
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Translating logic programs into conditional rewriting systems

F. van Raamsdonk

Probability, Networks and Algorithms (PNA)

PNA-R9803 April 30, 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301664554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report PNA-R9803
ISSN 1386-3711

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Translating Logic Programs into Conditional Rewriting Systems

Femke van Raamsdonk

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

In this paper a translation from a subclass of logic programs consisting of the simply moded logic programs into

rewriting systems is de�ned. In these rewriting systems conditions and explicit substitutions may be present.

We argue that our translation is more natural than previously studied ones and establish a result showing its

correctness.

1991 Mathematics Subject Classi�cation: 68Q42, 16S15.

1991 Computing Reviews Classi�cation System: D.1.6, I.2.2, I.2.3, F.3.2.

Keywords and Phrases: logic programming, rewriting, program transformation.

Note: This research was supported by NWO/SION project number 612-33-003, entitled `Parallel declarative

programming: transforming logic programs to lazy functional programs'. A shorter version of this paper

appeared as [16].

1. Introduction

Logic and functional programming are both instances of declarative programming and hence it is not
surprising that the relationship between them has been studied. However, the work so far has in our
opinion not yet resulted in clear cut and simple to state results clarifying this relationship. Moreover,
most of the work in the area concerns only termination of logic programming, via a translation into
term rewriting systems. See Section 5 for a discussion of related work.

The aim of the present paper is to relate in a precise way the operational semantics of logic program-
ming, resolution, to the operational semantics of functional programming, rewriting, thus abstracting
from the syntactic details of particular programming languages. We discuss extensively the merits
and de�ciencies of possible translations and argue that the use of conditions and explicit substitutions

makes it possible to design a natural and intuitive translation. Our translation can be used as a basis
for an alternative implementation of a subset of logic programming via a translation to functional
programs.

We provide a rigorous result showing the correctness of our translation. This result states that one
resolution step using a clause C is translated into one or more rewrite steps, all using the rewrite rule

C�, which is the translation of C. Hence in particular termination of a logic program is implied by
termination of its translation. Moreover, a successful resolution sequence is translated into a rewriting
sequence that ends in an expression in normal form, from which the computed answer substitution
can be read immediately.

2. Preliminaries

We assume the reader to be familiar with logic programming and refer to [2] for an overview. In this
section we �x the notation and give the de�nitions that are less well-known.

We assume a set V consisting of in�nitely many variables written as x; y; z; : : : . A logic program is
a triple of the form (F ;R; C) with (f; g 2) F a set of function symbols, (r; f; g 2) R a set of relation
symbols and (C;C 0 2) C a set of clauses over (F ;R). Queries are denoted by Q;Q0; : : : , and the empty
query is written as 2. Terms are denoted by s; t; : : : and atoms by a; b; : : : .

2

Substitutions are denoted by �; �; : : : . The identity substitution is denoted by �, and the composition
of substitutions � and � is denoted by �� . The result of applying a substitution � to a term s is denoted
by s�.

The set of free variables occurring in an expression X is denoted by V(X). We denote the union of
the variables in the domain and the variables in the codomain of a substitution � by V(�).

The relation symbols of the logic programs considered in this paper use some arguments as input
and some arguments as output. This is formalized using the notion of modes. Modes were introduced
by Mellish [14] and further studied by Reddy [17]. A base mode is either input, denoted by #, or
output, denoted by ". An m-ary mode is a product, denoted using �, of m base modes. Without loss
of generality, an m-ary mode is of the form # � : : :� # � " � : : :� " with �rst p times # and then
q times ", and p + q = m. Such a mode is denoted by (p; q). In the remainder of this paper, every
relation symbol is supposed to have a �xed mode. The following convention will be used.

Notation 2.1. If r is a relation symbol of mode (p; q), then r(~s;~t) denotes the atom with terms
~s = s1; : : : ; sp in the input positions of r and terms ~t = t1; : : : ; tq in the output positions of r. Note
that p and q may be zero. The length of a sequence ~s is denoted by j~sj.

One of the main di�erences between logic programming and rewriting is that the resolution relation of
a logic program is de�ned using uni�cation whereas the rewrite relating of a rewriting system is de�ned
using matching. Apt and Etalle identify in [3] several classes of Prolog programs for which uni�cation
can be replaced by iterated matching. One of these classes consists of programs that are well-moded
and satisfy in addition another restriction; in the present paper these programs are said to be simply

moded. The class of simply moded logic programs is used as the domain of the translation de�ned
in Section 4. For the de�nition of simply modedness we �rst need the de�nition of well-modedness,
which is originally due to Dembi�nski and Ma luszy�nski [9]. The following de�nition is taken from [2].
Intuitively, well-modedness is a restriction concerning the ow of information in a program.

De�nition 2.2.

1. A query r1(~s1;~t1); : : : ; rm(~sm;~tm) is said to be well-moded if

V(~si) �

i�1[

j=1

V(~tj)

for every i 2 f1; : : : ;mg.

2. A clause r0(~t0; ~sm+1) r1(~s1;~t1); : : : ; rm(~sm;~tm) is well-moded if

V(~si) �

i�1[

j=0

V(~tj)

for every i 2 f1; : : : ;m + 1g.

3. A logic program (F ;R; C) is well-moded if every clause in C is well-moded.

Note that if r1(~s1;~t1); : : : ; rm(~sm;~tm) is a well-moded query, then V(~s1) = ;. The concept of well-
modedness is important because computing well-moded queries in well-moded programs yields com-
puted answer substitutions that are ground (see [2]). Modes play an important rôle in the programming
language Mercury [18]. Now we impose further restrictions on programs and queries as follows.

De�nition 2.3.

1. A query r1(~s1;~t1); : : : ; rm(~sm;~tm) is said to be simply moded if

2. Preliminaries 3

(a) it is well-moded,

(b) the terms ~t1; : : : ;~tm are distinct variables.

2. A clause r0(~s0;~t0) r1(~s1;~t1); : : : ; rm(~sm;~tm) is simply moded if

(a) it is well-moded,

(b) the terms ~t1; : : : ;~tm are distinct variables not occurring in ~s0.

3. A logic program (F ;R; C) is simply moded if every clause in C is simply moded.

Note that our terminology di�ers from the one used in [3]: simply moded in the sense of De�nition
2.3 is equivalent to the conjunction of well-modedness and simply modedness in the sense of [3]. It
is possible to transform well-moded programs into simply moded programs. In the present paper we
won't discuss this issue; we just restrict attention to simply moded logic programs and queries. The
following notion of resolution will be used.

