
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Weak orthogonality implies confluence: the higher-order case

V. van Oostrom and F. van Raamsdonk

Computer Science/Department of Software Technology

CS-R9501 1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301664548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9501
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Weak Orthogonality Implies Con�uence� the Higher�Order Case

Vincent van Oostrom

NTT Basic Research Laboratories

��� Wakamiya Morinosato� Atsugi�shi

Kanagawa ������

Japan

oostrom�theory�ntt�jp

Femke van Raamsdonk

CWI

P	O	 Box
���
� ��
� GB Amsterdam� The Netherlands

femke�cwi�nl

Abstract

In this paper we prove con�uence for weakly orthogonal Higher�Order Rewriting Systems� This generalises all

the known �con�uence by orthogonality� results�

AMS Subject Classi�cation ������� �	Q
�
CR Subject Classi�cation ������� F���� F����
Keywords � Phrases� higher�order rewriting� weak orthogonality� con�uence�

Note� Most of the research of the �rst author has been carried out during his employment at the Vrije

Universiteit� Amsterdam� The Netherlands� The research of the second author is supported by NWO�SION

project ����������

�� Introduction

This paper deals with higher�order term rewriting� Since our approach of higher�order term
rewriting is di�erent from the usual one� both in respect to the concept of �higher�order� and
to the notion of �term rewriting�� we �rst comment on our approach and the terminology
used� before stating the general con	uence result�

term rewriting� In term rewriting as usually de�ned
see e�g� �DJ�� Klo�� Klo��� Nip���
rewrite steps are generated by the rewrite rules via �contexts and substitutions�� in order to
apply a rewrite rule l � r to some term s� one has to �nd a context C� � and a substitution
�� such that s is the result of �evaluating� C�l��� If this is the case then s is said to rewrite
in one step to the term t resulting from �evaluating� C�r��� In our treatment� the informal
notion of �evaluation� occurring here� is formalised by means of a calculus� named substitution
calculus� A rewrite step then consists of a conversion in the substitution calculus� the actual
replacement step
the left�hand side of the rule is replaced by the right�hand side�� and
another conversion in the substitution calculus� In other words� rewrite steps are de�ned as

�

replacement steps modulo the substitution calculus� In any �suitable� substitution calculus�
the �rst conversion can actually be obtained by an expansion and the second conversion by
a reduction in the substitution calculus�

One can wonder what kind of calculus the substitution calculus should be� Well� it should
at least be able to mimic the evaluation of C�l�� to s
and of C�r�� to t�� Now� noting that the
only thing which happens in the evaluations is �
un�plugging� of terms� it seems reasonable
to propose that the substitution calculus be some kind of lambda calculus� The de�nition
of a rewrite step gives rise to the analogy rewriting � substitution � rules� Exploiting the
Curry�Howard correspondence
in case the substitution calculus is a typed ��calculus�� one
can view evaluation also as proof transformations of some logic� so we arrive at the analogy
rewriting � logic � rules�

The previous paragraph may seem rather fanciful� but it actually works quite nicely� Or�
dinary term rewriting systems
TRSs�� as well as Klops CRSs and Nipkows HRSs can be
formalised easily in this way using simply typed lambda calculus with ��reduction and ��
expansion as substitution calculus� as we will show�

higher�order term rewriting� From this formalisation of term rewriting� a natural way
to classify term rewriting systems� becomes apparent� classify them according to the logic
employed� Since we parametrise over the logic� not restricting attention to �rst order but
allowing for any �suitable�� e�g� higher�order� logic� we can also handle higher�order term
rewriting�

weak orthogonality� Orthogonality of two rewrite rules expresses that applications of those
rules to a term always operate on di�erent parts of the term� Weak orthogonality is a weaker
assumption than orthogonality� because the rules may operate on the same part of a term�
but in that case� both applications should result in exactly the same term�

weak orthogonality implies con�uence� It is well�known that orthogonality implies con�
	uence for many classes of term rewriting systems
�CR��� Ros��� Klo��� Raa�� Nip����
Basically� two methods are used to prove this� The �rst method known as �con	uence via
developments�� is due to Church and Rosser �CR���� and employed in the �rst three pa�
pers above� The second method� due to Tait and Martin�L�of
see �Bar���� is known as
�con	uence via parallel reductions�� and employed in the last two papers� In the case of
weak�orthogonality
and generalisations thereof�� con	uence has been proved only for TRSs
and was an open problem
�DJK��� for CRSs and HRSs�

weak orthogonality implies con�uence� the higher�order case� In this paper we prove con�
	uence for the class of all weakly orthogonal higher�order term rewriting systems� for which
the substitution calculus satis�es some� more or less natural conditions� This generalises all
the known results� First� because con	uence was only shown to hold for
admittedly large�
subclasses of orthogonal term rewriting systems� Second� because con	uence was only shown
to hold for weakly orthogonal term rewriting systems� so far� not for either CRSs or HRSs�

�	 Use of a Substitution Calculus �

We prove con	uence both via �developments� as well as via �parallel reductions�� The con�
	uence by developments proof works by a reduction to strong normalisation of cut�elimination
of the employed logic� The con	uence by parallel reductions proof works by proof transfor�
mations� Both methods di�er substantially from the known methods�

organisation of the paper� First we illustrate our de�nition of term rewriting by presenting
some examples� Then we give our formal de�nition of higher�order term rewriting systems

HORSs� and show how some common formats of term rewriting �t into this de�nition�
Next� we motivate and present conditions on the substitution calculus allowing to derive the
con	uence by weak orthogonality result� The two con	uence proofs are the topics of the next
sections and the paper concludes with the conclusion�

A short version of the present paper has appeared as �OR���

�� Use of a Substitution Calculus

In this section we illustrate the intended use of a substitution calculus by considering two
examples� First we consider the term rewriting system

x� � � �

x� S
y� � S
x � y�

We will use abbreviations of Sn
�� whenever convenient� The �rst rule can be applied to the
term ���� In the usual de�nition of rewriting this is seen be remarking that ��� �
x����

with �
x� � �� In our de�nition of rewriting the substitution of � for x will be performed by
the substitution calculus� It is quite natural to have as substitution calculus ��calculus with
��reduction� the prime example of a calculus implementing substitution� If the substitution
calculus is to act on the variable x� then we must change the rule in such a way that x will be
of object�level� instead of of meta�level as in the rule in the usual format� With a ��calculus
as substitution calculus� this is done by turning x into a bound variable� We write � for
abstraction and concatenation for application� The rules given above then take the following
form�

x�
x� �� � x

x�y�
x� S
y�� � x�y�
S
x � y��

Remember now that a rewrite step consists of a conversion in the substitution calculus�
followed by a replacement of the left�hand side by the right�hand side� followed by a conversion
in the substitution calculus� So a term M is rewritten to N if

M ��

SC C�l�� C�r���

SC N

With simply typed ��calculus with ��reduction and
restricted� ��expansion as substitution
calculus� we obtain the following computation�

� � �� � � �� fy�

� � �� � S
y��gf�g

�� fx�y�
x� S
y��gf� � �gf�g

�

� fx�y�S
x � y�gf� � �gf�g

�� fy�S

� � �� � y�gf�g

�� S

� � �� � ��

�� S
fx�
x � ��gf� � �g�

� S
fx�xgf� � �g�

�� S
� � ��

�� S
fy�
� � S
y��gf�g�

�� S
fx�y�
x� S
y��gf�gf�g�

� S
fx�y�S
x� y�gf�gf�g�

�� S
fy�S
� � y�gf�g�

�� S
S
� � ���

�� S
S
fx�
x � ��gf�g��

� S
S
fx�xgf�g��

�� S
S
���

Note that the replacement step is safe because left� and right�hand side of a rule are closed�

In the second example we consider a rewriting system involving bound variables� As usual
things become more complicated in the presence of bound variables� The example concerns
a rule for calculating the derivative of the sum of two arbitrary functions� Informally� this
rule can be given as follows�

dx
f
x� � g
x��� dx
f
x�� � dx
g
x��

where f and g stand for arbitrary functions of one variable� The rule applies to the expression
dx
x

���x�� which is rewritten to dx
f
x���dx
g
x��� This is the case because dx
x
���x� �

dx
f
x� � g
x���� with �
f� � x �� x� and �
g� � x �� �x� Not surprisingly� ��calculus
can take care of substitution also in this example� We now consider the rule and the rewrite
step in our format� with again simply typed ��calculus with ��reduction and
restricted� ��
expansion as substitution calculus� First� the functions x �� x� and x �� �x are now denoted
as x�x� and x��x� Second� f and g become bound variables in our representation of the
rewrite rule�

fg�d
y�
fy � gy��� fg�
z�
d
y�fy�z � d
y�gy�z��

The computation of dx
x
� � �x� is now as follows�

d
y�y� � �y� ��

d
y�fx�x�gfyg� fx��xgfyg� ��

ffg�d
y�fy � gy�gfx�x�gfx��xg �

ffg�
z�
d
y�fy�z � d
y�gy�z��gfx�x�gfx��xg ��

z�
d
y�x�fx�gfyg�z� d
fx��xgfyg�z� ��

z�
d
y�y��z � d
y��y�z�

�	 Higher�Order Rewriting Systems� syntax �

Two remarks seem appropriate� First� like usual� we work modulo ��equivalence� Second�
in both examples the recipe conversion�replacement�conversion is in fact used in the form
expansion�replacement�reduction� This is not just good luck� In this paper we will be inter�
ested in rewriting of expressions that do not contain redexes for the substitution calculus�
Moreover the substitution calculus is required to be complete� In that case� rewriting is
expansion�replacement�reduction�

�� Higher�Order Rewriting Systems� syntax

In this section we give the de�nition of a Higher�Order Rewriting System� A Higher�Order
Rewriting System is de�ned as a triple consisting of an alphabet� a substitution calculus and
a set of rewrite rules� H �
A	SC	R��

The alphabet contains an operator for applications� one for abstraction and further nullary
symbols� The substitution calculus has an associated rewrite relation� denoted by �SC �
on the set of expressions over the alphabet� This rewrite relation is to be thought of as
implementing substitution� The rewrite rules determine the behaviour of a subset of symbols
called the de�ned symbols�

We �rst take a closer look at the alphabet� The alphabet of each Higher�Order Rewriting
System is supposed to contain an operator for application and an operator for abstraction�

Definition ��� An alphabet A of a Higher�Order Rewriting System consists of�
� a symbol Ap for the application operation�
� a symbol � for abstraction�
� symbols x y z � � � for variables� among them are special symbols ��	��	 � � � for distin�
guished variables called holes�

� symbols U V W � � � for substitution operators�
� symbols F G H � � � for rewrite or de�ned operators�

The set of variables is denoted by Var� The set of symbols for substitution operators is
denoted by OSC � The set of symbols for rewrite operators is denoted by OR� The union of
OSC and OR is denoted by O� We use a	 a

�	 a��	 � � � to denote an arbitrary element of O�

The substitution operators are used by the substitution calculus to implement substitution�
The rewrite operators are given an operational semantics by the rewrite rules� The sets OSC

and OR are supposed to be disjoint�

Expressions over A are called preterms�

Definition ��� The set PreTerms of preterms is de�ned as the least set satisfying�

�� x � PreTerms for every variable x � Var�

�� a � PreTerms for every operator a � O�

�� if M� � PreTerms and M� � PreTerms� then Ap
M�	M�� � PreTerms�

�� if M � PreTerms and x � Var then x�M � PreTerms�

A variable x occurs free in a preterm M if it occurs not in the scope of an abstraction x� �
and it occurs bound otherwise� The set of variables that occur free in a pretermM is denoted

�

by FVar
M�� and the set of variables that occur bound in M is denoted by BVar
M�� By the
Variable Convention� one may assume FVar
M�� BVar
M� � �� If all variables occur bound
in a preterm� then the preterm is said to be closed� It is convention not to bind over variables
that are holes�

Ths substitution symbols are the substitution operators and the bound variables� The
rewrite symbols are the free variables and the rewrite operators� Note that one is usually
interested in what happens to rewrite operators during substitution� Note that it might be
cleaner to make a syntactic distinction between free and bound variables� because then the
de�nition of substitution symbols and of rewrite symbols is independent of the terms we are
working with� This set�up is chosen in �Oos���

Notation ��� We write M�M� for Ap
M�	M��� We write x� � � � xn�M for x�� � � � xn�M �

A precontext is de�ned as a preterm in which all occurrences of holes are made explicit� If
the holes occurring in a precontext are among ��	 � � � 	�n� then it is called an n�ary precontext�
and it is denoted by C�	 � � � 	 �� A unary precontext is denoted by C� �� For a unary precontext
we usually don�t make the index of the hole occurring in it explicit� The result of replacing
occurrences of ��	 � � � 	�n by pretermsM�	 � � � 	Mn is denoted by C�M�	 � � � 	Mn�� We suppose
that if a hole is replaced by a preterm� the result is a well�formed preterm� An n�ary context
is said to be linear if every hole �i
for i � �	 � � � 	 n� occurs exactly once in it�

A position is a �nite word over f�	 �g� Positions are denoted by
	 �	 �� The set f�	 �g� of
positions is denoted by Pos� The empty word over f�	 �g� is denoted by � It is the neutral
element for the concatenation operation� which is denoted by 	� Concatenation is associative�
On Pos a pre�x ordering denoted by
 is de�ned as follows�

 � if and only if there exists
a
� such that
 	
� � �� In that case
 is called a pre�x of �� If for
	 � � Pos�
 is not a
pre�x of � and � is not a pre�x of
� then
 and � are said to be disjoint�

Definition ��� Let M be a preterm� The set of positions of M � Pos
M�� the head�symbol
of M � top
M�� and the subterm of M at position
�
nt are de�ned by induction on the
structure of M as follows�
� if M � x� then

Pos
M� � fg

top
M� � x

nM � x
� if M � a with a � O� then

Pos
M� � fg

top
M� � a

nM � a

� if M �M�M�� then
Pos
M� � fg � f� 	
 j
 � Pos
M��g � f� 	
 j
 � Pos
M��g

top
M� � Ap

nM � M

� 	
nt �
nM�

�	 Higher�Order Rewriting Systems� syntax �

� 	
nt �
nM�

� if M � x�M�� then
Pos
M� � fg � f� 	
 j
 � Pos
M��g

top
M� � x�

nM � M

� 	
nM �
nM �

If
� � � 	 � 	
�� and
� � � 	 � 	
��� then
� is on the left of
�� We also say that the symbol
at
� is on the left of the symbol at
��

We now consider the properties a decent substitution calculus should have in order to
deserve the name�

A substitution calculus is meant to implement substitution� One would like that calculating
a substitution yields a result� and moreover� that this result is unique� This is guaranteed by
requiring the substitution calculus to be complete� that is� con	uent and terminating�

If some calculations in the substitution calculus concerning some closed term M are done�
we want to be able to use these calculations for a larger term having M as subterm� For
hygienic reasons it is required that rewriting in the substitution calculus preserves closedness
of a term� Further we require that if there is a conversion in the substitution calculus between
closed terms� M ��

SC
M �� then there is the same conversion in a context� C�M ���

SC
C�M ���

In the same spirit� if we have a conversion in the substitution calculus between two terms
C� � ��

SC
C �� � where � � denotes a hole which is possibly present in C �� �� we can replace

the hole by a closed term� Between the results of the replacement there still is a conversion�
C�M ���

SC
C ��M ��

Finally one remark� for the moment� we ignore typing problems and we assume the preterms
that are considered to be well�formed� For example� if the substitution calculus is simply
typed ��calculus� we assume all terms to be simply typable�

The rewrite relation of the substitution calculus is denoted by �SC�

The requirements on the substitution calculus discussed above are listed in the next de��
nition�

Definition ��� The rewrite relation of a substitution calculus SC must satisfy the following
requirements�

�� �completeness�
The rewrite rules of a substitution calculus generate a con	uent and terminating rewrite
relation on the set of expressions over A�

�� �closed under closed�
If M is closed and M �M �� then M � is closed�

�� �closed under contexts�
The conversion relation��

SC
generated by the rewrite rules of a substitution calculus SC

is closed under contexts� i�e� if M ��
SC

M � is a conversion between closed terms� then
C�M ���

SC
C�M ���

	

�� �closed under substitutions�
The conversion relation ��

SC
generated by the rewrite rules of a substitution calculus is

closed under substitution� i�e� if C� ���

SC
C �� � then C�M ���

SC
C ��M ��

The convertibility relation of the substitution calculus is an equivalence relation on the
set of preterms� Rewriting in a Higher�Order Rewriting System will be de�ned modulo
the convertibility relation of the substitution calculus� By completeness of the substitution
calculus� each equivalence class has a unique representative� which is found by reducing
any member of the equivalence class to SC�normal form� Mostly we are interested in the
representatives of the equivalence classes� that do not contain redexes for the substitution
calculus�

Definition ��	 A preterm that is in normal form with respect to the substitution calculus
is a term� The set of terms is denoted by Terms�

All notions de�ned for preterms persist for terms� delete if necessary the pre�x pre�

Now the moment is there to discuss the rewrite rules of a Higher�Order Rewriting System�

Definition ��
 A rewrite rule of a Higher�Order Rewriting System is a pair
l	 r� of closed
terms with the same outermost abstractions in the same order� Usually we write l � r for

l	 r��

As usual� the rewrite rules induce a rewrite relation� We de�ne the rewrite relation on
the set of terms� The idea is that there is a rewrite step M � N if M equals modulo the
substitution calculus the left�hand side of some rewrite rule in a context� that is�M ��

SC
C�l��

and N equals modulo the substitution calculus the right�hand side of the same rewrite rule
in the same context� that is� C�r���

SC
N � Since M and N are terms
not preterms� and the

substitution calculus is complete� this idea can be simpli�ed� For the �rst conversion one can
take an expansion and for the second conversion one can take a reduction�

Definition ��� A term M rewrites to a term N � notation M � N � if there is a unary
context C� � and a rewrite rule l� r such that M SC� C�l� and C�r��SC N �

Notation ��� The transitive closure of � is denoted by ��� and its re	exive�transitive
closure by ��

The de�nition of a Higher�Order Rewriting System is now completed� We conclude this
section by making some remarks�

In the de�nition of a rewrite rule and a rewrite step� some restrictions seem to have been
imposed� a rewrite rule is a pair of terms� not a pair of preterms� and the rewrite relation is
de�ned using a context� not a precontext� That these are no real restrictions is due to the
last three requirements on the substitution calculus� The proofs can be found in �Oos���

�	 Examples of Higher�Order Rewriting Systems

Further� in the de�nition of the rewrite relation the context is unary� It is possible to for�
mulate requirements on the substitution calculus that guarantee the rewrite relation de�ned
using a unary context to be as expressive as the rewrite relation de�ned using an arbitrary
context� This is not done in the present paper� The interested reader is referred to �Oos���

Finally� in this paper we restrict attention to rewriting on the set of terms� There certainly
are good reasons to consider also rewriting on the set of preterms� It is for instance very
natural to introduce sharing by means of the substitution calculus� This matter has our
concern but it is beyond the scope of the present paper�

�� Examples of Higher�Order Rewriting Systems

In this section we represent some well�known rewriting systems as a Higher�Order Rewriting
Systems� In all the examples the substitution calculus is ��calculus with ��reduction and
��expansion� This illustrates the expressive power of Higher�Order Rewriting Systems�

��� Term Rewriting Systems�

Every term rewriting system is a Higher�Order Rewriting System� We illustrate this fact by
considering two examples�

The term rewriting system for Combinatory Logic� Consider the term rewriting system
describing Combinatory Logic�

Ix � x

Kxy � x

Sxyz � xz
yz�

This is the usual representation of the term rewriting system describing Combinatory Logic�
In fact� MN is an abbreviation for �
M	N� with � a binary operator for application� The
symbols I� K and S denote nullary operators� For the representation of Combinatory Logic
as a Higher�Order Rewriting System� we consider the rewrite rules in full detail�

�
I	 x� � x

�
�
K	x�	 y� � x

�
�
�
S	 x�	 y�	 z� � �
�
x	 z�	�
y	 z��

Combinatory Logic as a Higher�Order Rewriting System� We shall now present this system
as an Higher�Order Rewriting System� The set of de�ned symbols consists of � � � � � �
�	 I � �	 K � � and S � �� There are no symbols for substitution operators� Using this alphabet�
we can represent every term of Combinatory Logic as a term in CL� For instance� �
I	 x�
is written as Ap
Ap
�	 I�	 x� and �
�
K	 I�	 S� is written as Ap
Ap
K	 I�	 S�� Note that we
can build many terms that do not correspond to a �real� term in Combinatory Logic� like
for instance Ap
I	 x�� This is in general the case when representing an existing system as a
Higher�Order Rewriting System�

The free variables in the rules of the term rewriting system representing Combinatory Logic
are turned into object variables� This is done by turning the left� and the right� hand side of

