the base of the monotonicity of the

operator Ap•M{p/Y}(TI)).

5. TERMINATION

This section is the central one of our paper. We propose a method of

associating with each program scheme cr a boolean scheme TI expressing

termination of cr. The definition is first motivated, then presented, and

finally justified using the tools developed in the previous section.

What do we want to achieve? In order to state our goal, we first

give the notation for expressing "proper termination" of a relation:

NOTATION 5.1 (Proper termination of a relation). We define the operation

e: TR(V) + HE(V) by: For each RE TR(V), and x EV:

e(R)(x) iff ~XRi.

25

Thus, we see that e(R)(x) is true whenever i is not a possible out

come of applying R to input x. It should be noted that, by the definition

of TR(V), we always have iRi, whence we have e(R)(i) =false.Here we find

the motivation for our choice of p(i) = false, for any predicate p

(notation 3.4). (Of course, this can also be approached more generally:

If our domain V were ordered such that i ~ x for all x EV, we would want

26

that, for each p, p(L) ~ p(x), and, taking"~" on Was the implication

relation, the choice p(L) = false is seen to be the desired one.)

Some properties of thee-operation are stated in

LEMMA 5.2.

a. If Rt ~ R2, then e(Rt) ~ e(R2)

b. e(Rt;R2) = e(Rt) A (Rt+ e(R2))

c. e(Rlu R2) = e(R).) A e(R2)

d. e(if b then Rt else R2 fi) = if b then e(R1) else e(R2) fi
. (X) 00 (X)

e. For {R.}. 0 a chain. e(.V0 R.) = .V.0 e(R.).
1 1= ~ 1= 1 1= 1

PROOF. We prove only case b. We have, for each x EV,

xRl;R2L iff xRlL v 3z#L[XRlz A zR2L].

Hence, xRl;R2L iff ~xRlL A '3z#L[xRlz A zR2L]

iff xRl L A Vz#L[xRl z+ .,zR2L] iff e(Rl)(x) A (Rl -+ e(R2)) (x). □

We are now sufficiently prepared for the statement of our main

problem:

For each program scheme a, define a syntactia operation, denoted by

say, yielding a boolean scheme a, such that the foZZowing holds:

For each M:

(5. 1) M(o) = e(M(cr)).

So what we have to do is:

- Define 11 ~ 11

"~ ,, ,

- Show that, when "~ 11 is used in combination with recursion, the results

of section 4 remain valid

- Prove (5.1).

In our justification of the definition of "~ 11
, - and in the remainder

of the paper - we shall omit the qualification "proper" in "properly termi

nating": From now on a terminating computation neither goes on indefinitely,

nor aborts on an elementary action being undefined at some intermediate

state.

By way of preparation for the definition of"~ 11
, we consider the

various rules of scheme-construction:

- a= a
1

;a
2

: In order that a terminates for all computations we require that

• cr 1 terminates for all computations, and

• a
2

terminates for all computations which have as input a possible

(proper) output of cr
1

•

a - a
1

u cr 2: a terminates if£ both cr
1

and a2 terminate.

- a= if b then cr
1

else cr2 fi: This case is clear.

- a= µX[cr
1
J. In our explanation of o in this case we use the more intuitive

procedure notation already referred to before (cotmnents following defini

tion 2.2). Let proc P;cr
1
[P] be a procedure declaration, i.e., we consider

proc P; ••• P •••• By the fixed point property P = ••• P •••• Applying
-- cr 1[P] ~
"~" on both sides: P = _ P _ P _, which is, informally again, a way

of indicating that occurrences of Pin cr 1[P] lead to occurrences of both

P and P in cr 1 [P]~ (e.g., (P;A) ~ = P A (P ➔ A)). We, therefore, expect that

the boolean scheme we look for is given through the declaration

proc Q; _ P Q _ , which is indeed what turns out to be the case.

- We also have to define "~" for constants and variables. Since these are

"atomic", we cannot reduce their termination properties to simpler ones,

i.e., for each A EA and XE X, we assume the boolean schemes A EB and

XE Y as given at the outset.

Thus, we can now understand

DEFINITION 5.3 (Syntactic termination operation). For each a ES, a is an

element of P defined as follows:
~ : a is some element A in B

cr is some element X in Y

- a - crl;cr2 a - 01 A (al + 02)

- a al u 02
. 0 01 A a-2 - . -

- a - if b then cr 1 else cr 2 fi: 0 - if b then o1 else o2 -
- a µX[cr 1J . o µX[crl[µX[crl]/X]J. - . -

The definition of " ~ 11 having been presented, we next turn to its

justification. We precede this with the definition of the notion of a

consistent interpretation.