De�nition 2.4. Let (F ;R; C) be a simply moded logic program. A resolution step is de�ned as a
pair written as

hQ;�i)C hQ
0;�0i

with Q;Q0 queries, �; �0; � substitutions and C a clause in C such that:

1. V(C) \ V(hQ;�i) = ;,

2. Q = a1; a2; : : : ; an,

3. C = h b1; : : : ; bm,

4. � is a most general uni�er of h and a1,

5. Q0 = b1�1; : : : ; bm�1; a2�2; : : : ; an�2,

6. �0 = ��2,

with �1 the substitution � restricted to V(h) and �2 the substitution � restricted to V(a1).

A sequence of resolution steps is called a resolution sequence. A resolution sequence is successful if it
ends in h2;�i, for some substitution �. We write) instead of)C if it is clear or irrelevant which
clause is used in the resolution step.

A few remarks concerning the previous de�nition are appropriate. First, note that always the
leftmost atom is selected. Second, the expressions that are transformed are pairs consisting of a
query and a substitution. In some other de�nitions of the resolution relation, see for instance [2],
the expressions that are transformed are queries. We consider the �rst option to be more natural;
moreover it is closer to actual implementations. Third, we make essential use of the form of simply
moded clauses and programs, which also ensures that instead of uni�cation iterated matching can
be used, as shown by Apt and Etalle in [3]. Suppose, using the notation of De�nition 2.4, that
a1 = r(~s1;~t1) and h = r(~s;~t) are uni�able. Then to start with ~s1 and ~s are uni�able, which means,
since V(~s1) = ;, that there is a substitution �1 such that ~s�1 = ~s1. We call this substitution the
matching substitution since it matches the input part of the head of a clause with the input part of
an atom. Second, since ~t1 are distinct variables, the substitution �2 that assigns ~t�1 to ~t1 is a uni�er
of ~t1 and ~t�1. Because �2 expresses which values are computed for the variables ~t1, we call �2 the
computation substitution. Note that the domains of �1 and �2 are disjoint.

In the remainder of the paper we will tacitly make use of the following result, which combines results
of [2] and [3]. The de�nition of resolution we employ in this paper permits to give a slightly simpler
proof.

4

Theorem 2.5. Let (F ;R; C) be a simply moded logic program and let Q be a simply moded query. If

hQ;�i) hQ0;�0i, then the query Q0 is also simply moded.

Proof. Let (F ;R; C) be a simply moded logic program. Let Q = a1; : : : ; an be a simply moded
query with ai = ri(~si;~ti) for every i 2 f1; : : : ; ng. Let hQ;�i) hQ0;�0i be a resolution step using a
clause C = h b1; : : : ; bm with h = r1(~u;~v) and bi = r0i(~ui; ~vi) for every i 2 f1; : : : ;mg. We have
Q0 = b1�1; : : : ; bm�1; a2�2; : : : ; an�2 with � a most general uni�er of a1 and h, split in a matching
substitution �1 and a computation substitution �2.

Since C is well-moded, we have for every i 2 f1; : : : ;mg:

V(~ui) �

i�1[

j=1

V(~vj) [V(~u):

Hence we have for i 2 f1; : : : ;mg:

V(~ui�1) �

i�1[

j=1

V(~vj�1) [V(~u�1)

=

i�1[

j=1

V(~vj�1):

Further, we have

V(~v) �

m[

j=1

V(~vj) [V(~u):

Moreover, since Q is well-moded, we have for every i 2 f1; : : : ; ng:

V(~si) �

i�1[

j=1

V(~tj):

This yields for i 2 f2; : : : ; ng:

V(~si�2) �

i�1[

j=1

V(~tj�2)

= V(~t1�2) [

i�1[

j=2

V(~tj�2)

= V(~v�1) [

i�1[

j=2

V(~tj�2)

�

m[

j=1

V(~vj�1) [V(~u�1) [

i�1[

j=2

V(~tj�2)

=

m[

j=1

V(~vj�1) [

i�1[

j=2

V(~tj�2):

Hence Q0 is well-moded.
Since C is simply moded, the variables ~v1; : : : ; ~vm are not in the domain of the assignment �1. Since

Q is simply moded, the variables ~t2; : : : ;~tn are not in the domain of the substitution �2. Because
moreover C and Q have no variables in common, terms in output positions of atoms in Q0 are di�erent
variables. We conclude that Q0 is simply moded. 2

3. Conditional Rewriting 5

3. Conditional Rewriting

In this section we de�ne conditional rewriting systems that will serve as the codomain of the translation
de�ned in Section 4. They di�er from the usual ones in several respects. First, conditions are treated
on an object-level instead of on a meta-level. Second, the expressions that are transformed are not
terms, but environments with conditions. Moreover, the conditions may contain explicit substitutions.

We assume a set V consisting of in�nitely many variables written as x; y; z; : : : and a set T =
fTi j i � 0g of symbols for tupling. The arity of Ti 2 T is i. A conditional rewriting system is
speci�ed by a pair (F ;RR) consisting of a set of function symbols and a set of conditional rewrite
rules. We assume that T � F . The set of terms is denoted by Terms and terms are denoted by s; t; : : :

as in the previous section. We write T instead of T0 and s instead of T1(s).
We assume further a binary operator
 on the set of terms. A condition is a term or c
 d with

c and d conditions. The set of conditions is denoted by Con and conditions are denoted by c; d; : : : .
Note that Terms � Con. We will make use of the following syntactic constructs.

De�nition 3.1.

1. An environment is inductively de�ned as follows.

(a) [] is an environment (the empty environment),

(b) if e is an environment, x1; : : : ; xm (for some m > 0) are variables and s is a term then
e [Tm(x1; : : : ; xm) := s] is an environment.

Environments are denoted by e; e0; : : : .

2. A condition with explicit substitutions is a pair consisting of a condition c and an environment
e, denoted using juxtaposition by ce. Conditions with explicit substitutions are like conditions
denoted by c; c0; : : : . Terms with explicit substitutions are denoted as terms without explicit
substitutions.

3. A conditional term is a pair consisting of a term and a condition, where both the term and the
condition may contain explicit substitutions. A conditional term is denoted by s(c.

4. A conditional environment is a pair consisting of an environment and a condition, where the
condition may contain explicit substitutions. A conditional environment is denoted by e(c.

We write s instead of s (T and e instead of e (T. Further we will work modulo the following
equations:

c
 c0 = c0
 c

(c
 c0)
 c00 = c
 (c0
 c00)

c
 c = c

c
 T = c

ce
 c0e = (c
 c0)e

ce
 c0 = (c
 c0)e

e[Ti(~x) := s~e] = e[Ti(~x) := s]~e

[Ti(~x) := Ti(~s)] = [x1 := s1] : : : [xi := si]

6

We assume a hygienic treatment of variables, for instance in ce
 c0 = (c
 c0)e variables bound by e

are supposed not to occur in c0. The de�nition of a conditional rewrite rule is as follows.

