stichting
mathematisch
centrum MC

AFDELING INFORMATICA IW 83/77 JUNI
(DEPARTMENT OF COMPUTER SCIENCE)

J.W. DE BAKKER

RECURSIVE PROGRAMS AS PREDICATE TRANSFORMERS

Preprint

2e boerhaavestraat 49 amsterdam

MATIS CENTRUY
BIBLIOTHEEK PIAAY?EE'»AATL)CH CeN
ATV1STLE2.L,\;3.1\A

Printed at the Mathematical Centre, 49, 2¢ Boerhaavestraat, Amstendam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
pro it institution aiming at the promotion of pure mathematics and Lts
applications. 1t is sponsored by the Netherlands Government through the
Netherlands Onganization forn the Advancement of Pure Research (Z.W.0).

AMS(MOS) subject classification scheme (1970): 68A05

ACM-Computing Reviews—-categories: 5.24

. *
Recursive programs as predicate transformers

by

J.W. de Bakker

ABSTRACT

The connections between two ways of assigning meanings to programs are
investigated. On the one hand we have the approach in which a program deter-
mines a function from states to states, on the other hand the proof-theory-
oriented approach, advocated in particular by Dijkstra, where a program is
viewed as a mapping from postconditions to weakest preconditions. The main
result is a theorem which settles the mathematical relationship between the
two approaches for a language including nondeterminacy and full recursion.
We use the methodology of denotational semantics, extended with the Egli-
Milner ordering to deal with nondeterminacy. The paper concludes with some
remarks on the possibility of a syntactic characterization of weakest pre-
conditions, and on a recent theorem by Basu and Yeh on weakest preconditions

for the while statement.

KEY WORDS & PHRASES: predicate transformers, recursion, denotational
semantics, weakest preconditions, Egli-Milner ordering,

while statements.

*)

This report will be submitted for publication elsewhere.

1. INTRODUCTION

Recent developments in programming theory have brought an increasing popularity of
the methodology of denotational semantics (e.g. Milne & Strachey (1976)) on the one hand -
with as one of its central themes the idea of assigning meaning to a program as a function
fromstates to states ~ and of the proof-theory-oriented approach (e.g. Dijkstra (1975))

on the other hand, where meaning is (maybe implicitly) assigned to a program through
the induced relationship between predicates holding before and after its execution.
Our paper is devoted to an analysis of the relationship between the two approaches
for an example programming language which includes assignment statements together with
sequential composition, nondeterministic choice, if-then-else-fi, and parameterless
recursion. The main result of the analysis is a theorem which may be seen as yield-
ing the equivalence of the two approaches. Let us introduce some terminology to
state the theorem (the definition reappear inmore precise form in the following sections):
The set I of states ¢,... consists of all mappings from integer variables (syntactic
objects) to integers (mathematical objects), together with the "undefined" state 1.
The set P of predicates p,... consists of all mappings from states to truth-values
(with the convention that p(L) yields false). The meaning of a statement S is obtain-
ed by applying a semantic function M (defined by induction on the structure of S)
yielding M(S) € £ + Z. (Effects of nondeterminacy are not yet taken into account
here.) Furthermore, for each statement S we define (syntactically) a corresponding
""predicate transformer expression" E, and the meaning of an expression such as S

is obtained by applying a semantic function F yielding F(g) € P > P. (Note, however,
that a development of the theory with "~" as the identity transformation is also
possible: The same piece of text S is then on the one hand given meaning as a state
transformation and on the other hand as a predicate transformation. The approach
taken here was chosen mainly for didactic reasons, emphasizing our '"dualistic" view
of programs both syntactically and semantica’ly.) The relationship between programs

as state transformations and as predicate tr.nsformations is now expressed in
Main theorem. For each statement S, predicate p and state o:

F(S)(p) (o) = p(M(S) ().

J.W. de BAKKER 2

For the reader who likes diagrams, the theorem may also be stated as follows: Let,

for eachme Z » Z, m+ be defined as
mT = Ap-rg-p(m(o)).

Then we have that the following diagram commutes:

S M M(s)

>

FG) = M)t

m?
-

The approach of viewing programs as predicate transformers has in particular been
advocated by Dijkstra (1975), partly building upon earlier work by Floyd and Hoare,
and the question may arise as to how his ideas connect with the present result. The
answer is simple: Let, for each statement S and predicate p, wp(M(S),p) be the
weakest precondition of (the meaning of) S with respect to predicate p. (Remember
that wp(M(S),p) is defined as the weakest predicate such that, for all states o,
whenever ¢ satisfies wp(M(S),p), then execution of S for input ¢ terminates with
output state satisfying p.) We shall show that wp(M(S),p) = Ao-p(M(S) (o)), and we

have the following corollary of our main theorem:
F(S) () = wp(M(S),p)-

Observe that we introduce wp here as a mathematical object yielding, for each

me I~ 71 and p € P,a result p'= wp(m,p) € P. We also discuss the problem as to
whether it is possible to give a syntactic characterization of wp. To be more spe-
cific, let us consider the (syntactic) class of assertions (which contains, e.g.,
the class of boolean expressions as a subset) with elements c,... . Let T be the
semantic mapping which provides an assertion c¢ with a meaning T(c) € P. Let S:c be
the above mentioned syntactic counterpart of wp, i.e., we have as intended meaning

of S:c
T(S:c) = wp(M(S),T(c)).

