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1 o Introduction 

Machine independent programming languages contain a large number of 

concepts which form a source of inspiration for mathematical inves

tigationo In this introduction we first make a few historical remarks 

on the work which has been performed concerning theoretical properties 

of programming languages, and then give a summary of the contents of 

our paper, which contains a study of an important concept in programming, 

i.eo the assignment statemento 

During the first years of the development of programming languages, 

little attention was paid to theoretical considerations. The first 

language, FORTRAN, was not very suitable for this purpose, since most 

concepts were not yet introduced in their full generality, and many 

exceptions obscured the possibilities of mathematical analysis. The 

introduction.of ALGOL 60, and especially the use in its definition 

of the syntactic formalism of Backus,initiated the first extensive 

theoretical investigations. These investigations were initially mainly 

concerned with syntactical problems. The theory of context free 

languages, introduced by Chomsky for the study of natural languages, 

was developed further. This theory has many important applications 

in the construction of compilers and the automation of the syntactical 

analysis of programs. Much less attention has been paid to semantical 

problems. BJ this we mean theories which deal with the meaning of 

programs. Such theories are of importance e.g. for the formal definition 

of programming languages, for the construction of compilers, and for 

proving the correctness of programs. For a survey of the work in this 

field we refer to O] and [2]. We restrict ourselves here to a few 

remarks. 

The theory of computability, i.e. of Turing machines, recursive functions 

etc., is since long an important branch of mathematical logic. There 

is of course no doubt that this theory has led to many fundamental 

results, which are also applicable to the semantics of programming 

languages" However, there are many basic notions in programming which 

have no direct counterpart in the theory of computability. Therefore, 

several other approaches have been proposed, not directly related to 

this theory, but corresponding more closely to the essential concepts 
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of programnnng. (For references see [1] and [2].) 
In this paper we use the axiomatic method, which has, up to now, been 

rather neglected. This method was, as far as we know, first used by 

S. Igarashi in his Ph.D. thesis: "An axiomatic approach to the equi

valence problems of algorithms, with applications" [4]. Igarashi 

introduces axiom systems, with corresponding rules of inference, for 

assignment statements, conditional constructions, and goto statements, 

and then gives several applications. The basis of his axiom system. 

is the notion of equivalence. The above mentioned concepts are defined 

implicitly by the way in which the equivalence of (sequences of) 

statements is defined. He also proves several completeness 

theorems which are, in a sense, a guarantee that his axiom systems 

confirm to our "a priori" knowledge of these concepts. 

For a recent paper, advocating the axiomatic approach, see [3]. 

Our paper is restricted to an analysis of simple assignment statements. 

Section 2 contains the definitions of a variable, a (sequence of) 

assignment statement(s), and some auxiliary concepts. 

In section 3 we introduce the axiom system, consisting of four axioms 

and three rules of inference, and we derive several fundamental properties 

of assignment statements from this system. In particular, we prove 

some theorems on the interchanging of the values of two or more 

variables. 

In section 4 we prove the completeness and independence of our axiom 

system. We introduce a function which defines the effect of a sequence 

of assignment statements upon a variable, and then prove that our 

system is complete in the following sense: The equivalence of two 

sequences of assignment statements can be derived from the axiom system 

if and only if they have the same effect upon each variable. Next, we 

show that the axiom system is independent, by exhibiting, for each 

axiom A.(1 < i < 4), a property (P.), which is shared by the axioms 
i - - i 

A.(1 < j < 4, j ¥ i), which is preserved by the rules of inference, but 
J - -

is such that A. does not have property (P. ). 
i i 

The results of sections 5 and 6 are more of purely mathematical interest. 

In section 5 we investigate the possibility of replacing the set of 

axioms introduced in section 3 by a smaller set. First we show that 
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three axioms suffice, and then we introduce an infinity of pairs of 

axioms, each "equipollent" with the system of section 3 (i.e. the same 

equi valence3 can be derived from them). 

Section 6 contains some results on axiom systems which are closely 

related to the syste:rrs of section 5. However, it turns out that some 

of these systems are not equipollent with the original system, where

as the equipollence of the remaining systems with the original system 

is still an open problem. The last theorem of this section shows that 

the concept of the interchanging of the values of two variables is 

fundamental. 

As mentioned above, the idea of using the axiomatic method, and also 

the idea of a completeness proof, are due to Igarashi. However, we 

have defined a considerably simpler axiom system (this was possible 

mainly because of the use of a more powerful rule of inference); also, 

most theorems (exceptions are lemmas 3.1 to 3.4 and theorem (4.1.1) 

and all proofs are new. 

A judgment on the merits of the axiomatic method in the theory of 

semantics can only be given after (much) more study. The present paper 

may be considered as a first experiment. 
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2. Definitions 

Let V be an infinite set. The elements of V will be denoted by lower 

case letters, possibly with indices, e.g. a, b, ••• , s
1

, t 1 , ••• , 

x, y, z, etc. 
2 Let V be the set of all ordered pairs of elements of V, i.e. elements 

of v2 are pairs such as (a, b), (s
1

, t
1 
), (x, y), etc. For shortness 

sake, however, we shall use in the sequel the simpler notation ab, s
1
t

1
, 

xy, etc. 
2* .. Let V be the set of all f1n1te non-empty sequences of elements of 

V2 . 2* , 1.e. elements of V are e.g. ab cd, pq, x
1
y

1 
z2t 2 , ab be ca, etc. 

2* Arbitrary elements of V are denoted by S, s
1

, s2 , s
3

, etc. 

Definition 2.1.. 

1. The elements of V are called variables. 

2. The elements of v2 are called assignment statements, 
2* 3. The elements of V are called sequences of assignment statements. 

The elements of V correspond to the (simple) variables of e.g. ALGOL 60; 
2 . the elements of V to assignment statements such as a:=b, s

1
:=t

1
, x:=y, 

2* etc., and the elements of V to sequences of assignment statements 

such as a:=b; c:=d, p:=q, x
1 

:=y
1

; z2 :=t2 , or a:=b; b:=c; c:=a, etc. 

(Since we are not interested in this paper in syntactical problems, 

we suppose that variables are always denoted by only one letter, 

possibly with an index. We do not introduce identifiers; hence, a 

sequence such as ab cd can only be interpreted as a:=b; c:=d, and not 

as ab :=ed.) 

Apparently, we only consider "simple" assignment statements, 1. e. 

assignment statements containing nothing but variables. Some reasons 

for this restriction are: 

1. We feel that most of the essential properties of "simple" assignment 

statements, i.e. assignment statements with expressicnson the right

hand side, are already contained in this simple case. 

2. It simplifies the mathematical analysis of the following sections 

considerably. 
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Definition 2.2. The functions : v2 
+ V (i = pi 1, 2) are defined as 

follows: 
2 Let SE: V • Then, for i = 1, 2, p.(S) is the i-th element of the ordered 

]. 

pair denoted by S. 

2* Definition 2o3o Let SEV • The set of left parts of S, A(S), and the 

set of right parts of S, p(S), are defined as follows: 

1. If scsv2 , then t,.(S) = {p1(s)}, and p(S) = {p2(s)}. 
2 2* 2. If s = s 1s 2 , s 1€: v , s 2e:. v , then 

"(s) = >.(s1 )u;ds2), and 

p(S) = p(S1 )Up(S2 ). 

Definition 2.4. Let SEV2*. The length l(S) of Sis defined as follows: 

1. If se:.v2 , then 1(s) = 1. 
2 2* 2. If S = s1s2, S1E.V, S2€:.V , then l(S) = 1 + l(S2). 

Definition 2o5• The functions f. : v2* + V (i = 1, 2) are defined as 
]. 

follows: 

1 • If s E: v2 , then f. ( s) 
]. 2 

2. Ifs= s 1s 2 , s 1E.v, 1 , 2. 

(Clearly, fi(S) is the first variable occurring in S, and f 2(s) the 

second.) 

2* Definition 2.6. Lets., 1 < i _< n, be elements of V • 
]. -

n 
.IT S. is defined as ·follows: 
i=1 i 

1 n n-1 
IT s. = s 1, and .IT s. = .IT

1 
s. s, for n > 2. 

i=1 i i=1 i i= i n -
n 

We shall also use obvious notations such as .n1 S., etc. If it is 
i¥j ]. 

clear from the context which bounds are meant, they are occasionally 

omitted. 

n 
Definition 2.7. IT Sis denoted by (S)n. 

i=1 
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3. An axiom system for assignment statements 

We now introduce the axiom system for assignment statements in terms 

of the eg_uivalence relation 11 ~11
• 

The axiom system consists of the axioms A1 to A4, and the rules of 

inference R1, R2 and R
3

• 

A1 : For all a, bE:. V: 

R3 

ab ba -~ ab. 

For all a, b, cE:..V: 

ab ac ~ ac, provided 

For all a, b, C E.V: 

ab ca~ ab cb. 

For all a, b, C E.V: 

ab cb ~ cb ab. 

2-x
For all 81 , 82EV : 

that a -:/ c. 

If there exist a, b, c, dE.V, a-:/ b, such that 81 ac ~ 82 ac 

and 81 bd ~ 82 bd, then ~l ~ 82• 

For all 8, 8
1

, 82 , 8
3

E.V : 

a. 8 ~ 8. 

b. If 81 ~ 82, then 82 ~ 81• 

c. 81 ~ 8 and 82 ~ ~i imply 81 ~ 83. 2 
For all 8, 81' 82E. V : 

81 ~ 82 implies 881 ~ 882 and 818 ~ 828. 