De�nition 3.2. A conditional rewrite rule is a pair l ! (r (c) such that

1. l is a non-variable term,

2. r (c is a conditional term,

3. V(r (c) � V(l).

A function symbol that occurs as the head-symbol of the left-hand side of a conditional rewrite rule is
said to be a de�ned symbol. A function symbol that is not a de�ned symbol is a constructor symbol.
We assume the symbols in T to be constructor symbols. A context is an expression with one hole in
it. The result of replacing the hole [] in a context C[] by an expression X is denoted by C[X].

De�nition 3.3. Let (F ;RR) be a conditional rewriting system. The rewrite relation ! on condi-
tional environments is de�ned as follows. We have

(e(c) !� (e0 (d�
 c0)

if there is a rewrite rule � = l! (r (d) in RR, a substitution � and a context C[] such that

1. (e(c) = C[l�],

2. (e0 (c0) = C[r�].

The relation ! is de�ned as the union [�2RR !�.

The transitive closure of a relation! is denoted by!+ and the reexive-transitive closure is denoted
by !�. Note that we consider only one level of conditions. For instance, we have e(c1
 c2 instead
of (e (c1) (c2. A conditional environment that cannot be rewritten is said to be in normal form.
Note that a conditional environment without de�ned symbols is in normal form.

Example 3.4. As an example, we consider the conditional rewriting system de�ned by the following
rewrite rules:

a ! (b(c)

c ! T

We have the following rewrite sequence:

[x := a]! ([x := b](c)! [x := b]:

We consider environments instead of simply terms because this permits to de�ne a natural translation
of substitutions in logic programming. The choice to consider conditions on object- instead of on a
meta-level is also motivated by the translation; this permits to translate one resolution step into one or
two rewrite steps. However we claim that also from di�erent perspectives it can be useful to consider
conditions on object-level, for instance if one is interested in the cost of a computation in terms of
the number of rewrite steps. Then it is clearly important to take also the steps performed to check
a condition into account. A similar form of condition rewriting, called reduction without evaluation
of the premise, is introduced by Bockmayr in [7] (see also [8]) in order to relate conditional rewriting
and conditional narrowing. A variant of the relation introduced by Bockmayr is used by Middeldorp
and Hamoen in [15].

4. Translation 7

4. Translation

In this section we de�ne the translation from simply moded logic programs into conditional rewriting
systems as de�ned in the previous section.

Translating the Alphabet. The symbols used in a logic program are variables, function symbols
with a �xed arity and relation symbols with a �xed mode. These symbols should be translated into
symbols used in a conditional rewriting system. We suppose variables to be universal. Both the
function symbols and the relation symbols of a logic program are translated into function symbols as
follows.

De�nition 4.1.

1. A variable x is translated into itself.

2. A function symbol f 2 F of arity m is translated into a function symbol f� of arity m.

3. A relation symbol r 2 R of mode (p; q) is translated into a function symbol r� of arity p.

The set ff� j f 2 Fg is denoted by F� and the set fr� j r 2 Rg is denoted by R�. We will write f

and r instead of f� and r�. The translation of the alphabet is extended homomorphically to the set
of atoms. Note that the translation is the identity on the set of terms of a logic program.

Translating Clauses. The dynamics of a logic program is prescribed by its set of clauses. In a
rewriting system, the rewrite rules determine how expressions can be transformed. We will de�ne how
to translate simply moded clauses into conditional rewriting rules with explicit substitution as de�ned
in Section 3. First we motivate the use of the three main particularities of the class of rewriting
systems used as codomain: tupling, conditions and explicit substitutions.

First we discuss the use of tupling. Consider a clause of the form h , with an empty body. Such
a clause is of the form

f(s1; : : : ; sp; t1; : : : ; tq)

with the �rst p arguments input and the last q arguments output. The natural translation of such a
clause is

f(s1; : : : ; sp)! Tq(t1; : : : tq)

with Tq a symbol for tupling of arity q as de�ned in Section 3. We identify the tuple of arity 0
(T0) with `true'. Hence a simply moded clause (F ;R) will be translated into a rewrite rule over the
alphabet F� [R� [T with T = fTi j i � 0g as de�ned in Section 2.

Second we discuss the use of conditions. As an example we consider the following logic program:

even(0)

odd(s(x)) even(x)

with modes even; odd: #. This program is translated into the following conditional rewriting system:

even(0) ! T

odd(s(x)) ! T (even(x)

Intuitively, the resolution sequence

hodd(s(0)); �i) heven(0); �i) h2; �i

8

corresponds to the rewrite sequence

odd(s(0))! (T(even(0))! T:

Note that the use of conditions on an object level is essential, if we want every resolution step to
correspond to at least one rewriting step. Using `normal' conditional rewriting, the second rewrite
step would take place on a meta-level and would hence not be observable.

Third we discuss the use of explicit substitutions. As an example we consider the logic program for
addition of natural numbers:

add(0; x; x)

add(s(x); y; s(z)) add(x; y; z)

with mode add: # � # � ". A naive but elegant way of translating this logic program yields the
following conditional rewriting system:

add(0; x) ! x

add(s(x); y) ! s(z) (add(x; y)!� z

Note that this conditional rewriting system is not in the format de�ned in Section 2; it is in fact a
conditional rewriting system with so-called extra variables, since the variable z in the last rewrite rule
does not appear in the left-hand side. This is, ignoring some notational di�erences, the translation
used by Ganzinger and Waldmann in [10]. Although for the purpose of that paper, which is to provide
a method to prove termination of logic programs, this translation is satisfactory, for the purposes of
the present paper it is not, for the following reasons. First, every successful resolution sequence
starting in a simply moded query is translated into a rewrite sequence consisting of one rewrite step,
so the translation does not give any indication of the cost of a computation expressed in the number
of transformation steps. This is the case since resolution steps at object-level are translated into
rewriting steps at meta-level. Second, we think that the conditional part of a rewriting rule should
be used to check a condition and not to calculate the value of a variable. Reconsidering the second
rewrite rule reveals that the problems mentioned above can be solved by turning the condition of the
second rewrite rule into a substitution, yielding the following rewrite rule:

add(s(x); y)! s(z)[z := add(x; y)]:

If the condition is evaluated in the usual way, then this rewrite rule takes the following form:

add(s(x); y)! s(add(x; y)):

In this way the logic program for addition is translated into the usual rewriting system for addition.
However, we choose not to evaluate the conditions in right-hand sides of rewrite rules for the following
reason. Translating the clause

f(x; a) f(a; y)

with mode f : # � " into a rewrite rule with explicit conditions yields

f(x) ! a[y := f(a)]:

If the condition is evaluated, the rule takes the form

f(x) ! a:

Hence if the substitution is evaluated, a non-terminating logic program is translated into a terminating
rewriting system: the resolution sequence

hf(a; a); �i) hf(a; a); �i) : : :

4. Translation 9

corresponds intuitively to the rewriting sequence

f(a)! a

which ends in normal form after one rewrite step. If the substitution is not evaluated, the in�nite
resolution sequence above corresponds intuitively to the in�nite rewrite sequence

f(a)! a[y := f(a)]! a[y := a[y0 := f(a)]] : : :

in which almost all rewrite steps take place in `garbage'. Finally, the order in which the explicit
substitutions occur in the translation of a clause is determined by the ow of information, which is in
simply moded clauses from left to right. See for an illustration Example 4.3.