As is well-known, it is possible to give meaning-preserving reductions of S:c to
assertions involving only the components of S, in the case S is an assignment state-

ment, or made up using sequential composition, nondeterministic choice, and if-then-

else-fi. We describe how to extend the syntax of assertions in order to be able to
perform a similar reduction for the while statement (or, somewhat more generally,
for programs derivable from flow diagrams). For recursive procedures in general,

however, we do not know how to do this, and we conjecture that such reduction is

impossible.

PROGRAMS AS PREDICATE TRANSFORMERS 3

The framework used to prove our main theorem is a more or less familiar part of de-
notational semantics, extended with the Egli-Milner-ordering (Egli (1975)), to deal
with nondeterminacy. For an explanation and métivation of this ordering the reader

might want to consult our De Bakker (1976).(The present paper may be seen as a suc-—
cessor to De Bakker (1976). Note, however, the difference in the use of ~; also,

as pointed out by John Reynolds, in De Bakker® (1976) we should not have omitted the

restriction of bounded nondeterminacy.)

Besides by the wish to extend De Bakker (1976), our paper has also been motivated
by De Roever's (1976) article, in which the same problem is investigated. Moreover,
our definition of "~" for recursive procedures is taken from De Roever (1976) (cre-

dited there to C.P. Wadsworth).

Our paper is organised as follows: The syntax of the example language, together

"~ ig given in section 2. Section 3 provides

with the definition of the mapping
the necessary background from denotational semantics, including a treatment of the
consequences of introducing the Egli-Milner-ordering. Section 4 presents the seman-
tic mappings, elaborated in section 5 for integer and boolean expressions, and in
section 6 for statements and predicate transformer expressions. The least-fixed-—
point approach plays a major part in the latter. Section 7 gives (without proof) a
justificationof the definitions in section 6, and section 8 contains the proof of
the main theorem. Section 9 brings the link with the notion of weakest precondition,
and section 10 introduces the extension of the class of boolean expressions to the
class of assertions including the S:c construct. The well-known reductions of S:c
for simple S, as mentioned above, are then given together with a treatment of Zter-
ative S. The section closes with a comment on a recent theorem by Basu & Yeh (1975),

pointing out an error in one of their results on wp for the while statement. (For

section 10 compare also our De Bakker (to appear)).

As closing remark of this introduction, let us point out that we hope to have achieved
with our paper both a clarification of the status of recursive programs as predicate
transformers, and an illustration of some of the more appealing features of denota-

tional semantics, such as its expressive power and its succinctness of argumentation.

hAcknowledgements. I am indebted to A. Nigholt and W.P. de Roever for a number of

helpful discussions on the subject of this paper.

2. SYNTACTIC DOMAINS

This section gives the syntax of our programming language. Besides some simple kinds
of integer and boolean expressions, it contains statements made up from assignment
statements through sequential composition, nondeterministic choice, if-then-else-fi,

and parameterless recursion. Moreover, the class of predicate transformer expressions

J.W. de BAKKER ‘ 4

is introduced, and a syntactic mapping from statements to predicate transformer ex-

pressions is defined. The formalism used in the syntactic 'definitions is a slight

variant of BNF, and should be self-explanatory. Throughout the paper, we do not

bother about syntactic ambiguities which may be remedied by suitable addition of

parentheses. "=" is used to denote syntactic identity.

(d1)
(D2)
(D3)

(D4)

(D5)

(D6)

(D7)

(D8)

Elements

Cnst = {al,a ...} constants a,...

2,

Tvan = {x],x ..} integer variables . Xyeoo

2"
Pvar = {X],Xz,...} procedure variables Xyeuo

Tvarn = {g],gz,...} predicate transformer variables ¢£,...

Texp integer expressions Syees

s:: a|x|s]+32| iﬁ b then s, else s £i

1] —— "2
Integer expressions have integers as intended meaning.

Other arithmetic operations may be added, if desired.

Bexp boolean expressions byeus
b::= =

true]falsels] sz|7b|b13b2[b]Ab2
Boolean expressions have truth values as intended meaning.