Remarks: 

1. It is clear that axioms A1 to A4 correspond to properties of 

assignment statements as used in programming languages. 

2. Rule R1 may be understood intuitively as follows: 

If two seg_uences of assignment statements 81 and 82 have the following 

properties: 

a. they attribute the same values to all variables which occur in 

their left parts, with the possible exception of the variable a, 

and 

b. they attribute the same values to all variables which occur in 

their left parts, with the possible exception of the variable ., 
b(b-:/ a), 

then 8 1 and 82 attribute the same values to all variables 
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occurring in their left parts, i.e., they are equivalent. 

(Of course, this interpretation of rule R1 will not be used in 

the formal theory below; e.g. we do not yet know what it means 

that an assignment statement attributes a value to a variable.) 

3. The rules R2 and R
3 

will be used in the sequel without explicit 

mentioning. 

Definition 3o 1. 

1 • The set of axioms {A1, A2, A3, A4} is denoted byJ}. 
2. The left-hand side and right-hand side of the axioms A1, A2, A3, A4 

are denoted by: 

Al1 = ab ba, Ar1 = ab, 

Al2 = ab ac, Ar2 = ac, 

Al3 = ab ca, Ar3 = ab cb, 

Al4 = ab cb, Ar4 = cb ab. 

Lemma 3.1. If a¥ c, a¥ d and b ¥ c, then ab cd ~ cd ab. 

(In this and the following lemmas or theorems we omit the obvious 

clauses such as: for all a, b, c, d E:. V ••• ) , 

Proof 

( 1 ) ab cd cb ~ ab cb (b ¥ c) , A2, 
(2) cd ab cb ~ cd cb ab , A4, 
(3) cd cb ab~ cb ab (b :j c) 

' A2, 
( 4) ab cd cb ~ cd ab cb (b "f c) 

' ( 1 ) ' ( 2 ) , ( 3 ) , A
4 

, 

( 5) ab cd ad~ cd ab ad (a¥ d) , (4) with a and c, and b and d 

interchanged, 

(6) ab cd ~ cd ab (a¥ c, a¥ d, b ¥ c) , (4), (5) and R1• 

Lemma 3.2. If >..(S1 )n;\(S2 ) = ;\(S1 )rtp(S2 ) = ;\(S2 )r,p(S1) = ~, then 

s1s2,, s2s1. 

Proof. By repeated application of lemma 3,1. 

(Using the completeness theorem of section 4.1, it can be proved that 

the assertion of the lemma also holds with "if" replaced by "only if".) 
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Lemma 3.3. aa be~ be aa ~ be, 

Proof. 

1. First we show that aa be~ be. 

(1) aa be ac ~ aa ac be~ ac be (a# c) , A4, A2 , 

(2) be ac ~ ac be , A4, 

( 3 ) aa be ac ~ be ac ( a -:/- c ) . , . ( 1 ) , ( 2 ) , 

(4) aa be ba ~ aa ba ~ ba aa ~ ba ab~ ba (a# b), A2 , A4 , A
3

, A1, 

(5) be ba ~ ba (a-:/- b) , A
2 

(6) aa be ba ~ 

(7) aa be ~ be 

(8) aa ac ~ ac 

(9) aa ba ~ ba 

( 10) aa be ~ be 

be ba (a# b) 

(a # b, a-:/- c) 

(a -:/, C) 

aa ~ ba ab ~ ba 

, (4), (5), 
, (3), (6), R1, 

, 
A2, 

A4, A3, A1, 
(7), (8), (9). 

2. Now we prove that be aa ~ be. 

(11) be aa ~ aa be~ be (a# b, a# c) , lemma 3,1 and 

part 1, 

(12) 

( 13) 

( 14) 

ac aa ·· ac ac ~ ac (a -:/, C) A3, A2, 

ba aa ~ ba ab ~ ba A3, A1, 

be aa ~ be (11), (12), (13). 

Lemma 3.4. aa S ~ Saa~ s. 

Proof. Follows by lemma 3.3. 

The next lemmas are concerned with sequences of assignment statements 

which interchange the values of two (or more) variables. It is known 

that in order to achieve this, one must use an auxiliary variable. In 

lemma 3,5, we prove that, in a sense, this variable may be chosen 

freely. 

Lemma 3.5. xa ab bx yx ~ ya ab by xy (x-:/- a, b and y # a, b). 

(x and y are the auxiliary variables which are used for the inter

change of the values of a and b). 

Proof. xa ab bx yx ~ xa ab yx bx ~ xa yx ab bx ~ 

xa ya ab bx~ ya xa ab bx~ ya xy ab bx~ 

ya ab xy bx ~ ya ab xy by ~ ya ab by xy. 



9 

(by repeated use of A
3 

and lemma 3.1). 

Lemma 3.6 shows the effect of two successive interchanges of the 

values of band c: 

Lemma 3.6. ab be ca ab be ca ~ ac (a ;:/ c}. 

Proof. It is easy to verify that the assertion holds if a= b orb= c. 

Now suppose that a, b, c differ from each other. Let x, y, z be three 

variables, different from a, b, c. Then: 

ab be ca ab be ca ax by ~ ab be ca ab be by ca ax ~ 

ab be ca ab by ca ax ~ ab be ca ab ca by ax 

ab be ca ab cb by ax ~ ab be ca cb ab by ax 

ab be cb ab by ax ~ ab be ab by ax ~ ab be ac by ax~ 

ab ac be by ax ~ ac by ax ~ ac ax by. 

Hence, 

( 1 ) ab be ca ab be ca ax by ~ ac ax by. 

Similarly, we prove that 

(2) ab be ca ab be ca ax cz ~ ac ax cz, 

(3) 

(4) 

(5) 

and 

ab be ca ab be ca by cz ~ ac by cz. 

By (1), (2) and R1, 

ab be ca ab be ca ax ~ ac ax. 

By (1), (3) and R1, 

ab be ca ab be ca by ~ ac by. 

By (4), (5) and R1, 

ab be ca ab be ca ~ ac. 

Remark. Lemma 3.6 is a fundamental property of assignment statements. 

In fact, we can show that it mey replace axiom A2 : 

( 1 ) ab ab ~ ab ba ab ~ ab ba ~ ab , A1 , A1 , A1 , 

(2) ab ac ~ ab ab be ca ab be ca~ 

ab be ca ab be ca~ ac (a~ c) , lemma 3.6, (1), lemma 3.6. 
Hence, A2 can be proved from the remaining axioms, together with lemma 

3.6. 

It is easy to show that lemma 3.6 is equivalent with: 

ab bo ca ab~ ac cb ba. 

Lemma 3.7. gives a generalization of this result: 
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Lemma 3.7. For each integer n ~ 2, and each 1, 1 < i < n: 

ax:1 x1x2 x2x3 ••· xn-1xn xna a.xi~ 

axi+1 xi+1xi+2 ••• xnx1 ••• xi-1xi xia 
( a . ¥ · x. ~ 1 < i < n, and x. =f. x . , _< i , J. _< n) • 

. l - - l J 

The proof of this lemma will not be given here. We might give a proof 

similar to that of lemma 3.6. However, the lemma will follow almost 

immediately as a result of the completeness theorem of section 4.1. 

The next lemma is an example taken from a class of equivalences which 

can all be proved using the completeness theorem. However, we give 

here another proof which uses only lemmas 3,6 and 3.7. 

Lemma 3.8. ab be ca ad de ea ab be ca ad de ea~ ae (a =f. e and 

{b, c}r'\{d, e} = ~). 

Proof. It is easy to verify that the lemma holds for a= b, a= c, a= d, 

b =cord= e. From now on we suppose that a, b, c, d, e are all 

different. 

Let S = ab be ca ad de ea ab be ca ad de ea. 

By lemma 3.6: 

ad ~ ac cd da ac cd da. Hence, 

s ~ ab be ca ac cd da ac cd da de ea ab be ca ad 

~ ab be cd da ac cd de ea ab be ca ad de ea. 

By lemma 3,7: 

ab be cd da ac ~ ad db be ca. Hence, 

s - ad db be ca cd de ea ab be ca ad de ea 

~ ad db be cd de ea ab be ca ad de ea. 

By lemma 3.7: 

be cd de ea ab be~ bd de ea ac cb. Hence, 

s ~ ad db bd de ea ac cb ca ad de ea 

~ ad db de ea ac ca ad de ea 

~ ad de ea ad de ea 

~ ae, by lemma 3.6. 

de ea 
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4. Com;eleteness and inde;eendence of the axiom system 

In this section we prove the completeness and independence of the 

axiom system which was introduced in section 3. The sense in which the 

notion of "completeness" is meant here, will be made precise below. 

4.1. Completeness of the axiom system. 

In section 3 we showed that several basic properties of assignment 

statements can be derived from the axioms A
1 

to A4 by means of the 

rules of inference R
1 

to R
3

• However, two important questions concerning 

this axiom system were not yet discussed: 

1. Is it possible to derive an equivalence s
1 

- s
2 

from the system 

which contradicts our "a priori" notion of the meaning of assignment? 

2o If two sequences s
1 

and s
2 

are equivalent according to our "a priori" 

notion of assignment, is it then possible to derive this equivalence 

from the axiom system? 

In order to answer tbese questions, it is necessary to make precise our 

intuitive notion of the meaning of assignment. This is done by the fol

lowing definition: 

Definition 4o1o The function E 
2-x-v x V ➔ Vis defined (recursively) 

by: 

1 • Let a€.. V and S € v2
• Then 

E(a, S) = P2 ( S), if a = p
1
(s), 

= a , if a =f p
1 

(S) (cf. def. 2.2.) 