28

NOTATION 5.4. An interpretation Mis called consistent iff, for each A EA

and XE X, we have M(A) = e(M(A)), M(X) = e(M(X)).

Thus, through the notion of consistency we guarantee that (5.1) holds

for elementary cr.

THEOREM 5.5 (First main theorem). For each scheme a and interpretation M:

t. For aZZ YE Y, and aZZ p,q with p sq: M{p/Y}(o) s M{q/Y}(o)

2. M(o) = e(M(cr)), provided Mis consistent.

(Note that the first assertion of the theorem is necessary to justify the

definition of o for cr a recursive scheme: We have - implicitly - extended

the definition of ·the class P with the construction rule: If cr ES, then

cr E P. Therefore, we have to verify that this addition preserves monotoni

city.)

PROOF. The proof proceeds by simultaneously showing assertions 1 and 2,

using induction on the structure of cr. We use the terminology: ff is mono

tonic in Y
1

,Y2, ••• , iff, for p1 s q1, p 2 s q2, ••• , and each M,

M{p
1

/Y
1

}{p2/Y2} ••• {}(v) s M{q
1

/Y
1
}{q2/Y2} ••• {}(ff). (The proof also

uses an extension of lemma 4.23b, corresponding to our extension of the

construction rules for ff. Properly speaking, this extension would have to

be taken along as a third assertion in the present proof. However, we have

preferred to avoid such further complicating the argument.)

- cr = A or cr = X: Clear from the definitions, in particular because of

the consistency condition.

- cr = o1;o2
I. Assume p sq. M{p/Y}((ol;o2)~) = M{p/Y}(crlA(oj+cr2))

= M{p/Y}(cr1) A (M{p/Y}(o1) + M{p/Y}(o2)) s

M{q/Y}(crl) A (M{q/Y}(ol) + M{q/Y}(o2)), which follows from the

induction hypothesis for o1 and cr2, from lemma 4.4, and from the

fact that Y does not occur free in a
1

•

2. M((al;cr2)~) = M(crl A (al+ 02)) = M(ol) A (M(o)) + M(o2))

= (ind.)e(M(a 1)) A (M(a 1)+e(M(a2))) = (lennna 5.2b)e(M(a1);M(a2))

= (def.M)e(M(a1;a2)).

- a= a 1 u a2, or o = if b then a 1 else a2 fi. These cases follow

similarly as the previous one using induction and lemma 5.2.

- a= µX[a 1J. In this part of the proof we use the single symbolµ as an

abbreviation for µX[a
1
J.

1. Assume p ~ q. We have M{p/Y}(µX[crl]~) = M{p/Y}(µX[cr1[µ/X]])

= (by induction, o 1 is monotonic in each Y E Y. Then so is cr 1 [µ/XJ)

µ[Ap 1•M{p/Y}{p
1
/x}(a

1
Cµ/XJ)J ~ µ[Ap

1
•M{q/Y}{p

1
/x}(cr

1
Cµ/XJ)J,

where the last inequality follows in a similar way as in the proof

of lemma 4.14.

2. We show that.M(µX[a
1
r) = e(M(µX[cr

1
])).

00

29

By lemma 4.22, we have M(µX[o 1J) = i':fo Si' with s 0 = o, Si+l = M{si/X}(a 1).

By definition 5.3, M(µX[o
1
J~) = M(µX[cr

1
[µ/XJJ) = µ[Ap•M{p/X}(cr

1
[µ/XJ)J

= (lennna 4.23b) µ[Ap•M{p/X}{M{p/X}(µ)/X}(crl)J = (X not free inµ)
. ~ M - ~ µ[Ap•M{p/X}{M(µ)/X}(cr

1
)J. Now let 'l' =. Ap•M{p/X}{M(µ)/X}(o

1
). We show that

e(M(µ)) is the least fixed point of 'l'.

(i) e(M(µ)) is a fixed point of 'l': 'l'(e(M(µ))) = M{e(M(µ))/X}{M(µ)/X}(cr
1
)

= (we can use the induction hypothesis, since M{e(M(µ))/XHM(µ)/X} is

consistent) = e(M{e(M(µ))/X}{M(µ)/X}(cr
1
)) = (X not in cr

1
)

= e(M{M(µ)/X}(o 1)) = (lemma 4.23a) = e(M(o
1
[µ/XJ)) = e(M(µ)), by the

fixed point property for the recursive scheme µX[a 1J.