Stat statements S,...

S::= x:=s|X|Sl;82]S]US if b then S, else 82 Eilux[s]

2| |
Statements have functions from states to states as intended meaning.
Procedure variables are used (only) in the construct uX[S] of parameterless
recursion: Occurrences of X in S correspond to recursive calls, and, for
S=... X ... X... , the meaning of the construct pX[... X ... X ...] is

the same as the meaning - in an ALGOL-like language - of a call of the
parameterless recursive procedure P with declaration procedure P;...P ... P...

S]US2 is executed by executing either Sl or 82 (not both).

Pritn predicate transformer expressions ¢,...
¢p::= [x:=s][£|¢]°¢2|¢lA¢2]i£ b then ¢, else ¢, filugle]
Let a predicate be a function form states to truth-values. Predicate trans-

former expressions have functions from predicates to predicates as intended

meaning.

We now define a mapping "~'" from Stat to Patr in

(D9)

(x:=s)" = [x:=s]
X = g (it is required that X = Y iff X = Y)
. Y -3 oq
(538)) =88,
(SIUSZ) = S]AS2

PROGRAMS AS PREDICATE TRANSFORMERS 5

(if b then Sl else 82 fi)N = if b then g] else §2 fi

px[s1” = uX[S]

Example.

uX[if x=a, then x:=x+a2;X;x:=x—a3 else xi=a, fiwv (x:=as)] =

uglif x=a. then [x:=x+a2]°£°[x:=x—a3] else [x:=a4] fina [x:=a5]].

1

3. MATHEMATICAL DOMAINS

In denotational semantics, meaning is attributed to programming constructs by map-
ping them to mathematical domains provided with a certain structure. In our explan-
ation of this, we shall sometimes refer to the underlying intuition about the meaning
of these constructs as determined by operational semantics. However, we omit formal
specification of this, which would proceed through one of the customary schemes

for viewing programs as.producing computation sequences.

In subsection 3.1 we introduce the basic domains V and W of integers and truth-
values, together with the necessary operations. Subsections 3.2 and 3.4 summarize
(without proofs) some of the essential facts about complete partially ordered sets
(cpo's), continuity, and least fixed points. Subsection 3.3 forms the heart of the
definitions. The set of states I = (Ivar - V) u {1} is introduced (as usual, "1"
stands for the undefined element), and the Egli-Milner-proposal (Egli. (1975)) to
deal with nondeterminacy is used: The meaning m = M(S) of a statement S will be
given as an element of the cpo M = L »'T (i.e., all strict functions I - T), where
T is the collection of all subsets of I which are either finite, or, when infinite,
contain L as element. This is the usual restriction to bounded nondeterminacy *)

For given input state, an infinite number of output states is allowed only when 1

is among them. E.g., consider the statement uX[(x:=x+1;X) u (x:=x)] for input state
satisfying x = 0. This statement determines an infinite number of finite computations
leading to an infinite set of outputstates (all natural numbers are possible output
values for x), but also an infinite computation (always choose the first branch of
the choice) yielding L as corresponding output state. Subsection 3.3 also introduces
the domains W of truth values, P = [L > W] of predicates, and PT = [P » P] of pre-
dicate transformers, which definitions involve no special features. We draw atten-
tion, however, to the definition of the extension of [Z - W] to [T > W]: For each
predicate p € P and each 1 € T, p(t) is true iff 1 does not contain 1, and (t thus
being finite), p(o) holds for each o € 1. Anticipating some of the definitions to

be given later, we observe already that this corresponds to the weakest precondition,

in the case that 1 = m(o) is obtained by applying the meaning m = M(S) of some state-

x) As pointed out by John Reynolds, this restriction should not have been omitted
in our De Bakker (1976).

J.W. de BAKKER 4 6

ment S to input state o: p(t) = p(m(o)) = (pom) (o) = (pM(8)) (o) = wp(M(S),p) (o).
Note that wp is defined here as an operation upon mathematical objects. The possi-

bility of a linguistic counterpart of wp is discussed in section 10.

3.1. Basic domains and notations

Elements

(o10) v ={...,~-1,0,1,...} integers Qyeoe
(11) W= {tt,ff} truth-values Byeoo
(D12) We assume known

plus : V. x V>V = :WxW->W

equal: V. x V + W A WX W->W

not : W->W
(D13) " c " and "u" have the usual set-theoretical meaning
(D14) For any set C, ¢ sC, € C and B ¢ W, we put

Icl’ if B = tt

if B then ¢ else c, £i =

Cys if B ff

3.2 Complete partially ordered sets (cpo's)

(D15) Let C be a set with a partial ordering EC' When confusion is unlikely,
we omit the index C in the ordering EC' C is called a cpo iff
(i) C has aleast element L such that L [c for all ¢ ¢ C.