This discussion motivates the following de�nition of the translation of a moded (not necessarily
simply moded) clause.

De�nition 4.2. Let

C = h b1; : : : ; bm

with h = r(~s;~t) and m � 0 be a moded clause over (F ;R) with distinct variables in the output
positions of the body. De�ne for every p 2 f1; : : : ;m + 1g: Cp = h bp; : : : ; bm.

1. The translation of Cp, denoted by C�
p , is de�ned by induction on m + 1� p.

(a) Suppose that p = m + 1. The translation of Cp is de�ned as follows:

C�
p = r(~s)! Ti(~t) with i = j~tj:

(b) Suppose that 1 � p < m + 1 and let C�
p+1 = lp+1 ! (rp+1 (cp+1).

i. If bp = rp(~sp;~tp) with j~tpj = i > 0, then

C�
p = lp+1 ! rp+1[Ti(~tp) := rp(~sp)](cp+1[Ti(~tp) := rp(~sp)]:

ii. If bp = rp(~sp), then

C�
p = lp+1 ! (rp+1 (rp(~sp)
 cp+1):

2. The translation of C, denoted by C�, is de�ned as follows: C� = C�
1 .

Note that we have lp = r(~s) for every p 2 f1; : : : ;m+1g in the previous de�nition. Another observation
is that the relation symbols of a logic program which are de�ned by clauses are translated into de�ned
symbols, and that its function symbols are translated into constructor symbols.

Example 4.3. Consider the simply moded clause

C = f(x; z) g(x; y); h(y); g0(y; z)

with modes f; g; g0: # � " and h: #. Following De�nition 4.2, we �nd the following:

C4 = f(x; z) C�

4 = f(x)! z

C3 = f(x; z) g0(y; z) C�

3 = f(x)! z[z := g0(y)]

C2 = f(x; z) h(y); g0(y; z) C�

2 = f(x)! z[z := g0(y)](h(y)

C1 = f(x; z) g(x; y); h(y); g0(y; z) C�

1 = f(x)! z[z := g0(y)][y := g(x)](

h(y)[y := g(x)]

Hence C� = f(x)! z[z := g0(y)][y := g(x)](h(y)[y := g(x)].

10

The following result states that the translation of a simply moded clause is a conditional rewrite rule.

Proposition 4.4. Let C be a simply moded clause. Then C� is a conditional rewrite rule.

Proof. Let C = h b1; : : : ; bm with h = r(~s;~t) and m � 0 be a simply moded clause. Its
translation C� is of the form l ! (r (c) with l = r(~s). It is clear that l 62 V . It remains to be
shown that V(r (c) � V(l). This is proved by induction on the de�nition of the translation of
C. Let Cp = h bp; : : : ; bm and C�

p = lp ! (rp (cp) for every p 2 f1; : : : ;m + 1g. Let further

bp = rp(~sp;~tp), possibly with j~tpj = 0, for every p 2 f1; : : : ;mg. We prove the following:

V(rp (cp) � V(~t1) [: : : [V(~tp�1) [V(~s)

for every p 2 f1; : : : ;m + 1g.

1. Suppose that p = m + 1. We have Cp = r(~s;~t) and

C�
p = r(~s)! (Ti(~t)(T)

with i = j~tj. Since C is well-moded, we have

V(~t) � V(~t1) [: : : [V(~tm) [V(~s)

= V(~t1) [: : : [V(~tp�1) [V(~s):

Hence V(rp (cp) � V(~t1) [: : : [V(~tp�1) [V(~s).

2. Suppose that 1 � p < m + 1. The induction hypothesis is:

V(rp+1 (cp+1) � V(~t1) [: : : [V(~tp) [V(~s):

Consider bp = rp(~sp;~tp) possibly with j~tpj = 0. Since C is well-moded, we have that

V(~sp) � V(~t1) [: : : [V(~tp�1) [V(~s): (4.1)

Two cases are distinguished.

(a) j~tpj = 0. Then

C�
p = lp+1 ! (rp+1 (rp(~sp)
 cp+1):

Because j~tpj = 0, we have V(rp+1 (cp+1) � V(~t1) [: : : [V(~tp�1) [V(~s). Together with
4.1, this yields V(rp (cp) � V(~t1) [: : : [V(~tp�1) [V(~s).

(b) j~tpj = i > 0. Then

C�
p = lp+1 ! rp+1[Ti(~tp) := rp(~sp)](cp+1[Ti(~tp) := rp(~sp)]:

The combination of the induction hypothesis and 4.1 yields that V(rp (cp) � V(~t1)[: : :[
V(~tp�1) [V(~s).

Finally note that C� = C�
1 = l1 ! (r1 (c1) and V(r1 (c1) � V(~s) = V(l1). 2

4. Translation 11

Translating Queries and Substitutions. In a resolution step, a pair consisting of a query and a
substitution is transformed into another pair consisting of a query and a substitution. We now de�ne
the translation of such pairs into conditional environments. First, a substitution is translated into a
conditional environment as follows.

De�nition 4.5. Let � = fx1 7! s1; : : : ; xm 7! smg be a substitution. Its translation, denoted by ��,
is de�ned as follows:

�� = [x1 := s1] : : : [xm := sm]:

Note that the translation of a substitution is a conditional environment in normal form, since a term
in a logic program is translated into a term not containing de�ned symbols.

A moded query is also translated into a conditional environment.

De�nition 4.6. Let Q = a1; : : : ; am with m � 0 be a moded query over (F ;R) with distinct variables
in the output positions. De�ne for every p 2 f1; : : : ;m + 1g: Qp = ap; : : : ; am.

1. The translation of Qp, denoted by Q�
p, is de�ned by induction on m + 1� p as follows.

(a) Suppose that p = m + 1. Then:

Q�
p = []:

(b) Suppose that 1 � p < m + 1. Suppose that Q�
p+1 = ep+1 (cp+1.

i. If ap = rp(~sp;~tp) with j~tpj = i > 0, then

Q�
p = ep+1[Ti(~tp) := rp(~sp)](cp+1[Ti(~tp) := rp(~sp)]:

ii. If ap = rp(~sp), then

Q�
p = ep+1 (rp(~sp)
 cp+1:

2. The translation of Q, denoted by Q�, is de�ned as follows: Q� = Q�
1.

Using the previous two de�nitions, the translation of a pair consisting of a query and a substitution
is de�ned as follows.