��

the rules into closed expressions� The rewrite rules then take the following form�

x��Ix � x�x

x�y��
�Kx�y � x�y�x

x�y�z��
�
�Sx�y�z � x�y�z��
�xy�
�yz�

An example of a well�known rewrite sequence is the following�

�
�
�SI�I�
�
�SI�I� ��

fx�y�z��
�
�Sx�y�zgfIgfIgf�
�SI�Ig �

fx�y�z��
�xz�
�yz�gfIgfIgf�
�SI�Ig ��

�
�I
�
�SI�I��
�I
�
�SI�I�� ��

�
fx��Ixgf�
�SI�Ig�
�I
�
�SI�I�� �

�
fx�xgf�
�SI�Ig�
�I
�
�SI�I�� ��

�
�
�SI�I�
�I
�
�SI�I�� ��

�
�
�SI�I�
fx��Ixgf�
�SI�Ig� �

�
�
�SI�I�
fx�xgf�
�SI�Ig� ��

�
�
�SI�I�
�
�SI�I�

The term rewriting system for parallel or Also term rewriting systems that are in functional
format can be presented as a Higher�Order Rewriting System� As an example we consider
the following term rewriting system for parallel or�

por
tt	 x� � tt

por
x	 tt� � tt

por
ff	 ff� � ff

The alphabet of this term rewriting system consists of a binary symbol por and the nullary
symbols tt and ff�

Parallel or as a Higher�Order Rewriting System� The alphabet of the Higher�Order Rewrit�
ing System that is associated to the term rewriting system describing parallel or consists of
two constants tt and ff of type � and one constant por of type � � � � �� The rewrite
rules are as follows�

x�por
tt�
x� � x�tt

x�por
x�
tt� � x�tt

por
ff�
ff� � ff

We have the following computation�

por
por
ff�
tt��
por
ff�
ff�� �

por
por
ff�
tt��
ff� ��

por
fx�por
x�
tt�gfffg�
ff� �

�	 Examples of Higher�Order Rewriting Systems ��

por
fx�ttgfffg�
ff� ��

por
tt�
ff� ��

fx�por
tt�
x�gfffg �

fx�ttgfffg ��

tt

��	 ��calculus�
A prime example of a Higher�Order Rewriting System is of course ��calculus� In this example
we present ��calculus with �� and ��reduction as a Higher�Order Rewriting System�

��calculus� Traditionally the rewrite rules are given as follows�

�x�M�N �beta M �x �� N �

�x�Mx �eta M if x doesn�t occur free in M

��calculus as a Higher�Order Rewriting System� The alphabet of the Higher�Order Rewrit�
ing System representation of ����calculus contains the following symbols for operators�

app � ��
�� ��

abs �
�� ��� �

Then� for instance MN is represented as appMN and �x�M as abs
x�M�� The rewrite rules
for �� and ��reduction are as follows�

z�z��app
abs
x�zx��
z�� �beta z�z��zz�

z�abs
x�appzx� �eta z�z

Note that the side�condition for the eta�rule is not necessary� In an attempt to minimise
confusion we note that the rewrite relations in the substitution calculus is denoted as ��

and ��� whereas the rewrite relations of the object calculus is written as �beta and �eta�

We give a beginning of the reduction sequence of the term ��

app
abs
x�appxx��
abs
x�appxx�� � �

fz�z��app
abs
x�zx��
z��gfx��appx�x�gfabs
x�appxx�g �beta

fz�z��zz�gfx��appx�x�gfabs
x�appxx�g ��

fx��appx�x�gfabs
x�appxx�g ��

app
abs
x�appxx��
abs
x�appxx��

Another example of a rewriting sequence�

app
abs
y�abs
x�appyx���
abs
v�appuv�� � �

fz�z��app
absx�zx�
z��gfy�abs
x�appyx�gfabs
v�appuv�g �beta

fz�z��zz�gfy�abs
x�appyx�gfabs
v�appuv�g ��

��

fy�abs
x�appyx�gfabs
v�appuv�g ��

abs
x�app
absv�appuv�
x�� � �

fz�abs
x�appzx�gfabs
v�appuv�g �eta

fz�zgfabs
v�appuv�g ��

abs
v�appuv�

��
 Interaction Systems�

We present Interaction Systems as Higher�Order Rewriting Systems� Interaction Systems
form a class of higher�order rewriting systems that has been de�ned by Asperti and Laneve
�AL��� They form a subclass of the class of Combinatory Reduction Systems
see next
subsection��

Interaction Systems� We start by recalling brie	y the de�nition of an Interaction System�

An Interaction System is a pair � �	R � of a signature � and a set of rewrite rules R�
The signature � consists of
� a denumerable set of variables written as x y z � � ��
� a set of forms written as f g h � � �� each equipped with a �xed arity�

The alphabet A of an Interaction system � �	R � consists of
� symbols in ��
� a symbol � for abstraction over variables�
� symbols X Y Z � � � for metavariables�
� for every n a symbol � � 	 � � � 	 � � for metasubstitution� with n occurrences of � �

Note that t�t��x�	 � � � 	 tn�xn� denotes the result of replacing xi by ti in t for i � �	 � � � 	 n�
The set of forms is divided into two disjoint sets �� and ��� the �rst one containing forms
that act as a constructor and the second one containing forms that act as a destructor� Each
form has an arity� which is a �nite sequence of natural numbers� The length of the sequence
speci�es the number of arguments a form is supposed to get� If the arity of some form f
is k� � � � kn� then the ith argument is supposed to start with ki abstractions� All destructors
have an arity of the form �k� � � � kn�

The set T of expressions is de�ned inductively as follows�
� every variable x is an expression�
� if f � � is a form of arity k� � � � kn and t�	 � � � 	 tn are expressions� then

f
x��� � � � x�k� �t�	 � � � 	 xn�� � � � xnkn �tn� is an expression�

Often we abbreviate x�� � � � xn�t by �xn�t� The notion of free and bound variable is as usual�
Expressions that are equal up to a renaming of bound variables are identi�ed�

A metaexpression is an expression in which possibly metavariables and metasubstitutions
occur�

Rewrite rules generate a rewrite relation on the set of expressions� A rewrite rule is a pair
of metaexpressions often written as l� r�

The left�hand side of a rewrite rule must satisfy�

�	 Examples of Higher�Order Rewriting Systems ��

� it is of the form fd
fc
 �xl��X�	 � � � 	 �xlm �Xm�	 �xk� �Y�	 � � � 	 �xkn �Yn� with fc � �
�	 fd � �

��

� all metavariables are di�erent�

� there are no occurrences of metasubstitutions�

The right�hand side of a rewrite rule must satisfy

� it is a closed metaexpression�

� all metavariables occurring in it occur also in the left�hand side�

A right�hand side contains possibly metasubstitutions of the form X�t��x�	 � � � 	 tn�xn��

The set of rewrite rules R satis�es the property that for every pair consisting of a con�
structor and a destructor there is at most one rewriting rule�

The rewrite relation� is de�ned as follows� t� t� if t � C �l�� and s � C�r�� for a rewriting
rule l� r� a context C� � and an assignment �� Contexts are de�ned as usual� An assignment
assigns expressions to metavariables�

An example of an Interaction System is ��calculus� There are two forms� � of arity ��
for application and � of arity � for ��abstraction� The rule for ��reduction then takes the
following form�

�
�
x�X�	 Y �� X�Y�x�

Interaction Systems as Higher�Order Rewriting Systems� We now associate a Higher�Order
Rewriting System to an Interaction System � �	R ��

First we associate to an arity of the form k� � � � kn a simple type built from � and�� De�ne
k� inductively as follows�

�� � �

n � ��� � �� n�

To an arity k� � � � kn we then associate the type k
�
� � � � �� k�n � ��

The alphabet of the Higher�Order Rewriting System associated to an Interaction System
� �	R � consists of the following�
� symbols x y z � � � for typed variables�
� a symbol � for abstraction over variables�
� a symbol Ap for application�
� for every form f of arity k� � � � kn in �� we have a symbol f of type k

�
� � � � � � k�n � �

for an operator�

As usual we write t�t� for Ap
t�	 t���

Now we translate the expressions of the Interaction System � �	R � into terms of the
Higher�Order Rewriting System� The de�nition is by induction on the structure of an ex�
pression� We write t� for the translation of an expression t�

��

� a variable x is translated into a variable x of type ��
� an expression f
 �xk� �t�	 � � � 	 �xkn �tn� is translated into f
 �xk� �t

�
�� � � �
 �xkn �t

�
n��

Note that the translation of an expression of an Interaction System is a term of type ��

Now we come to the point of translating the rewrite rules� The �rst thing to be done
is turning the metavariables into object variables� and abstract over them� Next we have
to take care of substitution� In the left�hand side� we replace each subexpression of the
form x�� � � � xn�X into a subexpression x� � � � xn�xx� � � � xn� Here� x is a variable of type
� � � � � � � � �
n � � times a zero�� It is abstracted over on the outside of the left�hand
side� This is su cient to translate left�hand side of rewrite rules�

In the right�hand side� we replace subexpressions of the form X�t��x�	 � � � 	 tk�xk� by a
subexpression x
t�� � � �
tn�� Here� ti � xi of xi doesn�t occur in the metasubstitution� Again�
x is a variable of the right type that is abstracted over on the outside of the right�hand side�
This is su cient for translating right�hand sides of rewrite rules�

It is now easy to see that if an expression t is in fact C�l��� then its translation t� equals
modulo the substitution calculus the translation of l is some context� It is then almost
immediate that the set of translated rewrite rules induces the right rewrite relation�

��� Combinatory Reduction Systems�

In this example we consider the class of Combinatory Reduction Systems de�ned by Klop
�Klo���� It forms a generalisation of the class of Contraction Schemes introduced by Aczel
�Acz����

Combinatory Reduction Systems� First we will highlight the particular points of the def�
inition of a Combinatory Reduction System� We will follow the de�nition of Combinatory
Reduction Systems as given in �KOR��� The main di�erence between this de�nition and
the original one in �Klo��� is that it employs the functional format� whereas the original
presentation is in applicative format� For a detailed account the reader may wish to consult
�KOR��� Next� we represent a particular Combinatory Reduction System� the one describing
or�elimination in natural deduction� as a Higher�Order Rewriting System�

A Combinatory Reduction System is a pair consisting of an alphabet and a set of rewrite
rules� The alphabet consists of
� variables� written as x y z � � ��
� metavariables� each with a �xed arity� written as Zk

i � where k is the arity of Z
k
i �

� function symbols� each with a �xed arity�
� an operator for abstraction over variables� written as �	�	�
� improper symbols �
�� ��� and ����

Metaterms and terms are distinguished� Metaterms are expressions built from the symbols
in the alphabet in the usual way� Terms are metaterms that do not contain any occurrence
of a metavariable� In this way there is on a syntactical level a distinction between the objects
that actually interest us� the terms� and �metaobjects�� the metaterms� that can be used to
express a relation on the set of terms� The typical way to use metaterms is in rewrite rules�
The metavariables represent the �holes� that must be instantiated in order to obtain a rewrite

�	 Examples of Higher�Order Rewriting Systems ��

step�

The ��reduction rule of ��calculus is in the Combinatory Reduction System format written
as