(ii) We prove that, whenever 'l'(p) ~ p, then e(M(µ)) ~ p. (Note the use of

corollary 4.8.) So assume 'l'(p) ~ p. To show e(M(µ)) ~ p, i.e.,

(5.2)

(5.3)

e(VS.) ~ p, with S. as above. By continuity of e (lennna 5.2a),
l. l. l.

e('v S.) = V e(S.). Thus, it is sufficient to show e (S.) ~ p for all i.
il. l. l. l.

Clearly, e(S
0

) ~ p. Now assume

e(S.) ~ p.
l.

We also have, by definition,

s. ~ M(µ).
l.

We now show that e(M{Si/X}(cr 1)) ~ p, or, equivalently, since X does

not occur free in cr
1

, e(M{Si/X}{e(Si)/X}(o 1)) ~ p, or, by the induc

tion hypothesis, that M{S./X}{e(S.)/X}(o1) ~ p, where we have used the
l. l.

consistency of M{S./X}{e(S.)/X}. Furthermore, we have that 'l'(p) ~ p,
l. l.

i.e. that

30

(5.4)

The desired result: M{e(S.)/X}{S./X}(o
1

) s p now follows, using (5.2),
1 1

(5.3), (5.4) and monotonicity. 0

This completes the proof of the first main theorem of our paper.

6. DERIVATIVES

This section is devoted to a comparison of our method of dealing with

program termination as presented in section 5, and the approach of

HITCHCOCK & PARK [7] using the notions of well-founded relation, and of

derivative of a program scheme. In particular, we extend the main theorem

of [7] to nondeterministic programs, and we give a new proof of it using

our method.

A number of new notations are first introduced.

NOTATION 6.1 (Special constant schemes).

a. n and 6 are two program scheme constants with the convention that,

for all M,
M(n) = o ~ {<x,L>

M(6) = I df. {<x,x>

X € V}

X € V}

b. wand 0 are two boolean scheme constants with the convention that,

for all M,
M(w) =
M(e) =

f, where f(x) = false, for all x EV
t, where f(x) =~'all x E v0

~(L) = false.

NOTATION 6.2 (Extended construction rules for schemes).

The following construction rules for schemes are added to the rules of

definition 2.2:

I. Program schemes

a. If cr ES and TT E P then cr u n ES.

2. Boolean schemes

a. If n 1,TT2 E P then TT] v TT 2 E P

b. If 1 E P then i E P
c. If cr ES and TT E P then croTT E P.

NOTATION 6.3 (Additional operations on relations and predicates).

For SE TR(V), p,p 1,p2 E HE(V) we define

a. x(S u p)y iff xSy v p(x)

b. (p 1 v p2) (x) iff pl (x) v p2(x)

c. p(x) iff 'p(x), for all x E V0; p(~) = false

d. (So p)(x) iff 3y[xSy A p(y)].

Notations 6.2 and 6.3 are linked through:

NOTATION 6.4 (Extended definition of M).
For each M we define

a. M(cr u 1r) = M(p-) u M(1r)

b. M(1r
1

v1r
2
)= M(1r

1
) v M(1r

2
)

c. M(rr) = "M(7iT

d. M(cr o 1r) = M(cr) o M(1r).

Remarks.

I. As will be seen in the sequel, our use of complementation is such that

the monotonicity of those operators for which we need the existence of

their least fixed points, is not disturbed.

31

2. It is easily seen that the relationship between " 0 " and " ➔" operations
---= is the following: S ➔ p = S O p.

3. From the definitions it follows that (Ro t) (x) iff 3y#~[xRy].

4. The construction rule leading to schemes of the form au 1r is somewhat

ad hoc, and included only to make direct translation of the Hitchcock

& Park formalism into ours possible. A more general approach would be

to embed Pinto S, essentially through the convention that each p E

HE(V) determines a P E TR(V) as follows: xPy iff p(x) A (x = y).

The class of simple schemes to be defined next is actually somewhat

smaller than the class with the same name of [7], where a form of rela

tional concatenation is also allowed. This construction rule could be

incorporated without too much trouble, however. It should be noted that

simple schemes do not allow "iterated" recursion, i.e., no constructs of

the form µX 1[••• µX2[••• J ••• J. A remark on this restriction follows at the

end of the present section.

32

DEFINITION 6.5 (Simple schemes). A program scheme o is X-simple iff it is

constructed according to the following rules:

a. o - X

b. o - A, for some A EA
c. 0 - 01;02, with o

1
,o2 both X-simple

d. 0 - 01 u 02' with o1,o
2

both X-simple

e. 0 - if b then o 1 else o
2

fi, with 01 ,02 both X-simple.