2o Let aE.V and s . 2-x- 2 = s
1 
s

2
, with s

1 
€.. V and s

2
t: V • Then 

E(a, S) = E(E(a, S
2

), S
1

). 

It is clear that the function E describes the effect of a (sequence 

of) assignment statement(s) upon a variable, as it is defined in 

programming languages. E.g. the effect of b := c upon the variable a 

is: 

if a= b, then a has from now on the value of c; 

if a j b, then a keeps its value. 

The recursive clause in the definition of Eis also in agreement with 

the usual definition of assignment statements. 
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1
s

2
) 
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2* Let s1 , S2E. V and aE.V. Then 

= E(E(a, s2), s
1 
). 

Proof. Follows easily from the definition of E. 

We now state the completeness theorem: 

Theorem 4.1.1. Let s1 , s2 be two sequences of assignment statements. 

Then the following two assertions are equivalent: 

1. s
1 

~ s
2

• 

2. For all aE-V: E(a, s1 ) = E (a, s2 ). 

For the proof we need the following auxiliary theorem: 

Theorem 4.1.2. 2* A. ( s) { a1, a},m>1. Let X be Let SE:V , = a2, €1 •• ' m -
a subset of v such that xru.(s) = ~- Then for each i, 1 < i 2.. m, and -
each x1, x2, ... ' x E.X: m 

m m 
s IT a.x. ~ a. E(a., S) IT a.x .• 

j=1 J J i i j=1 J J 
J'fi J'fi 

(The idea of this theorem was already used in the proof of lemma 3.6. 

For the definition of "IT", see definition 2.6.) 

Proof. We use induction on the length of S. 

1. l(S) = 1, i.e. S = ab, for some a, bEV. Then, clearly, 

ab .. aE ( a, ab ) • 
• 2~ . ( ) 2. Let the assertion be proved for all S' E. V with 1 S' 

consider an element S of v2*with l(S) = n+1. Then S = S' 

some abE:.V2 , and S'E:.v2*with l(S') = n. Let 11.(S 1 ) = {a1 , 

m .::_ n. We distinguish two cases, aE:.11.(S' ), and a !i, 11.(S 1 ). 

2.1. aE.11.(S 1 ), i.e. a= ak, for some k, 1 < k < m. 

We have to prove that for each i, 1 < i < m: 

( 1 ) a.x .• 
J J 

Again there are two possibilities, ai =~and ai 'f ak. 

2.1.1. ai =~•We distinguish three cases: 

= n. Now 

ab, for 

a}, 
m 
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l. 

II a.x. 
j:fi J J 

~ S' II 
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a.x. a.b 
J J l. 

a. E(a., S 1 ) II a.x. a.b ~ 
l. l. j#i J J l. 

a. E(a., 8 1 ) a.b II a.x. ~ a.b II a.x., 
l. l. l. j#i J J l. j:fi J J 

by repeated use of lemma 3.2, by the induction hypothesis, and by A2• 

On the other han~, 

a. E(a., SY a.b) II a.x. ~ a. E(b, S 1 ) II a.x. ~ a.b 
l. l. l. j #i J J l. j #i J J l. 

n a.x.' 
j;ti J J 

since it is clear:that E(b, 8 1 ) = b, if b ¢ 11.(8 1 ). 

We conclude that S 1 a.b II a.x. ~ a. E(a., S' a.b) 
l. j #i J J l. l. l. 

II a . x . ; hence , 
j#i J J 

(1) holds. 

( (3 ) b = a .• Then 
l. 

S1 a.a. 
l. l. 

II 
j#i 

a.x. ~ 8 1 

J J 
II a.x., and 

jJi J J 

a. E(a., S' a.a.) II a.x. ~ 
l. l. l. l. j #i J J 

a. E(a., S') II a.x .• 
l. l. j*i J J 

However, 

S1 II a.x. ~ a. E(a., 8 1 ) II a.x., by the induction hypothesis. 
j#i J J l. l. j#i J J 

Hence, (1) also holds in this case. 

(Y) b =~,for some h, 1 .::_ h ..:.m, h # i. Then (1) becomes: 

(2) S1 a.ah II a.x. ~ a
1
. E(a

1
., S' a

1
.ah) II a.x .• 

l. j#i J J j#i J J 

Let x. be an arbitrary element of X. Then: 
l. 

8 1 a.a.. II a.x. ~ 8 1 a.x. a.a.. II a.x. ~ 
in j#i J J ii in j:fi J J 

8 1 a.x. a.a.. II a.x. a..x. ~ S' a
1
.x

1
. IT aJ.xJ. a

1
.ah ahx. ~ 

ii in j#i,h J J n n j*~,h n 

ah E(a.., S1 ) II a.x. a.x. a.ah a..x. ~ 
n j1h,i J J ii i n n 
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a. E(ah, S') a.¾_ IT . a.x. ~~ ~ 
n 1 j7"h,i J J 

a.. E(a., S1 )a. E(a., 8 1
) IT aJ.xJ. ahx.. ~ 

n n 1 n j#h,i n 

a. E(a.., 8 1 ) a..x. IT a.x. ~ a. E(a.., 8 1 ) IT a.x .• Hence, 
1 n n n j#h,i J J 1 n j#i J J 

S' a.ah n a.x. ~ 
1 j=!i J J 

a. E(ah, S,') IT a.x .• Also, 
1 j#i J J 

ai E(ai, S' aiah) j~i ajxj ~ ai E(¾_, S') j~i 

This proves ( 2) • 

2.1.2. ai ¥ ak. Here we have to prove: 

( 3) 8 1 akb .TI. a.x. ~ a. E(a., 8 1 akb) IT a.x .• 
J'f1 J J 1 1 j7"i J J 

However, 

a.x .• 
J J 

S I a.. b IT a . x . ~ SI IT a . x . ~ a. E ( a. , S 1 ) IT a . x . , by the 
K j#i J J j#i J J 1 1 j#i J J 

induction hypothesis. Also, 

a. E(a., S' akb) IT a.x. ~ a. E(a., 8 I) IT a.x .• 1 1 j=Fi J J 1 1 j#i J J 

This proves ( 3). 

2.2. a4_),,_(S'), i.e. ),,_ (S) = { a1' a2, • Cl e , am, am+1}, with a 

We now have to prove: 

m+1 m+1 
S' ab IT a.x. ~ a. E(a., S' ab) IT a.x .• 

j=1 J J 1 1 j=1 J J 
J#i J#i 

(4) 

We distinguish the cases ai = am+1 and ai ¥ am+1• 

2.2.1. ai = am+1• Thus, (4) becomes: 

m m 
S I ab IT a . x. ~ a. E (a. , S ' ab ) IT a . x .• 

j=1 J J 1 1 j=1 J J 

(a) b <t- {a1, a2 , ••• , am+ 1 }. Then 

m 

= am+1 • 

8 1 ab IT a.x. ,, S' 
j=1 J J 

m 
IT a.x. ab, By the induction hypothesis 

j=1 J J 
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m m 
S' 11 aox. ~ II a.xo. Hence, 

J=1 J J j=1 J J 

m m 
(5) S' ab II aoXo ,,_. 

0 II a.x. ab. Also, 
j=1 J J J=1 J J 

m m 
(6) a. E(a., S' ab) II aox. ~ ao E(b, 8 I) II a.x. ~ 

J. J. j=1 J J J. j=1 J J 

m m 
ab 11 

j=1 
aoXo II aoXo ab, since a = a

1
., and b fi_ A(S 1 ), 

J J j=1 J J 

From (5) and (6), (4) follows. 

(S) b =a= am+,• Then 

m m m 
S1 ab 11 a.x . ., S' II 

j=1 J J j=1 
aox. ~ II aox. (induction hypothesis), 

J J j=1 J J 
and 

m m 
a. E(a., S' ab) II a.Xo ~ a. E(b, S') II 

J. J. j=1 J J J. j=1 

m m 
a.b II a.x. ~ II a.Xo (since bf$. A(S 1 ), 

J. j=1 J J j=1 J J 

Hence, (4) follows. 

(y) b = ah, for some h, 1 < h < m. 

The proof of this case is similar to 2.1.1. (y). 

2.2.2. ai ¥ am+1• We have 

m+1 m+1 m 

a.x. ~ J J 

E(b, S') = b). 

II ajxj ,, S
I 

J.~1 ajxj ~ S
I 

J.~1 ajxj am+1xm+1 ~ 

~~i J¥i J¥i 

S 1 ab 

m m+1 
a. E (a. , S' ) II a. x . am+ 1 xm+ 1 ~ a. E (a. , S I ab ) II a . x .• 

1 1 j=1 J J 1 1 j=1 J J 
J¥i J¥i 

This proves (4). 

Thus, the proof of theorem 4.1.2. is completed. 

We can now give the proof of theorem 4.1.1. 

Proof of theorem 4.1.1. 

1o First we show: s
1 

~ s2 implies that for all aE.V : E(a, s1 ) = E(a, s2). 