De�nition 4.7. Let Q be a query with translation Q� = e (c and let � be an substitution with
translation �� = ~e. Then: hQ;�i� = ~e e(c.

One might ask whether the order in which the environments ~e and e are concatenated in the previous
de�nition is essential. This is indeed the case, as shown in Example 4.8. The reason is that we do
not consider concatenation of environments to be commutative; that is, e ~e is not the same as ~e e.
Another natural question is whether splitting the substitution used in a resolution step in a matching
substitution and a computation substitution, as de�ned in De�nition 2.4 is necessary. This is indeed
essential, which is also shown in Example 4.8. In this example we further discuss some slight variations
of the de�nition of resolution and explain why they do not (or do not easily) permit to translate a
resolution step into a non-empty sequence of rewrite steps.

Example 4.8. In this example we make use of the following two clauses:

C1 = f(x; g(y)) h(x; y)
C2 = f(x; g(x))

with modes f; h :# � ". Their translations are as follows:

C�
1 = f(x) ! g(y)[y := h(x)]

C�
2 = f(x) ! g(x)

12

1. First we show that the order in which the environments e and ~e are concatenated in De�nition
4.7 cannot be changed. We have a resolution step

hf(a; z); �i)C1 hh(a; y); fz 7! g(y)gi:

Using De�nition 4.7, this resolution step is translated into the following rewrite step:

[z := f(a)]!C�

1
[z := g(y)][y := h(a)]:

The translation is not correct if hh(a; y); fz 7! g(y)gi is translated into [y := h(a)][z := g(y)].

2. We consider an alternative de�nition of resolution by replacing clause 6 of De�nition 2.4 by

�0 = ��:

Using this alternative de�nition, we have a resolution step

hf(a; z); �i)C1 hh(a; y); fx 7! a; z 7! g(y)gi:

The matching substitution x 7! a is not observable in a rewrite step using this matching substi-
tution.

3. A second alternative de�nition of resolution is obtained by replacing clause 5 of De�nition 2.4
by

Q0 = b1; : : : ; bm; a1; : : : an:

Using this de�nition of resolution, we have the resolution step

hf(a; z); h(z; z0); �i)C2 hh(z; z0); fz 7! g(a)gi:

We need to de�ne hQ;�i� as e~e (c with Q� = e (c and �� = ~e in order to have a cor-
rect translation. However, connecting the translation of the query and the translation of the
substitution in this order is in general not possible, as is shown by considering again 1 above.

4. A third alternative de�nition of resolution is obtained by replacing clause 5 of De�nition 2.4 by

Q0 = b1; : : : ; bm; a1; : : : an

and clause 6 by

�0 = ��:

Using this de�nition, we have a resolution step

hf(a; z); �i)C1 hh(x; y); fx 7! a; z 7! g(y)gi:

The translation of hf(a; z); �i is [z := f(a)]. For the translation of hh(x; y); fx 7! a; z 7! g(y)gi,
there are two alternatives. If the environment is built from the translation of the substitution
and the translation of the query, in that order, we obtain hh(x; y); fx 7! a; z 7! g(y)gi� =
[x := a][z := g(y)][y := h(x)]. Otherwise, in the reverse order, we obtain hh(x; y); fx 7! a; z 7!

g(y)gi� = [y := h(x)][x := a][z := g(y)]. Neither of them is the desired [z := g(y)][y := h(x)][x :=
a]. Note that the problem is present since we consider environments to be lists of declarations;
if the declarations are unordered the problem disappears and this second alternative de�nition
of resolution can be used.

This example of course doesn't show that the translation we employ is the only possible one. However
it illustrates that some subtleties have to be taken into account.

4. Translation 13

The Main Result. The main result is that using the translation of the present paper, a resolution
step using a clause C corresponds to a rewrite sequence consisting of at least one step using the
translation of C. In a diagram:

hQ;�i� !+

C�
hQ0;�0i�

hQ;�i)C hQ0;�0i

? ?

This is expressed in Theorem 4.9 which is proved by induction on the translation of the clause C. In the
proof of this theorem we work modulo the following equations concerning conditional environments:

e1e2[Ti(~x) := Ti(~s)]e3 (c[Ti(~x) := Ti(~s)]e4 = e1[Ti(~x) := Ti(~s)](e2�)e3 ((c�)e4 (4.2)

with � = f~x 7! ~sg.

e1 (ce2 = e1e2 (ce2 (4.3)

Theorem 4.9. If hQ;�i)C hQ
0;�0i, then hQ;�i� !+

C� hQ0;�0i�.

Proof. See the Appendix. 2

Properties of the Translation. A consequence of Theorem 4.9 is that an in�nite resolution sequence
is translated into an in�nite rewrite sequence. Hence termination of a logic program is implied by
termination of its translation.

Further, the translation of h2;�i is a conditional environment in normal form. Hence a successful
resolution sequence is translated into a rewrite sequence ending in an conditional environment in
normal form.

A resolution step concerns by de�nition the leftmost atom of a query, whereas in the codomain
of the translation no rewriting strategy is imposed. As a consequence, the translation of a query
that cannot perform a resolution step is not necessarily a conditional environment in normal form.
Consider for instance the logic program consisting of one clause:

C = b b:

The query a; b cannot perform a resolution step. However, its translation [] (a
 b rewrites in one
step to itself using C� = b! T(b. This means that termination with failure cannot be detected in
the translation.

This problem can be solved by enriching the translation with a marking device. An idea to do this
is as follows. The subterm of the translation of a query corresponding to the ith atom of the query
(from the left) is labelled by i. In the translation of a clause, a variable is added that is meant to
range over labels. The right-hand side of the translation of a clause is labelled as follows: the subterm
corresponding to the ith atom in the body of the clause is labelled by the sequence consisting of the
extra variable followed by i. Then, we impose the strategy that only a subterm with a minimal label
(with respect to the natural extension of the ordering on natural numbers to sequences of natural
numbers) can be rewritten. In fact, this is not a rewrite strategy according to the usual de�nition.
An example clarifying this idea is as follows.

14

f(x; y) g(x); h(x; y)

g(a)

h(a; c)

h(b; c)

with modes f; h :# � " and g :#. Its labelled translation is the following conditional rewriting system:

f(x)l ! y[y := h(x)l2](g(x)l1

g(a)l ! T

h(a)l ! c

h(b)l ! c

with l a variable that is meant to range over labels. The resolution sequence

hf(b; y); �i) hg(b); h(b; y); �i

ends with failure. It is translated into the following rewrite sequence:

[y := f(b)1](T !