0 C...LC c; L ... has a least upper bound iEO c;-

1 . :
(D16) Let C,D be two cpo's, and let e seyt C - D. We put e EC+D e, iff, for

(ii) Each chain c

all c, e](c) ED e2(c).
(D17) Let C,D be two cpo's and let e: C > D be monotonic (c‘ C c, = e(cl) L e(cz)).
We call e continuous iff, for each chain {ci}:=0’ e(% Ci) = % e(ci).
(D18) Let C,D be two cpo's. [C > D] denotes the collection of all continuous
functions: C - D.
(L1) (First lemma) For C,D cpo's, [C -~ D] is also a cpo. Also, for each chain
fe,}] ot (W) (e) = LI (e; (). -
(L2) For each cpo C and ¢ ¢ [C + C], ¢ has a least fized point ud = igo o7 (L),
satisfying:
(1) @(ue) = uo
(ii) ¢(c) = ¢ = pd L c.

3.1. BastZc domains and function domains as cpo's

(D19) ZO = Tvan -~ V

(D20) ¢ = ZO u {1} (X has elements o,...)

(D21) 9, EZ g, iff o, =1Lor o, =0,

PROGRAMS AS PREDICATE TRANSFORMERS 7

(L3) I is a cpo with respect to [
(D22) W = {tt,ff} (=D
(D23) B] Ew 82 iff Bl = 52

(D24) 1. = ff

W
(L4) W is a cpo with respect to [

- ™

11

W
(D25) T is the collection of all subsets T of I such that if 1 ¢ T then T
is finite
(D26) (Egli-Milner)
T, ET T, iff either 1 ¢ T and Tl\{l} S Ty, OF L ¢ T and =T,

(Let T C Ty Interpreting T and T, as approximations to the outcome M(S) (¢) of
(the computation specified by) a statement S for a given input state o, we see that
The

T, can be properly contained (in the settheoretic sense) in T, only if 1L € t

plesence of L in 7 indicates a path in the computation whicﬁ has not (yet)]deliver—
ed a result. Note also that, though it is true that M(x:=1) < M((x:=1) u (x:=2)),
we do not have that M(x:=1) [M((x:=1) u (x:=2).)
(027) 15 = {1}
(L5) T is a cpo with respect to ET
(D28) M = ¢ »' T, which is, by definition, the collection of all functions
m: I » T such that m(1) = {L}
(L6) M
(D29) P
p: I > W such that p(L) = ff
(L7) P c[Z~+W] and P is a cpo
(D30) PT = [P -~ P], hence PT is a cpo (elements of PT are denoted by f,...)

In

[z»T] and M is a cpo

¥ >' W, which is, by definition, the collection of all functions

We now extend m: £ »' T tofi: T+ T and p: £ »' W to P: T > W, as.follows:

(D31) (1)

]
c

m(o)

f , 1f L e T

(D32) p(v)

GQT p(o), if L ¢ 1

(L8) T, C T, = ﬁ(rl) C ﬁ(rz) . T, C T, @ ﬁ(rl) C ﬁ(TZ)
(L9) (D31) and (D32) preserve continuity. Also, (|J mi)“ = | ﬁi, and (U pi)‘ = ﬁi.
I ; -

o . 1, 1 .. 1
(Note that these equalities do not hold, in general, without the condition

of bounded nondeterminacy.)

(D33) m1°m2 = Ac-m](mz(o)), m, um,

(L10) If m,,m, € M then ml°m2 and m um, € M

(D34) pom = Xo-p(m(0))
(L11) If p e P and m ¢ M then pom ¢ P

= Ac-ml(c) U mz(c)

(C1) (First corollary) For {mi}:= a chain, p° uJ m, = U (p°mi)

0 1
(D35) £,0f, = Ap+ £,(£,(p)), £Af, = Ap-do-f, (B)(0) A £,(p) (o)

1772
(L12) If f],f2 ¢ PT, then flo f2 and flAfZ e PT.

Below, we omit explicit indication of "A" on m or p.

J.W. de BAKKER . 8

3.4. Properties of continuous functions: M - M

(D36) M] = M, Mn+] = [M ~»> Mn]

Lemma's (L13) to (L16) hold for each n = 0:

(L13) For each i such that | < i < n: Aml-...-Amn-mi € Mn+]'
(L14) For each m € M, Am]-...'kmn-m € Mn+1

(L15) If ¢],® e M then

2 n+1?

Am1~...-Amn-®](ml)...(mn) ° @2(m1)...(mn) € Mn+1

Km1°...-Amn-®](ml)...(mn) U Qz(ml)...(mn) € Mn+1'

(L16) If ¢ € Mn+

, and

22 then

Am]-...-Amn-u[kmn+l-¢(ml)...(mn)(mn+l)] € Mn+

(C2) Let PT =PT, PT_ =[PT~>PT], n20.