It is easy to verify that for all aE.V : E(a, A
1
.) = E(a, A . ) , 
J. ri 

i = 1, 2, 3, 4 (cf. definition 3.1). Clearly, it is now sufficient to 

prove that this property is preserved by application of the rules of 

infer~nce. First we consider rule R1• Suppose that s1 ac ~ s2 ac, 
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s
1
bd" s

2 
bd (a f:. b), and that for all eE.V: E(e, s 1 ac) = E(e, s2 ac), 

and E(e, s
1 

bd) = E(e, s 2 bd). We show that then for all eE.V : E(e, s 1 ) = 

= E(,e, s
2

). Fir.st ,suppose: e rf. a¥ Then E(e, s1 ) = E(.e,' r'11ac) = ,E(e, S~~0) = 

E(e, s 2 ). If e = a, then E(e, s 1 ) = E(e, s 1 bd) = E(e, s 2 bd) = E(e, s
2

). 

The proof that R2 preserves the above mentioned property is also 

straightforward. Finally, we show that R
3 

preserves this property. 

Suppose that s 1 ~ s 2 , and that for all aE.V: E(a, s 1 ) = E(a, s 2 ). Then 

for all ssv2*: E(a, ss
1

) = E(E(a, s
1

), s) = E(E(a, s
2

),,s) '=;E(a, ss2 ) 

by lemma 4.1. Similarly, for all S: E(a, s 1s) = E(a, s
2
s). 

2. Now suppose that for all a£ V: E(a, s 1 ) = E(a, s
2

). We prove that 

then s 1 ~ s 2 • Without loss of generality we may assume that i(s
1

) = 

i(s2 ), say i(s1 ) = i(s2 ) = {a1 , a2 , ••• , am} (if e.g. aiE:i(s1 ), 

ai <t. 1 ( s 2 ), then replace s 2 by s 2 ai ai, etc). Let XC V be such that 

xru(s1 ) = {lj. By theorem 4.1.2 we have,for x 1, x
2

, ••• , xmEX, and 

for each 1, 1 < i < m: 

m m 
s 1 IT a.x. ~ a. E(ai, s 1 ) IT a.x., and 

j=1 J J 1 j=1 J J 
Jf:.i Jf:.1 

m m 
s 2 j~1 ajxj ~ ai E(ai, s 2 ) j~

1 
Jf:.i Jf:.i 

a.x .• 
J J 

Since E(ai, s 1 ) = E(ai, s 2 ), we conclude that 

m 
s

1 
IT a.x. 

j=1 J J 
Jf:.i 

m 
~ s

2 
IT a.x .• 

j=1 J J 
Jf:.i 

From this we obtain, for example, 

m-2 m-2 
s 1 IT a.x. a 1x 1 ~ S IT a.x. a 1x 1 , and 

j=1 J J m- m- 2 j=1 J J m- m-

m-2 m-2 
s

1 
IT 

j=1 
a.x. ax ~ s 2 IT a.x. ax. 

J J m m j=1 J J m m 

m-2 
Application of R1 gives: s 1 IT 

j=1 
Generally,we can prove: 

m 
IT a .x. 

j=1 J J 
jf:.J 1 ,j2 

a.x. 
J J 

m-2 
~ S IT 

2 j=1 
a.x .• 

J J 
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Repeating the argument gives, for some h, k, 1 .::_ h, k .::_m, h # k: 

s1 ah~ ~ s2 ~~, and 

s1 ak~ ~ s2 ak~· 
Application of R

1 
yields s

1 
~ s

2
• 

This completes the proof of theorem 4.1.1. 

4.2. Independence of the axiom system • • 
In order to prove the independence of our axiom system, we need some 

new concepts and notations. 

First we introduce an auxiliary function: 

Let N be the set of non-negative integers. 

2* Definition 4.2.1. The function F: V x V ➔ N, is defined (recursively) 

by: 
2 1 , Let a E.. V and S € V • Then 

F(a, S) = 1, if a= p 1(s), and a# p~(S), 

= O, otherwise. 
. 2* 2. Let a~V and S = s1s2 , with s1 €. V and 2 S2 E:.V • Then 

F(a, S) = F(a, s2 ) + F(E(a, s2 ), s1). 

Example: Let a, b, c, d, be four different variables. Then 

F(b, ab ca be)= F(b, be)+ F(E(b, be), ab ca)= 1 + F(c, ab ca)= 

1 + F(c, ca)+ F(E(c, ca), ab)= 2 + F(a, ab)= 3. 

F(d, ab ca be)= o. 

F(a, S) may be described to yield the number of non-trivial steps 

which have to be made in order to obtain the final value which is 

attributed to a by S, 

2* Lemm.a 4. 2. 1 • Let _ S 1 , S 2 ~ V and a ~ V. Then: 

F(a, s1s2 ) = F(a, s2 ) + F(E(a, s2), s1 ). 

Proof. Follows easily from the definition of F. 

Definition 4.2.2. The sets of axioms Ji\{A.} , i = 1, 2, 3, 4, are 
]. 

denoted by cit .• 
]. 

In the remainder of this section and in the following sections we shall 

consider sets of axioms for assignment statements which differ from ,, 
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the set A-. (The rules of inference R1 , R2 and R
3 

remain unchanged 

throughout the whole paper.) Therefore, the following notation is 

introduced: 

Definition 4. 2. 3. Let~ be a set of axioms for assignment statements, 
2* and let s1, S2 t:V • 

~ ~ s1 ~ s2 means that the equivalence of s1 and s2 can be derived 

from the set of axioms .1 by application of the rules of inference R1, 

R2 and R
3

• 

(i.e. r has the usual meaning of mathematical logic). 

Usually, it will be clear from the context which set of axioms is meant. 

Explicit mentioning of the set of axioms is then omitted. E.g. in the 

preceding sections, s1 ~ s2 always meant Jtr s1 ~ s2• 

We now prove the independence of the axiom system Jt, by means of four 

lemmas: 

Lemma 4.2.2. A1 is independent of A2 , A
3 

and A4 • 

Proof. Suppose that J}1 r s1 ~ s2• We shall show that then s1 and s2 
have the following property: 

(P 1) : A(S 1) = A(S2 ). 

It is easily seen that A1i and Ari i = 2, 3, 4, have property (P1). 

Next, we prove that (P 1) is preserved by rule R1 : Suppose that 

Jl.1 }- s1 ac ~ s2 ac, and J+1 }- s1 bd ~ s2 bd, a f. b, and suppose that 

s1 ac and s2 ac, and s1 bd and s2 bd have property (P 1). This meanp that 

A(S1 )U{a} = A.(S2 )U{a}, and A(S1 )V{b} = A(S2 )V{b}. Since a f. b, it 

follows that A(S 1) = A(S2 ); hence, s1 and s2 have property (P 1). 

That R2 and R
3 

preserve (P1) follows immediately from the definition 

of (P1). Since A(ab ba) = {a, b} f. {a}= A(ab), A1 does not have property 

(P1 )o Thus, A1 is independent of A2 , A
3 

and A4o 

Lemma 4a2.3. A
2 

is independent of A1, A
3 

and A
4

• 

Proof. Suppose that &
2 
r s1 ~ s

2
• Then s1 and s

2 
have the following 

property: 

(P
2

) ,: f
2

(s 1) = f
2

(s2 ) (cf. definition 2.5). 



19 . 

Clearly, this holds for A1, A
3 

and A4. The proof that R1, R2 and R
3 

preserve (P2 ) is also straightforward.-·, Since r2(ab ac) = b 'f c = 

f 2 (ac), it follows that A2 is independent of A1, A
3 

and A4. 

Lemma 4.2.40 A
3 

is independent of A1, A2 and A4. 

Proof a Suppose that~~ s1 ~ s2• Then s1 and s2 have the following 

property: 

( P 
3 

) : For all a E: V : F (a, S 1 ) + F (a, S 2 ) = 0 (mod. 2 ) • 

It is again easy to verify that A1, A2 and A4 have property (P
3

), and 

that (P
3

) is preserved by application of the rules of inference. As 

an example, we prove: If s1 and s2 have property (P
3

), then so have 

ss1 and ss2 : Choose aE.V. Then F(a, ss1) + F(a, ss2 ) = F(a, s
1

) + 

F(E(a, s1), S) + F(a, s2 ) + F(E(a, s2 ), S). However, F(a, s
1

) + F(a, s2 ) -

0 (mod. 2). Also, E(a, s1) = E(a, s2 ); hence, F(E(a, s1), S) = 

F(E(a, s2 ), S). We conclude that F(a, ss1) + F(a, ss2 ) = O (mod. 2). 

Since F(c, ab ca)+ F(c, ab cb) = 2 + 1 = 3 1 0 (mod. 2), it follows 

that A
3 

is independent of A1, A2 and A4. 

Lemma 4.2.5. A4 is independent of A1, A2 and A
3

• 

Proof. Suppose that J}4 r ts 1 ~ s2• Then s
1 

and s2 have the following 

property: 

(P4 ) : f 1(s1) = f 1(s2 ) ~cf. definition 2.5). 

This can be shown as above. Since f 1(ab cb) = a 'f c = f 1(cb ab), it 

follows that A4 is independent of A1, A2 and A
3

• 

Theorem 4. 2. The axiom system Jt is independent. 

Proof. Follows from lemmas 4.2.2, 4.2.3, 4.2.4, and 4.2.5. 
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5. Equipollent axiom systems 

In this section we investigate several on fact, an infinity of) 

smaller sets of axioms for assignment statements, and we prove that 

from these systems the same equivalences can be derived as from cfi. (We 

do not change the rules of inference R1, R2 and R
3

~) 

Definition 5.1. Let ~ 1, .Y2 be two sets of axioms for assignment statements. 
~ 

~ => :?'2 is used as an abbreviation for For all s1 , S2€. V , we 

have: !Y1 }-- s1 ~ s2 implies that ~2 I- s1 ~ s2• 

The sets of axioms ~ and ~ 2 are called equipollent, denoted by 

~ 1 <=> .:J! 2 , if .11 => ~ and Y2 => Y1 • 

It is easy to show that the number of axioms can be reduced to three: 

Definition 5.2.Cb= {B1' 

B1 ab ba ~ ab 
' 

B2 ab ac ~ ac (a =/- C)' 

B3 ab ca ~ cb ab. 