[y := z[z := h(b)12]](g(b)11 =

[y := z][z := h(b)12](g(b)11

The conditional environment [y := h(b)12] (g(b)11 cannot be rewritten since the subterm with
minimal label, g(b)11, is in normal form.

Note that the successful resolution sequence

hf(a; y); �i) hg(a); h(a; y); �i) hh(a; y); �i) h2; y 7! ci

is translated into the following rewrite sequence ending in a conditional environment in normal form:

[y := f(a)1](T! [y := h(b)12](g(b)11 ! [y := h(b)12](T! [y := c](T:

If we use the labelled translation as informally described above, a rewrite sequence starting in the
translation of a query Q corresponds to a resolution sequence starting in Q.

We summarize the properties of the translation as discussed above:

� A successful resolution sequence is translated into a rewrite sequence ending in a conditional
environment in normal form.

� An in�nite resolution sequence in translated into an in�nite rewrite sequence.

� Using a marking device it is possible to translate a resolution sequence ending with failure in a
\failing" rewrite sequence.

Optimizing the translation. Finally, the translation of the clauses of a logic program can be put into
a more readable form by evaluating the explicit substitutions in the usual way. Then the statement
of Theorem 4.9 doesn't hold anymore; instead we obtain the weaker result that hQ;�i)C hQ

0;�0i
implies hQ;�i� !�

C� hQ0;�0i�, that is, one resolution step is translated into a (possibly empty) rewrite
sequence.

5. Related Work 15

Example. As an example we consider quicksort. Using the notational conventions of Prolog, this
program consists of the following clauses:

q([], []).

q([X | Xs], Ys) :-

p(X, Xs, Ls, Bs),

q(Ls, Ls'), q(Bs, Bs'),

app(Ls', [X | Bs'], Ys).

p(X, [], [], []).

p(X, [Y | Ys], [Y | Ls], Bs) :-

X >= Y, p(X, Ys, Ls, Bs).

p(X, [Y | Ys], Ls, [Y | Bs]) :-

X < Y, p(X, Ys, Ls, Bs).

app([], Xs, Xs).

app([X | Xs], Ys, [X | Zs]) :-

app(Xs, Ys, Zs).

with modes q: # � ", p: # � # � " � ", app: # � # � ". Translating this program yields a conditional
rewriting system. If we evaluate some of the explicit conditions in this conditional rewriting system,
and use the notational conventions of Gofer, then we obtain the following functional program.

q([]) = []

q(x:xs) = app(q(ls), (x:q(bs)))

where (ls, bs) = p(x, xs)

p(x, []) = ([], [])

p(x, (y:ys)) = ((y:ls), bs) if x >= y

= (ls, (y:bs)) if x < y

where (ls, bs) = p(x, ys)

app([], xs) = xs

app((x:xs), ys) = (x:app(xs, ys))

5. Related Work

The �rst to study the relationship between logic programming and functional programming is Reddy.
In [17], he presents an extensive study concerning modes and modes assignments. Further, he presents
techniques to infer the moding of a logic program given the modes of a goal, and to infer whether a
moding yields ground answer substitutions. This work is later on extended and improved in various
studies of well-moded, simply moded and nicely moded logic programs (see [2]). Moreover, Reddy
de�nes a translation from logic programs to functional programs. The main di�erence between a logic
program and its translation is the notation.

Later work concerning translations from logic programming to functional programming is mainly
concerned with termination of logic programming. Various papers present a translation from logic
programs to rewriting system that permits to derive termination of the logic program from termination
of its translation.

A �rst such result is due to Krishna Rao, Kapur and Shyamasundar. In [11], they de�ne a translation
from well-moded logic programs into (unconditional) term rewriting systems. The translation is
de�ned by means of an algorithm and di�ers from the one presented in the present paper. For
instance, the translation of a relation symbol with more than one output position is not unique. The
translation might transform a terminating logic program into a non-terminating rewriting system.

Ganzinger and Waldmann present in [10] an elegant and simple translation from well-moded logic
programs to conditional term rewriting systems with extra variables. A clause

r0(~s0;~t0) r1(~s1;~t1); : : : ; rm(~sm;~tm)

16

in the notation as used in the present paper is translated into the conditional rewrite rule

rin0 (~s0)! rout0 (~t0)(rin1 (~s1)! rout1 (~t1) : : : r
in
m (~sm)! routm (~tm):

We argued in Section 4 that this translation, although elegant, is not satisfactory for the purposes
of the present paper. Ganzinger and Waldmann use an earlier result by Ganzinger stating that
conditional rewriting systems satisfying some requirement corresponding to well-modedness for logic
programs, are terminating if they are quasi-reductive. In this way a method to infer termination of
logic programs: a logic program is terminating if its translation is quasi-reductive. This method can
be used to prove termination of some logic programs for which the method due to Krishna Rao, Kapur
and Shyamasundar fails. On the other hand, the method due to Ganzinger and Waldmann doesn't
yield termination of all terminating logic programs.

The work by Ganzinger and Waldmann is extended by Avenhaus and Lor��a-S�aenz. In [6], they
show that a quasi-reductive conditional term rewriting system is conuent if every critical pair is
either unfeasible or context-joinable. Together with the earlier work by Ganzinger and Waldmann,
this yields a method to derive whether a logic program terminates in a unique result.

Another method to derive termination of a logic program by means of a translation to a term
rewriting system is due to Aguzzi and Modigliani [1].

Massimo Marchiori describes in [12] a translation from well-moded and simply moded (hence in
the terminology of the present paper simply moded) logic programs to term rewriting systems. The
translation satis�es the property that a logic program is terminating if and only if its translation is
terminating.

Arts and Zantema present in [5] (see also [4]) an algorithm to translate logic programs into (uncon-
ditional) constructor systems. A clause is translated into possibly more than one rewrite rule. The
�rst rewrite rule has as left-hand side the input part of the head of the clause, and as right-hand side
the output part of the head of the clause, plus all variables occurring in the left-hand side. Then,
the body atoms of a clause give rise to additional rewrite rules `connected' to the �rst rewrite rule
and to each other by passing variables. Arts and Zantema present a technique to prove termination
of constructor systems that is particularly suitable to prove termination of the translation of logic
programs, using their translation.

All translations mentioned above are di�erent from the translation de�ned in the present paper.
None of them presents a translation of a pairs consisting of a query and a substitution, or of a query
alone. A detailed comparison of all the methods to infer termination of a logic program by means of
a translation into a (conditional) term rewriting system is not available.

Massimo Marchiori presents in [13] a transformation from join conditional rewriting systems, where
conditions have the form s1 # t1; : : : ; sm # tm to unconditional rewriting systems, and a transformation
from normal conditional rewriting systems, where conditions have the form s1 !