Results analogous to (L13) to (L16) hold for PTn+1, n > 0.

1

4. SEMANTIC MAPPINGS

In this section we introduce the semantic functions mapping the elements in the
four syntactic domains to their respective meanings in the corresponding mathemati-
cal domains. In each case, the semantic function is defined with respect to some
given mapping from the integer—, procedure-, and predicate transformer variables to
their meanings. These initially given mappings (elements of I, T and 0) are subject
to change during the evaluation of the semantic function through the effects of
assignment on states ¢ € I, and the effect of the least-fixed-point definition of
recursion on elements Yy € T and 6 ¢ O. The notation used to describe these effects

is also given in this section ((D41) to (D43)).

Elements
(D37) A e Cnst >~ V
(the function A remains the same throughout the paper)
(D38) © = (Ivar »~ V) u {1} Cyene
(D39) T = Pvar ~ M Yoeoo
(D40) 0 = Tvar + PT By0n

For each 0 ¢ £, a € V, x € Ivar, ol{a/x} € I is defined by
(D41) 1{a/x} = 1, and, for o # L, o{a/x}{x} = o, o{a/x}(y) = o(y) for each y % x.
Similarly.
(D42) y{m/X}(X) = m, y{m/X}(Y)
(D43) e{f/e}(&) = £, o6{f/g}(n)
(D44) V: Texp - (Zo - V)
T: Bexp -~ (X ~ W)
M: Stat - (T - M)
F: Putrn - (0 - PT)

(Extension of {/ to deal with V(s) (L) would require a cpo structure on V; this

v(Y) for each Y # X

6(n) for each n # ¢

PROGRAMS AS PREDICATE TRANSFORMERS 9

serves no further purpose in our paper and is therefore omitted.)

The definitions of V, T, M and F follow in sections 5 and 6.

5. SEMANTICS OF INTEGER AND BOOLEAN EXPRESSIONS

This section brings the definitions of the meaning of integer and boolean expres-
sions, using the domains and functions as given in section 3. The definitions are

straightforward and do not require additional comment. .

(D48) V(a) (o) = A(a)

(D49 V(x)(0) = o(x)

(D50) V(s +s,) (o) = plus Ws (o), V(s,) (o))
(D51) V(if b then s. else s, fi)(o) = if T(b) (o) then V(sl)(c) else V(sz)(o) fi
(D52) T(b) (L) = ff

In (D53) to (D57), we assume 0 # L.

(D53) T(true)(o) = tt, T(false)(o) = ff

(D54) T(Sl=sz)(0) = equal (V(Sl)(c), V(Sz)(O))
(D55) T(b) (o) = not (T(b)(c))

(D56) T(lebz)(G) = (T(bl)(c) = T(bz)(d))
(D57) T(b]Abz)(O) = (T(bl)(U) A T(bz)(c))

1

6. SEMANTICS OF STATEMENTS AND PREDICATE TRANSFORMER EXPRESSIONS

(D58) M(x:=s)(y) = Ao+{if o = L then 1 else o{V(s) (0)/x} fi}
(D59) M(X) (v) = v(X) ,
(D60) M(S,38,) (v) = M(8,)(v) ° M(S)(y)
(D61) M(S,uS,) () = M(S)(v) u M(8,) (v)
(D62) M(if b then S else S, fi)(y) =
Ao- if o = L then {1} else if T(b) (o) then M(S) (v) (o) else M(S,)(v) (o) £i Zi
(D63) M(uX[SI) (y) = ulim-M(S) (v{m/X1})].

Examples. (identifying for simplicity's sake Cnst and V). Let o # 1.

Io M(x:=03y:=x+1) (y) (c) = M(y:=x+1) (y) (M(x:=0) (v) (0)) =
M(y:=x+1) (v) (c{0/x}) = o{0/x1H{V(x+1) (c{0/x})/y} =
o{0/xHplus(V(x) (c{0/x}),V (1) (c{0/x}))/y} =
o{0/xHplus(0,1)/y} = o{0/x}{1/y}.

2. M((x:=D)u(x:=2))(y) (o) = {o{1/x},0{2/x}}.

Remarks

I. Note that for programs without recursion (and without free procedure variables),

the definition of M is in fact independent of y.

J.W. de BAKKER 10

2. For a justification, in the framework of operational semantics, of the least—
fixed-point definition of recursion, we refer to De Bakker (1976).