Lemma 5. 1. ~ <=> ~-

Proof. 

B2 , B
3

} consists of the following axioms: 

i.e., B1 = A1; 

i.e., B
2 

= A
2

; 

1. Clearly, Ji J- ab ca ~ cb ab. Hence, 01.,=> '-~. 

2. In order to prove that St=> C:::::.), it is sufficient to show that ·-.. .. ) - A3 
and<>· : A4• This is shown as follows: 

(1) ab ca ac ~ cb ab ac 
' B3' 

(2) 

(3) 

(4) 
(5) 

(6) 
(7) 

ab ca ~ cb ac ( a =/- C) , ( 1 ) ' B1' B2' 
ab aa ~ ab aa 

' 
ab ca ~ cb ac 

' 
(2), (3), 

cb ac ~ cb ab 
' B3, ( 4). 

Hence, (1) ~ .4:3 • 

ab ca ~ ab cb , A3 
ab cb ~ cb ab 

' 
( 6), B3. 

Hence, <i> t' A4. 

We now introduce sets of axioms, each consisting of only two elements 

(definitions 5.3, 5.4 and 5.5). 
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Definition 5.3. Let n be an integer.::_ 1. 

C = {c1 , c2} consists of the following two axioms: n ,n 
c 1 : (ab ca bc)n ~ cb ab, (cf. definition 2.7), ,n 
c~ :ab ac.~ ac (a¥ c), i.e. c2 = A2• 

Theorem 5. 1. For each integer n > 1, C.. <=> Jt 
- n 

Proof. 

1. In order to prove that Cn => Jt, for each n .::_ 1, it is sufficient to 

show that A l- ( ab ca be )n ~ cb ab. However, ab ca be ~ ab cb be ~ 

ab cb ~ cb ab. Hence, (ab ca bc)n ~ (cb ab)n ~ (cb)n (ab)n ~ cb ab. 

2o We now show that Ji=> C . 
n 

(1) (ab ca bc)n be~ cb ab be 

(2) (ab ca bc)n be~ (ab ca bc)n (b ¥ c) 

(3) cb ab be ~ cb ab (b ¥ c) 

(4) (ab ca bc)n ab~ cb ab ab 

(5) (ab ca bc)n ab~ ab(ca be ab)n ~ ab ba ca 

(6) cb ab ab~ ab ba ca 

( 7) ab ab ba ~ ab ab ( a ¥ b) 

( 8) ab ba ~ ab ( a ¥ ·b ) 

(9) bb ab ab~ ab ba ba 

( 10) bb ab ~ ab ( a ¥ b) 

(11) aa aa ab~ aa ab (a¥ b) 

(12) aa aa ba ~ aa ba (a¥ b) 

(13) aa aa ~ aa 

( 14) ab ba ~ ab 

Hence, (n r· A1 o 

( 1 5) ab ab -- ab 

(16) cb ab~ ab ca 

' c1 , ,n 

' c2, 
, (1), (2), c, , ,n 
, c1 ' ,n 

' c1 ' ,n 

' 
(4), (5), 

' 
(3) with a = c, 

, (7), c2 , 

, (6) with b = c, 

, (8), (9), c2, 
, c2, 

' 
( 10) 

, (11), (12), R1, 
, (8), (13). 

, c2 , (13), 

, (6), (14), (15). 

By (16), we can now apply lemma 5.1, from which we conclude that 

C.n I- A3 and C.n r A4• 

Definition 5. 4. Let n be an integer .:_ 1. 

ID = {D1,n, D2} consists of the following two axioms: n 
D : (ab ca bc)n ab~ cb ac, 1,n 
D2, ab ac ~ ac (a¥ c), i.e. D2 = A2. 
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Theorem 5. 2. For each n .::_ 1, IDn <==> J.l. 

Proof. 

1. In order to prove that~ ==> cH, it is sufficient to show that n 
,J~- I- (ab ca bc)n ab ~ cb ac. As above, we have (ab ca bc)n ~ cb ab, 

Hence, (ab ca bc)n ab~ cb ab ab~ cb ab~ cb ac, 

2. We now show that Jt ==> ft) • 
n 

(1) (ab ca bc)n ab ab~ cb ac ab 

(2) (ab ca bc)n ab ab~ (ab ca bc)n ab (a 'f b) 
' D1 ' ,n 

'D2' 
(3) cb ab~ cb ac (a#- b) , (1), (2), 

(4) (ab ca bc)n ab ca~ cb ac ca , D1 ' 
(5) (ab ca bc)n ab ca·· ab(ca be ab)n ca~ ab ba cb, 

,n 
D1 , ,n 

(6) cb ac ca~ ab ba cb 

(7) 
(8) 

(9) 
(10) 

( 11 ) 

cb 

cb 

cb 

ab 

ab 

ac ca ~ cb ab ca (a 'f b) 

ab ca ~ cb ab cb (b :/ c) 

ab cb ~ ab ba cb (a 'f b, b 'f c) 

ab ab ~ ab ba ab (a 'f b) 

ab~ ab ba ab ( a 'f b) 

( 12) ab ba ~ ab ba ba ( a 'f b) 

(13) ab~ ab ba (a 'f b) 

( 14 ) ba aa ~ ba ab 

(15) ba aa ~ ba (a 'f b) 

(16) bb ab ba ~ ab ba bb 

(17) bb ab~ ab bb 

( 18) bb ab ~ ab ( a 'f b) 

(19) aa aa ab~ aa ab (a#- b) 

(20) aa aa ba ~ aa ba (a 'f b) 

(21) aa aa ~ aa 

(22) ab ba ~ ab 

Hence, d)n · I-- A1 • 

( 23) cb a.c ~ ab cb 

, (4), (5), 

' ( 3)' 

' ( 3)' 
, (6), (7), (8), 

, ( 9)' 
, (10), D

2
, 

'D2' 
, (11L, (12), R1' 

' ( 3)' 
, (14), (13), 

, ( 6) with b = c, 

, (16), (13), 

, (17), (15), 

' D2, 
, (18), 

, ( 19) , ( 20), R 
1 

, 

, (13), (21). 

, ( 6), ( 22). 

From (23) and lemma 5.1 it follows that ~n r A
3 

and~ f- A4• 

Definition 5. 5. Let n be an integer .::_ 1. 

t..'n = {E' 1 ,n, E' 2} consists of the following two axioms: 
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£.:,1 = {E" 1 , E"2} consists of the following two axioms: n ,n 
E1" :(ab ca bc)n ab ca~ cb ab, 

,n 
E" 2 : ab ac -- ac ( a #- c ) , i. e. E" 2 = A2• 

Theorem 5. 3. For each n > 1, f!.!.. <=>d1 
- n 

Proof. 

1. As above, it follows that~ t-E 1
1 , i.e. c£..! =>cA. ,n n 

2o We now show that J\ => £..! n• 

(1) cb ac ca~ cb ac (a#- c) 

(2) cb ac be ,, ab ba cb 

(3) ab aa ba ~ ab ba ab 

(4) ba ab ba ~ ba ab (a#- b) 

(5) (ab aa ba)n ab aa ~ ab aa 

(6) (ab aa ba)n ab aa ab --ab aa ab 

(7) (ab aa ba)n ab ,, ab (a #- b) 

(8) (ab ba ab)n ab~ ab (a#- b) 

(9) (ab ba ab)n ·· ab (a #- b) 

( 1 0 ) ( ab ba) n ~ ab ( a #- b ) 

( 11) (ab ba ab)n ~· ab(ba ab)n (a #- b) 

(12) ab ba ~ ab (a#- b) 

( 13 ) ( ba ab aa) n ba ab ,, aa ba 

(14) (ba ab aa)n ba ab~ ba (ab aa ba)n ab~ 

ba (ab ba ab)n ab ,, ba ab ab ~ ba (a#- b) 

(15) aa ba - ba (a#- b) 

(16) aa aa ab~ aa ab (a#- b) 

(17) aa aa ba ~ aa ba (a#- b) 

( 1 8) aa aa ~ aa 

( 19) ab ba ~ ab 

Hence, ~ n I- A1• 

, similar to (3) in the 

proof of theorem 5.2, 

, simila~ to (6) in the 

proof of theorem 5.2, 

, ( 2) with a = c, 

, (1) with a= band c 

replaced by b, 

, E1
1 with a= c, ,n 

, ( 5)' 

, (6), E 1

2
, 

, (7), (3), 

, (8), E 1

2
, 

, (9), (4), 
, n-1 applications of E1

2 , 

, (9), (10), (11), 

, E' 1 ' ,n 

' ( 3 ):, ( 12), E'2, 

,(13), ( 14), 

'E'2, 

, (15), 

, (16), ( 17), R1' 
, (12), ( 18). 



