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Abstract

In this paper we prove con�uence for weakly orthogonal Higher�Order Rewriting Systems� This generalises all

the known �con�uence by orthogonality� results�
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�� Introduction

This paper deals with higher�order term rewriting� Since our approach of higher�order term
rewriting is di�erent from the usual one� both in respect to the concept of �higher�order� and
to the notion of �term rewriting�� we �rst comment on our approach and the terminology
used� before stating the general con	uence result�

term rewriting� In term rewriting as usually de�ned 
see e�g� �DJ�� Klo�� Klo��� Nip���
rewrite steps are generated by the rewrite rules via �contexts and substitutions�� in order to
apply a rewrite rule l � r to some term s� one has to �nd a context C� � and a substitution
�� such that s is the result of �evaluating� C�l��� If this is the case then s is said to rewrite
in one step to the term t resulting from �evaluating� C�r��� In our treatment� the informal
notion of �evaluation� occurring here� is formalised by means of a calculus� named substitution
calculus� A rewrite step then consists of a conversion in the substitution calculus� the actual
replacement step 
the left�hand side of the rule is replaced by the right�hand side�� and
another conversion in the substitution calculus� In other words� rewrite steps are de�ned as



�

replacement steps modulo the substitution calculus� In any �suitable� substitution calculus�
the �rst conversion can actually be obtained by an expansion and the second conversion by
a reduction in the substitution calculus�

One can wonder what kind of calculus the substitution calculus should be� Well� it should
at least be able to mimic the evaluation of C�l�� to s 
and of C�r�� to t�� Now� noting that the
only thing which happens in the evaluations is �
un�plugging� of terms� it seems reasonable
to propose that the substitution calculus be some kind of lambda calculus� The de�nition
of a rewrite step gives rise to the analogy rewriting � substitution � rules� Exploiting the
Curry�Howard correspondence 
in case the substitution calculus is a typed ��calculus�� one
can view evaluation also as proof transformations of some logic� so we arrive at the analogy
rewriting � logic � rules�

The previous paragraph may seem rather fanciful� but it actually works quite nicely� Or�
dinary term rewriting systems 
TRSs�� as well as Klops CRSs and Nipkows HRSs can be
formalised easily in this way using simply typed lambda calculus with ��reduction and ��
expansion as substitution calculus� as we will show�

higher�order term rewriting� From this formalisation of term rewriting� a natural way
to classify term rewriting systems� becomes apparent� classify them according to the logic
employed� Since we parametrise over the logic� not restricting attention to �rst order but
allowing for any �suitable�� e�g� higher�order� logic� we can also handle higher�order term
rewriting�

weak orthogonality� Orthogonality of two rewrite rules expresses that applications of those
rules to a term always operate on di�erent parts of the term� Weak orthogonality is a weaker
assumption than orthogonality� because the rules may operate on the same part of a term�
but in that case� both applications should result in exactly the same term�

weak orthogonality implies con�uence� It is well�known that orthogonality implies con�
	uence for many classes of term rewriting systems 
�CR��� Ros��� Klo��� Raa�� Nip����
Basically� two methods are used to prove this� The �rst method known as �con	uence via
developments�� is due to Church and Rosser �CR���� and employed in the �rst three pa�
pers above� The second method� due to Tait and Martin�L�of 
see �Bar���� is known as
�con	uence via parallel reductions�� and employed in the last two papers� In the case of
weak�orthogonality 
and generalisations thereof�� con	uence has been proved only for TRSs
and was an open problem 
�DJK��� for CRSs and HRSs�

weak orthogonality implies con�uence� the higher�order case� In this paper we prove con�
	uence for the class of all weakly orthogonal higher�order term rewriting systems� for which
the substitution calculus satis�es some� more or less natural conditions� This generalises all
the known results� First� because con	uence was only shown to hold for 
admittedly large�
subclasses of orthogonal term rewriting systems� Second� because con	uence was only shown
to hold for weakly orthogonal term rewriting systems� so far� not for either CRSs or HRSs�



�	 Use of a Substitution Calculus �

We prove con	uence both via �developments� as well as via �parallel reductions�� The con�
	uence by developments proof works by a reduction to strong normalisation of cut�elimination
of the employed logic� The con	uence by parallel reductions proof works by proof transfor�
mations� Both methods di�er substantially from the known methods�

organisation of the paper� First we illustrate our de�nition of term rewriting by presenting
some examples� Then we give our formal de�nition of higher�order term rewriting systems

HORSs� and show how some common formats of term rewriting �t into this de�nition�
Next� we motivate and present conditions on the substitution calculus allowing to derive the
con	uence by weak orthogonality result� The two con	uence proofs are the topics of the next
sections and the paper concludes with the conclusion�

A short version of the present paper has appeared as �OR���

�� Use of a Substitution Calculus

In this section we illustrate the intended use of a substitution calculus by considering two
examples� First we consider the term rewriting system

x� � � �

x� S
y� � S
x � y�

We will use abbreviations of Sn
�� whenever convenient� The �rst rule can be applied to the
term ���� In the usual de�nition of rewriting this is seen be remarking that ��� � 
x����

with �
x� � �� In our de�nition of rewriting the substitution of � for x will be performed by
the substitution calculus� It is quite natural to have as substitution calculus ��calculus with
��reduction� the prime example of a calculus implementing substitution� If the substitution
calculus is to act on the variable x� then we must change the rule in such a way that x will be
of object�level� instead of of meta�level as in the rule in the usual format� With a ��calculus
as substitution calculus� this is done by turning x into a bound variable� We write � for
abstraction and concatenation for application� The rules given above then take the following
form�

x�
x� �� � x

x�y�
x� S
y�� � x�y�
S
x � y��

Remember now that a rewrite step consists of a conversion in the substitution calculus�
followed by a replacement of the left�hand side by the right�hand side� followed by a conversion
in the substitution calculus� So a term M is rewritten to N if

M ��

SC C�l�� C�r���

SC N

With simply typed ��calculus with ��reduction and 
restricted� ��expansion as substitution
calculus� we obtain the following computation�


� � �� � � �� fy�

� � �� � S
y��gf�g

�� fx�y�
x� S
y��gf� � �gf�g



�

� fx�y�S
x � y�gf� � �gf�g

�� fy�S

� � �� � y�gf�g

�� S

� � �� � ��

�� S
fx�
x � ��gf� � �g�

� S
fx�xgf� � �g�

�� S
� � ��

�� S
fy�
� � S
y��gf�g�

�� S
fx�y�
x� S
y��gf�gf�g�

� S
fx�y�S
x� y�gf�gf�g�

�� S
fy�S
� � y�gf�g�

�� S
S
� � ���

�� S
S
fx�
x � ��gf�g��

� S
S
fx�xgf�g��

�� S
S
���

Note that the replacement step is safe because left� and right�hand side of a rule are closed�

In the second example we consider a rewriting system involving bound variables� As usual
things become more complicated in the presence of bound variables� The example concerns
a rule for calculating the derivative of the sum of two arbitrary functions� Informally� this
rule can be given as follows�

dx
f
x� � g
x��� dx
f
x�� � dx
g
x��

where f and g stand for arbitrary functions of one variable� The rule applies to the expression
dx
x

���x�� which is rewritten to dx
f
x���dx
g
x��� This is the case because dx
x
���x� �


dx
f
x� � g
x���� with �
f� � x �� x� and �
g� � x �� �x� Not surprisingly� ��calculus
can take care of substitution also in this example� We now consider the rule and the rewrite
step in our format� with again simply typed ��calculus with ��reduction and 
restricted� ��
expansion as substitution calculus� First� the functions x �� x� and x �� �x are now denoted
as x�x� and x��x� Second� f and g become bound variables in our representation of the
rewrite rule�

fg�d
y�
fy � gy��� fg�
z�
d
y�fy�z � d
y�gy�z��

The computation of dx
x
� � �x� is now as follows�

d
y�y� � �y� ��

d
y�fx�x�gfyg� fx��xgfyg� ��

ffg�d
y�fy � gy�gfx�x�gfx��xg �

ffg�
z�
d
y�fy�z � d
y�gy�z��gfx�x�gfx��xg ��

z�
d
y�x�fx�gfyg�z� d
fx��xgfyg�z� ��

z�
d
y�y��z � d
y��y�z�



�	 Higher�Order Rewriting Systems� syntax �

Two remarks seem appropriate� First� like usual� we work modulo ��equivalence� Second�
in both examples the recipe conversion�replacement�conversion is in fact used in the form
expansion�replacement�reduction� This is not just good luck� In this paper we will be inter�
ested in rewriting of expressions that do not contain redexes for the substitution calculus�
Moreover the substitution calculus is required to be complete� In that case� rewriting is
expansion�replacement�reduction�

�� Higher�Order Rewriting Systems� syntax

In this section we give the de�nition of a Higher�Order Rewriting System� A Higher�Order
Rewriting System is de�ned as a triple consisting of an alphabet� a substitution calculus and
a set of rewrite rules� H � 
A	SC	R��

The alphabet contains an operator for applications� one for abstraction and further nullary
symbols� The substitution calculus has an associated rewrite relation� denoted by �SC �
on the set of expressions over the alphabet� This rewrite relation is to be thought of as
implementing substitution� The rewrite rules determine the behaviour of a subset of symbols
called the de�ned symbols�

We �rst take a closer look at the alphabet� The alphabet of each Higher�Order Rewriting
System is supposed to contain an operator for application and an operator for abstraction�

Definition ��� An alphabet A of a Higher�Order Rewriting System consists of�
� a symbol Ap for the application operation�
� a symbol � for abstraction�
� symbols x y z � � � for variables� among them are special symbols ��	��	 � � � for distin�
guished variables called holes�

� symbols U V W � � � for substitution operators�
� symbols F G H � � � for rewrite or de�ned operators�

The set of variables is denoted by Var� The set of symbols for substitution operators is
denoted by OSC � The set of symbols for rewrite operators is denoted by OR� The union of
OSC and OR is denoted by O� We use a	 a

�	 a��	 � � � to denote an arbitrary element of O�

The substitution operators are used by the substitution calculus to implement substitution�
The rewrite operators are given an operational semantics by the rewrite rules� The sets OSC

and OR are supposed to be disjoint�

Expressions over A are called preterms�

Definition ��� The set PreTerms of preterms is de�ned as the least set satisfying�


�� x � PreTerms for every variable x � Var�

�� a � PreTerms for every operator a � O�

�� if M� � PreTerms and M� � PreTerms� then Ap
M�	M�� � PreTerms�

�� if M � PreTerms and x � Var then x�M � PreTerms�

A variable x occurs free in a preterm M if it occurs not in the scope of an abstraction x� �
and it occurs bound otherwise� The set of variables that occur free in a pretermM is denoted



�

by FVar
M�� and the set of variables that occur bound in M is denoted by BVar
M�� By the
Variable Convention� one may assume FVar
M�� BVar
M� � �� If all variables occur bound
in a preterm� then the preterm is said to be closed� It is convention not to bind over variables
that are holes�

Ths substitution symbols are the substitution operators and the bound variables� The
rewrite symbols are the free variables and the rewrite operators� Note that one is usually
interested in what happens to rewrite operators during substitution� Note that it might be
cleaner to make a syntactic distinction between free and bound variables� because then the
de�nition of substitution symbols and of rewrite symbols is independent of the terms we are
working with� This set�up is chosen in �Oos���

Notation ��� We write M�M� for Ap
M�	M��� We write x� � � � xn�M for x�� � � � xn�M �

A precontext is de�ned as a preterm in which all occurrences of holes are made explicit� If
the holes occurring in a precontext are among ��	 � � � 	�n� then it is called an n�ary precontext�
and it is denoted by C�	 � � � 	 �� A unary precontext is denoted by C� �� For a unary precontext
we usually don�t make the index of the hole occurring in it explicit� The result of replacing
occurrences of ��	 � � � 	�n by pretermsM�	 � � � 	Mn is denoted by C�M�	 � � � 	Mn�� We suppose
that if a hole is replaced by a preterm� the result is a well�formed preterm� An n�ary context
is said to be linear if every hole �i 
for i � �	 � � � 	 n� occurs exactly once in it�

A position is a �nite word over f�	 �g� Positions are denoted by 
	 �	 �� The set f�	 �g� of
positions is denoted by Pos� The empty word over f�	 �g� is denoted by � It is the neutral
element for the concatenation operation� which is denoted by 	� Concatenation is associative�
On Pos a pre�x ordering denoted by 
 is de�ned as follows� 
 
 � if and only if there exists
a 
� such that 
 	 
� � �� In that case 
 is called a pre�x of �� If for 
	 � � Pos� 
 is not a
pre�x of � and � is not a pre�x of 
� then 
 and � are said to be disjoint�

Definition ��� Let M be a preterm� The set of positions of M � Pos
M�� the head�symbol
of M � top
M�� and the subterm of M at position 
� 
nt are de�ned by induction on the
structure of M as follows�
� if M � x� then

Pos
M� � fg

top
M� � x

nM � x
� if M � a with a � O� then

Pos
M� � fg

top
M� � a

nM � a

� if M �M�M�� then
Pos
M� � fg � f� 	 
 j 
 � Pos
M��g � f� 	 
 j 
 � Pos
M��g

top
M� � Ap

nM � M

� 	 
nt � 
nM�



�	 Higher�Order Rewriting Systems� syntax �

� 	 
nt � 
nM�

� if M � x�M�� then
Pos
M� � fg � f� 	 
 j 
 � Pos
M��g

top
M� � x�

nM � M

� 	 
nM � 
nM �

If 
� � � 	 � 	 
�� and 
� � � 	 � 	 
��� then 
� is on the left of 
�� We also say that the symbol
at 
� is on the left of the symbol at 
��

We now consider the properties a decent substitution calculus should have in order to
deserve the name�

A substitution calculus is meant to implement substitution� One would like that calculating
a substitution yields a result� and moreover� that this result is unique� This is guaranteed by
requiring the substitution calculus to be complete� that is� con	uent and terminating�

If some calculations in the substitution calculus concerning some closed term M are done�
we want to be able to use these calculations for a larger term having M as subterm� For
hygienic reasons it is required that rewriting in the substitution calculus preserves closedness
of a term� Further we require that if there is a conversion in the substitution calculus between
closed terms� M ��

SC
M �� then there is the same conversion in a context� C�M ���

SC
C�M ���

In the same spirit� if we have a conversion in the substitution calculus between two terms
C� � ��

SC
C �� � where � � denotes a hole which is possibly present in C �� �� we can replace

the hole by a closed term� Between the results of the replacement there still is a conversion�
C�M ���

SC
C ��M ��

Finally one remark� for the moment� we ignore typing problems and we assume the preterms
that are considered to be well�formed� For example� if the substitution calculus is simply
typed ��calculus� we assume all terms to be simply typable�

The rewrite relation of the substitution calculus is denoted by �SC�

The requirements on the substitution calculus discussed above are listed in the next de��
nition�

Definition ��� The rewrite relation of a substitution calculus SC must satisfy the following
requirements�


�� �completeness�
The rewrite rules of a substitution calculus generate a con	uent and terminating rewrite
relation on the set of expressions over A�


�� �closed under closed�
If M is closed and M �M �� then M � is closed�


�� �closed under contexts�
The conversion relation��

SC
generated by the rewrite rules of a substitution calculus SC

is closed under contexts� i�e� if M ��
SC

M � is a conversion between closed terms� then
C�M ���

SC
C�M ���



	


�� �closed under substitutions�
The conversion relation ��

SC
generated by the rewrite rules of a substitution calculus is

closed under substitution� i�e� if C� ���

SC
C �� � then C�M ���

SC
C ��M ��

The convertibility relation of the substitution calculus is an equivalence relation on the
set of preterms� Rewriting in a Higher�Order Rewriting System will be de�ned modulo
the convertibility relation of the substitution calculus� By completeness of the substitution
calculus� each equivalence class has a unique representative� which is found by reducing
any member of the equivalence class to SC�normal form� Mostly we are interested in the
representatives of the equivalence classes� that do not contain redexes for the substitution
calculus�

Definition ��	 A preterm that is in normal form with respect to the substitution calculus
is a term� The set of terms is denoted by Terms�

All notions de�ned for preterms persist for terms� delete if necessary the pre�x pre�

Now the moment is there to discuss the rewrite rules of a Higher�Order Rewriting System�

Definition ��
 A rewrite rule of a Higher�Order Rewriting System is a pair 
l	 r� of closed
terms with the same outermost abstractions in the same order� Usually we write l � r for

l	 r��

As usual� the rewrite rules induce a rewrite relation� We de�ne the rewrite relation on
the set of terms� The idea is that there is a rewrite step M � N if M equals modulo the
substitution calculus the left�hand side of some rewrite rule in a context� that is�M ��

SC
C�l��

and N equals modulo the substitution calculus the right�hand side of the same rewrite rule
in the same context� that is� C�r���

SC
N � Since M and N are terms 
not preterms� and the

substitution calculus is complete� this idea can be simpli�ed� For the �rst conversion one can
take an expansion and for the second conversion one can take a reduction�

Definition ��� A term M rewrites to a term N � notation M � N � if there is a unary
context C� � and a rewrite rule l� r such that M SC� C�l� and C�r��SC N �

Notation ��� The transitive closure of � is denoted by ��� and its re	exive�transitive
closure by ��

The de�nition of a Higher�Order Rewriting System is now completed� We conclude this
section by making some remarks�

In the de�nition of a rewrite rule and a rewrite step� some restrictions seem to have been
imposed� a rewrite rule is a pair of terms� not a pair of preterms� and the rewrite relation is
de�ned using a context� not a precontext� That these are no real restrictions is due to the
last three requirements on the substitution calculus� The proofs can be found in �Oos���



�	 Examples of Higher�Order Rewriting Systems 


Further� in the de�nition of the rewrite relation the context is unary� It is possible to for�
mulate requirements on the substitution calculus that guarantee the rewrite relation de�ned
using a unary context to be as expressive as the rewrite relation de�ned using an arbitrary
context� This is not done in the present paper� The interested reader is referred to �Oos���

Finally� in this paper we restrict attention to rewriting on the set of terms� There certainly
are good reasons to consider also rewriting on the set of preterms� It is for instance very
natural to introduce sharing by means of the substitution calculus� This matter has our
concern but it is beyond the scope of the present paper�

�� Examples of Higher�Order Rewriting Systems

In this section we represent some well�known rewriting systems as a Higher�Order Rewriting
Systems� In all the examples the substitution calculus is ��calculus with ��reduction and
��expansion� This illustrates the expressive power of Higher�Order Rewriting Systems�

��� Term Rewriting Systems�

Every term rewriting system is a Higher�Order Rewriting System� We illustrate this fact by
considering two examples�

The term rewriting system for Combinatory Logic� Consider the term rewriting system
describing Combinatory Logic�

Ix � x

Kxy � x

Sxyz � xz
yz�

This is the usual representation of the term rewriting system describing Combinatory Logic�
In fact� MN is an abbreviation for �
M	N� with � a binary operator for application� The
symbols I� K and S denote nullary operators� For the representation of Combinatory Logic
as a Higher�Order Rewriting System� we consider the rewrite rules in full detail�

�
I	 x� � x

�
�
K	x�	 y� � x

�
�
�
S	 x�	 y�	 z� � �
�
x	 z�	�
y	 z��

Combinatory Logic as a Higher�Order Rewriting System� We shall now present this system
as an Higher�Order Rewriting System� The set of de�ned symbols consists of � � � � � �
�	 I � �	 K � � and S � �� There are no symbols for substitution operators� Using this alphabet�
we can represent every term of Combinatory Logic as a term in CL� For instance� �
I	 x�
is written as Ap
Ap
�	 I�	 x� and �
�
K	 I�	 S� is written as Ap
Ap
K	 I�	 S�� Note that we
can build many terms that do not correspond to a �real� term in Combinatory Logic� like
for instance Ap
I	 x�� This is in general the case when representing an existing system as a
Higher�Order Rewriting System�

The free variables in the rules of the term rewriting system representing Combinatory Logic
are turned into object variables� This is done by turning the left� and the right� hand side of



��

the rules into closed expressions� The rewrite rules then take the following form�

x��Ix � x�x

x�y��
�Kx�y � x�y�x

x�y�z��
�
�Sx�y�z � x�y�z��
�xy�
�yz�

An example of a well�known rewrite sequence is the following�

�
�
�SI�I�
�
�SI�I� ��

fx�y�z��
�
�Sx�y�zgfIgfIgf�
�SI�Ig �

fx�y�z��
�xz�
�yz�gfIgfIgf�
�SI�Ig ��

�
�I
�
�SI�I��
�I
�
�SI�I�� ��

�
fx��Ixgf�
�SI�Ig�
�I
�
�SI�I�� �

�
fx�xgf�
�SI�Ig�
�I
�
�SI�I�� ��

�
�
�SI�I�
�I
�
�SI�I�� ��

�
�
�SI�I�
fx��Ixgf�
�SI�Ig� �

�
�
�SI�I�
fx�xgf�
�SI�Ig� ��

�
�
�SI�I�
�
�SI�I�

The term rewriting system for parallel or Also term rewriting systems that are in functional
format can be presented as a Higher�Order Rewriting System� As an example we consider
the following term rewriting system for parallel or�

por
tt	 x� � tt

por
x	 tt� � tt

por
ff	 ff� � ff

The alphabet of this term rewriting system consists of a binary symbol por and the nullary
symbols tt and ff�

Parallel or as a Higher�Order Rewriting System� The alphabet of the Higher�Order Rewrit�
ing System that is associated to the term rewriting system describing parallel or consists of
two constants tt and ff of type � and one constant por of type � � � � �� The rewrite
rules are as follows�

x�por
tt�
x� � x�tt

x�por
x�
tt� � x�tt

por
ff�
ff� � ff

We have the following computation�

por
por
ff�
tt��
por
ff�
ff�� �

por
por
ff�
tt��
ff� ��

por
fx�por
x�
tt�gfffg�
ff� �
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por
fx�ttgfffg�
ff� ��

por
tt�
ff� ��

fx�por
tt�
x�gfffg �

fx�ttgfffg ��

tt

��	 ��calculus�
A prime example of a Higher�Order Rewriting System is of course ��calculus� In this example
we present ��calculus with �� and ��reduction as a Higher�Order Rewriting System�

��calculus� Traditionally the rewrite rules are given as follows�


�x�M�N �beta M �x �� N �

�x�Mx �eta M if x doesn�t occur free in M

��calculus as a Higher�Order Rewriting System� The alphabet of the Higher�Order Rewrit�
ing System representation of ����calculus contains the following symbols for operators�

app � �� 
�� ��

abs � 
�� ��� �

Then� for instance MN is represented as appMN and �x�M as abs
x�M�� The rewrite rules
for �� and ��reduction are as follows�

z�z��app
abs
x�zx��
z�� �beta z�z��zz�

z�abs
x�appzx� �eta z�z

Note that the side�condition for the eta�rule is not necessary� In an attempt to minimise
confusion we note that the rewrite relations in the substitution calculus is denoted as ��

and ��� whereas the rewrite relations of the object calculus is written as �beta and �eta�

We give a beginning of the reduction sequence of the term ��

app
abs
x�appxx��
abs
x�appxx�� � �

fz�z��app
abs
x�zx��
z��gfx��appx�x�gfabs
x�appxx�g �beta

fz�z��zz�gfx��appx�x�gfabs
x�appxx�g ��

fx��appx�x�gfabs
x�appxx�g ��

app
abs
x�appxx��
abs
x�appxx��

Another example of a rewriting sequence�

app
abs
y�abs
x�appyx���
abs
v�appuv�� � �

fz�z��app
absx�zx�
z��gfy�abs
x�appyx�gfabs
v�appuv�g �beta

fz�z��zz�gfy�abs
x�appyx�gfabs
v�appuv�g ��



��

fy�abs
x�appyx�gfabs
v�appuv�g ��

abs
x�app
absv�appuv�
x�� � �

fz�abs
x�appzx�gfabs
v�appuv�g �eta

fz�zgfabs
v�appuv�g ��

abs
v�appuv�

��
 Interaction Systems�

We present Interaction Systems as Higher�Order Rewriting Systems� Interaction Systems
form a class of higher�order rewriting systems that has been de�ned by Asperti and Laneve
�AL��� They form a subclass of the class of Combinatory Reduction Systems 
see next
subsection��

Interaction Systems� We start by recalling brie	y the de�nition of an Interaction System�

An Interaction System is a pair � �	R � of a signature � and a set of rewrite rules R�
The signature � consists of
� a denumerable set of variables written as x y z � � ��
� a set of forms written as f g h � � �� each equipped with a �xed arity�

The alphabet A of an Interaction system � �	R � consists of
� symbols in ��
� a symbol � for abstraction over variables�
� symbols X Y Z � � � for metavariables�
� for every n a symbol � � 	 � � � 	 � � for metasubstitution� with n occurrences of � �

Note that t�t��x�	 � � � 	 tn�xn� denotes the result of replacing xi by ti in t for i � �	 � � � 	 n�
The set of forms is divided into two disjoint sets �� and ��� the �rst one containing forms
that act as a constructor and the second one containing forms that act as a destructor� Each
form has an arity� which is a �nite sequence of natural numbers� The length of the sequence
speci�es the number of arguments a form is supposed to get� If the arity of some form f
is k� � � � kn� then the ith argument is supposed to start with ki abstractions� All destructors
have an arity of the form �k� � � � kn�

The set T of expressions is de�ned inductively as follows�
� every variable x is an expression�
� if f � � is a form of arity k� � � � kn and t�	 � � � 	 tn are expressions� then

f
x��� � � � x�k� �t�	 � � � 	 xn�� � � � xnkn �tn� is an expression�

Often we abbreviate x�� � � � xn�t by �xn�t� The notion of free and bound variable is as usual�
Expressions that are equal up to a renaming of bound variables are identi�ed�

A metaexpression is an expression in which possibly metavariables and metasubstitutions
occur�

Rewrite rules generate a rewrite relation on the set of expressions� A rewrite rule is a pair
of metaexpressions often written as l� r�

The left�hand side of a rewrite rule must satisfy�
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� it is of the form fd
fc
 �xl��X�	 � � � 	 �xlm �Xm�	 �xk� �Y�	 � � � 	 �xkn �Yn� with fc � �
�	 fd � �

��

� all metavariables are di�erent�

� there are no occurrences of metasubstitutions�

The right�hand side of a rewrite rule must satisfy

� it is a closed metaexpression�

� all metavariables occurring in it occur also in the left�hand side�

A right�hand side contains possibly metasubstitutions of the form X�t��x�	 � � � 	 tn�xn��

The set of rewrite rules R satis�es the property that for every pair consisting of a con�
structor and a destructor there is at most one rewriting rule�

The rewrite relation� is de�ned as follows� t� t� if t � C �l�� and s � C�r�� for a rewriting
rule l� r� a context C� � and an assignment �� Contexts are de�ned as usual� An assignment
assigns expressions to metavariables�

An example of an Interaction System is ��calculus� There are two forms� � of arity ��
for application and � of arity � for ��abstraction� The rule for ��reduction then takes the
following form�

�
�
x�X�	 Y �� X�Y�x�

Interaction Systems as Higher�Order Rewriting Systems� We now associate a Higher�Order
Rewriting System to an Interaction System � �	R ��

First we associate to an arity of the form k� � � � kn a simple type built from � and�� De�ne
k� inductively as follows�

�� � �


n � ��� � �� n�

To an arity k� � � � kn we then associate the type k
�
� � � � �� k�n � ��

The alphabet of the Higher�Order Rewriting System associated to an Interaction System
� �	R � consists of the following�
� symbols x y z � � � for typed variables�
� a symbol � for abstraction over variables�
� a symbol Ap for application�
� for every form f of arity k� � � � kn in �� we have a symbol f of type k

�
� � � � � � k�n � �

for an operator�

As usual we write t�t� for Ap
t�	 t���

Now we translate the expressions of the Interaction System � �	R � into terms of the
Higher�Order Rewriting System� The de�nition is by induction on the structure of an ex�
pression� We write t� for the translation of an expression t�



��

� a variable x is translated into a variable x of type ��
� an expression f
 �xk� �t�	 � � � 	 �xkn �tn� is translated into f
 �xk� �t

�
�� � � � 
 �xkn �t

�
n��

Note that the translation of an expression of an Interaction System is a term of type ��

Now we come to the point of translating the rewrite rules� The �rst thing to be done
is turning the metavariables into object variables� and abstract over them� Next we have
to take care of substitution� In the left�hand side� we replace each subexpression of the
form x�� � � � xn�X into a subexpression x� � � � xn�xx� � � � xn� Here� x is a variable of type
� � � � � � � � � 
n � � times a zero�� It is abstracted over on the outside of the left�hand
side� This is su cient to translate left�hand side of rewrite rules�

In the right�hand side� we replace subexpressions of the form X�t��x�	 � � � 	 tk�xk� by a
subexpression x
t�� � � � 
tn�� Here� ti � xi of xi doesn�t occur in the metasubstitution� Again�
x is a variable of the right type that is abstracted over on the outside of the right�hand side�
This is su cient for translating right�hand sides of rewrite rules�

It is now easy to see that if an expression t is in fact C�l��� then its translation t� equals
modulo the substitution calculus the translation of l is some context� It is then almost
immediate that the set of translated rewrite rules induces the right rewrite relation�

��� Combinatory Reduction Systems�

In this example we consider the class of Combinatory Reduction Systems de�ned by Klop
�Klo���� It forms a generalisation of the class of Contraction Schemes introduced by Aczel
�Acz����

Combinatory Reduction Systems� First we will highlight the particular points of the def�
inition of a Combinatory Reduction System� We will follow the de�nition of Combinatory
Reduction Systems as given in �KOR��� The main di�erence between this de�nition and
the original one in �Klo��� is that it employs the functional format� whereas the original
presentation is in applicative format� For a detailed account the reader may wish to consult
�KOR��� Next� we represent a particular Combinatory Reduction System� the one describing
or�elimination in natural deduction� as a Higher�Order Rewriting System�

A Combinatory Reduction System is a pair consisting of an alphabet and a set of rewrite
rules� The alphabet consists of
� variables� written as x y z � � ��
� metavariables� each with a �xed arity� written as Zk

i � where k is the arity of Z
k
i �

� function symbols� each with a �xed arity�
� an operator for abstraction over variables� written as �	�	�
� improper symbols �
�� ��� and ����

Metaterms and terms are distinguished� Metaterms are expressions built from the symbols
in the alphabet in the usual way� Terms are metaterms that do not contain any occurrence
of a metavariable� In this way there is on a syntactical level a distinction between the objects
that actually interest us� the terms� and �metaobjects�� the metaterms� that can be used to
express a relation on the set of terms� The typical way to use metaterms is in rewrite rules�
The metavariables represent the �holes� that must be instantiated in order to obtain a rewrite
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step�

The ��reduction rule of ��calculus is in the Combinatory Reduction System format written
as

�
�
�x�Z
z��	 Z ��� Z
Z ��

A rewrite rule of a Combinatory Reduction System is a pair of metaterms� written as l� r�
A rewrite rule must satisfy some restrictions we will not mention here�

As usual� the rewrite rules induce a rewrite relation on the set of terms� Extracting the
rewrite relation from the rewrite rules is a rather delicate business in Combinatory Reduction
Systems� The basic idea is that an instance of a left� or right�hand side of a rule is obtained
by �rst replacing each metavariable by a special kind of ��term and then performing a de�
velopment of all special ��redexes created by this replacement�

We will explain this in some more detail� In order to de�ne valuations we must �rst consider
the so�called substitute� This will be the �special ��term� mentioned above�

An n�ary substitute is an expression of the form �
x�	 � � � 	 xn��M � with M a term and
x�	 � � � 	 xn di�erent variables� An n�ary substitute �
x�	 � � � 	 xn��M can be applied to an
n�tuple of terms 
M�	 � � �Mn�� This results in a simultaneous substitution of Mi for xi for
i � �	 � � � 	 n�


�
x�	 � � � 	 xn��M�
N�	 � � � 	 Nn� �M �x� �� N� � � � xn �� Nn�

A valuation � is a map assigning an n�ary substitute to an n�ary metavariable�

�
Z� � �
x�	 � � � 	 xn��M

A valuation is extended to a mapping from metaterms to terms in the following way�

x� � x


�x�M�� � �x�M�

F 
M�	 � � � 	Mn�
� � F 
M�

� 	 � � �M
�
n �

Z
M�	 � � � 	Mn�
� � �
Z�
M�

� 	 � � � 	M
�
n �

We suppose unintended bindings like in 
�x�Z�� where �
Z� � x to be ruled out by the
variable convention�

A rewrite step is now de�ned in the usual way� is l � r is a rewrite rule� � a valuation
and C� � a context� then C�l�� rewrites to C�r���

The Combinatory Reduction System for elimination introduction as a Higher�Order Rewriting