3. For each S € Stat and vy € ', we have that M(S)(y) ¢ M.
(This is a special case of theorem (Tl.1) below.) Also, for each S, y and X,
Am-M(S) (y{m/X}) e [M » M] (also from (T1.1)). Thus, putting o2&t am-M(S) (v{m/X}),
® has a least fixed point udé = J ¢i(1). From (D63) we therefore obtain
MOXCSD) () = we = Umy, with mg = L = 8(m,) = M(S) (yIm, /X)) .

0 M
(This result will be used in the proof of theorem (T2).)

= Ao+{L}, and m,

L then L else o{V(sﬁ(c)/x} fi)

(D64) F([x:=s1)(8) = Ap*Ao-p(if o =
(D65) F(&)(8) = 6(8)
(D66) F(4,09,) (8) = F(6,)(8) o F(4,)(8)
(D67) F(4,n8,)(8) = F(¢,)(8) A F(¢,)(8)
(D68) F(if b then ¢, else ¢, £i)(6) =
ApeAoeif T(b) (o) then F(¢,)(6)(p) (o) else F(4,)(8)(p)(o) £i
(D69) F(ugl¢1)(6) = ulrf-F(¢)(8{£/e})]
Remarks

Similar to the remarks on the definition of M.

7. TFIRST THEOREM

(T1.1) For each n > 0, S € Stat, vy ¢ T', and Xl,...,Xn e Pvanr:
Aml-...~Amn-M(S)(Y{m]/X1}...{mn/Xn}) €M - .

(T1.2) For eachn >0, ¢ € Pitn, 6 ¢ 0, and g],...,gn e Tvan:
Af]-...-kfn'F(¢)(e{f]/£]}...{fnlgn}) € PTn+]'

The proof is direct by induction on the complexity of S or ¢ (reduce the assertion
(or ¢")

of less complexity and all n), using lemma's (L13) to (L16) and their analogues.

of the theorem for some S (or ¢) and all n to the same assertion for all S'

8. SECOND THEOREM

The theorem of this section is the central one of our paper, because it determines

the relationship between the meaning
(M(S)) and as predicate transforming
preconditions follows in section 9.)
consistency of the pair <y,6>, which

theorem holds (by definition) in the

(D70) (Consistency) Let y ¢ T, 6 € O.

of a statement S as state-transforming function
function (F(g)). (The connection with weakest
The theorem is subjected to the condition of

is nothing but a way of ensuring that the

case that S is simply a procedure variable X.

The pair <y,0> is called consistent iff, for

each <X,&> such that § = g, we have that

PROGRAMS AS PREDICATE TRANSOFRMERS

8(E) = Ap = p o Y(X).

(T2) For each S, and each y and 6 such that <y,6> is consistent:
F(8)(8) = » + po (M(S)(Y)).

Proof. Induction on the complexity of S.

1. F((x:=8)7)(8) (p) (0) = (df.)F([x:=s1)(8)(p)(0) = (df.F)

p(if o = L then 1 else o{V(s)(o)/x}fi) = (df.M)p(M(x:=s)(y) (o))
2. FX)(0)(p)(0) = (AE.T)IF(E)(8) (p) (o) = (df.F)

8(£)(p)(c) = (comsistency)p(y(X)(0)) = (df.M)p(M(X) () (o))

3. FUS;38)) (@) (@) (o) = (a.”)
F(S,05,) (8 (@) (o) = (df.F)
(F(3,)(8)°F(8,)(8)) () (0) = (df.o)
F(S))(8) (F(5,) (®) (2)) (o) = (ind.)
F(5,)(8) () (M(S) (1) (0)) = (ind.)
p(M(S,) () (M(S) (1) () = (df.M)
p(M(S§8,) (v) (0))

b M((8,U8,)) (8) (p) (o) = (a£.”)
F(5,48,)(8) (p) (0) = (df.F)
F(S,)(8) (p) (o) A F(5,)(8) (P) (0) = (ind.)
pM(S) (1) (@) A pM(S,) () (0)) = (D32)
P(M(S,) (1) (0) U M(S,) (¥) (o)) = (df.M)
p(M(8,u8,) (v) ()

5. iﬁfﬁhﬁﬂfﬁlﬁffﬁi case omitted.

Fux[S17)(8) (p) (o) = af.”)
FuELSD) (8) (p) (o) = ‘ (df.F)
uLAE-F(S) (8{£/e1(p) (o) = (T1.2)

(Y £ @) (o), (with £ = Apeho-ff, £,) = F(S) (ol£,/eD)) =
J (£, (), by (D).
1

Also,
pMXLST) (Y) (o)) = (df.M)
p(ulAm-M(S) (y{m/X})1(0)) = (T1.1)

p((LiJmi)(O)), (with my = Ac-{1}, m, , = M(S) (y{m, /X})) =
% p(mi(c)), by (Cl1).