24 

(20) ab ab ~ ab , E1
2 , (18), 

(21) cb ac be ~ ab cb , (2), (19), 

(22) be ab cb ~ ac be , ( 21 ) , 

(23) be cb ac be~ be ab cb , ( 21 ) , 

(24) be ac be~ ac be , ( 23), ( 19), (22), 

(25) be ac be~ ac be be ' ( 24)' (20), 

(26) be ac ac ~ ac be ac , (25), 

(27) be ac ~ ac be , (25), (26), R1 • 

Hence, l! n l- A4• 

(28) cb ab~ ab cb ~ cb ac be~ cb be ac ~ cb ac , (27), (21), (27), (19). 

Hence, l' n \- A3• 

Theorem 5. 4. For each n _::_ 1 , ~' n <=='> .ft. 

Proof. 

1. [" => j~ is proved as above. 
n 

2. We now prove that ,,q =='> t.!' . 
n 

( 1 ) cb ab be -- ab ba ca 

(2) (ab aa ba)n ab aa ~ ab ab 

(3) (ab aa ba)n ab aa ab~ ab ab ab 

(4) (ab aa ba)n ab~ ab (a¥ b) 

(5) (ba ab aa)n ba ab~ aa ba 

(6) (ba ab aa)n ba ab~ ba (ab aa ba)n ab 

(7) ba ab~ aa ba (a¥ b) 

(8) ba ab ba ~ ba ab (a¥ b) 

(9) (ab ba)n ~ (ab ba ab)n ~ (ab ba ab)n ab~ 

(ab aa ba)n ab~ ab (a# b) 

(10) ab ba ~ ab (ba ab)n ~ (ab ba ab)n ~ 

(ab ba)n ~ ab (a¥ b) 

(11) aa aa ab~ aa ab (a¥ b) 

(12) aa aa ba ~ aa ba (a¥ b) 

(13) aa aa ~ aa 

( 14) ab ba ~ ab 

Hence en 
' c..... n 

, similar to (2) in the 

proof of theorem 5.3, 

E" 
' 1 ,n' 
' ( 2)' 

, (3), E"2, 
E" 

' 1 , n' 

' 
, (4), (6), (5), 
, (7), E"2 , 

, ( 8 ) , E" 
2 

, ( 7 ) , ( 4 ) , 

(9), n-1 applications 

of E" 
2

, ( 8) , ( 9) , 

E" 2' 
( 7)' ( 1 0), 

, (11), ( 12), R1' 
, (10), ( 13 ). 



( 1 5 ) ab ab ~ ab 

(16) ab cb ab ~ cb ab ab 

(17) cb ab cb ~ ab cb cb 

(18) cb ab"' ab cb 

Hence, e.._11 n \- A4• 

25 

(19) ab ca~ ab ba ca~ cb ab be~ ab cb be~ 

ab cb 

Hence, l_" n \- A3• 

, E" 
2

, ( 1 3 ) , 

, E" 
1 

, ( 1 5 ) , ,n 
, (16), 

, (16), (17), R1• 
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6. Non-e~uipollent axiom sxstems 

In section 5 we studied the following axiom systems: 

Cn = {c
1

,n, c2}, with c1,n: (ab ca bc)n ~ cb ab, and c2 = A2 , 

~n = {n1 ,n, D2 }, with n1,n: (ab ca bc)n ab -- cb ac, and n2 = A2 , 

O'n = {E 1
1 ~ E1

2}, with E' : (ab ca bc)n ab ca -- cb ac, and E' 
c._ ,n 1,n 2 

and we proved that all these systems are equipollent with axiom system 

Jt. In this section we consider two related axiom systems, introduced 

by: 

Definition 6. Let n be an integer .:_ 1. 

C = IC I 1 , C'2} consists of the following two axioms: 
n ,n 

C' . (ab ca bc)n ~ cb ac, and C' = A · 1 ,n · 2 2' 

SJ = {D' D' } consists of the following two axioms: n 1 ,n' 2 
n•

1 
: (ab ca bc)n ab~ cb ab, and D' = A2. ,n 2 

One might expect, analogous to theorem 5. 3 and 5. 4, that C.1 <==> A and n 
~, <==> Jf. However, this appears to be not true in ge.neral. The main 

n 
results of this section, contained in theoreIJB 6.1 and 6.2, can be 

summarized as follows: 

1. For all n > 1: C' <==> ~• • n n 
2. For all n > 1 : C.' ==> .A. n 
3. For all n > 1 : c._, n j-- A1 and C! n r A4 • 

4. ,A => C.1 

1 
, hence cA <==> C! 

1 
• 

5. For no even n > 2, }} => W • 
- n 

Thus we have obtained the result that, for even n, C <=> Jl- is not true. n 
The problem for odd n _::. 3 is still open. We conjecture that in this 

case as well, ~ <==.> Ji- does not hold. 

Theorem 6.3 gives some consequences of omitting (or weakening) c1

2
• 

It is used in the proof of theorem 6.4, which is the analogon of 

lemma 3. 6. 



Theorem 6.1. For each n > 1: 

a. C.' \- A1 and C 1 
n n 

b. ~ 1 n t A1 and fD n 

c. C 1 <==> ~' • n n 

Proof. 

a. 

(1) cb ac ab~ ab ba cb 

(2) 

(3) 

(4) 
(5) 

(6) 
(7) 

cb ab ,, ab ba cb (a # b) 

ab ab~ ab ba ab (a# b) 

ab ba ~ ab ba ba (a # b) 

ab~ ab ba (a # b) 

cb ab~ ab cb (a# b) 

bb ab ~ ab bb 

(8) cb ab~ ab cb 

Hence, C' n l- A4• 
( 9) ca ac aa ., aa aa ca 

(10) aa ca~ aa aa ca (a¥ c) 

(11) aa ac ~ aa aa ac (a¥ c) 

( 1 2 ) aa ~ aa aa 

( 13) ab -- ab ba 

Hence, 0 n I- A1• 
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For later use, we prove that aa ca -- ca. 

(14) (aa ca ac)n ~ ca ac 

( 15 ) ( aa ca) n ~ ca 

(16) (aa ca)n ~ (aa)n (ca)n ., aa ca 

( 17) aa ca ~ ca 

b. 

(1) cb ab ca~ ab ba ca 

( 2) ab ab aa ~ ab ba aa 

(3) ab ba ~ ab ba ba (a ¥ b) 

(4) ab~ ab ba (a¥ b) 

(5) cb ab ca~ ab ca (a# b) 

(6) cb ab cb ~ ab cb (a# b, b ¥ c) ,, 

, similar to (1) in the 

proof of theorem 5.4, 
, (1), c 1

2
, 

, (2) with a= c, 

, C'2, 

' ( 3), ( 4)' R1' 
, (2), (5), 

' 
(6), 

' 
(6), (7). 

, (1) with a= b, 

, (5), (7), (9), 

'C'2, 
, (10), (11), R1, 

, (5), (12). 

, C1
1 with a= b, ,n 

, A
1

, (14), 

'A4, A1, C'2, 
, (15), (16). 

, similar to (1) of part a, 

, (1) with a= c, 

, D' 2' 

, (2), (3), D1
2, R1, 

, (1), (4), 

, ( 5) , D' 
2

• 



28 

As in the proof of theorem 5.3 ((24) to (27)) we derive from this: 

(7) ab cb ~ cb ab (a¥ b, a¥ c, b ¥ c) , 

(8) bb ab ba ~ ab ba ba 

(9) bb ab~ ab (a¥ b) 

(10) ab bb ba ~ ab ba (a¥ b) 

(11) ab bb ab~ ab ab (a¥ b) 

( 12) ab bb ~ ab ( a ::/- b) . 

(13) ab bb ~ bb ab 

(14) ab cb ~ cb ab 

, (1) with b = c, 

, (8), (4), 

' D' 2' 

' (9), 
, ( 1 0), ( 11 ) , R

1 
, 

, (9), (12), 

, (7), (13). 

Hence, lf:J' n \- A4• It follows as usual that ID1 n r A
1 

• 

c. First we show that ill' => Q . n n 
(1) (ab ca bc)n ab~ cb ac ab 

(2) (ab ca bc)n ab~ cb ab (a¥ b) 

(3) (aa ca ac)n aa ~ (ca)n aa 

(4) (aa ca ac)n aa ~ ca aa 

(5) (ab ca bc)n ab~ cb ab 

Hence, C' l- D' 1 • n ,n 

Next we prove that C..' => ~, • 
n n 

(1) (ab ca bc)n ab ac ~ cb ab ac 

(2) (ab ca bc)n ac ~ cb ac (a¥ c) 

( ) ( )n-1 3 ab ca be ab ca be ac ~ 

(ab ca bc)n- 1 ab ca ac be 

(4) (ab ca bc)n ~ cb ac (a¥ c) 

(5) (ab aa ba)n ~ (abt (a¥ b) 

(6) ba ab bb ~ ba ab (a¥ b) 

(7) (ab aa ba)n ~ ab aa (a¥ b) 

(8) (aa aa aa)n ~ aa aa 

(9) (ab ca bc)n ~ cb ac 

Hence, <i])' I- C ' 1 • n ,n 

This completes the proof of theorem 6.1. 

' CI 1 , ,n 
, (1), C'

2
, 

, (13) of part a, 

( 17) of part a, 

' ( 3), 
, (2), (4). 

' DI 1 , ,n 
' D' 2' 

'A4, 
, ( 2) , ( 3) , A

1 
, 

, ( 9) of part b, A1 , 

, (12) of part b, 

, ( 5), ( 6) , A
1 

, 

' A1, 
, (4), (7), (8). 



29 

Theorem 6.2. 

1. For each integer n > 1, C => Jt. 
- n 

2. J\ =;> c., 1. 

3. For no even integer n > 2: ~ => C.1 • . - n 

Proof. 