System� We will now consider the representation of a particular Combinatory Reduction
System as a Higher�Order Rewriting System� but �rst let us make some remarks about
the canonical translation� It seems tempting to translate the symbol �	� for abstraction in
a Combinatory Reduction System straightforwardly into the symbol for abstraction 	�	 of a
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Higher�Order Rewriting System� However� this causes typing problems� Suppose for instance
that the alphabet of some Combinatory Reduction System contains a unary operator denoted
by F � Then both F 
x� and F 
�x�x� are perfectly legal as terms in the Combinatory Reduction
System� But it cannot be the case that both Fx and F 
x�x� are simply typable�

The solution of this problem is as follows� Like in the case of term rewriting� an operator
F of arity n is translated into F of type �� � � �� �� � with n�� times a zero� Like in the
translation of a Combinatory Reduction System into a Higher�order Rewrite System� we add
an operator abs � 
�� ��� � that collapses a functional type� Intuitively� the type � can be
thought of as the set of all terms� A subterm of the form �x�t in a Combinatory Reduction
System is then represented as abs
x�t�� 
with t� the representation of t� in a Higher�Order
Rewriting System�

So the translation of a Combinatory Reduction System into a Higher�Order Rewriting
System requires actually an encoding of untyped ��calculus in simply typed ��calculus� Ex�
actly the same is going on in the representation of a Combinatory Reduction System as a
Higher�order Rewrite System as de�ned by Nipkow� This has been reported in �OR���

Now we will represent one particular Combinatory Reduction System as a Higher�Order
Rewriting System� The Combinatory Reduction System we will consider concerns rules taken
from proof theory for the elimination of the disjunction� In natural deduction� rules for
elimination of � is as follows�

���
A

A � B

�A�
���
C

�B�
���
C

C

�

���
A
���
C

���
B

A �B

�A�
���
C

�B�
���
C

C

�

���
B
���
C

These rules can be written in the formalism of Combinatory Reduction Systems� They
then take the following form�

el
inl
Z�	 �x�Z�
x�	 �y�Z�
y�� � Z�
Z�

el
inr
Z�	 �x�Z�
x�	 �y�Z�
y�� � Z�
Z�

So the alphabet of this Combinatory Reduction System consists of two unary function
symbol inl and inr 
for introduction of disjunction� and a ternary function symbol el 
for
elimination of disjunction��

In fact� the Combinatory Reduction System above models the conversion rules concerning
disjunction only in a typed setting� Typed Combinatory Reduction Systems are not o cially
introduced� but the essentials for this particular example are in the following�

� if t is a term of type �� then inl
t� is a term of type � � ��

� if t is a term of type �� then inr
t� is a term of type � � ��
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� if s and t are terms of type �� u a term of type ���� and x and y are variables of type
� and �� then el
u	 �x�s	 �y�t� is a term of type ��

An example of a rewrite step is the following� We take the assignment � de�ned as follows�

Z �� inr
u�

Z� �� �
x��el
x	 �u�u	 �u��u�

Z� �� �
y��inr
y�	 �u�u�	 �u��u��

Then we have�

el
inl
inr
u��	 �x�el
inl
x�	 �u�u	 �u��u�	 �y�el
inr
y�	 �u�u	 �u��u�� �

el
inl
inr
u��	 �x��
x���el
inl
x��	 �u�u	 �u��u�
x�	 �y��
y���el
inr
y��	 �u�u	 �u��u�
y� �

el
inl
Z�	 �x�Z�
x�	 �y�Z�
y��
� �

Z�
Z�
� �

�
x���el
inl
x��	 �u�u	 �u��u�
inr
u�� �

el
inl
inr
u��	 �u�u	 �u��u�

In the format of Higher�Order Rewriting Systems� the system is written as

z�z��z��el
inlz�
x�z�x�
y�z�y� � z�z��z��z�z

z�z��z��el
inrz�
x�z�x�
y�z�y� � z�z��z��z�z

Like in the other examples� we take simply typed ��calculus with ��reduction and 
restricted�
��expansion as substitution calculus� The rewrite step mentioned above is simulated in the
setting of Higher�Order Rewriting Systems as follows�

el
inl
inru��
x�el
inlx�
u�u�
u��u��
y�el
inry�
u�u�
u��u�� � �

fz�z��z��el
inlz�
x�z�x�
y�z�y�gfinrugfx
��el
inlx��
u�u�
u��u�gfy��el
inry��
u�u�
u��u�g �

fz�z��z��z�zgfinrugfx
��el
inlx��
u�u�
u��u�gfy��el
inry��
u�u�
u��u�g ��

fx��el
inlx��
u�u�
u��u�gfinrug ��

el
inl
inru��
u�u�
u��u�

��� Expression Reduction Systems�

Khasidashvili introduced a framework for higher�order rewriting under the name of Expres�
sion Reduction Systems� The de�nition of Expression Reduction Systems was introduced
around ���� An early reference is �Kha��� In other publications they are sometimes also
called Combinatory Reduction Systems� The development of Expression Reduction Systems
has been in	uenced by work by Pkhakadze� Expression Reduction Systems are quite similar
to Combinatory Reduction Systems as introduced by Klop� but independently developed�

Expression Reduction Systems� First we shortly recall the basics of the de�nition of an
Expression Reduction System� We use the de�nition as given in �Kha��� An Expression
Reduction System is a pair 
�	 R� consisting of an alphabet and a set of rewrite rules�



�	

Definition ��� The alphabet of an Expression Reduction Systems consists of
� object metavariables written as a	 a�	 a��	 � � ��
� term metavariables written as A	A�	 A��	 � � ��
� variables written as x	 y	 z	 � � ��
� function symbols with a �xed arity k written as f	 g	 h	 � � ��
� quanti�er symbols with a �xed arity 
m	n�� where m � � and n � �� written as �	 �	 �	 � � ��
� symbols 
 � 	 � � � 	 � � for metasubstitutions�

The arity of a function symbols prescribes the number of argument it is supposed to have� like
in term rewriting systems� The �rst component of the arity of a quanti�er symbol prescribes
how many variables it binds� The second component indicates how many arguments it is
supposed to have� An example of a quanti�er symbol is � of ��calculus� Its arity is 
�	 ���

Like in Combinatory Reduction Systems� terms and metaterms are distinguished�

Definition ��� The set of metaterms is the smallest set satisfying the following�
� a variable x is a metaterm�
� an object metavariable a is a metaterm�
� a term metavariable A is a metaterm�
� if f is a function symbol of arity n and t�	 � � � 	 tn are metaterms� then f
t�	 � � � 	 tn� is a
metaterm�

� if � is a quanti�er symbol of arity 
m	n�� and b�	 � � � 	 bm are variables or object metavari�
ables and t�	 � � � 	 tn are metaterms then �b� � � � bm
t�	 � � � 	 tn� are metaterms�

� if a�	 � � � 	 an are object metavariables and t	 t�� � � � 	 tn are metaterms� then 
t��a�	 � � � 	 tn�an�t
is a metaterm�

The construct 
t��a�	 � � � 	 tn�an� in the last clause of the previous de�nition is called a
metasubstitution� A metaterm without metasubstitutions is a simple metaterm� A metaterm
without any occurrence of object metavariables of term metavariables is a term� In �b����bn
and in 
t��b�	 � � � 	 tn�bn�� the variables or object metavariables b�	 � � � 	 bn are called binding

variables� It is easier to understand how things work if we �rst look at the de�nition of a
rewrite rule in an Expression Reduction System�

Definition ��� A rewrite rule of an Expression Reduction System is a pair of metaterms
usually written as l� r satisfying the following conditions�

�� l is a simple metaterm which �rst symbol is a function symbol or a quanti�er symbol�

�� l and r do not contain variables�

�� occurrences of object metavariables in l and in r are bound�

�� term metavariables occurring in r occur also in l�

Note that r may contain occurrences of an object metavariable that doesn�t occur in l�
Such an object metavariable is called an additional object metavariable�
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As usual� the rewrite rules induce a rewrite relation on the set of terms� We have that s is
rewritten to t� notation s� t� if s � C�l�� and t � C�r��� Here C� � is a context� and � is an
assignment due to some restrictions discussed below�

The de�nition of a rewrite rule in an Expression Reduction System is very liberal with
respect to binding of variables� For instance� the pathological rule

f
A�� 
c�a�A

is perfectly legal� Here a is an additional object metavariable� By restricting the ways such
a rule may be used the rewrite relation is prevented from becoming pathological�

An assignment is a mapping that maps object metavariables to variables and term metavari�
ables to terms�

Definition ��� An assignment is admissible for a rewrite rule l � r if the following is
satis�ed�

If one occurrence of �
A� in l� � r� is in the scope of a binding variable �
a�� then all
occurrences of �
A� are in the scope of the binding variable �
a��

In the example of the pathological rule f
A�� 
c�a�A above� the instance f
x�� c is for
instance not allowed�

The �� and ��reduction rules of ��calculus are in the format of Expression Reduction
Systems written as

Ap
�a
A�	 B� � 
B�a�A

�a
Ap
A	 a�� � A

An instance 
s�x�t of the right�hand side denotes the term t in which each free occurrence
of x has been replaced by s�

Expression Reduction Systems as Higher�Order Rewriting Systems� We sketch the trans�
lation of an Expression Reduction System into a Higher�Order Rewriting System with ��
calculus with ��reduction and restricted ��expansion as a substitution calculus�

First variables� function symbols and quanti�er symbols are translated� A variable is
translated into a variable of type �� A function symbol f of arity k is translated into a
rewrite operator of type �� � � �� �� � with k�� times a �� Let � be a quanti�er symbol
of arity 
m	n�� De�ne m� as follows�

�� � �


m� ��� � �� m�

The translation of � is then a rewrite operator of type m� � � � �� m� � � with n times m��

The translation t� of a term t is as follows�

� x� � x�



��

� f
t�	 � � � 	 tn�
� � f
t��� � � � 
t

�
n��

� �x� � � � xm
t�	 � � � 	 tn� � �
x� � � � xm�t
�
�� � � � 
x� � � � xm�t

�
n��

Remark ��� In Expression Reduction Systems to each quanti�er symbol a scope indicator is
associated� It indicates in which arguments the binding variables actually bind� We consider
a simpli�ed version of Expression Reduction Systems without scope indicator� Then� binding
variables of a quanti�er symbol bind in all arguments of that quanti�er symbol�

As far as rules are concerned� we consider here a translation of a modi�ed version the
rewrite rules of an Expression Reduction System� Note that if a term metavariable A is in
the scope of a binding 
object meta�variable a� this binding may only play a role in an actual
instance of the rewrite rule if all occurrences of A are in the scope of the binding variable
a� Therefore� we choose to translate a modi�ed version of the rewrite rules where we forget
about bindings that never play a role in an actual instance of the rule�

The translation of a modi�ed rule is then as follows� Let t be a metaterm that is the left�
or right�hand side of a rewrite rule� We �rst associate to t a term t� as follows�

� an object metavariable is translated into a variable of type ��

� the translation of f
t�	 � � � 	 tn� �� f
t�� � � � 
t�n��

� �a� � � � am
t�	 � � � 	 tn�
� � �
xa� � � � xam �t

�
�� � � � 
xa� � � � xam �t

�
n�

� a metasubstitution 
t��a�	 � � � 	 tn�an�t is translated into t
�
t��� � � � 
t

�
n��

� a term metavariable A that is in the scope of binding variables a�	 � � � an of quanti�er
symbols is translated into zAxa� � � � xan where zA is a variable of type �� � � �� �� �
with n� � times a ��

� a term metavariable A in a subterm of the form 
t��a�	 � � � 	 tn�an�A is translated into
zA
t

�
�� � � � 
t

�
n��

Next we take the closure z� � � � zn�l
� of the left�hand side� The translation of a rule l � r is

then z� � � � zn�l
� � z� � � � zn�r

��

Note that things� and in particular the modi�ed version of a rewrite rule of an Expression
Reduction System are not su ciently formalised yet� Work certainly remains to be done
here� and this sketch is only meant to be a �rst step�

For instance� we should take care that the translation of a metasubstitution is well�typed�
This is only the case if metasubstitutions apply to metaterms� It is possible to modify rewrite
rules of an Expression Reduction System 
without changing the rewrite relation� in such a
way that this holds� but this is one of the things that remain to be done in a formal way�

Then� of course� it remains to prove that the translation is correct� That is� we have to
prove that if t � s in an Expression Reduction System� then t� � s� in the associated
Higher�Order Rewriting System� We do not give the proof in detail here� but just consider
some translations of rewrite rules�



�	 Examples of Higher�Order Rewriting Systems ��

The translation of f
A� � 
c�a�A is z�fz � z�z� An admissible assignment � in the
Expression Reduction System may not assign to A a term containing free occurrences of
�
a�� All other instances are easily seen to be simulated in the associated Higher�Order
Rewriting System�

The translation of �a
A�� f
�a
A�	 A� is z��Z � z�f
�z�
z�� Again� admissible assign�
ments � may not assign to A a term containing free occurrences of �
a��

The translation of Ap
�a
A�	 B�� 
B�a�A is zAzB�Ap
�
xa�zAxA��
zB�� zAzB�zAzB� as
it should be�

��� Higher�order Rewrite Systems�

In this example we consider a class of higher�order rewriting systems introduced by Nipkow�
the Higher�order Rewrite Systems �Nip���

Higher�order Rewrite Systems� We �rst recall the de�nition of a Higher�order Rewrite
System� since Higher�Order Rewriting Systems are very similar to them we can be really
quick here�

Expressions of a Higher�order Rewrite System are built from simply typed variables� ab�
straction and application and simply typed constants as in simply typed ��calculus� The
expressions we are interested in are the ones in ���normal form� They are called terms� A
context is a term with one occurrence of a hole� A substitution is the homomorphic exten�
sion of a type�preserving mapping from variables to terms� A rewrite rule is a pair of terms
written as l� r satisfying some restrictions of which we mention only two here�
� l and r are terms of the same base�type�
� l satis�es the so�called pattern�condition� i�e� every occurrence of a free variable x is in
a subterm of the form x
t�� � � � 
tn�� such that t���	 � � � 	 tn�� is a list of distinct bound
variables�

The Higher�order Rewrite System for mini�scoping� as a Higher�Order Rewriting System�

As an example of a Higher�order Rewrite System� we consider the system �mini�scoping� that
pushes quanti�ers inwards� It is taken from �Nip��� There are two base types� term and
form� The system contains the following constants�

�	� � form � form � form

� � 
term � form�� form

The rewrite rules are as follows� where P	Q � form and P �	 Q� � term � form are free variables�

�
x�P � � P

�
x�

P �x� � 
Q�x��� � 
�P �� � 
�Q��

�
x�

P �x� �Q�� � 
�P �� �Q

�
x�
P � 
Q�x��� � P � 
�Q��

An example of a rewrite sequence is�

�
x�
�
y�a� � 
bx � b���� �



��

�
y�a� � �
z�
bz � b��� �

a � �
z�
bz � b��� �

a � 
�
b� � b��

We now represent this Higher�order Rewrite System as a Higher�Order Rewriting System�
The substitution calculus is simply typed ��calculus� The only thing that should be done is
turning taking the closure of the rules� We then obtain the following Higher�Order Rewriting
System�

P��
x�P � � P�P

P ��Q��
�
x�
P �x �Q�x��� � P ��Q��

�P �� � 
�Q���

P ��Q�
�
x�
P �x �Q��� � P ��Q�

�P �� �Q�

P�Q��
�
x�
P �Q�x��� � P�Q��
P � 
�Q���

The rewrite sequence above is then obtained as follows�

�
x�
�
y�a� � 
bx � b���� ��

fP�Q��
�
x�
P �Q�x���gf�
y�a�gfz�
bz � b��g �

fP�Q��P � 
�Q��gf�
y�a�gfz�
bz � b��g ��

�
y�a� � �
z�
bz � b��� ��

fP��
x�P �gfag � �
z�
bz � b��� �

fP�Pgfag � �
z�
bz � b��� ��

a � �
z�
bz � b��� �

a � fP ��Q��
z�

P �z� �Q��gfx�bxgfb�g �

a � fP ��Q�
�P �� �Qgfx�bxgfb�g ��

a � 
�
x�bx�� � b��

�� Weak Orthogonality

Orthogonality of two computations means that the two computations are independent of each
other� If computation is modelled by a rewriting system then one is usually not interested in
independency of steps but in independency of rules� Two rewrite rules are orthogonal to each
other if always if they both can be applied to a certain term� they use di�erent �resources� of
this term� A rewriting system is said to be orthogonal if each pair of rules is� Traditionally�
one imposes orthogonal behaviour on a rewriting system by requiring all rules to be left�linear
and by requiring each pair of rules to be non�ambiguous�

Two rewrite rules are said to be weakly orthogonal to each other if whenever they can both
be applied to a certain term using 
partly� the same resources� the result of applying the one
rule is the same as the result of applying the other rule�

Under the restriction of orthogonality� con	uence has been proven for Combinatory Re�
duction Systems �Klo��� Raa�� and for Higher�order Rewrite Systems �Nip��� In the next
two sections we give two proofs of con	uence for weakly orthogonal Higher�Order Rewriting
Systems� This extends already existing results because the requirement of orthogonality is
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relaxed to weak orthogonality and because the class of Higher�Order Rewriting Systems cov�
ers all systems for which a con	uence proof has been already given� proofs have been given
for so far� It solves a problem which was raised in �DJK�� Problem ����

Since our format of rewriting di�ers from the usual one� the reader won�t �nd the familiar
de�nition of orthogonality in this text� We try however to make our presentation the least
shocking as possible� In this section we �rst discuss orthogonality and then weak orthogonal�
ity� The de�nition of orthogonality concerns on the one hand the substitution calculus and
on the other hand the rewrite rules�

��� Orthogonality

The substitution calculus� We �rst consider the part of the de�nition of orthogonality that
concerns the substitution calculus�
In rewriting� one is often interested in tracing what happens to symbols� or rather to

positions of symbols� What happens to a position in a term M during a rewrite sequence
M � N is described by means of a descendant relation� relating positions ofM to positions of
N � In Higher�Order Rewriting Systems� we will be interested in what happens to free variables
and de�ned symbols during rewrite sequences� Since the rewrite relation of a Higher�Order
Rewriting System is de�ned via the rewrite relation of its substitution calculus� it is natural to
de�ne a descendant relation for a Higher�Order Rewriting System via the descendant relation
of its substitution calculus�
Therefore we add to the requirements on the substitution calculus that it should have a

descendant relation� We �rst consider the de�nition of such a descendant relation�

Definition ���

�� A descendant relation of the substitution calculus maps a step u � M �SC N to a
relation ju

��
j
SC

between positions of M and positions of N � If u �M �SC N is a rewrite

step and 
 � Pos
M�� � � Pos
N�� then by 
ju
��
j�SC is meant that the position 
 in M

descends to the position � in N by the step u �M �SC N �

�� The descendant relation is extended straightforwardly to arbitrary rewrite sequences

and conversions� by de�ning ju 	 u� 	 � � � 	 un�����������

j
SC

� ju
��
j
SC

ju� 	 � � � 	 un���������
j
SC

and ju��
���

j
SC

�

ju
��
j��
SC

� The descendant relation of the empty rewrite sequence is the identity�

Not every descendant relation is useful for tracing interesting symbols during a rewrite
sequence� We impose some natural restrictions on the descendant relation of the substitution
calculus� The restrictions� imposing �naturality� are given in the next de�nition�
One can also consider a descendant relation and some natural restrictions on it in a more

abstract setting where the objects have no visible structure� We are not interested in abstract
rewriting in the present paper� but the interested reader is referred to �Oos���

Definition ��� Let j
��
j
SC

be the descendant relation of the substitution calculus SC� It is

said to be natural if the following holds�



��

�� Let C� � be a unary context with u � C� � �SC D� �� Let the step u� be obtained by
replacing the hole by a closed term M � u� � C�M ��SC D�M �� Then the positions of M
in C�M � are related to the positions of M in D�M � via the positions of the hole� and
the positions of C� � in C�M � are related to the positions of D� � in D�M � via ju

��
j
SC

�

That is� for 
 � Pos
C� �� and � � Pos
D� ��� we have


ju�
��
j� if 
ju

��
j�

For � � Pos
M�� 
� the position of the hole in C� � and �� a position of the hole in D� ��
we have


���ju�
��
j����

�� For two reductions to SC�normal form d� � M �SC M � and d� � M �SC M � we have
jd���
j
SC

� jd���
j
SC

�

The rewrite rules� We now consider the de�nition of orthogonality as far as it concerns the
rewrite rules�
To start with� we want that for a left�hand side l of some rule� the SC�normal form of C�l�

contains always a trace of l� More precisely� we require a left�hand side l to have a special
position that has exactly one descendant in C�l��SC for every context C� �� This special
position will be called the head�position of l�
Second� we require the following� If there is an expansion MSC � C�l� such that some

position 
 in M originates from the head�position of l in C�l�� then C� � is unique� The
expansion itself is of course not necessarily unique�
The �rst requirement on the form of a rewrite rule is given in the following de�nition�

Definition ��� A rewrite rule l � r is said to be head�de�ned if there is a unique position

 of l� called the head�position� that satis�ed the following�

�� For every linear context C� �� the position 
 has exactly one descendant in C�l��SC �

�� for every term M and every position � in M � the linear context C� � such that �
originates from 
 in C�l� via MSC � C�l� is unique�

Note that in every �reasonable� rewriting system all rules have a head�symbol� In �rst�order
term rewriting� it is the leftmost symbol of the left�hand side� In Combinatory Reduction
Systems� it is also the leftmost symbol of the left�hand side of a rule�
In a Higher�Order Rewriting System with simply typed ��calculus with ��reduction and


restricted� ��expansion as substitution calculus� the head�symbol of a rewrite rule is the
leftmost de�ned symbol of the left�hand side�
In general� the de�nition of a head�symbol depends on the substitution calculus and its

descendant relation�
Note that it is often the case that a rewrite rule is required to have a head�symbol by

de�nition�
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The second requirement on a rewrite rule is that its left�hand side is linear� which is
formulated as follows� if l is x� � � � xn�l�� all variables x�	 � � � xn occur exactly once in l�� A
somewhat more sophisticated de�nition of linearity is given in �Oos��� A rule is said to be
left�linear if its left�hand side is linear�
Finally� we consider a adaptation of the concept of �non�ambiguity�� The idea of non�

ambiguity is that if two rules can be applied to a term they use di�erent parts of the term�
This idea can be formalised using expansions�

Definition ��� Two rewrite rules l � r and l� � r� are said to be non�ambiguous or
simultaneous if the following holds� Let a term M contain a redex for a rule l � r and one
for a rule l� � r�� Then there are expansionsM �SC C�l� andM �SC C

��l��� We require that
both left�hand sides can be made explicit together in a 
binary� context� That is� there is an
expansion M �SC D�l	 l

��� If both redexes occur on the same position this is only required if
the two rules are di�erent�

a pair of nonambiguous or simultaneous rewrite steps

We recapitulate the above in the following de�nition�

Definition ��� A Higher�Order Rewriting System H � 
A	SC	R� is orthogonal if the fol�
lowing is satis�ed�

�� SC has a natural descendant relation�

�� every rule in R is head�de�ned�

�� every rule in R is left�linear�

�� every pair of rules of R is non�ambiguous or simultaneous�



��

��	 Weak Orthogonality

The di�erence between orthogonality and weak orthogonality only lies in the point of non�
ambiguity�
The requirement that two rules cannot operate on the same part of a term is relaxed to

requiring that in case they do� both applications should yield exactly the same result�

Definition ��	 Two rewrite rules l � r and l� � r� are said to be weakly non�ambiguous

or weakly simultaneous if the following holds�
If we have MSC � C�l� and MSC � C ��l��� and it is not the case that MSC � D�l	 l��� then

C�r��SC � C ��r���SC�

Definition ��
 A Higher�Order Rewriting System H � 
A	SC	R� is weakly orthogonal if

�� SC has a natural descendant relation�

�� every rule in R is head�de�ned�

�� every rule in R is left�linear�

�� every pair of rules of R is weakly non�ambiguous�

a pair of weakly nonambiguous rewrite steps

Now that we know what a weakly orthogonal Higher�Order Rewriting System is� we embark
on the two con	uence proofs�

	� A confluence proof by developments

In this subsection we prove all weakly orthogonal Higher�Order Rewriting Systems to be
con	uent by extending the method of �con	uence by developments� to the weakly orthogonal
case� Before formalising the proof� we �rst present the proof idea�
A classical way to prove con	uence for orthogonal rewriting systems is via the Finite Devel�

opments theorem� It states that rewriting all the redexes which are present �simultaneously�



�	 A con�uence proof by developments ��

in an initial term� in any order� is �nite� always results in the same term� and induces the same
descendant relation� This implies con	uence if any set of redexes is indeed simultaneous�
If a rewriting system is orthogonal� then any set of redexes present in a term is simulta�

neous� Orthogonality in fact consists of three parts� First� distinct actions consume distinct
resources 
�consistency��� Second� actions may interact as long as this interaction is �nitary

��niteness��� Finally� the order in which distinct actions are performed does not in	uence
the e�ect on other resources 
�parametricity��� In other words� no matter in what order
these actions are performed the e�ect on their surroundings is always the same� These three
conditions correspond to Axiom � in �GLM���
The standard �long� proof to show that orthogonal systems are con	uent is via the parallel

moves lemma 
�HL���� That is� one can construct the following diagram

M�
u�
� M�

u�
� M�

�� Mn

N�

�
v

u�

�� N�

��
v

u�

�� N�

��
v

�� Nn

��
v

in which in Ni � Ni�� � Mi�� only descendants of the rewrite steps on the opposite
side are contracted� The essence of this construction is� that there exists for each term
Mi a set of simultaneous redexes Ui in Mi� such that there exist complete developments
d �Mi �Mi�� � Ni�� and d

� �Mi � Ni � Ni�� of Ui�
What problems do arise� when orthogonality is relaxed to weak orthogonality! The only

problem is that the redex ui�� might overlap with some redexes in the set V �� fvj�u �
Ui�ujui��

jvg of residuals of Ui in Mi��� But then we know by weak orthogonality� that there

exists some step u� � V doing exactly the same as ui��� hence by starting with this step u
��

we obtain a complete development of V which �goes through� Mi�� as was required� For this
to work� it is needed that simultaneity of a set of redexes is preserved by performing a rewrite
step� Moreover� one needs that if the redex ui�� does not overlap with any redex in V � then
the set V � fui��g is simultaneous again�
After having explained the idea informally� we will formalise it now�

Definition 	�� Let u �M � N be a rewrite step� consisting of the expansion e �M �
� C�l��

the replacement step C�l � r� � C�l� � C�r� and the reduction d � C�r� �� N � The descen�
dant relation induced by u is de�ned by ju

��
j �� je

��
j� jC�l� r�
�������

j� jd
��
j� where � denotes relation

composition� Descendants of redexes are de�ned via the descendant of their head�symbol�

Definition 	�� Let U � fu�	 � � � 	 ung be a set of redexes in a term M � where ui � 

i	 li �
ri� is a redex at position 
i in M with respect to rule li � ri�
a A rewrite sequence d starting fromM is a U�development if only descendants of redexes in

U are reduced along d� It is complete if it ends in a term not containing any descendants
of U �

b The set U of redexes is called simultaneous if d� � M � C�l�	 � � � 	 ln�� the head�symbol of
li descends to 
i along d

�� with C�	 � � � 	 � an n�ary linear context�

We �rst prove FD for simultaneous sets of redexes and then show that in an orthogonal
Higher�Order Rewriting System� every set of redexes in a term is simultaneous�



�	

Lemma 	�� �Finite Developments� Complete developments of a simultaneous set of redexes

in a Higher�Order Rewrite Systems are �nite� end in the same term and all have the same

descendant relation�

Proof� The strategy for proving FD consists of the following three parts� Let U �� V � fug
be some set of simultaneous redexes in a term M � with u �M �M � and L and R the sets of
left� and right�hand sides of V�
a First� one proves that the rewrite step u can be simulated by a �V�abstracted rewrite step��
that is� a rewrite step in which we have abstracted over the redexes in V� by replacing
these by variables� This we call the Envelop Lemma� In a diagram�

D�L	 l�
D�L	 l� r�

� D�L	 r�

�
�
�h�l�RR ���

�
�
h�r�

C�l�
C�l� r�

� C�r�

���
�
�
e

�
�
�dRR

M

��

g

� M �

��

f

By simultaneity of U � one can construct the extraction g� Then one constructs the linear
expansion h�l� � C�l� �SC D�L	 l�� and the linear reduction h�r� � D�L	 r� �SC C�r� 
note
that we de�ne h�l� to be an expansion� while h�r� is de�ned to be a reduction�� The only
thing which remains to be shown is that the path on the outside of the diagram simulates
the one on the inside� that is� jg�D�L	 l � r�� f

�������������
j � je�C�l � r�� d

����������
j� This follows by some

easy calculations�
b Then� one gives a measure on �abstracted rewrite steps� and shows that this measure
decreases in some well�founded order along a development of U � Hence� every development
of U must be �nite� This we call the Develop Lemma� More precisely� let U � be the set of
descendants of U along u� We will construct an extraction g� � M �

�SC D
��L�� of U � from

M �� which is smaller than g� in the following sense� 
D�R	 r�	 n� ��
SC
�lex � 
D

��R��	 n���
where n� n� are the number of holes in D� � and D�� �� The construction of g� is shown in
the following diagram

D�L	 r�

���
��
h�r�

��
�h��L�RR

C�r� E�L� � D��L��

�
�
�dRR ���

�
�
g�

M �

Here h�� � is a reduction from D� 	 r� to its SC�normal form E� �� reducing the SC�redexes
created by plugging in the right�hand side r in the contextD� 	 �� Because r might be non�
linear 
only left�hand sides were required to be linear�� E� � might be a non�linear context�
Now take D�� � to be the linearisation of E� �� i�e� a linear context such that the positions
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of the holes in E� � and D�� � are the same� hence E�L� � D��L�� for some appropriate L��
By closure of reduction under substitution� the reduction h��L� can be constructed and by
completeness there exists an expansion g� fromM � to E�L� � D��L��� One then shows that
the expansion g� is an extraction of U � from M � into D�� �� Now� in order to prove that
the extraction g� is smaller than the extraction g we remark that by closure of reduction
under substitutions� we have the SC�reduction h��R� � D�R	 r� �SC E�R� � D��R��� The
extraction g� can only be not smaller than g if h��R� is an empty reduction� but then
D�� � � D�� 	 r� which has one hole less than D�� 	 ��

c Finally� combining the Envelop lemma with the Develop Lemma� one shows that every
complete development of U from M to N can be simulated by a simultaneous extraction
of U from M into some context D� �� followed by a sequence of replacement steps from
D�L	 l� to D�R	 r�� followed by a reduction to N � This is shown in the following diagram�

D�L	 l�
D�L	 l � r�

� D�L	 r�
D�L� R	 r�

�� D�R	 r�

�
�
�h�l�RR ���

�
�
h�r�

�
�
�h��L�RR ���

�
�
h��R�

C�l�
C�l� r�

� C�r� E�L�
E�L� R�

�� E�R�

���
�
�
e

�
�
�dRR ���

�
�
g�

�
�
�f �RR

M

��

g

� M � �� N

��

f

Every complete U �development ends in the term N � and the descendant relation is the
one induced by g�D�L � R	 l � r�� f � that is� the one induced by following the �outside�
of the diagram�

�

Showing that every set of redexes in an orthogonal Higher�Order Rewriting System is
simultaneous can be reduced to showing that every pair of redexes is simultaneous by the
following lemma�

Lemma 	�� A Higher�Order Rewriting System is simultaneous if and only if it is pairwise

simultaneous�

Now one can show that orthogonal Higher�Order Rewriting Systems are pairwise simulta�
neous by reducing this property further to non�ambiguity� and state the following theorem�

Theorem 	�� Every orthogonal Higher�Order Rewriting System is con�uent�

Here� we are interested in proving con	uence for weakly orthogonal systems� In such
systems distinct redexes are not simultaneous if they are ambiguous� However� instead of
parallel simultaneity the following two properties su ce� as was shown above�
a Simultaneity of a set of redexes is preserved by rewriting�
b If a redex u is simultaneous with each redex in U � then U � fug is simultaneous�
The �rst item follows easily from the proof of the Develop Lemma� The second item follows
from a property called cubicity�
A Higher�Order Rewriting System is said to be cubic� if every triple of pairwise simultaneous

redexes is simultaneous�



��

Lemma 	�	 Every Higher�Order Rewriting System is cubic�

Proof� Consider a triple U �� fu�	 u�	 u�g of pairwise simultaneous redexes� which are
extracted by e�� e� and e�� respectively� If two redexes are simultaneous and not disjoint�
then one redex must nest the other� so without loss of generality� there are four cases to
consider�
a All three redexes are disjoint�
b u� nests u�� which in turn nests u��
c u� nests both u� and u� which are disjoint�
d u� nests u� and both are disjoint from u��
In each of these cases� �rst performing the SC�steps in e�� then the ones in e� and �nally the
steps in e� gives a simultaneous extraction of U into some ternary context� �
The next theorem states that every weakly orthogonal Higher�Order Rewriting System is

con	uent�

Theorem 	�
 Every weakly orthogonal Higher�Order Rewriting System is con�uent�

Proof� By the preceding lemma� it su ces to prove that cubicity implies that if u is pairwise
simultaneous with each redex in U � then U � fug is simultaneous� One proves� by induction
on the size of the set V �� U � fug of simultaneous redexes� that there exists a simultaneous
extraction of V from M � using cubicity to ensure that origins of simultaneous redexes are
simultaneous again� �
Next we show that weakly orthogonal combinations of left�linear con	uent Higher�Order