Thus it is sufficient to show: For all i, and all p and o,
fi(p)(o) = p(mi(o)). We use induction on i:

(i) i =0: (Aperc-ff)(p)(o) = £f = p({1}) = p((Ao-{1})(0)).
(1i) Assume (*): fi(p)(o) = p(mi(c)). To show fi+1(p)(o) = p(mi+l(o)),
or F(S)(e{fi/g})(p)(c) = p(M(S)(y{mi/X})(U)). Now this holds by the
induction hypothesis on S (the complexity of S is less than the

complexity of uX[S]), provided that the pair <Y{mi/X}, e{fi/£}> is

BIBLIOTHEEK MATHE MATISCH CENTRUM

AR ACT

J.W. de BAKKER ‘ 12

consistent, i.e., that for all <Y,n> such that Y = n, and all p
and o, we have: e{fi/E}(n)(p)(o) = p(y{mi/X}(Y)(c)). We distinguish two cases:
(ii.1) n = £ (hence Y = X). Then we have 'to show:
6{f;/e} () (p) (o) = p(y{m;/X}(X)(0)), or
fi(p)(c) = p(mi(o)), which is nothing but ().
(ii.2) n # £ (hence, Y # X). Then we have to show:
6{f;/e}(n)(p) (o) = p(rim, /X}(¥) (0)), or
8(n) (p) (o) = p(y(Y) (o)), which follows from the

consistency of <y,0>. g

9. WEAKEST PRECONDITIONS FOR RECURSIVE PROGRAMS

(D71) wp(m,p) = p°m.

Note that (pom) (o) holds iff p(c') holds for each o' e¢ m(c), or, equivalently, iff
for each o' € m(o), both o' # 1L and p(¢c') = tt are satisfied. Hence, we have indeed
the equivalence of (p°m) (o) and wp(m,p) according to the usual definition of weak-

est precondition.

For S € Stat and ¢ ¢ Patr which have no free occurrences of procedure variables or
predicate transformer variables, we may as well omit the y- and 6-arguments in the

definitions of M and F. Using this, we obtain

(T3) For each S e Stat without free procedure variables, and each p € P
F(S)(p) = wp(M(S),p).

Proof. From (T2) and (D71). 0O

10. WEAKEST PRECONDITIONS FOR THE WHILE STATEMENT

In this section we extend the class of boolean expressions Bexp to the class of
assertions Assn, including, in particular, for each statement S and assertion c, the
construct S:c which is the syntactic counterpart of the weakest precondition. That
is, we define its meaning T(S:c) by: T(S:c) = wp(M(S),T(c)). Furthermore, we present
the more or less well-known rules for expressing S:c through an induction on the
complexity of S, in case it is an assignment statement, or made up from given state-
ments through sequential composition, nondeterministic choice, if-then-else-fi, or
the while statement. We do not know how a similar rule for a general recursive
procedure would look like. In other words, we do not know how to reduce syntactically
uX[SJ:c to a construct involving S:c (or, possibly, S:c' for suitably defined c'),

and we conjecture that such reduction is impossible. (On the other hand, for so-

PROGRAMS AS PREDICATE TRANSFORMERS 13

called Zterative programs, i.e., recursive programs which are subjected to the
restriction that they are derivable as equivalents of flow diagrams using McCarthy's
well-known construction, we can easily generalize the result for the while state—

ment, as illustrated by an example.)

Our results for the while statement ‘are to some extent reformulations of, e.g.,
De Bakker & De Roever (1973) or Dijkstra (1975). We close this .section with a
comment on a recent theorem involving weakest preconditions for the while statement

by Basu and Yeh (1975), to the effect that this theorem is incorrect.

Elements
(D72) Avan = {Cl,gz,...} assertion variables Tyoooa
(D73) Assn assertions cyd,...

c::= b|§|clAc2|i£ b then ¢, else c, fi|S:c|uzle]

(D74) A = (Avar > P) u T ! Syeun
(D75) 6]F denotes § restricted to T
(D76) T: Assn -~ (A - P)
T is extended from boolean expressions to assertions as follows:
(D77) T(b)(8) = T(b)
(D78) T(z)(8) = &(z)
(D79) T(c]Acz)(d) = AG'T(c])(é)(c) A T(cz)(é)(c)
(D80) T(if b then c, 91§E~C2 fi)(s) =
Ao+if T(b) (o) then T(c,)(8)(0) else T(c,)(8) (o) fi
(D81) T(S:c)(8) = wp(M(S) (§]T),T(c)(8))
(D82) T(uglel)(8) = ulrp+T(ec) (8{p/c}H)]
(to be justified similarly to (T1)).

We now introduce notations for validity of assertions and of equivalences between

them, for substitution in boolean expressions, and for the while statement.