1. Evident. 

2. It is only necessary to prove that C..1 
1 I- A

3
• 

( 1 ) ab ba ~ ab ~ bb ab ~ ab bb , A
1

, (17) of theorem 

6.1, A4, 
(2) ab aa ab~ ab ab (a# b) 

(3) ab aa ba ~ ab ba 
'C'2, 
, (17) of theorem 6.1, 

, (2), (3), R
1

, (4) ab aa ~ ab (a# b) 

(5) ab aa ~ ab ab , (4), C' 2• 

From (1) and (5), A
3 

follows for b = c or a= c. If a= b, we have 

nothing to prove. We now suppose that a, b, care all different and 

that x, y, z are arbitrary variables, different from a, b, c. 

(6) ab cd ~ cd ab (a¥ c, a# d, b # c) , the proof of lemma 3.1 

does not use A
3

, 

(7) 

(8) 
(9) 

( 10) 

( 11 ) 

( 12) 

ab ca ax by~ cb ac ba ax by~ cb ax by~ 

ab cb ax by 

ab ca ax CZ ~ ax CZ ~ ab cb ax cz 

ab ca by CZ ~ ab by CZ ~ ab cb by CZ 

ab ca ax~ ab cb ax 

ab ca by~ ab cb by 

ab ca~ ab cb 

Hence C! 1 \- A3• 

, C'1,1' (6), C'2, 
, (6), c1

2
, 

, (6), c1

2
, 

, (7), (8), R
1

, 

, (7), (9), R
1

, 

, (10), (11), R1• 

3. Let n be an even integer.::_ 2. Suppose Cn r s1 ~ s2• Then s1 and 

s2 have the following property: 

(P): For all aE.V: F(a, s1) + F(a, s2 ) = 0 (mod 2). 

This is clearly true for c1
12 and C'r2• Next we consider c• 1,n. First 

suppose that a, b, care all different. Then 

F(d, (ab ca bc)n) = F(d, cb ac) = O, for all d # a, b, c, 

F(a, (ab ca bc)n) = 3n - 2, and F(a, cb ac) = 2, 

F(b, (ab ca bc)n) = 3n, and F(b, cb ac) = O, 

~(c, (ab ca bc)n) = 3n - 1, and F(c, cb ac) = 1. 
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Hence, in all cases F(d, (ab ca bc)n) + F(d, cb ac) = 0 (mod 2), since 

n is even. It is also easy to ve:r"ify t'hat (P) holds if 1two ( or .more) 

variables of c 1
1 are equal. Moreover, it is clear that (P) is preserved ,n 

by application of the rules of inference. 

Si.nceF(c, ab ca) + F(c, ab cb) = 2 + 1 = 3, it follows that A
3 

does not 

have property (P), and hence cannot be derived from C . This means n 
that ~ => C. holds for no even integer n. n 

This completes the proof of theorem 6.2. 

In theorem 6. 1 we proved that C' n \- A1 and A4 and ID' n \- A1 and A4 , i.e. 

we showed that A1 and A4 can be derived from c 1

1,n (D' 1,n) and c 1

2 (D 1

2 ). 

We have also investigated whether it is possible to derive A1 or A4 
using only c 1

1 (D 1

1 ). Although we did not succeed in this, it ,n ,n 
appeared that it is not necessary to use all of c 1

2 (D 1
2 ). 

It is sufficient to assume, instead of c 1
2 , the following axiom: 

C' 2,n : (ab)3n-2 ~ ab, 

and instead of D1
2 : 

D' 2,n : (ab)3n-1 ~ ab. 

A precise formulation now follows: 

Theorem 6.3. For each integer n > 1: 

a. {c' } 1- (ab)3n-1 
1,n ~ ab. 

b. {CI 1 , C, 2 ,n} l- A1 , A4 • ,n 

c. {D' } 1,n 
~ (ab)3n ~ ab. 

d. {DI 1 ' D' 2,n} ~ A1' A4• ,n 

(Since c 1
2 always holds if ,n n = 1, it follows that {c'1 1l r A1, A4• 

' In this special case a much shorter 

which we omit here.) 

Proof. 

a. 

(1) cb ac ab~ ab ba cb 

(2) ba ab aa ~ aa aa ba 

(direct) proof is also possible, 

, see (1) of part a of 

theorem 6. 1 , 

, ( 1 ) , 



(3) ab aa ab~ .ab ba ab 

( 4 ) aa ba ba .~ ba ab aa 

( 5) ( aa ba ab ) n ., ba ab 

(6) (ab aa ba)n ~ ab aa 

(7) (ba ab aa)n ~ aa ba 
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( 8) aa ba ab aa ba ab ,. ba ab ba ab ba ab 

(9) (aa ba ab) 2n ~ (ba ab) 3n 

( 10) (ba ab) 2 ~ (ba ab) 3n 

(11) (ba ab aa)n aa ba ~ (ba ab aa)n ba ba 

( 1 2) aa ba aa ba .. aa ba ba ba 

(13) aa ba aa ba ~ ba ab aa ba 

(14) aa ba ba aa ba ba ~ ba ab aa ab aa ba 

(15) (aa ba ba)2n ~ (ba ab aa ab aa ba)n 

(16) ba ab aa ab aa ba ~ (aa ba)3 

( 17) (aa ba) 3n ~ (aa ba)2 

(18) (ab ba)3n-1 ab ba ~ ab ba ab ba 

(19) (ab ba) 3n-1 ab aa ab~ ab ba ab aa ab 

(20) (ab ba) 3n-1 ab aa ba ~ ab(aa ba)3n 

(21) (ab ba) 3n-1 ab aa ba ~ ab ba ab aa ba 

(22) (ab ba) 3n-1 ab aa ., ab ba ab aa (a ¥ b) 

(23) (ab ba) 3n-1 ab~ ab ba ab (a¥ b) 

(24) (ba ab)3n-1 aa ab~ ba ab aa ab 

(25) (ba ab) 3n- 1 aa ba ~ ba ab aa ba 

(26) (ba ab) 3n-1 aa ~ ba ab aa (a¥ b) 

(27) (ba ab) 3n-1 ~ ba ab(a ¥ b) 

' ( 1 ) ' 

' ( 1 ) ' 

' C' 1 , ,n 

' C' 1 ' ,n 

' C' 1 ' ,n 
, (2), (3), (4), 

' (8), 
, (9), (5), 

, (2), (4), 
, (11), (7), 

, (12), (4), 

, (2), (3), (4), 

, (14), 

, (13), (3), 

, (15), (16), (4), (7), 

, (10), 

, (3), (10), 

, (13), 

, (20), (17), (13), 

, (19), (21), R1, 

, (18), (22), R1, 
, (10), (3), 

, (17), (13), 

, (24), (25), R1, 

, (23), (26), R1, 

(28) (ba ab) 3n-2 (ba ab aa)n ~ (ba ab aa)n 

(29) (ba ab) 3n-2 aa ba ~ (aa ba) 3n-1 
( a "f b ) , ( 27 ) , 

(30) (aa ba) 3n-1 ~ aa ba 

(31) (ab ba)3n-2 ab aa ab~ ab aa ab (a¥ b) 

(32) (ab ba)3n-2 ab aa ba ., ab aa ba 

(33) (ab ba)3n-2 ab aa ~ ab aa (a ¥ b) 

(34) (ab ba)3n-2 ab~ ab (a:::; b) 

( )3n-2 (35) aa ba ba ~ aa ba pa ab ba (a¥ b) 

( 6 ) ( )3n-2 ( )3n-2 3 aa ba ba ab ba ~ ba ab ba ab ba 

( 37) ba ab aa ~ ba ab ba ( a ¥ b) 

, (13), 

, (28), (29), (7), 

, (27), (3), 

, (30), (13), 

, ( 31 ) , ( 32) , R 1 , 

, (27), (33), R1, 
, (34), 

, (3), (4), 

, (4), (35), (36), 
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(38) (ba ab)3n-2 aa ~ ba (a¥ b) 

(39) (ba ab) 3n-2 aa ba ~ aa ba 

(40) ba ba ~ aa ba (a¥ b) 

(41) (ba)3n ~ (ba) 2 

(42) (aa ba ab)n ~ aa(ba ab aa)n-1 ba ab 

(43) ba ab~ (ba)3n-1 ab 

(44) (ba)3n- 1 ~ ba (a ¥ b) 

(45) (aa) 3n ~ aa aa 

(46) (aa) 3n- 1 ba ~ aa ba (a¥ b) 

( 4 7 ) ( aa) 3n- 1 ~ aa 

(48) (ab) 3n- 1 ~ ab 

Hence, { C 1 

1 
} I- (ab) 3n- 1 ~ ab. 

,n 

b. 

(49) (ab)3n-2 ~ ab 

(50) (ab) 3n-2 ab~ ab 

( 51 ) ab ab ~ ab 

(52) ab ba ab ~ ab ab ab 

(53) ab ba ba ~ ab ab ba 

(54) ab ba ~ ab 

Hence , { C ' 1 , C ' 2 } \-,n ,n 
(55) cb ac ab ~ ab cb 

(56) ab cb ac ~ cb ac 

(57) be ab cb ~ be ab 

(58) be ab cb ac ~ be ac 

(59) be ab cb ac ~ be ab ac 

(60) be ab ac ~ ac be 

(61) ac be~ be ac 

A1 • 

Hence, {c 1

1 ~ c• 2 } ~ A4. ,n ,n 

c. 