For X-simple schemes, Hitchcock & Park define the notion of uppper

and lower derivative (with respect to X, this being silently understood in

the remainder of this section).

DEFINITION 6.6 (Derivatives). For an X-simple scheme o, the upper derivative

; - yielding an element of S -, and the lower derivative o- yielding an .
element of P - are defined as follows:

1. Upper derivative:

o - X

o - A o _ n . ..
0 - 01 ;02

. 0 - 01 . . .
0 - 01 u 02 0 - 01 .
0 - if b then o1 else o2 fi: 0 - if

2. Lower derivative

0 - X 0 - w .
0 - A 0 - A .
0 - 01 ;02 0 - 'lt ..
0 - 01 u 02 0 - 'l1 .
0 - if b then o

2
else o

2
fi: 0 - if - . -

.
u (o 1 ;02)

•
u 02 . .
b then o

2
else o

2 fi.

V (gl O g2)

V 'l2
b then r:z 1 else g

2
•

NOTATION 6.7 (Derivatives "in a recursive scheme"). For o an X-simple

scheme, we write

g ~ cr[µX[o]/X]

o ~ o[µX[o]/XJ.
0 •

Next, we present another important tool in the approach of [7]:

33

DEFINITION 6.8 (Well-founded relations). Let RE TR(V). R is called well

founded in an element x EV iff x 1 Land there does not exist an infinite

sequence x
0

= x,x1,x
2

, ••• , all xi E v0 , such that xiRxi+I' i = O,I, ••••

It is possible to connect the notions of well-foundedness and of least

fixed point of an operator:

LEMMA 6.9. The two assertions

I. R is well-found·ed in x E V

2. µ[Ap•i:-p](x) holds

are equivalent.

PROOF. See [7].

Remarks.

I. Note that Ro p is monotonic - though not necessarily continuous [7] -

in p.

2. There is a slight difference with the approach in [7] in that "L" does

not play a part in that paper. However, it may be verified that the

argument for lemma 6.9 remains valid.

We shall use lemma 6.9 in its alternative form:

COROLLARY 6. IO. R is weU-founded in x iff µ[Ap• (R ➔ p) J(x) holds.

PROOF. Lerrnna 6.9 and a remark after notation 6.4. 0

Three further pieces of notation are introduced:

NOTATION 6.11 (Equality of schemes under some (all) interpretation(s)).

a. For program schemes cr,T and interpretation M, we write FM cr =Tiff

M(o) = M(T).

b. We write F o = T whenever FM cr = T holds for all consistent M.

NOTATION 6.12 (Well-founded part of a scheme). For cr ES, we write

l (o) ~ µY[cr ➔ Y]

where Y is some boolean variable not occurring free in o.

34

The main theorem of Hitchcock & Park's approach to termination - in

our version, extended for nondeterminacy - is

THEOREM 6.13. For each X-sirrrpZe program scheme a

PROOF. We present a proof using the tools developed sofar; we organize the

proof in a number of lemma's:

LEMMA 6.14. For a an X-sirrrpZe scheme:

A CT • .
PROOF. Induction on the structure of cr. Take any consistent M.
a. cr = X. We have to show

M(X) = M((6+X) Aw), or

b.

M(X) = (M(6) + M(X)) A M(w), or

M(X) = (I+M(X)) A f, or

M(X) = M(x) n t.

a= A. We have to show

M(A)
==

= M((n + X) A A) , or

M(A) = (M(n) + M(x)) A M(f), or

M(A) = (o+M(x)) A M(A), or

MCA) = t A M(A).

c. cr = cr
1

;cr2• We have to show

F (cr
1

;cr2)~ = ((cr
1

;cr2)
0

+ X) A (cr
1

;cr2):. We rewrite the right-hand side:

F (crl;cr2). + X) A (crl;cr2>: =(def.of cr,q)

((crl u crl;cr2) + X) A (gl v crl 0 g2) =(see(*) below)

(crl+X) A ((crl;cr2)+X) A gl A crlog2 =(see(**) below)

(<\ +X) A (crl+ (cr2+X)) A 1?'1 A (crl+ g2) = (see (***) below)

(cr I+ X) A q l A (cr I+ ((cr2+ X) A ~2)) = (ind. hyp.)

o
1

A (cr
1
+o

2
) = (def."~")

(crl ;cr2(
where

(*) : (R1uR2) + p = (R1+p) A (R2+p)

(**) ~ (RI ;R2) + p = RI + (R2+ p)

(***): For each R: (R+ p) A (R+ q) = (R + pAq).

d. a - a 1 u a2; We have

F cr = (crlucr2)~ = al Acr2 = (ind.)