(D83) An assertion c is valiZd - written as F ¢ — iff, for all § and all ¢ # L,
T(c)(8)(o) = tt holds. Similarly, = ¢, =cy holds whenever, for all
§ and o, T(c])(G)(o) = T(cz)(d)(c)

(D84) bls/x] denotes the result of replacing all occurrences of X in b
by s (formal definition omitted)

(D85) dummy dg' (x:=x)

(D86) while b do S od %

" uX[if b then S;X else dummy fi]
The following lemma's show how to express S:c in terms of the components of S.

(L17) F (x:=s):b = bls/x]
(it is left to the reader to verify that this equivalence does
not hold for arbitrary c ¢ Assn)

(L18) = (S];SZ):C =85 : (SZ:C)

1
(L19) = (S]USZ):C (Slzc) A (SZ:C)

J.W. de BAKKER . 14

(L20) F if b then S] else 82 fi:c=
if b EESE,SI :c else 82 tc fi
(L21) F while b do S od:c =

pgl[if b then S: ¢ else c fi]

Remarks.

1. As a consequence of (L21) we have - assuming no free procedure - or assertion
variables in S or c -

T(while b do S od: c) =L P;> where, for each o,

[wpH($),p)(0), if T (@) = tt
P (0‘) = ff, p. (U) =
0 1+l L 10y (o) , if T(b) (o) = £f

2. As an illustration of how (L21) might be generalized to iterative programs, we
have, e.g. (using one of Bohm and Jacopini's (1966) non-while-statement-reduci-

ble flow diagrams):

uX[iﬁ_b] then S];if.bz then SZ;X else dummy fi else dummy fil:c

UC[if_bl then S]:ig b, then Sz:; else c fi else c fi]

2
We now introduce the notation to state our comment on Basu & Yeh's result (theorem
9 of (Basu & Yeh (1975)). Following them, we restrict ourselves (from now on) to

deterministic programs.

c
(D87) El-holds iff validity of ¢ implies validity of Cye Similarly, we define
2 cq=c
when 172 or € hold.
Cc C]=C2

(D88) {CI}S{CZ} dg'(c1 A (S:true)) o (S:cz) (this embodies (for deterministic S)
the usual notion of partial correctness of S with respect to precondition

< and postcondition c2)

We have
while b do S od : ¢
(€3) ==
if b then S: (while b do S od:c) else c fi
d = if b then S:d else c fi
(C4)

(while b do S od : ¢c) o d

(C3) and (C4) together express the least-fixed-point property of while b do S od:c.

and are therefore, when taken together, equivalent with (L21).

PROGRAMS AS PREDICATE TRANSFORMERS 15

According to Basu & Yeh, we also have

{dab}s{d} A ((dA) > c) A ((while b do S od : c) = d)

d = if b then S:d else c fi
However, taking b = true, and using the fact that F while true do S od :c=false
holds, we obtain as a special case of this

{d}s{d}
d = S:d

which is invalid: Take, e.g., S = (x:=x+1), and d = (x>0). Then, though [{d}s{d}
holds, it is not true that F d = S:d also holds, since S:d is equivalent with

x 2 0 (and not with x > 0).

REFERENCES

De Bakker, J.W. (1976), Least fixed points revisited, Theoretical Computer Science
2, pp. 155-181.

De Bakker, J.W. (1976), Semantics and termination of nondeterministic recursive
programs, in Proc. 3d Coll. Automata, Languages and Programming (S. Michaelson
& R. Milner, eds.), pp.435-477, Edinburgh University Press.

De Bakker, J.W. (to appear), Semantics and the foundations of program proving,

IFIP Congress 77.

De Bakker, J.W. and W.P. de Roever (1973), A calculus for recursive program schemes,
in Proc. 15t Coll. Automata, Languages and Programming (M. Nivat, ed.), pp.167-
196, North-Holland.

Basu, S.K. and R.T. Yeh (1975), Strong verification of programs, IEEE Transactions
on Software Engineering 1, pp.339-346.

Bohm, C. and G. Jacopini (1966), Flow diagrams, Turing machines, and languages
with only two formation rules, Comm. ACM 9, pp.366-372.

Dijkstra, E.W. (1975), Guarded commands, nondeterminacy and formal derivation of
programs, Comm. ACM 18, pp.453-457.

Egli, M. (1975), A mathematical model for nondeterministic computations, Technolog-
ical University, Zirich.

Milne, R. and C. Strachey (1976), A Theory of Programming Language Semantics,
Chapman & Hall.

De Roever, W.P. (1976), Dijkstra's predicate transformer, nondeterminism, recursion
and termination, in Proc. 5th Symp. Math. Foundations of Computer Science
(A. Mazurkiewicz, ed.), pp.472-481, Lecture Notes in Computer Science 45,

Springer.