�
�
�x�Z
z��	 Z ��� Z
Z ��

A rewrite rule of a Combinatory Reduction System is a pair of metaterms� written as l� r�
A rewrite rule must satisfy some restrictions we will not mention here�

As usual� the rewrite rules induce a rewrite relation on the set of terms� Extracting the
rewrite relation from the rewrite rules is a rather delicate business in Combinatory Reduction
Systems� The basic idea is that an instance of a left� or right�hand side of a rule is obtained
by �rst replacing each metavariable by a special kind of ��term and then performing a de�
velopment of all special ��redexes created by this replacement�

We will explain this in some more detail� In order to de�ne valuations we must �rst consider
the so�called substitute� This will be the �special ��term� mentioned above�

An n�ary substitute is an expression of the form �
x�	 � � � 	 xn��M � with M a term and
x�	 � � � 	 xn di�erent variables� An n�ary substitute �
x�	 � � � 	 xn��M can be applied to an
n�tuple of terms
M�	 � � �Mn�� This results in a simultaneous substitution of Mi for xi for
i � �	 � � � 	 n�

�
x�	 � � � 	 xn��M�
N�	 � � � 	 Nn� �M �x� �� N� � � � xn �� Nn�

A valuation � is a map assigning an n�ary substitute to an n�ary metavariable�

�
Z� � �
x�	 � � � 	 xn��M

A valuation is extended to a mapping from metaterms to terms in the following way�

x� � x

�x�M�� � �x�M�

F
M�	 � � � 	Mn�
� � F
M�

� 	 � � �M
�
n �

Z
M�	 � � � 	Mn�
� � �
Z�
M�

� 	 � � � 	M
�
n �

We suppose unintended bindings like in
�x�Z�� where �
Z� � x to be ruled out by the
variable convention�

A rewrite step is now de�ned in the usual way� is l � r is a rewrite rule� � a valuation
and C� � a context� then C�l�� rewrites to C�r���

The Combinatory Reduction System for elimination introduction as a Higher�Order Rewriting

System� We will now consider the representation of a particular Combinatory Reduction
System as a Higher�Order Rewriting System� but �rst let us make some remarks about
the canonical translation� It seems tempting to translate the symbol �	� for abstraction in
a Combinatory Reduction System straightforwardly into the symbol for abstraction 	�	 of a

��

Higher�Order Rewriting System� However� this causes typing problems� Suppose for instance
that the alphabet of some Combinatory Reduction System contains a unary operator denoted
by F � Then both F
x� and F
�x�x� are perfectly legal as terms in the Combinatory Reduction
System� But it cannot be the case that both Fx and F
x�x� are simply typable�

The solution of this problem is as follows� Like in the case of term rewriting� an operator
F of arity n is translated into F of type �� � � �� �� � with n�� times a zero� Like in the
translation of a Combinatory Reduction System into a Higher�order Rewrite System� we add
an operator abs �
�� ��� � that collapses a functional type� Intuitively� the type � can be
thought of as the set of all terms� A subterm of the form �x�t in a Combinatory Reduction
System is then represented as abs
x�t��
with t� the representation of t� in a Higher�Order
Rewriting System�

So the translation of a Combinatory Reduction System into a Higher�Order Rewriting
System requires actually an encoding of untyped ��calculus in simply typed ��calculus� Ex�
actly the same is going on in the representation of a Combinatory Reduction System as a
Higher�order Rewrite System as de�ned by Nipkow� This has been reported in �OR���

Now we will represent one particular Combinatory Reduction System as a Higher�Order
Rewriting System� The Combinatory Reduction System we will consider concerns rules taken
from proof theory for the elimination of the disjunction� In natural deduction� rules for
elimination of � is as follows�

���
A

A � B

�A�
���
C

�B�
���
C

C

�

���
A
���
C

���
B

A �B

�A�
���
C

�B�
���
C

C

�

���
B
���
C

These rules can be written in the formalism of Combinatory Reduction Systems� They
then take the following form�

el
inl
Z�	 �x�Z�
x�	 �y�Z�
y�� � Z�
Z�

el
inr
Z�	 �x�Z�
x�	 �y�Z�
y�� � Z�
Z�

So the alphabet of this Combinatory Reduction System consists of two unary function
symbol inl and inr
for introduction of disjunction� and a ternary function symbol el
for
elimination of disjunction��

In fact� the Combinatory Reduction System above models the conversion rules concerning
disjunction only in a typed setting� Typed Combinatory Reduction Systems are not o cially
introduced� but the essentials for this particular example are in the following�

� if t is a term of type �� then inl
t� is a term of type � � ��

� if t is a term of type �� then inr
t� is a term of type � � ��

�	 Examples of Higher�Order Rewriting Systems ��

� if s and t are terms of type �� u a term of type ���� and x and y are variables of type
� and �� then el
u	 �x�s	 �y�t� is a term of type ��

An example of a rewrite step is the following� We take the assignment � de�ned as follows�

Z �� inr
u�

Z� �� �
x��el
x	 �u�u	 �u��u�

Z� �� �
y��inr
y�	 �u�u�	 �u��u��

Then we have�

el
inl
inr
u��	 �x�el
inl
x�	 �u�u	 �u��u�	 �y�el
inr
y�	 �u�u	 �u��u�� �

el
inl
inr
u��	 �x��
x���el
inl
x��	 �u�u	 �u��u�
x�	 �y��
y���el
inr
y��	 �u�u	 �u��u�
y� �

el
inl
Z�	 �x�Z�
x�	 �y�Z�
y��
� �

Z�
Z�
� �

�
x���el
inl
x��	 �u�u	 �u��u�
inr
u�� �

el
inl
inr
u��	 �u�u	 �u��u�

In the format of Higher�Order Rewriting Systems� the system is written as

z�z��z��el
inlz�
x�z�x�
y�z�y� � z�z��z��z�z

z�z��z��el
inrz�
x�z�x�
y�z�y� � z�z��z��z�z

Like in the other examples� we take simply typed ��calculus with ��reduction and
restricted�
��expansion as substitution calculus� The rewrite step mentioned above is simulated in the
setting of Higher�Order Rewriting Systems as follows�

el
inl
inru��
x�el
inlx�
u�u�
u��u��
y�el
inry�
u�u�
u��u�� � �

fz�z��z��el
inlz�
x�z�x�
y�z�y�gfinrugfx
��el
inlx��
u�u�
u��u�gfy��el
inry��
u�u�
u��u�g �

fz�z��z��z�zgfinrugfx
��el
inlx��
u�u�
u��u�gfy��el
inry��
u�u�
u��u�g ��

fx��el
inlx��
u�u�
u��u�gfinrug ��

el
inl
inru��
u�u�
u��u�

��� Expression Reduction Systems�

Khasidashvili introduced a framework for higher�order rewriting under the name of Expres�
sion Reduction Systems� The de�nition of Expression Reduction Systems was introduced
around ���� An early reference is �Kha��� In other publications they are sometimes also
called Combinatory Reduction Systems� The development of Expression Reduction Systems
has been in	uenced by work by Pkhakadze� Expression Reduction Systems are quite similar
to Combinatory Reduction Systems as introduced by Klop� but independently developed�

Expression Reduction Systems� First we shortly recall the basics of the de�nition of an
Expression Reduction System� We use the de�nition as given in �Kha��� An Expression
Reduction System is a pair
�	 R� consisting of an alphabet and a set of rewrite rules�

�	

Definition ��� The alphabet of an Expression Reduction Systems consists of
� object metavariables written as a	 a�	 a��	 � � ��
� term metavariables written as A	A�	 A��	 � � ��
� variables written as x	 y	 z	 � � ��
� function symbols with a �xed arity k written as f	 g	 h	 � � ��
� quanti�er symbols with a �xed arity
m	n�� where m � � and n � �� written as �	 �	 �	 � � ��
� symbols
 � 	 � � � 	 � � for metasubstitutions�

The arity of a function symbols prescribes the number of argument it is supposed to have� like
in term rewriting systems� The �rst component of the arity of a quanti�er symbol prescribes
how many variables it binds� The second component indicates how many arguments it is
supposed to have� An example of a quanti�er symbol is � of ��calculus� Its arity is
�	 ���

Like in Combinatory Reduction Systems� terms and metaterms are distinguished�

Definition ��� The set of metaterms is the smallest set satisfying the following�
� a variable x is a metaterm�
� an object metavariable a is a metaterm�
� a term metavariable A is a metaterm�
� if f is a function symbol of arity n and t�	 � � � 	 tn are metaterms� then f
t�	 � � � 	 tn� is a
metaterm�

� if � is a quanti�er symbol of arity
m	n�� and b�	 � � � 	 bm are variables or object metavari�
ables and t�	 � � � 	 tn are metaterms then �b� � � � bm
t�	 � � � 	 tn� are metaterms�

� if a�	 � � � 	 an are object metavariables and t	 t�� � � � 	 tn are metaterms� then
t��a�	 � � � 	 tn�an�t
is a metaterm�

The construct
t��a�	 � � � 	 tn�an� in the last clause of the previous de�nition is called a
metasubstitution� A metaterm without metasubstitutions is a simple metaterm� A metaterm
without any occurrence of object metavariables of term metavariables is a term� In �b����bn
and in
t��b�	 � � � 	 tn�bn�� the variables or object metavariables b�	 � � � 	 bn are called binding

variables� It is easier to understand how things work if we �rst look at the de�nition of a
rewrite rule in an Expression Reduction System�

Definition ��� A rewrite rule of an Expression Reduction System is a pair of metaterms
usually written as l� r satisfying the following conditions�

�� l is a simple metaterm which �rst symbol is a function symbol or a quanti�er symbol�

�� l and r do not contain variables�

�� occurrences of object metavariables in l and in r are bound�

�� term metavariables occurring in r occur also in l�

Note that r may contain occurrences of an object metavariable that doesn�t occur in l�
Such an object metavariable is called an additional object metavariable�

�	 Examples of Higher�Order Rewriting Systems �

As usual� the rewrite rules induce a rewrite relation on the set of terms� We have that s is
rewritten to t� notation s� t� if s � C�l�� and t � C�r��� Here C� � is a context� and � is an
assignment due to some restrictions discussed below�

The de�nition of a rewrite rule in an Expression Reduction System is very liberal with
respect to binding of variables� For instance� the pathological rule

f
A��
c�a�A

is perfectly legal� Here a is an additional object metavariable� By restricting the ways such
a rule may be used the rewrite relation is prevented from becoming pathological�

An assignment is a mapping that maps object metavariables to variables and term metavari�
ables to terms�

Definition ��� An assignment is admissible for a rewrite rule l � r if the following is
satis�ed�

If one occurrence of �
A� in l� � r� is in the scope of a binding variable �
a�� then all
occurrences of �
A� are in the scope of the binding variable �
a��

In the example of the pathological rule f
A��
c�a�A above� the instance f
x�� c is for
instance not allowed�

The �� and ��reduction rules of ��calculus are in the format of Expression Reduction
Systems written as

Ap
�a
A�	 B� �
B�a�A

�a
Ap
A	 a�� � A

An instance
s�x�t of the right�hand side denotes the term t in which each free occurrence
of x has been replaced by s�

Expression Reduction Systems as Higher�Order Rewriting Systems� We sketch the trans�
lation of an Expression Reduction System into a Higher�Order Rewriting System with ��
calculus with ��reduction and restricted ��expansion as a substitution calculus�

First variables� function symbols and quanti�er symbols are translated� A variable is
translated into a variable of type �� A function symbol f of arity k is translated into a
rewrite operator of type �� � � �� �� � with k�� times a �� Let � be a quanti�er symbol
of arity
m	n�� De�ne m� as follows�

�� � �

m� ��� � �� m�

The translation of � is then a rewrite operator of type m� � � � �� m� � � with n times m��

The translation t� of a term t is as follows�

� x� � x�

��

� f
t�	 � � � 	 tn�
� � f
t��� � � �
t

�
n��

� �x� � � � xm
t�	 � � � 	 tn� � �
x� � � � xm�t
�
�� � � �
x� � � � xm�t

�
n��

Remark ��� In Expression Reduction Systems to each quanti�er symbol a scope indicator is
associated� It indicates in which arguments the binding variables actually bind� We consider
a simpli�ed version of Expression Reduction Systems without scope indicator� Then� binding
variables of a quanti�er symbol bind in all arguments of that quanti�er symbol�

As far as rules are concerned� we consider here a translation of a modi�ed version the
rewrite rules of an Expression Reduction System� Note that if a term metavariable A is in
the scope of a binding
object meta�variable a� this binding may only play a role in an actual
instance of the rewrite rule if all occurrences of A are in the scope of the binding variable
a� Therefore� we choose to translate a modi�ed version of the rewrite rules where we forget
about bindings that never play a role in an actual instance of the rule�

The translation of a modi�ed rule is then as follows� Let t be a metaterm that is the left�
or right�hand side of a rewrite rule� We �rst associate to t a term t� as follows�

� an object metavariable is translated into a variable of type ��

� the translation of f
t�	 � � � 	 tn� �� f
t�� � � �
t�n��

� �a� � � � am
t�	 � � � 	 tn�
� � �
xa� � � � xam �t

�
�� � � �
xa� � � � xam �t

�
n�

� a metasubstitution
t��a�	 � � � 	 tn�an�t is translated into t
�
t��� � � �
t

�
n��

� a term metavariable A that is in the scope of binding variables a�	 � � � an of quanti�er
symbols is translated into zAxa� � � � xan where zA is a variable of type �� � � �� �� �
with n� � times a ��

� a term metavariable A in a subterm of the form
t��a�	 � � � 	 tn�an�A is translated into
zA
t

�
�� � � �
t

�
n��

Next we take the closure z� � � � zn�l
� of the left�hand side� The translation of a rule l � r is

then z� � � � zn�l
� � z� � � � zn�r

��

Note that things� and in particular the modi�ed version of a rewrite rule of an Expression
Reduction System are not su ciently formalised yet� Work certainly remains to be done
here� and this sketch is only meant to be a �rst step�

For instance� we should take care that the translation of a metasubstitution is well�typed�
This is only the case if metasubstitutions apply to metaterms� It is possible to modify rewrite
rules of an Expression Reduction System
without changing the rewrite relation� in such a
way that this holds� but this is one of the things that remain to be done in a formal way�

Then� of course� it remains to prove that the translation is correct� That is� we have to
prove that if t � s in an Expression Reduction System� then t� � s� in the associated
Higher�Order Rewriting System� We do not give the proof in detail here� but just consider
some translations of rewrite rules�

�	 Examples of Higher�Order Rewriting Systems ��

The translation of f
A� �
c�a�A is z�fz � z�z� An admissible assignment � in the
Expression Reduction System may not assign to A a term containing free occurrences of
�
a�� All other instances are easily seen to be simulated in the associated Higher�Order
Rewriting System�

The translation of �a
A�� f
�a
A�	 A� is z��Z � z�f
�z�
z�� Again� admissible assign�
ments � may not assign to A a term containing free occurrences of �
a��

The translation of Ap
�a
A�	 B��
B�a�A is zAzB�Ap
�
xa�zAxA��
zB�� zAzB�zAzB� as
it should be�

��� Higher�order Rewrite Systems�

In this example we consider a class of higher�order rewriting systems introduced by Nipkow�
the Higher�order Rewrite Systems �Nip���

Higher�order Rewrite Systems� We �rst recall the de�nition of a Higher�order Rewrite
System� since Higher�Order Rewriting Systems are very similar to them we can be really
quick here�

Expressions of a Higher�order Rewrite System are built from simply typed variables� ab�
straction and application and simply typed constants as in simply typed ��calculus� The
expressions we are interested in are the ones in ���normal form� They are called terms� A
context is a term with one occurrence of a hole� A substitution is the homomorphic exten�
sion of a type�preserving mapping from variables to terms� A rewrite rule is a pair of terms
written as l� r satisfying some restrictions of which we mention only two here�
� l and r are terms of the same base�type�
� l satis�es the so�called pattern�condition� i�e� every occurrence of a free variable x is in
a subterm of the form x
t�� � � �
tn�� such that t���	 � � � 	 tn�� is a list of distinct bound
variables�

The Higher�order Rewrite System for mini�scoping� as a Higher�Order Rewriting System�

As an example of a Higher�order Rewrite System� we consider the system �mini�scoping� that
pushes quanti�ers inwards� It is taken from �Nip��� There are two base types� term and
form� The system contains the following constants�

�	� � form � form � form

� �
term � form�� form

The rewrite rules are as follows� where P	Q � form and P �	 Q� � term � form are free variables�

�
x�P � � P

�
x�

P �x� �
Q�x��� �
�P �� �
�Q��

�
x�

P �x� �Q�� �
�P �� �Q

�
x�
P �
Q�x��� � P �
�Q��

An example of a rewrite sequence is�

�
x�
�
y�a� �
bx � b���� �

��

�
y�a� � �
z�
bz � b��� �

a � �
z�
bz � b��� �

a �
�
b� � b��

We now represent this Higher�order Rewrite System as a Higher�Order Rewriting System�
The substitution calculus is simply typed ��calculus� The only thing that should be done is
turning taking the closure of the rules� We then obtain the following Higher�Order Rewriting
System�

P��
x�P � � P�P

P ��Q��
�
x�
P �x �Q�x��� � P ��Q��

�P �� �
�Q���

P ��Q�
�
x�
P �x �Q��� � P ��Q�

�P �� �Q�

P�Q��
�
x�
P �Q�x��� � P�Q��
P �
�Q���

The rewrite sequence above is then obtained as follows�

�
x�
�
y�a� �
bx � b���� ��

fP�Q��
�
x�
P �Q�x���gf�
y�a�gfz�
bz � b��g �

fP�Q��P �
�Q��gf�
y�a�gfz�
bz � b��g ��

�
y�a� � �
z�
bz � b��� ��

fP��
x�P �gfag � �
z�
bz � b��� �

fP�Pgfag � �
z�
bz � b��� ��

a � �
z�
bz � b��� �

a � fP ��Q��
z�

P �z� �Q��gfx�bxgfb�g �

a � fP ��Q�
�P �� �Qgfx�bxgfb�g ��

a �
�
x�bx�� � b��

�� Weak Orthogonality

Orthogonality of two computations means that the two computations are independent of each
other� If computation is modelled by a rewriting system then one is usually not interested in
independency of steps but in independency of rules� Two rewrite rules are orthogonal to each
other if always if they both can be applied to a certain term� they use di�erent �resources� of
this term� A rewriting system is said to be orthogonal if each pair of rules is� Traditionally�
one imposes orthogonal behaviour on a rewriting system by requiring all rules to be left�linear
and by requiring each pair of rules to be non�ambiguous�

Two rewrite rules are said to be weakly orthogonal to each other if whenever they can both
be applied to a certain term using
partly� the same resources� the result of applying the one
rule is the same as the result of applying the other rule�

Under the restriction of orthogonality� con	uence has been proven for Combinatory Re�
duction Systems �Klo��� Raa�� and for Higher�order Rewrite Systems �Nip��� In the next
two sections we give two proofs of con	uence for weakly orthogonal Higher�Order Rewriting
Systems� This extends already existing results because the requirement of orthogonality is

	 Weak Orthogonality ��

relaxed to weak orthogonality and because the class of Higher�Order Rewriting Systems cov�
ers all systems for which a con	uence proof has been already given� proofs have been given
for so far� It solves a problem which was raised in �DJK�� Problem ����

Since our format of rewriting di�ers from the usual one� the reader won�t �nd the familiar
de�nition of orthogonality in this text� We try however to make our presentation the least
shocking as possible� In this section we �rst discuss orthogonality and then weak orthogonal�
ity� The de�nition of orthogonality concerns on the one hand the substitution calculus and
on the other hand the rewrite rules�

��� Orthogonality

The substitution calculus� We �rst consider the part of the de�nition of orthogonality that
concerns the substitution calculus�
In rewriting� one is often interested in tracing what happens to symbols� or rather to

positions of symbols� What happens to a position in a term M during a rewrite sequence
M � N is described by means of a descendant relation� relating positions ofM to positions of
N � In Higher�Order Rewriting Systems� we will be interested in what happens to free variables
and de�ned symbols during rewrite sequences� Since the rewrite relation of a Higher�Order
Rewriting System is de�ned via the rewrite relation of its substitution calculus� it is natural to
de�ne a descendant relation for a Higher�Order Rewriting System via the descendant relation
of its substitution calculus�
Therefore we add to the requirements on the substitution calculus that it should have a

descendant relation� We �rst consider the de�nition of such a descendant relation�

Definition ���

�� A descendant relation of the substitution calculus maps a step u � M �SC N to a
relation ju

��
j
SC

between positions of M and positions of N � If u �M �SC N is a rewrite

step and
 � Pos
M�� � � Pos
N�� then by
ju
��
j�SC is meant that the position
 in M

descends to the position � in N by the step u �M �SC N �

�� The descendant relation is extended straightforwardly to arbitrary rewrite sequences

and conversions� by de�ning ju 	 u� 	 � � � 	 un�����������

j
SC

� ju
��
j
SC

ju� 	 � � � 	 un���������
j
SC

and ju��
���

j
SC

�

ju
��
j��
SC

� The descendant relation of the empty rewrite sequence is the identity�

Not every descendant relation is useful for tracing interesting symbols during a rewrite
sequence� We impose some natural restrictions on the descendant relation of the substitution
calculus� The restrictions� imposing �naturality� are given in the next de�nition�
One can also consider a descendant relation and some natural restrictions on it in a more

abstract setting where the objects have no visible structure� We are not interested in abstract
rewriting in the present paper� but the interested reader is referred to �Oos���

Definition ��� Let j
��
j
SC

be the descendant relation of the substitution calculus SC� It is

said to be natural if the following holds�

��

�� Let C� � be a unary context with u � C� � �SC D� �� Let the step u� be obtained by
replacing the hole by a closed term M � u� � C�M ��SC D�M �� Then the positions of M
in C�M � are related to the positions of M in D�M � via the positions of the hole� and
the positions of C� � in C�M � are related to the positions of D� � in D�M � via ju

��
j
SC

�

That is� for
 � Pos
C� �� and � � Pos
D� ��� we have

ju�
��
j� if
ju

��
j�

For � � Pos
M��
� the position of the hole in C� � and �� a position of the hole in D� ��
we have

���ju�
��
j����

�� For two reductions to SC�normal form d� � M �SC M � and d� � M �SC M � we have
jd���
j
SC

� jd���
j
SC

�

The rewrite rules� We now consider the de�nition of orthogonality as far as it concerns the
rewrite rules�
To start with� we want that for a left�hand side l of some rule� the SC�normal form of C�l�

contains always a trace of l� More precisely� we require a left�hand side l to have a special
position that has exactly one descendant in C�l��SC for every context C� �� This special
position will be called the head�position of l�
Second� we require the following� If there is an expansion MSC � C�l� such that some

position
 in M originates from the head�position of l in C�l�� then C� � is unique� The
expansion itself is of course not necessarily unique�
The �rst requirement on the form of a rewrite rule is given in the following de�nition�

Definition ��� A rewrite rule l � r is said to be head�de�ned if there is a unique position

 of l� called the head�position� that satis�ed the following�

�� For every linear context C� �� the position
 has exactly one descendant in C�l��SC �

�� for every term M and every position � in M � the linear context C� � such that �
originates from
 in C�l� via MSC � C�l� is unique�

Note that in every �reasonable� rewriting system all rules have a head�symbol� In �rst�order
term rewriting� it is the leftmost symbol of the left�hand side� In Combinatory Reduction
Systems� it is also the leftmost symbol of the left�hand side of a rule�
In a Higher�Order Rewriting System with simply typed ��calculus with ��reduction and

restricted� ��expansion as substitution calculus� the head�symbol of a rewrite rule is the
leftmost de�ned symbol of the left�hand side�
In general� the de�nition of a head�symbol depends on the substitution calculus and its

descendant relation�
Note that it is often the case that a rewrite rule is required to have a head�symbol by

de�nition�

	 Weak Orthogonality ��

The second requirement on a rewrite rule is that its left�hand side is linear� which is
formulated as follows� if l is x� � � � xn�l�� all variables x�	 � � � xn occur exactly once in l�� A
somewhat more sophisticated de�nition of linearity is given in �Oos��� A rule is said to be
left�linear if its left�hand side is linear�
Finally� we consider a adaptation of the concept of �non�ambiguity�� The idea of non�

ambiguity is that if two rules can be applied to a term they use di�erent parts of the term�
This idea can be formalised using expansions�

Definition ��� Two rewrite rules l � r and l� � r� are said to be non�ambiguous or
simultaneous if the following holds� Let a term M contain a redex for a rule l � r and one
for a rule l� � r�� Then there are expansionsM �SC C�l� andM �SC C

��l��� We require that
both left�hand sides can be made explicit together in a
binary� context� That is� there is an
expansion M �SC D�l	 l

��� If both redexes occur on the same position this is only required if
the two rules are di�erent�

a pair of nonambiguous or simultaneous rewrite steps

We recapitulate the above in the following de�nition�

Definition ��� A Higher�Order Rewriting System H �
A	SC	R� is orthogonal if the fol�
lowing is satis�ed�

�� SC has a natural descendant relation�

�� every rule in R is head�de�ned�

�� every rule in R is left�linear�

�� every pair of rules of R is non�ambiguous or simultaneous�

��

��	 Weak Orthogonality

The di�erence between orthogonality and weak orthogonality only lies in the point of non�
ambiguity�
The requirement that two rules cannot operate on the same part of a term is relaxed to

requiring that in case they do� both applications should yield exactly the same result�

Definition ��	 Two rewrite rules l � r and l� � r� are said to be weakly non�ambiguous

or weakly simultaneous if the following holds�
If we have MSC � C�l� and MSC � C ��l��� and it is not the case that MSC � D�l	 l��� then

C�r��SC � C ��r���SC�

Definition ��
 A Higher�Order Rewriting System H �
A	SC	R� is weakly orthogonal if

�� SC has a natural descendant relation�

�� every rule in R is head�de�ned�

�� every rule in R is left�linear�

�� every pair of rules of R is weakly non�ambiguous�

a pair of weakly nonambiguous rewrite steps

Now that we know what a weakly orthogonal Higher�Order Rewriting System is� we embark
on the two con	uence proofs�

	� A confluence proof by developments

In this subsection we prove all weakly orthogonal Higher�Order Rewriting Systems to be
con	uent by extending the method of �con	uence by developments� to the weakly orthogonal
case� Before formalising the proof� we �rst present the proof idea�
A classical way to prove con	uence for orthogonal rewriting systems is via the Finite Devel�

opments theorem� It states that rewriting all the redexes which are present �simultaneously�

�	 A con�uence proof by developments ��

in an initial term� in any order� is �nite� always results in the same term� and induces the same
descendant relation� This implies con	uence if any set of redexes is indeed simultaneous�
If a rewriting system is orthogonal� then any set of redexes present in a term is simulta�

neous� Orthogonality in fact consists of three parts� First� distinct actions consume distinct
resources
�consistency��� Second� actions may interact as long as this interaction is �nitary

��niteness��� Finally� the order in which distinct actions are performed does not in	uence
the e�ect on other resources
�parametricity��� In other words� no matter in what order
these actions are performed the e�ect on their surroundings is always the same� These three
conditions correspond to Axiom � in �GLM���
The standard �long� proof to show that orthogonal systems are con	uent is via the parallel

moves lemma
�HL���� That is� one can construct the following diagram

M�
u�
� M�

u�
� M�

�� Mn

N�

�
v

u�

�� N�

��
v

u�

�� N�

��
v

�� Nn

��
v

in which in Ni � Ni�� � Mi�� only descendants of the rewrite steps on the opposite
side are contracted� The essence of this construction is� that there exists for each term
Mi a set of simultaneous redexes Ui in Mi� such that there exist complete developments
d �Mi �Mi�� � Ni�� and d

� �Mi � Ni � Ni�� of Ui�
What problems do arise� when orthogonality is relaxed to weak orthogonality! The only

problem is that the redex ui�� might overlap with some redexes in the set V �� fvj�u �
Ui�ujui��

jvg of residuals of Ui in Mi��� But then we know by weak orthogonality� that there

exists some step u� � V doing exactly the same as ui��� hence by starting with this step u
��

we obtain a complete development of V which �goes through� Mi�� as was required� For this
to work� it is needed that simultaneity of a set of redexes is preserved by performing a rewrite
step� Moreover� one needs that if the redex ui�� does not overlap with any redex in V � then
the set V � fui��g is simultaneous again�
After having explained the idea informally� we will formalise it now�

Definition 	�� Let u �M � N be a rewrite step� consisting of the expansion e �M �
� C�l��

the replacement step C�l � r� � C�l� � C�r� and the reduction d � C�r� �� N � The descen�
dant relation induced by u is de�ned by ju

��
j �� je

��
j� jC�l� r�
�������

j� jd
��
j� where � denotes relation

composition� Descendants of redexes are de�ned via the descendant of their head�symbol�

Definition 	�� Let U � fu�	 � � � 	 ung be a set of redexes in a term M � where ui �

i	 li �
ri� is a redex at position
i in M with respect to rule li � ri�
a A rewrite sequence d starting fromM is a U�development if only descendants of redexes in

U are reduced along d� It is complete if it ends in a term not containing any descendants
of U �

b The set U of redexes is called simultaneous if d� � M � C�l�	 � � � 	 ln�� the head�symbol of
li descends to
i along d

�� with C�	 � � � 	 � an n�ary linear context�

We �rst prove FD for simultaneous sets of redexes and then show that in an orthogonal
Higher�Order Rewriting System� every set of redexes in a term is simultaneous�

�	

Lemma 	�� �Finite Developments� Complete developments of a simultaneous set of redexes

in a Higher�Order Rewrite Systems are �nite� end in the same term and all have the same

descendant relation�

Proof� The strategy for proving FD consists of the following three parts� Let U �� V � fug
be some set of simultaneous redexes in a term M � with u �M �M � and L and R the sets of
left� and right�hand sides of V�
a First� one proves that the rewrite step u can be simulated by a �V�abstracted rewrite step��
that is� a rewrite step in which we have abstracted over the redexes in V� by replacing
these by variables� This we call the Envelop Lemma� In a diagram�

D�L	 l�
D�L	 l� r�

� D�L	 r�

�
�
�h�l�RR ���

�
�
h�r�

C�l�
C�l� r�

� C�r�

���
�
�
e

�
�
�dRR

M

��

g

� M �

��

f

By simultaneity of U � one can construct the extraction g� Then one constructs the linear
expansion h�l� � C�l� �SC D�L	 l�� and the linear reduction h�r� � D�L	 r� �SC C�r�
note
that we de�ne h�l� to be an expansion� while h�r� is de�ned to be a reduction�� The only
thing which remains to be shown is that the path on the outside of the diagram simulates
the one on the inside� that is� jg�D�L	 l � r�� f

�������������
j � je�C�l � r�� d

����������
j� This follows by some

easy calculations�
b Then� one gives a measure on �abstracted rewrite steps� and shows that this measure
decreases in some well�founded order along a development of U � Hence� every development
of U must be �nite� This we call the Develop Lemma� More precisely� let U � be the set of
descendants of U along u� We will construct an extraction g� � M �

�SC D
��L�� of U � from

M �� which is smaller than g� in the following sense�
D�R	 r�	 n� ��
SC
�lex �
D

��R��	 n���
where n� n� are the number of holes in D� � and D�� �� The construction of g� is shown in
the following diagram

D�L	 r�

���
��
h�r�

��
�h��L�RR

C�r� E�L� � D��L��

�
�
�dRR ���

�
�
g�

M �

Here h�� � is a reduction from D� 	 r� to its SC�normal form E� �� reducing the SC�redexes
created by plugging in the right�hand side r in the contextD� 	 �� Because r might be non�
linear
only left�hand sides were required to be linear�� E� � might be a non�linear context�
Now take D�� � to be the linearisation of E� �� i�e� a linear context such that the positions