� t1; : : : ; sm !
� tm

with t1; : : : ; tm closed normal forms, to unconditional rewriting systems. Since the translation of
a well-moded logic program as de�ned by Ganzinger and Waldmann yields a conditional rewriting
system with extra variables, the transformations de�ned by Marchiori cannot be applied directly to
obtain an unconditional term rewriting system. However, using the basic idea of the transformations
de�ned by Marchiori, the translation as de�ned by Ganzinger and Waldmann can be transformed into
an unconditional term rewriting system which seems very close to the translation de�ned by Arts and
Zantema.

The translation de�ned in the present paper can be used to de�ne a transformation from conditional
rewriting systems with extra variables, satisfying certain properties, to conditional rewriting systems
without extra variables.

Acknowledgements

I gratefully acknowledge helpful and motivating discussions with Krzysztof Apt, Gilles Barthe, Sandro
Etalle, Pieter Hartel, Aart Middeldorp, Vincent van Oostrom, Wim Vree and Mark Wielaard.

References 17

References

1. G. Aguzzi and U. Modigliani. Proving termination of logic programs by transforming them
into equivalent term rewriting systems. In R.K. Shyamasundar, editor, Proceedings of the 13th

conference on Foundations of Software Technology and Theoretical Computer Science, number 761
in Lecture Notes in Computer Science, Bombay, India, December 1993.

2. K.R. Apt. From Logic Programming to Prolog. Prentice-Hall, 1997.

3. K.R. Apt and S. Etalle. On the uni�cation free prolog programs. In A. Borzyszkowski and
S. Sokolowski, editors, Proceedings of the Conference on Mathematical Foundations of Computer

Science (MFCS '93), number 711 in Lecture Notes in Computer Science, pages 1{19, Gda�nsk,
Poland, 1993. Springer Verlag.

4. T. Arts. Automatically proving termination and innermost termination of term rewriting systems.
PhD thesis, Universiteit Utrecht, May 1997.

5. T. Arts and H. Zantema. Termination of logic programs using semantic uni�cition. In M. Proietti,
editor, Proceedings of the 5th International Workshop on Logic Program Synthesis and Trans-

formation (LOPSTR '95), volume 1048 of Lecture Notes in Computer Science, pages 219{233,
Utrecht, The Netherlands, September 1995. Springer Verlag.

6. J. Avenhaus and C. Lor��a-S�aenz. On conditional rewrite systems with extra variables and deter-
ministic logic programs. In F. Pfenning, editor, Proceedings of the 5th International Conference

on Logic Programming and Automated Reasoning (LPAR '94), volume 822 of Lecture Notes in

Arti�cial Intelligence, pages 215{229, Kiev, Ukraine, July 1994. Springer Verlag.

7. A. Bockmayr. Contributions to the Theory of Logic-Functional Programming. PhD thesis, Uni-
versity of Karlsruhe, Karlsruhe, Germany, 1990. (in German).

8. A. Bockmayr. Conditional narrowing modulo a set of equations. Applicable Algebra in Engineering,

Communication and Computing, 4(3):147{168, 1993.

9. P. Dembi�nski and J. Ma luszy�nski. AND-parallelism with intelligent backtracking for annotated
logic programs. In Proceedings of the International Symposium on Logic Programming, Boston,
USA, 1985.

10. H. Ganzinger and U. Waldmann. Termination proofs of well-moded logic programs via conditional
rewrite systems. In M. Rusinowitch and J.L. R�emy, editors, Proceedings of the third international

workshop on conditional term rewriting systems (CTRS '92), number 656 in Lecture Notes in
Computer Science, pages 430{437, Pont-�a-Mousson, July 1993.

11. M.R.K. Krishna Rao, D. Kapur, and R.K. Shyamasundar. A transformation methodology for
proving termination of logic programs. In E. B�orger, G. J�ager, H. Kleine B�uning, and M.M.
Richter, editors, Proceedings of the 5th Workshop on Computer Science Logic (CSL '91), pages
213{226, Berne, Switzerland, October 1991. Springer Verlag.

12. M. Marchiori. Logic programs as term rewriting systems. In G. Levi and M. Rodr��guez-Artalejo,
editors, Proceedings of the 4th International Conference on Algebraic and Logic Programming

(ALP '94), number 850 in Lecture Notes in Computer Science, pages 223{241, Madrid, Spain,
September 1994.

13. M. Marchiori. Unravelings and ultra-properties. In M. Hanus and M. Rodr��guez-Artelego, editors,
Proceedings of the 5th International Conference on Algebraic and Logic Programming, number
1139 in Lecture Notes in Computer Science, pages 107{121, Aachen, Germany, September 1996.

14. C.S. Mellish. The automatic generation of mode declarations for Prolog programs. Technical
Report DAI Research Paper 163, University of Edinburgh, 1981.

15. A. Middeldorp and E. Hamoen. Completeness results for basic narrowing. AAECC, 5:213{253,
1994.

18

16. F. van Raamsdonk. Translating logic programs into conditional rewriting systems. In L. Naish,
editor, Proceedings of the Fourteenth International Conference on Logic Programming (ICLP '97),
pages 168{182, Leuven, Belgium, July 1997. MIT Press.

17. U.S. Reddy. Transformation of logic programs into functional programs. In Proceedings of the

Symposium on Logic Programming, pages 187{196, Atlantic City, New Jersey, USA, February
1984. IEEE Computer Society, Silver Spring, MD.

18. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury: an e�cient
purely declarative logic programming language. Journal of Logic Programming, 29(1-3):17{64,
1996.

Appendix

Proof of Theorem 4.9.

Let hQ;�i)C hQ
0;�0i be a resolution step in a simply moded program. Suppose that

C = h b1; : : : ; bm

for some m � 0 with h = r(~s;~t), and that

Q = a1; : : : ; an

for some n > 0 with a1 = r(~u1; ~v1). Let � = �1�2 be a most general uni�er of h and a1 with ~s�1 = ~u1
and ~v1�2 = ~t�1. Then

Q0 = b1�1; : : : ; bm�1; a2�2; : : : ; an�2

and

�0 = ��2:

Suppose that �� = ~e and (a2; : : : ; an)� = e(c, so

ha2; : : : ; an;�i� = ~e e(c:

Let Cp = h bp; : : : ; bm for every p 2 f1; : : : ;m + 1g. By induction on m + 1 � p we prove the
following:

if hQ;�i)Cp
hQp;�pi then hQ;�i� !+

C�

p

hQp;�pi
�.

Note that �p = ��2 for every p 2 f1; : : : ;m + 1g.