(;1 +X) A ci'1 A (;2 ➔ X) A g2 =

(crlucr2 ➔ X) A (glvg2) = ((crlucr2)· + X) A (crlucr2): =
<a+ x) A cr . .

e. a= if b then a 1 else a
2

fi. Straightforward by induction. D

LEMMA 6.15. For a an X-simpZe scheme

F cr[µX[a]/X] = <a+ x)
0

A 0
0

PROOF. Direct from the previous lenuna and notation 6.7. D

LEMMA 6.16. For a an X-sirrrpZe scheme

PROOF. Lennna 6.15. 0

LEMMA 6.17. For each reZation Rand predicate q:

µ[Ap•((R+p) n q)J = µ[Ap•((Ru q) + p)J.

35

PROOF. Call the left-hand side 2 and the right-hand sider. We show that

r ~ 2, leaving the other half of the proof to the reader. By corollary

4.8, it is sufficient to show: ((Ru q) + 2) :;; 2, or, by the fixed point

property, ((Ru q) ➔ 2) ~ (R ➔ 2) A q. First we show ((Ru q) + 2) :;; q. Take

any x, and assume that ((Ru q) + 2) (x) holds, but that q(x) does not hold,

i.e., q (x) holds. Then, since ((Ru q) -+ 2) (x) by assumption, from q (x) we

conclude that 2(x) holds, whence, by the fixed point property of£,

q(x) holds. Contradiction. Next to show ((Ru q) + £) :;; (R ➔ 2). This follows

innnediately from the definition of 11 + ". D

Finally, we obtain our conclusion: For a an X-simple scheme:

(6. 1) F µX[a]~ = l(cr u a).
0

36

This is shown as follows: Applying lermna 6.17, we get

I= µX[(o+x) "crJ = µX[(o u cr) + xJ.
0 0

Combining this with lemma 6.16, and using the definition of "~" and i, we

obtain (6.1), as was to be shown. 0

This completes our discussion of the relationship between the approach

of Hitchcock & Park, and ours, insofar as X-simple schemes are concerned.

In [7], a sketch is also given of a way of extending the main theorem to

systems of (simultaneously) recursive procedures. A comparison of this with

our formalism would necessitate a replacement of our use of iterated recur

sion with that of simultaneous recursion. This having been performed, the

additional argument to establish the analogue of (6.1) for systems does not

require any essential new considerations, reason why we prefer to leave

this problem to the interested reader.

REFERENCES

[l] DE BAKKER, J.W., Reaursive Procedures, Mathematical Centre Tracts 24,

Amsterdam (1971).

[2] DE BAKKER, J.W., The fixed point approach in semantics: theory and

applications, in J.W. de Bakker (ed.), Foundations of Computer

Science, pp.3-53, Mathematical Centre Tracts 63, Amsterdam

(1975).

[3] DE BAKKER, J.W., Flow of control in the proof theory of structured

programming, Proc. 16th IEEE Symp. on Foundations of Computer

Science (1975).

[4] DE BAKKER, J.W., Least fixed points revisited, to appear in Theoretical

Computer Science.

[5] DE BAKKER, J.W. & L.G.L.T. Meertens, On the aorrrpleteness of the

inductive assertion method, to appear in J.Comp.Syst.Sci.

[6] EGLI, H., A mathematical model for nondeterministic corrrputations,

, ETH Zurich (1975).

[7] HITCHCOCK, P. & D. PARK, Induction rules and proofs of termination,
in Automata, Languages and Progrannning (M. Nivat, ed.),

p.225-251, North-Holland, Amsterdam (1973).

[8] MANNA, z., Mathematical Theory of Computation, McGraw-Hill (1974).

[9] DE ROEVER, W.P., Recursive Program Schemes: Semantics and Proof

Theory, Ph.D. Thesis, Free University, Amsterdam (1975).

[10] SCOTT, D., Outline of a mathematical theory of computation, Proc. of

the Fourth Annual Princeton Conference on Information Sciences

and Systems, pp.170-176 (1970).

37

[II] SCOTT, D. & C. STRACHEY, Towards a mathematical semantics for computer

languages, in Proc. of the Symposium on Computers and Automata

(J. Fox, ed.), pp.19-46, Polytechnic Inst. of Brooklyn (1971).