(62) cb ab ca~ ab ba ca 

(63) ba aa ba ~ aa aa ba 

( 64 ) ab ab aa ~ ab ba aa 

(65) aa ba ab~ ba ab ab 

(66) (aa ba ab)n aa ~ ba aa 

, ( 34), ( 37), 
, (30), (13), 
, (38), (39), 
, (7), (4), (40), 

, (42), (5), (40), 
, (41), {43), R1, 

C' 
' l,n' 
, ( 40) , ( 41 ) , 

, (45), {46), R1, 
, ( 44 ) , ( 4 7) • 

'C'2 n' 
' , (48), 

, (49), (50), 
, (37), (4), (40), 
, (51), 
, (52), {53), R1, (51). 

, ( 1 ) , ( 54), 

' C , 1 ,n , ( 51 ) , 
, c1

1 
, (51), ,n 

, ( 56) , ( 54), 
, ( 57), 
, (55), 
, (58), (59), (60). 

' DI 1 , ,n 
, ( 62), 
, (62), 
, (62), 

' DI 1 , ,n 



(67) (ab aa ba)n ab~ ab ab 

(68) (ba ab aa)n ba ~ aa ba 
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(69) ba (aa ba ab)n aa ~ aa (aa ba ab)n aa 

(70) ba ba aa ~ aa ba aa 

(71) ab ab (aa ba ab)n aa ~ ab ba (aa ba ab)n aa 

(72) ab ab ba aa ~ ab ba ba aa 

(73) ba aa ba ab~ ba ba ab ab 

( 74) ba aa ba ab ~ aa aa ba ab ~ aa ba ab ab ~ 

ba ab ab ab 

(75) ba ba ab ab ~ ba ab 

(76) ba ba ab bb ~ ba ab 

(77) ba ba ab ~ ba ab ab 

(78) ba ba bb ~ ba ab bb 

(79) ba ba ~ ba ab 

(80) aa ba ba ~ ba ba ba 

(81) aa ba ab~ ba ba ab 

(82) aa ba ~ ba ba 

( 83) (ab) 3n+ 1 ~ ab ab 

(84) (ab) 3n ba ~ ab ba 

(85) (ab) 3n ~ ab (a "f b) 

(86) (aa) 3n aa ~ aa aa 

( 87) (aa) 3n ba ~ aa ba 

( 88) ( aa) 3n ~ aa 

( 89) (ab) 3n ~ ab 

ab ab 

ab bb 

Hence, {D' 1 } J- (ab) 3n ~ ab. ,n 

d. Follows as usual. 

This completes the proof of theorem 6.3. 

, DI 1 ' ,n 
, DI 1 ' ,n 
, (63), 
, ( 69) , ( 66) , 
, ( 64), 
, (71), (66), 
, (65), 

, (63), (65), (65), 
, (73), (74), 

, (72), 
, (75), (76), R

1
, 

, ( 64), 

, (77), (78), R
1

, 

, ( 65) , ( 79) , 
, ( 80), ( 79), 
, (80), (81), R

1
, 

, ( 67) , ( 79) , ( 82) , 
, (83.), (79), 
, (83), (84), R

1
, 

' DI 1 ' ,n 
, ( 85), ( 82), 
, (86), (87), R

1
, 

, ( 85) , ( 88). 

Finally, theorem 6.4 gives the analogon of lemma 3.6. 
Consider the following equivalence: 

c1
3 

: (ab be ca)2n ~ ac (a 1 c). ,n 

We shall show that c1

3 
can be derived from C' 1 and c1

2 , and, ,n ,n 
conversely, that c1

2 can be derived from c1
1 and c1

3 
: ,n ,n 
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Theorem 6.4. For each integer n .::_ 1: 

1• {C'1,n' C'2} ~ C'3,n• 

2. {C'1,n' C'3,n} r C'2• 

Proof. 

1. We prove that (ab be ca) 2n ~ ac (a~ c) can be derived from c1
1 ,n 

and c• 2. It is easy to verify this for a= b orb= c. From now on 

we suppose that a, b, care all different, and that x, y, z are arbitrary 

variables, different from a, b, c. 

( 1) A
1 

(2) A4 
(3) (ab be ca) 2n-2 (ba cb ac)n-1~ 

, theorem 6. 1 , 

, theorem 6. 1 , 

( )2n-4 ab be ca ab be ca ab be 1 )n-2 ca ba cb ac ,~ba cb ac ~ 

( )2n-4 ( )n-2 ab be ca ~ ba cb ac ~ 

••• ~ (ab be ca)2 ba cb ac ~ 

be ac 

(4) (ab be ca)2n-2 (cb ac ba)n- 1 ~ 

( )2n-4 ab be ca ab be ca ab be / )n-2 ca cb ac ba \e"b ac ba ~ 

( )2n-4 ( . )n:::2 · ab be ca ~ cb ac ba ~ 

••• ~· (ab be ca)2 cb ac ba ~ 

ab ca 

(5) ab cd ~ cd ab (a~ c, a~ d, b ~ c) 

(6) (ab be )2n ca ax by ~ 

(ab be ca )2n-1 ab be ca ax by~ 

(ab be ca )2n-1 ab ca ax by ~ 

(ab be ca )2n-1 (cb ac ba)n ax by~ 

ab be ca ab ca cb ac ba ax by~ 

ax by 

(7) (ab be )2n ca ax cz ~ 

(ab be ca )2n-2 ab be ca ab be ca ax cz ~ 

(ab be ca )2n-2 ab be ( ba c b ac ) n ax c z ~ 

(ab be ca )2n-2 ( )n-1 ab ba c b ac ba c b ac 

(ab be ca )2n-2 ( )n-1 cb ac ba ax cz ~ 

ab- Cfl, ax CZ 

, A1, A4, C'2, 

, A
3 

is not used in the 

proof of lemma 3.1, 

ax cz ~ 



,, 
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)2n ca by CZ ~ 

)2n-2 
ca ab be ca ab be ca by cz ~ 

)2n-2 ( )h ca ab ac ba cb by cz ~ 

( 8) (ab be 

(ab be 

(ab be 

(ab be 

(ab be 

)2n-2 ( )n-1 ca ab ac ba cb ac ba cb by cz ~ 

)2n-2 ( )n-1 ca ba cb ac . by cz ~ 

be ac by cz 

(9) (ab be ca) 2n ax ~ ac ax 

(10) )2n (ab be ca by ~ ac by 

( 11 ) (ab be caln ~ ac 

Hence, {C' 1 , C' 2} }- c 1
3 

• ,n ,n 

2. We now prove that {c'1 , C' } f- C'2• 
(ab) 3n- 1 ~ ab 

,n 3,n 
( 1 ) 

(2) (ab be ca)2n ab ~ ac ab (a ::/- c) 

(3) (ab be ca) 2n ab,, ab(bc ca ab)2n ~ ab ba 

(a ::/- b) 

(4) ac ab~ ab ba (a::/- b, a::/- c) 

(5) ab ab ~ ab ba 

(6) ab aa ab ~ ab ba ab 

(7) aa ba ~ ba ba 

(8) (aa ab ba) 2n ~ ab (a::/- b) 

(9) (aa ab ba aa ab ba)n ~ ab (a ::/- b) 

(10) (aa ab ab aa ab ab)n ~ ab (a ::/- b) 

(11) (aa (ab) 5 )n ~ ab (a::/- b) 

(12) aa (ab) 6n-1 ~ ab (a::/- b) 

( 13) aa (ab) 3 ~ ab (a::/- b) 

( 14) ab aa (ab) 3 ~ (ab)~ (a::/- b) 

( 1 5 ) ( ab·) 5 ~ ( ab ) 2 ( a ::/- b ) 

( 16) {ab)4 ba ~ ab ~ba (a::/- b) 

( 17 ) ( ab ) 4 ~ ab ( a ::/- b) 

(18) (ab)6 •· (ab) 3 (a::/- b) 

( 1 9) ( ab) 6n ~ ( ab ) 3n ( a ::/- b) 

(20) (ab) 4 
~ (ab)2 (a::/- b). 

(21) (ab) 2 ~ ab (a ::/- b) 

, A1, A4, C' 2, (5), (3), 
, (6), (7), R

1
, 

, (6), (8), R
1

, 

, ( 9), ( 1 0), R
1 

• 

, theorem 6. 3, 

'C'3 ' ,n 

'C'3 , ,n 
, (2), (3), 

, ( 4) with b = c, 

, theorem 6.3 (3), 

, theorem 6.3 (40), 

'C'3 with a= b ,n 
c replaced by b, 

' (8), 
, (5), (9), 

, (10), (6), (5), 
, (11), (6), (5), 

, (12), (1), 

, (13), 

, (14), (6), 

' ( ~;)' 
, (15), (16), R

1
, 

' (17), 

, (18), 

, (19), (1), 

, (17), (20), 

and 



36 

(22) aa aa ab ~ aa ab (a ':/ b) 
' 

(13), (21), 

( 23) aa aa ba ~ aa ba (a ':/ b) 
' 

(7), (21), 

(24) aa aa ~ aa , (22), (23), R1' 
(25) ab ab ~ ab 

' 
(21 ) , (24), 

(26) ab ac ~ ab (ab be ca) 2n ~ (ab be ca) 2n ~ 

ac(a;i!c) ' Ct 3 ' ,n (25), 

(27) ab ac ~ ac (a=/ c) , ( 26). 

Henc.e , { C 1 

1 , C ' 3 } J- C ' 2• ,n_ ,n 

This completes the proof of theorem 6.4. 
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