Rewriting Systems 
hence of term rewriting systems� Combinatory Reduction Systems and
Higher�order Rewrite Systems� are con	uent� thereby solving a problem which was raised by
the �rst author in �DJK�� Problem ����

Theorem 	�� Let H� I be left�linear con�uent Higher�Order Rewriting Systems on the same

alphabet having sets of rules R and S� The union H � I obtained by taking R � S as set of

rules� is con�uent if the rules of R are weakly ambiguous with respect to those in S�

Proof� Because H and I are con	uent by assumption� by the Lemma of Hindley�Rosen it
su ces to show that H and I commute�

I
��

��

H

I
�� ��

H

Using the �commutativity� variant of the Strip Lemma 
cf��Bar����� it su ces to show that
for any set U of simultaneous R�redexes we can construct the following diagram�

M
v
� P

N

��
U

V
�� Q

��
U �



�	 A con�uence proof �a la Tait and Martin�L�of ��

where v is an I�step� U � is a set of simultaneous R�redexes� M �U N is a complete de�
velopment of U and P �U � Q is a complete development of U �� There are two cases to
consider�
a If v is simultaneous with each step in U � one shows by reasoning analogous to the preceding
theorem that �rst extracting v from M by some extraction e gives a set of pairwise
simultaneous R�redexes fU je

��
jg� which is simultaneous by cubicity and hence the set

U � fvg is simultaneous� By 
the proof of� the Develop Lemma we know that performing
the step v preserves simultaneity� so we can take U � �� fU jv

��
jg�

b If v is not simultaneous with some step u � U � then we can take U � �� fU ju
��
jg�

Finally� the diagram can be completed by an application of the Finite Developments theorem�
To start the induction in the Strip Lemma� we observe that if U consists of just one step� it
is simultaneous� �


� A confluence proof a la Tait and Martin�L�of

The proof method we employ is due to Tait and Martin�L�of� It is as follows� First we de�ne
a relation � on Terms such that its transitive closure equals reduction� Then we prove the
diamond property for �� That is� we prove that for any terms M	N	P such that M � N
and M � P a term Q exists� satisfying N � Q and P � Q� Before embarking on the proof�
we �rst need some auxiliary results concerning substitution�

Substitution� We will use the following results concerning substitution�
An elco is a context E�	 � � � 	 � consisting of symbols of the substitution calculus and holes�

If we are concerned with the replacement of one particular hole by a term M � and the
occurrences of the other holes have already been replaced by terms� then we write E� � and
say that E� � is an elco for M �

Proposition 
�� Let M� and M� be terms with M� � M �
� and M� � M �

�� If M�M� �
E�P�	 � � � 	 Pn�� for some elco� then M �

�M
�
� � E�P �

�	 � � � 	 P
�
n� with P� � P �

�	 � � � 	 Pn � P �
n�

Proposition 
�� Let E� � be an elco for a term M � Suppose E� � � E�� � and M � M ��

Then E�M ��SC � E��M ���SC�

Proof� The proof proceeds by induction on the length of the maximal reduction of E�M �
to SC�normal form�

base step� In the base step� the reduction of E�M � to SC�normal form takes zero steps� We
prove by induction on the length of the rewrite sequence M � M � that E�M � � E��M ��� If
M � M �� then E�M � � E��M � follows by induction on the length of the rewrite sequence
E� � � E�� �� That is� we prove that E�M � � E��M � if E� �� E�� �� IfM � N �M �� then we
prove E�M � � E�N �� By induction hypothesis of the induction on the length of the rewrite
sequence M � M �� we have E�N � � E��M ��� Together� we have E�M � � E�N � � E��M ���
The statement E�M � � E�N � is proven by induction on the structure of E� ��

induction step� In the induction step� we suppose that the reduction of E�M � to SC�
normal form takes more than zero steps� The induction step is proven by induction on the
length of the rewrite sequence M � M �� If M � M �� then we prove by induction on the



��

length of E� � � E�� � that E�M ��SC � E��M ��SC� That is� we prove that E�M ��SC �
E��M ��SC if E� � � E�� �� If M � N � M �� then we prove E�M ��SC � E�N ��SC � By
induction hypothesis of the induction on the length of the rewrite sequence M � M �� we
have E�N ��SC � E��M ���SC � Together� we have E�M ��SC � E�N ��SC � E��M ���SC� We
prove E�M ��SC � E�N ��SC by induction on the structure of E� ��
� If E� � is a hole then it is clear�
� If E� � � x�E�� �� then the statement follows from the induction hypothesis of the induction
on the structure of E� ��

� If E� � is an application we suppose without loss of generality that the hole occurs in the
left part� i�e� E� � � E�� �E�� By induction hypothesis� we have E��M ��SC � E��N ��SC �
If E��M ��SCE� is a term� we are done� Otherwise� it is of the form E��P�	 � � � 	 Pn��
By Proposition ��� we know that E��N ��SCE� is of the form E��P �

�	 � � � 	 P
�
n� with P� �

P �
�	 � � � 	 Pn � P �

n� By induction hypothesis of the induction on the length of the maximal
reduction of E�M � to SC�normal form� we have E��P�	 � � � 	 Pn� � E��P �

�	 � � � 	 P
�
n�� This

yields 
E��M �E���SC � 
E��N �E���SC�
�

Corollary 
�� Let M be a term with M � M �� Let C� � be a context with C� � � C �� ��
Then C�M ��SC � C ��M ���

Proof� By induction on the structure of C� �� the base case being the previous proposition�
�

The Proof� Now we can give the proof of con	uence of weakly orthogonal Higher�Order
Rewriting Systems�
First the de�nition of � is given�

Definition 
�� A relation � on Terms is de�ned as follows�

�� x� x for every variable x � Var�

�� a� a for every operator a � O�

�� if M �M � then x�M � x�M ��

�� if M� �M �

� and M� �M �
�� then M�M� �M �

�M
�
��


�� if l � r is a rewrite rule and E� � is an elco for l such that E� �� E�� �� then E�l��SC �
E��r��SC�

The �rst step of the con	uence proof is easy�

Proposition 
�� The transitive closure of � equals reduction�

Proof� Suppose M �M � by some rewrite rule l� r� Then M SC� C�l� and C�r� �SC M
�

for a context C� �� We prove by induction on the structure of C� � that C�l��SC � C�r��SC � If
C� � is an elco for l� then C�l��SC � C�r��SC� since by re	exivity of � we have C� � � C� ��
The other cases follow from context�compatibility of ��
On the other hand� suppose M �M �� We prove M � M � by induction on the derivation

ofM �M �� IfM �M � is not due to the last clause of the de�nition of�� then it is obvious�
If M � M � is in fact due to the last clause of the de�nition of �� then M � C�l��SC and
C ��r��SC � M � with C� � � C �� �� By induction hypothesis� C� � � C �� �� By Proposition ���
we have M � C�l��SC � C ��r��SC �M �� �



�	 A con�uence proof �a la Tait and Martin�L�of ��

For the proof of the diamond property we need a result concerning the interaction between
substitution and parallel rewriting� and a Coherence Lemma�

Proposition 
�	 Let M� and M� be terms with M� � M �
� and M� � M �

�� If M�M� �
E�P�	 � � � 	 Pn� then M �

�M
�
� � E�P �

�	 � � � 	 P
�
n� with P� � P �

�	 � � � 	 Pn � P �
n�

Proposition 
�
 Let E� � be an elco for M � Suppose E� � � E�� � and M � M �� Then

E�M ��SC � E��M ���SC�

Proof� The proof proceeds by induction on the maximal length of the reduction of E�M �
to SC�normal form�

base step� In the base case� the reduction of E�M � to SC�normal form takes zero steps�
The statement is proven by induction on the derivation of E� �� E�� ��

induction step� Consider for the induction step that the reduction of E�M � to SC�normal
takes more than zero steps� The proof of the induction step proceeds by induction on the
derivation of E� �� E�� ��

�� If E� �� E�� � is x� x for a variable x � Var� then it is trivial�

�� If E� �� E�� � is a� a for an operator a � O� then it is also trivial�

�� If E� � � E�� � is x�E�� � � x�E�

�� � with E�� � � E�
�� �� then the statement follows from

the induction hypothesis of the induction on the derivation of E� �� E�� ��

�� Suppose E� � � E�� � is due to the fourth clause of the de�nition of �� Without loss of
generality we assume that the hole in E� � occurs in the left part of the application� so
E� � � E�� �E�� By induction hypothesis of the induction on the derivation of E� �� E�� ��
we have E��M ��SC � E�

��M ��SC and E� � E�
��

If E��M ��SCE� is a term� then we are done�

If E��M ��SCE� is not a term� then it a redex for the substitution calculus of the form
E�P�	 � � � 	 Pn�� By Proposition ��� we know that E

�
��M

���SCE
�
� � E�P �

�	 � � � 	 P
�
n� with P� �

P �
�	 � � � 	 Pn � P �

n� The reduction of E�P�	 � � � 	 Pn� to SC�normal form takes less steps than
the one of E��M �E� to SC�normal form� By induction hypothesis of the induction on
the length of the maximal reduction to SC�normal form� we have E�P�	 � � � 	 Pn��SC �
E�P �

�	 � � � 	 P
�
n��SC� This yields 
E��M �E���SC � 
E�

��M �E
�
���SC�


�� Suppose E� �� E�� � is due to the last clause of the de�nition of�� Then E� � � C�l��SC
and E�� � � C ��r��SC for a rewrite rule l� r and an elco C� � for l with C� �� C �� �� C� �
is of the form D���	��� where �� is to be replaced by M and �� by l� and C

�� � is of the
form D����	��� with D���	��� � D����	���� By induction hypothesis of the induction
on the derivation of E� �� E�� �� we have D�M	����SC � D��M �	����SC � This yields

E�M ��SC � D�M	 l��SC

� D��M �	 r��SC

� E��M ���SC
�

Corollary 
�� Let M be a closed term with M � M �� Let C� � be a context with C� � �
C �� �� Then C�M �� C ��M ���



��

Proof� The proof proceeds by induction on the structure of C� �� The base case is the
previous proposition�

Lemma 
�� �Coherence Lemma� Let l � r be a rewrite rule� Let M � M�M� � E�l��SC for

an elco E� � for l� Suppose M� � N� and M� � N�� Suppose in M� � N� or in M� � N�

a redex that is critical for l� r is contracted� Then M � � E�r��SC �M�M��

M �M�M� � M �

�
��
�

N�N�

�

w
w

Proof� If M contains two disjoint redexes that are critical for l� r� then by weak orthog�
onality M �M �� Then the statement trivially holds�
So suppose all redexes in M that are critical for l� r are nested� Suppose they all occur

inM�� Let the smallest 
with respect to the subterm�relation� redex that is critical for l� r
and that is contracted inM� � N� be an instance of g � d� So for some context C� � we have
M� � C�g��SC� By weak orthogonality� we have M

� � E�r��SC � C�d��SCM�� By hypothesis�
we have M� � N�� We prove C�d��SC � N�� then the statement follows by application of
the fourth clause of the de�nition of �� By induction on the structure of C� � one proves
the following� if C�g��SC � N� and if in this derivation an instance of g is contracted� then
C�d��SC � N�� �

Theorem 
��� The relation � satis�es the diamond property�

Proof� Suppose M � N and M � P � We prove a Q exists with N � Q and P � Q
by either considering �easier� derivations of M � N or of M � P � where �easier� means
that there are less applications of the last clause of the de�nition of �� or by considering
subderivations of M � N and of M � P � Let C
M � N� be the number of applications of
the last clause of the de�nition of� in the derivationM � N � Let L
M � N� be the length
of the derivation of M � N � The proof proceeds by induction on 
C
M � N� � C
M �
P �	 L
M � N� � L
M � P ��� lexicographically ordered� We call C
M � N� � C
M � P �
the complexity of the diversion M � N and M � P �

�� If M � N is x� x for some x � Var� then P � x� De�ne Q �� x�

�� If M � N is a� a for some a � O� then de�ne Q �� P �

�� IfM � N is x�M� � x�N� withM� � N�� then P is of the form x�P� withM� � P�� By
induction hypothesis a Q� exists satisfying N� � Q� and P� � Q�� De�ne Q �� x�Q��


�� If M � N is M�M� � N�N� with M� � N� and M� � N�� then there are two
possibilities for the last step of the derivation of M � P �

IfM � P isM�M� � P�P�� then by induction hypothesisQ� andQ� exist withN� � Q��
P� � Q�� N� � Q� and P� � Q�� De�ne Q �� Q�Q��

If M � P is due to the last clause of the de�nition of �� then M � C�l��SC and
P � C ��r��SC for some rewrite rule l� r and an elco C� � for l with C� �� C �� ��
� If in M� � N� nor in M� � N� a redex that is critical for l � r is contracted� then

N�N� is of the form C ���l��SC for some elco C
��� � for l with C� �� C ��� �� By induction

hypothesis� an elco D� � for l exists with C �� � � D� � and C ��� � � D� �� De�ne
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Q � D�r��SC � Then we have the following�

M � C�l��SC ����C ��r��SC � P

N � C ���l��SC

�
w

����D�r��SC � Q

�
w

� If in M� � N� or in M� � N� a redex critical for l � r is contracted� then we
distinguish two possibilities�

IfM contains two disjoint redexes that are critical for l� r then by weak orthogonality
C�l��SC � C�r��SC� The complexity of the diversion C�r��SC � N and C�r��SC �
C ��r��SC is less than the one of the diversion C�l��SC � N and C�l��SC � C ��r��SC� So
by induction hypothesis� a Q exists with N � Q and P � C ��r��SC � Q� So we have

M � C�l��SC ���� C ��r��SC � P
���� ��

�

C�r��SC

�
��

N � N�N�

�

w
w
w
w
w
w
w
w
w
w

���������� Q

�

w
w
w
w
w
w
w
w
w
w

So suppose all redexes inM that are critical for l� r are nested and suppose at least
one of them is contracted in M� � N�� Suppose the largest redex that is contracted
in M� � N� and that is critical for l � r is an instance of g � d� So M� � D��g��SC
with D�� � a context with an elco for g as subcontext� and N is of the form D�

��d��SCN�

with D�� �� D�
�� �� Let M

� � C ��l��SC � Note that M
� is of the form M �

�M
�
��

If inM � C�l��SC � C ��l��SC �M � �M �
�M

�
� no redex critical for g � d is contracted�

thenM �
� is of the formD��

� �g��SC withD�� �� D��
� � �� By induction hypothesis a context

E�� � exists with D
�
�� � � E�� � and D

��
� � �� E�� �� Also by induction hypothesis a Q�

exists with M �
� � Q and N� � Q�� De�ne Q� � E��d��SC and let Q � Q�Q�� Now

we have M � � M �
�M

�
� � E��d��SCQ� with M

�
� � E��d��SC and M

�
� � Q�� Further�

M � � C ��l��SC � C ��r��SC � N � InM �
� � E��d��SC a redex that is critical in l� r has

been contracted� namely an instance of g � d� Therefore� by the Coherence Lemma

Lemma ���� we have C ��r��SC � E��d��SCQ�� That is� we have N � Q and P � Q�
In a picture�

C�l��SC � D��g��SCM� ������������������ C ��r��SC � P
��� �

D��

� �g��SCM
�

� � C ��l��SC���

N � D�

��d��SCN�

�

w
w
w
w
w
w
w
w
w

���������������������� E��d��SCQ�

�

w
w
w
w
w
w
w
w
w

If in C�l��SC � C ��l��SC a redex critical for g � d is contracted� then we consider two
possibilities�

If there are two disjoint redexes in M that are critical for g � d� then we have
D��g��SC � D��d��SC � soM � D��d��SCM�� We have D��d��SCM� � D�

��d��SCN� � N
and D��d��SCM� � P � The complexity of that diversion is strictly less than that of



��

M � D��g��SCM� � N and M � D��g��SCM� � P � By induction hypothesis� a Q
exists with N � Q and P � Q� In a picture�

M � C�l��SC ���������� C ��r��SC � P
���� ��

�

D��d��SCM�

�
��

N � D�

��d��SCN�

�

w
w
w
w
w
w
w
w
w

������������� Q

�

w
w
w
w
w
w
w
w
w
w

Suppose next that all redexes in C�l��SC that are critical for g � d are nested and
suppose that at least one of them is contracted in C�l��SC � C ��l��SC � Let the largest
one of them be an instance of g� � d�� SoM� � E��g

���SC for some context E�� � having
an elco for g� as subcontext� This instance of g� � d� is not critical for l� r� So there
exists an elco C�� � for l with C� �� C�� �� C �� � such that C��l��SC � E��d

���SCM��
By weak orthogonality� E��d

���SC � D��d��SC� Let M
� � C��l��SC � E��d

���SCM�� We
have M � � D��d��SCM� � D�

��d��SCN� � N and M � � C��l��SC � C ��r��SC � P �
The complexity of this derivation is strictly less than the one of M � D��g��SCM� �
D�

��d��SCN� � N and M � C�l��SC � C ��l��SC � P � So by induction hypothesis� a Q
exists with N � Q and P � Q� We have

E��d
���SCM� � C��l��SC �������� C ��r��SC � P

���� ��
�

D��d��SCM�

�
��

N � D�

��d��SCN�

�

w
w
w
w
w
w
w
w
w

����������������� Q

�

w
w
w
w
w
w
w
w
w
w


�� Suppose M � N is due to the last clause of the de�nition of �� Then M � C�l��SC and
N � C ��r��SC for some rewrite rule l� r and an elco C� � for l�

If M � P is M�M� � P�P� with M� � P� and M� � P� then we proceed similarly to
the previous case�

So supposeM � P is also due to the last clause of the de�nition of�� ThenM � D�g��SC
and P � D��d��SC for a rewrite rule g � d and an elco D� � for g� If in C�l��SC � C ��l��SC
no redex critical for g � d is contracted� then C ��l��SC � D���g��SC for some elco D

��� �
for g with D� � � D��� �� By weak orthogonality� we have C ��r��SC � D���d��SC � By
induction hypothesis� an elco E� � for g exists with D�� � � E� � and D��� � � E� ��
We have N � C ��r��SC � D���d��SC � E�d��SC and P � D��d��SC � E�d��SC� So take
Q �� E�d��SC� In a picture�

C�l��SC � D�g��SC �������D��d��SC � P

N � C ��r��SC � D���d��SC

�

w
w
w
w
w
w
w
w
w

���� E�d��SC � Q

�

w
w
w
w
w
w
w
w
w
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The case that in D�g��SC � D��g��SC no redex critical for l� r is contracted is similar�

Finally� suppose in C�l��SC � C ��l��SC a redex critical for g � d is contracted and in
D�g��SC � D��g��SC a redex critical for l� r is contracted� Then by weak orthogonality
C�r��SC � C�l��SC � D�g��SC � D�d��SC� We have M � D�d��SC � D��d��SC � N and
M � C�r��SC � C ��r��SC � P � The complexity of this diversion is strictly less than the
one of M � D�g��SC � D��d��SC and M � C�l��SC � C ��r��SC � By induction hypothesis�
a Q exists with C ��r��SC � N � Q and D��d��SC � P � Q�

C�l��SC � D�g��SC ��������������� D��d�
���� ��

�

C�r��SC � D�d��SC

�
��

C ��r��SC

�

w
w
w
w
w
w
w
w
w

��������������������� Q

�

w
w
w
w
w
w
w
w
w
w

�

Corollary 
��� All weakly orthogonal Higher�Order Rewriting Systems are con�uent�

�� Conclusion

In this paper we have presented a general con	uence by 
weak� orthogonality result for the
class of higher�order term rewriting systems� This result generalises known results for special
classes of rewriting systems such as TRSs� CRSs and HRSs� via a uniform presentation
preserving their common features and parametrising over their di�erences� The uniform
presentation is based on the analogy

rewriting � substitution� rules

or more tentatively�

rewriting � logic� rules

Accordingly� one can classify properties of rewriting systems into logical properties� which
depend on the logic� and rewrite properties which depend on the actual rewrite rules� Then�

weak� orthogonality can be viewed as a su cient condition on the rewrite rules allowing to
reduce the rewrite property of con	uence to a logical property�
Since� in this paper� we aimed at the development of theory for term rewriting systems we

have restricted attention to a formalisation of the proofs of the logic as 
���terms� Moreover�
we have restricted attention to the propositional intuitionistic logic of application�
In future work we will consider rewriting systems having a graphical notation for substi�

tution 
the proofs of the logic�� i�e� graph rewriting systems� As a �rst problem we set out
to investigate the rewrite property of optimality of rewriting as de�ned by L"evy �L"ev���� Al�
though optimal implementations using graph rewriting do exist both for the lambda calculus

�Lam�� Kat��� and for the more general class of Interaction Systems 
�AL���� we think
our approach can shed new light on the subject matter� In this light� the work so far can be



�	 References

characterised as stating conditions on the form of the rewrite rules allowing to reduce opti�
mality from a rewrite property to a logical property� much in the same way as orthogonality
can be viewed as a su cient condition on the rewrite rules allowing to reduce the rewrite
property of con	uence to a logical property�
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