1. Suppose that p = m + 1. We have Cp = r(~s;~t) and

Qp = a2�2; : : : ; an�2:

Further

C�
p = r(~s)! (Ti(~t)(T)

with i = j~tj (= j~v1j). Two cases are distinguished.

(a) i = 0. Then we have

Q� = e((r(~u1)
 c)

Appendix 19

and

Q�
p = e(c:

Note that �2 = �. We have

hQ;�i� = ~e e((r(~u1)
 c)

= ~e e((r(~s)�1
 c)

!C�

p
~e e((T
 T
 c)

= ~e e(c

= hQp;�pi
�:

(b) i > 0. Then we have

Q� = e[Ti(~v1) := r(~u1)](c[Ti(~v1) := r(~u1)]

and

Q�
p = e�2 (c�2:

We have:

hQ;�i� = ~e e[Ti(~v1) := r(~u1)](c[Ti(~v1) := r(~u1)]

= ~e e[Ti(~v1) := r(~s)�1](c[Ti(~v1) := r(~s)�1]

!+ ~e e[Ti(~v1) := Ti(~t)�1](c[Ti(~v1) := Ti(~t)�1]

= ~e [Ti(~v1) := Ti(~t)�1] (e�2)(c�2

= hQp;��2i
�

= hQp;�pi
�:

Here �2 = fv1 7! t1�1; : : : ; vi 7! t1�ig.

Note that we make use of equation 4.2.

2. Suppose that 1 � p < m + 1. We have Cp = h bp; bp+1; : : : ; bm and

Qp = bp�1; : : : ; bm�1; a2�2; : : : ; an�2:

Let

C�
p+1 = r(~s)! (rp+1 (dp+1);

Q�
p+1 = ep+1 (cp+1:

The induction hypothesis is:

hQ;�i� !+

C�

p+1
hQp+1;�p+1i

�:

Let bp = rp(~sp;~tp) and i = j~tj (= j~v1j) and j = j~tpj. Four cases are distinguished.

(a) i = 0 and j = 0. Then we have:

Q� = e(r(~u1)
 c;

C�
p = r(~s)! rp+1 (rp(~sp)
 dp+1;

Q�
p = ep+1 (rp(~sp)�1
 cp+1:

20

The induction hypothesis in detail is:

hQ;�i� = ~e e(r(~s)�1
 c

!C�

p+1
~e e(dp+1�1
 rp+1�1
 c

= ~ep+1 ep+1 (cp+1:

We have:

hQ;�i� = ~e e(r(~u1)
 c

= ~e e(r(~s)�1
 c

!C�

p
~e e(rp(~sp)�1
 dp+1�1
 rp�1
 c

= ~ep+1 ep+1 (rp(~sp)�1
 cp+1

= hQp;�i�:

(b) i = 0 and j > 0. Then we have:

Q� = e(r(~u1)
 c;

C�
p = r(~s)! rp+1[Tj(~tp) := rp(~sp)](dp+1[Tj(~tp) := rp(~sp)];

Q�
p = ep+1[Tj(~tp) := rp(~sp)�1](cp+1[Tj(~tp) := rp(~sp)�1]:

The induction hypothesis in detail is:

(Q; �)� = ~e e(r(~s)�1
 c

!C�

p+1
~e e(dp+1�1
 rp+1�1
 c

= ~ep+1 ep+1 (cp+1:

We have:

hQ;�i� = ~e e(r(~u1)
 c

= ~e e(r(~s)�1
 c

!C�

p
~e e(rp+1[Tj(~tp) := rp(~sp)]�1

dp+1[Tj(~tp) := rp(~sp)]�1
 c

= ~e e(rp+1�1[Tj(~tp) := rp(~sp)�1]

dp+1�1[Tj(~tp) := rp(~sp)�1]
 c

= ~ep+1 ep+1 (cp+1[Tj(~tp) := rp(~sp)�1]

= ~ep+1 ep+1[Tj(~tp) := rp(~sp)�1]

(cp+1[Tj(~tp) := rp(~sp)�1]

= hQp;�i�:

Note that we make use of equation 4.3.

(c) i > 0 and j = 0. Then we have:

Q� = e[Ti(~v1) := r(~u1)](c[Ti(~v1) := r(~u1)];

C�
p = r(~s)! rp+1 (rp(~sp)
 dp+1;

Q�
p = ep+1 (rp(~sp)�1
 cp+1:

The induction hypothesis is:

hQ;�i� = ~e e[Ti(~v) := r(~s)�1](c[Ti(~v) := r(~s)�1]

!+

C�

p+1
~ep+1 ep+1 (cp+1:

Appendix 21

We have:

hQ;�i� = ~e e[Ti(~v1) := r(~u1)](c[Ti(~v1) := r(~u1)]

= ~e e[Ti(~v1) := r(~s)�1](c[Ti(~v1) := r(~s)�1]

!+

C�

p

~ep+1 ep+1 (r(~sp)�1
 cp+1

= hQp;��2i
�:

(d) i > 0 and j > 0. Then we have:

Q� = e[Ti(~v1) := r(~u1)](c[Ti(~v1) := r(~u1)];

C�
p = r(~s)! rp+1[Tj(~tp) := rp(~sp)](dp+1[Tj(~tp) := rp(~sp)];

Q�
p = ep+1[Tj(~tp) := rp(~sp)�1](cp+1[Tj(~tp) := rp(~sp)�1]:

Note that Dom(�1) = V(~s) and since C is simply moded we have V(~s) \ ~tp = ;. Hence
~tp�1 = ~tp. The induction hypothesis in detail is:

(Q; �)� = ~e e[Ti(~v) := r(~s)�1](c[Ti(~v) := r(~s)�1]

!+

C�

p+1

e ~e[Ti(~v) := rp+1�1](dp+1�1
 c[Ti(~v) := rp+1�1]

= ~ep+1 ep+1 (cp+1:

We have:

hQ;�i� = ~e e[Ti(~v1) := r(~u1)](c[Ti(~v1) := r(~u1)]

= ~e e[Ti(~v1) := r(~s)�1](c[Ti(~v1) := r(~s)�1]

!+

C�

p

~e e[Ti(~v) := rp+1[Tj(~tp) := rp(~sp)]�1]

(dp+1[Tj(~tp) := rp(~sp)]�1
 c[Ti(~v) := rp+1[Tj(~tp) := rp(~sp)]�1]

= ~e e[Ti(~v) := rp+1�1][Tj(~tp) := rp(~sp)�1](

dp+1�1[Tj(~tp) := rp(~sp)�1]
 c[Ti(~v) := rp+1�1][Tj(~tp) := rp(~sp)�1]

= ~ep+1 ep+1[Tj(~tp) := rp(~sp)�1](cp+1[Tj(~tp) := rp(~sp)�1]

= hQp;��2i
�:

2