�	 A con�uence proof by developments �

of the holes in E� � and D�� � are the same� hence E�L� � D��L�� for some appropriate L��
By closure of reduction under substitution� the reduction h��L� can be constructed and by
completeness there exists an expansion g� fromM � to E�L� � D��L��� One then shows that
the expansion g� is an extraction of U � from M � into D�� �� Now� in order to prove that
the extraction g� is smaller than the extraction g we remark that by closure of reduction
under substitutions� we have the SC�reduction h��R� � D�R	 r� �SC E�R� � D��R��� The
extraction g� can only be not smaller than g if h��R� is an empty reduction� but then
D�� � � D�� 	 r� which has one hole less than D�� 	 ��

c Finally� combining the Envelop lemma with the Develop Lemma� one shows that every
complete development of U from M to N can be simulated by a simultaneous extraction
of U from M into some context D� �� followed by a sequence of replacement steps from
D�L	 l� to D�R	 r�� followed by a reduction to N � This is shown in the following diagram�

D�L	 l�
D�L	 l � r�

� D�L	 r�
D�L� R	 r�

�� D�R	 r�

�
�
�h�l�RR ���

�
�
h�r�

�
�
�h��L�RR ���

�
�
h��R�

C�l�
C�l� r�

� C�r� E�L�
E�L� R�

�� E�R�

���
�
�
e

�
�
�dRR ���

�
�
g�

�
�
�f �RR

M

��

g

� M � �� N

��

f

Every complete U �development ends in the term N � and the descendant relation is the
one induced by g�D�L � R	 l � r�� f � that is� the one induced by following the �outside�
of the diagram�

�

Showing that every set of redexes in an orthogonal Higher�Order Rewriting System is
simultaneous can be reduced to showing that every pair of redexes is simultaneous by the
following lemma�

Lemma 	�� A Higher�Order Rewriting System is simultaneous if and only if it is pairwise

simultaneous�

Now one can show that orthogonal Higher�Order Rewriting Systems are pairwise simulta�
neous by reducing this property further to non�ambiguity� and state the following theorem�

Theorem 	�� Every orthogonal Higher�Order Rewriting System is con�uent�

Here� we are interested in proving con	uence for weakly orthogonal systems� In such
systems distinct redexes are not simultaneous if they are ambiguous� However� instead of
parallel simultaneity the following two properties su ce� as was shown above�
a Simultaneity of a set of redexes is preserved by rewriting�
b If a redex u is simultaneous with each redex in U � then U � fug is simultaneous�
The �rst item follows easily from the proof of the Develop Lemma� The second item follows
from a property called cubicity�
A Higher�Order Rewriting System is said to be cubic� if every triple of pairwise simultaneous

redexes is simultaneous�

��

Lemma 	�	 Every Higher�Order Rewriting System is cubic�

Proof� Consider a triple U �� fu�	 u�	 u�g of pairwise simultaneous redexes� which are
extracted by e�� e� and e�� respectively� If two redexes are simultaneous and not disjoint�
then one redex must nest the other� so without loss of generality� there are four cases to
consider�
a All three redexes are disjoint�
b u� nests u�� which in turn nests u��
c u� nests both u� and u� which are disjoint�
d u� nests u� and both are disjoint from u��
In each of these cases� �rst performing the SC�steps in e�� then the ones in e� and �nally the
steps in e� gives a simultaneous extraction of U into some ternary context� �
The next theorem states that every weakly orthogonal Higher�Order Rewriting System is

con	uent�

Theorem 	�
 Every weakly orthogonal Higher�Order Rewriting System is con�uent�

Proof� By the preceding lemma� it su ces to prove that cubicity implies that if u is pairwise
simultaneous with each redex in U � then U � fug is simultaneous� One proves� by induction
on the size of the set V �� U � fug of simultaneous redexes� that there exists a simultaneous
extraction of V from M � using cubicity to ensure that origins of simultaneous redexes are
simultaneous again� �
Next we show that weakly orthogonal combinations of left�linear con	uent Higher�Order

Rewriting Systems
hence of term rewriting systems� Combinatory Reduction Systems and
Higher�order Rewrite Systems� are con	uent� thereby solving a problem which was raised by
the �rst author in �DJK�� Problem ����

Theorem 	�� Let H� I be left�linear con�uent Higher�Order Rewriting Systems on the same

alphabet having sets of rules R and S� The union H � I obtained by taking R � S as set of

rules� is con�uent if the rules of R are weakly ambiguous with respect to those in S�

Proof� Because H and I are con	uent by assumption� by the Lemma of Hindley�Rosen it
su ces to show that H and I commute�

I
��

��

H

I
�� ��

H

Using the �commutativity� variant of the Strip Lemma
cf��Bar����� it su ces to show that
for any set U of simultaneous R�redexes we can construct the following diagram�

M
v
� P

N

��
U

V
�� Q

��
U �

�	 A con�uence proof �a la Tait and Martin�L�of ��

where v is an I�step� U � is a set of simultaneous R�redexes� M �U N is a complete de�
velopment of U and P �U � Q is a complete development of U �� There are two cases to
consider�
a If v is simultaneous with each step in U � one shows by reasoning analogous to the preceding
theorem that �rst extracting v from M by some extraction e gives a set of pairwise
simultaneous R�redexes fU je

��
jg� which is simultaneous by cubicity and hence the set

U � fvg is simultaneous� By
the proof of� the Develop Lemma we know that performing
the step v preserves simultaneity� so we can take U � �� fU jv

��
jg�

b If v is not simultaneous with some step u � U � then we can take U � �� fU ju
��
jg�

Finally� the diagram can be completed by an application of the Finite Developments theorem�
To start the induction in the Strip Lemma� we observe that if U consists of just one step� it
is simultaneous� �

� A confluence proof a la Tait and Martin�L�of

The proof method we employ is due to Tait and Martin�L�of� It is as follows� First we de�ne
a relation � on Terms such that its transitive closure equals reduction� Then we prove the
diamond property for �� That is� we prove that for any terms M	N	P such that M � N
and M � P a term Q exists� satisfying N � Q and P � Q� Before embarking on the proof�
we �rst need some auxiliary results concerning substitution�

Substitution� We will use the following results concerning substitution�
An elco is a context E�	 � � � 	 � consisting of symbols of the substitution calculus and holes�

If we are concerned with the replacement of one particular hole by a term M � and the
occurrences of the other holes have already been replaced by terms� then we write E� � and
say that E� � is an elco for M �

Proposition
�� Let M� and M� be terms with M� � M �
� and M� � M �

�� If M�M� �
E�P�	 � � � 	 Pn�� for some elco� then M �

�M
�
� � E�P �

�	 � � � 	 P
�
n� with P� � P �

�	 � � � 	 Pn � P �
n�

Proposition
�� Let E� � be an elco for a term M � Suppose E� � � E�� � and M � M ��

Then E�M ��SC � E��M ���SC�

Proof� The proof proceeds by induction on the length of the maximal reduction of E�M �
to SC�normal form�

base step� In the base step� the reduction of E�M � to SC�normal form takes zero steps� We
prove by induction on the length of the rewrite sequence M � M � that E�M � � E��M ��� If
M � M �� then E�M � � E��M � follows by induction on the length of the rewrite sequence
E� � � E�� �� That is� we prove that E�M � � E��M � if E� �� E�� �� IfM � N �M �� then we
prove E�M � � E�N �� By induction hypothesis of the induction on the length of the rewrite
sequence M � M �� we have E�N � � E��M ��� Together� we have E�M � � E�N � � E��M ���
The statement E�M � � E�N � is proven by induction on the structure of E� ��

induction step� In the induction step� we suppose that the reduction of E�M � to SC�
normal form takes more than zero steps� The induction step is proven by induction on the
length of the rewrite sequence M � M �� If M � M �� then we prove by induction on the

��

length of E� � � E�� � that E�M ��SC � E��M ��SC� That is� we prove that E�M ��SC �
E��M ��SC if E� � � E�� �� If M � N � M �� then we prove E�M ��SC � E�N ��SC � By
induction hypothesis of the induction on the length of the rewrite sequence M � M �� we
have E�N ��SC � E��M ���SC � Together� we have E�M ��SC � E�N ��SC � E��M ���SC� We
prove E�M ��SC � E�N ��SC by induction on the structure of E� ��
� If E� � is a hole then it is clear�
� If E� � � x�E�� �� then the statement follows from the induction hypothesis of the induction
on the structure of E� ��

� If E� � is an application we suppose without loss of generality that the hole occurs in the
left part� i�e� E� � � E�� �E�� By induction hypothesis� we have E��M ��SC � E��N ��SC �
If E��M ��SCE� is a term� we are done� Otherwise� it is of the form E��P�	 � � � 	 Pn��
By Proposition ��� we know that E��N ��SCE� is of the form E��P �

�	 � � � 	 P
�
n� with P� �

P �
�	 � � � 	 Pn � P �

n� By induction hypothesis of the induction on the length of the maximal
reduction of E�M � to SC�normal form� we have E��P�	 � � � 	 Pn� � E��P �

�	 � � � 	 P
�
n�� This

yields
E��M �E���SC �
E��N �E���SC�
�

Corollary
�� Let M be a term with M � M �� Let C� � be a context with C� � � C �� ��
Then C�M ��SC � C ��M ���

Proof� By induction on the structure of C� �� the base case being the previous proposition�
�

The Proof� Now we can give the proof of con	uence of weakly orthogonal Higher�Order
Rewriting Systems�
First the de�nition of � is given�

Definition
�� A relation � on Terms is de�ned as follows�

�� x� x for every variable x � Var�

�� a� a for every operator a � O�

�� if M �M � then x�M � x�M ��

�� if M� �M �

� and M� �M �
�� then M�M� �M �

�M
�
��

�� if l � r is a rewrite rule and E� � is an elco for l such that E� �� E�� �� then E�l��SC �
E��r��SC�

The �rst step of the con	uence proof is easy�

Proposition
�� The transitive closure of � equals reduction�

Proof� Suppose M �M � by some rewrite rule l� r� Then M SC� C�l� and C�r� �SC M
�

for a context C� �� We prove by induction on the structure of C� � that C�l��SC � C�r��SC � If
C� � is an elco for l� then C�l��SC � C�r��SC� since by re	exivity of � we have C� � � C� ��
The other cases follow from context�compatibility of ��
On the other hand� suppose M �M �� We prove M � M � by induction on the derivation

ofM �M �� IfM �M � is not due to the last clause of the de�nition of�� then it is obvious�
If M � M � is in fact due to the last clause of the de�nition of �� then M � C�l��SC and
C ��r��SC � M � with C� � � C �� �� By induction hypothesis� C� � � C �� �� By Proposition ���
we have M � C�l��SC � C ��r��SC �M �� �

�	 A con�uence proof �a la Tait and Martin�L�of ��

For the proof of the diamond property we need a result concerning the interaction between
substitution and parallel rewriting� and a Coherence Lemma�

Proposition
�	 Let M� and M� be terms with M� � M �
� and M� � M �

�� If M�M� �
E�P�	 � � � 	 Pn� then M �

�M
�
� � E�P �

�	 � � � 	 P
�
n� with P� � P �

�	 � � � 	 Pn � P �
n�

Proposition
�
 Let E� � be an elco for M � Suppose E� � � E�� � and M � M �� Then

E�M ��SC � E��M ���SC�

Proof� The proof proceeds by induction on the maximal length of the reduction of E�M �
to SC�normal form�

base step� In the base case� the reduction of E�M � to SC�normal form takes zero steps�
The statement is proven by induction on the derivation of E� �� E�� ��

induction step� Consider for the induction step that the reduction of E�M � to SC�normal
takes more than zero steps� The proof of the induction step proceeds by induction on the
derivation of E� �� E�� ��

�� If E� �� E�� � is x� x for a variable x � Var� then it is trivial�

�� If E� �� E�� � is a� a for an operator a � O� then it is also trivial�

�� If E� � � E�� � is x�E�� � � x�E�

�� � with E�� � � E�
�� �� then the statement follows from

the induction hypothesis of the induction on the derivation of E� �� E�� ��

�� Suppose E� � � E�� � is due to the fourth clause of the de�nition of �� Without loss of
generality we assume that the hole in E� � occurs in the left part of the application� so
E� � � E�� �E�� By induction hypothesis of the induction on the derivation of E� �� E�� ��
we have E��M ��SC � E�

��M ��SC and E� � E�
��

If E��M ��SCE� is a term� then we are done�

If E��M ��SCE� is not a term� then it a redex for the substitution calculus of the form
E�P�	 � � � 	 Pn�� By Proposition ��� we know that E

�
��M

���SCE
�
� � E�P �

�	 � � � 	 P
�
n� with P� �

P �
�	 � � � 	 Pn � P �

n� The reduction of E�P�	 � � � 	 Pn� to SC�normal form takes less steps than
the one of E��M �E� to SC�normal form� By induction hypothesis of the induction on
the length of the maximal reduction to SC�normal form� we have E�P�	 � � � 	 Pn��SC �
E�P �

�	 � � � 	 P
�
n��SC� This yields
E��M �E���SC �
E�

��M �E
�
���SC�

�� Suppose E� �� E�� � is due to the last clause of the de�nition of�� Then E� � � C�l��SC
and E�� � � C ��r��SC for a rewrite rule l� r and an elco C� � for l with C� �� C �� �� C� �
is of the form D���	��� where �� is to be replaced by M and �� by l� and C

�� � is of the
form D����	��� with D���	��� � D����	���� By induction hypothesis of the induction
on the derivation of E� �� E�� �� we have D�M	����SC � D��M �	����SC � This yields

E�M ��SC � D�M	 l��SC

� D��M �	 r��SC

� E��M ���SC
�

Corollary
�� Let M be a closed term with M � M �� Let C� � be a context with C� � �
C �� �� Then C�M �� C ��M ���

��

Proof� The proof proceeds by induction on the structure of C� �� The base case is the
previous proposition�

Lemma
�� �Coherence Lemma� Let l � r be a rewrite rule� Let M � M�M� � E�l��SC for

an elco E� � for l� Suppose M� � N� and M� � N�� Suppose in M� � N� or in M� � N�

a redex that is critical for l� r is contracted� Then M � � E�r��SC �M�M��

M �M�M� � M �

�
��
�

N�N�

�

w
w

Proof� If M contains two disjoint redexes that are critical for l� r� then by weak orthog�
onality M �M �� Then the statement trivially holds�
So suppose all redexes in M that are critical for l� r are nested� Suppose they all occur

inM�� Let the smallest
with respect to the subterm�relation� redex that is critical for l� r
and that is contracted inM� � N� be an instance of g � d� So for some context C� � we have
M� � C�g��SC� By weak orthogonality� we have M

� � E�r��SC � C�d��SCM�� By hypothesis�
we have M� � N�� We prove C�d��SC � N�� then the statement follows by application of
the fourth clause of the de�nition of �� By induction on the structure of C� � one proves
the following� if C�g��SC � N� and if in this derivation an instance of g is contracted� then
C�d��SC � N�� �

Theorem
��� The relation � satis�es the diamond property�

Proof� Suppose M � N and M � P � We prove a Q exists with N � Q and P � Q
by either considering �easier� derivations of M � N or of M � P � where �easier� means
that there are less applications of the last clause of the de�nition of �� or by considering
subderivations of M � N and of M � P � Let C
M � N� be the number of applications of
the last clause of the de�nition of� in the derivationM � N � Let L
M � N� be the length
of the derivation of M � N � The proof proceeds by induction on
C
M � N� � C
M �
P �	 L
M � N� � L
M � P ��� lexicographically ordered� We call C
M � N� � C
M � P �
the complexity of the diversion M � N and M � P �

�� If M � N is x� x for some x � Var� then P � x� De�ne Q �� x�

�� If M � N is a� a for some a � O� then de�ne Q �� P �

�� IfM � N is x�M� � x�N� withM� � N�� then P is of the form x�P� withM� � P�� By
induction hypothesis a Q� exists satisfying N� � Q� and P� � Q�� De�ne Q �� x�Q��

�� If M � N is M�M� � N�N� with M� � N� and M� � N�� then there are two
possibilities for the last step of the derivation of M � P �

IfM � P isM�M� � P�P�� then by induction hypothesisQ� andQ� exist withN� � Q��
P� � Q�� N� � Q� and P� � Q�� De�ne Q �� Q�Q��

If M � P is due to the last clause of the de�nition of �� then M � C�l��SC and
P � C ��r��SC for some rewrite rule l� r and an elco C� � for l with C� �� C �� ��
� If in M� � N� nor in M� � N� a redex that is critical for l � r is contracted� then

N�N� is of the form C ���l��SC for some elco C
��� � for l with C� �� C ��� �� By induction

hypothesis� an elco D� � for l exists with C �� � � D� � and C ��� � � D� �� De�ne

�	 A con�uence proof �a la Tait and Martin�L�of ��

Q � D�r��SC � Then we have the following�

M � C�l��SC ����C ��r��SC � P

N � C ���l��SC

�
w

����D�r��SC � Q

�
w

� If in M� � N� or in M� � N� a redex critical for l � r is contracted� then we
distinguish two possibilities�

IfM contains two disjoint redexes that are critical for l� r then by weak orthogonality
C�l��SC � C�r��SC� The complexity of the diversion C�r��SC � N and C�r��SC �
C ��r��SC is less than the one of the diversion C�l��SC � N and C�l��SC � C ��r��SC� So
by induction hypothesis� a Q exists with N � Q and P � C ��r��SC � Q� So we have

M � C�l��SC ���� C ��r��SC � P
���� ��

�

C�r��SC

�
��

N � N�N�

�

w
w
w
w
w
w
w
w
w
w

���������� Q

�

w
w
w
w
w
w
w
w
w
w

So suppose all redexes inM that are critical for l� r are nested and suppose at least
one of them is contracted in M� � N�� Suppose the largest redex that is contracted
in M� � N� and that is critical for l � r is an instance of g � d� So M� � D��g��SC
with D�� � a context with an elco for g as subcontext� and N is of the form D�

��d��SCN�

with D�� �� D�
�� �� Let M

� � C ��l��SC � Note that M
� is of the form M �

�M
�
��

If inM � C�l��SC � C ��l��SC �M � �M �
�M

�
� no redex critical for g � d is contracted�

thenM �
� is of the formD��

� �g��SC withD�� �� D��
� � �� By induction hypothesis a context

E�� � exists with D
�
�� � � E�� � and D

��
� � �� E�� �� Also by induction hypothesis a Q�

exists with M �
� � Q and N� � Q�� De�ne Q� � E��d��SC and let Q � Q�Q�� Now

we have M � � M �
�M

�
� � E��d��SCQ� with M

�
� � E��d��SC and M

�
� � Q�� Further�

M � � C ��l��SC � C ��r��SC � N � InM �
� � E��d��SC a redex that is critical in l� r has

been contracted� namely an instance of g � d� Therefore� by the Coherence Lemma

Lemma ���� we have C ��r��SC � E��d��SCQ�� That is� we have N � Q and P � Q�
In a picture�

C�l��SC � D��g��SCM� ������������������ C ��r��SC � P
��� �

D��

� �g��SCM
�

� � C ��l��SC���

N � D�

��d��SCN�

�

w
w
w
w
w
w
w
w
w

���������������������� E��d��SCQ�

�

w
w
w
w
w
w
w
w
w

If in C�l��SC � C ��l��SC a redex critical for g � d is contracted� then we consider two
possibilities�

If there are two disjoint redexes in M that are critical for g � d� then we have
D��g��SC � D��d��SC � soM � D��d��SCM�� We have D��d��SCM� � D�

��d��SCN� � N
and D��d��SCM� � P � The complexity of that diversion is strictly less than that of

��

M � D��g��SCM� � N and M � D��g��SCM� � P � By induction hypothesis� a Q
exists with N � Q and P � Q� In a picture�

M � C�l��SC ���������� C ��r��SC � P
���� ��

�

D��d��SCM�

�
��

N � D�

��d��SCN�

�

w
w
w
w
w
w
w
w
w

������������� Q

�

w
w
w
w
w
w
w
w
w
w

Suppose next that all redexes in C�l��SC that are critical for g � d are nested and
suppose that at least one of them is contracted in C�l��SC � C ��l��SC � Let the largest
one of them be an instance of g� � d�� SoM� � E��g

���SC for some context E�� � having
an elco for g� as subcontext� This instance of g� � d� is not critical for l� r� So there
exists an elco C�� � for l with C� �� C�� �� C �� � such that C��l��SC � E��d

���SCM��
By weak orthogonality� E��d

���SC � D��d��SC� Let M
� � C��l��SC � E��d

���SCM�� We
have M � � D��d��SCM� � D�

��d��SCN� � N and M � � C��l��SC � C ��r��SC � P �
The complexity of this derivation is strictly less than the one of M � D��g��SCM� �
D�

��d��SCN� � N and M � C�l��SC � C ��l��SC � P � So by induction hypothesis� a Q
exists with N � Q and P � Q� We have

E��d
���SCM� � C��l��SC �������� C ��r��SC � P

���� ��
�

D��d��SCM�

�
��

N � D�

��d��SCN�

�

w
w
w
w
w
w
w
w
w

����������������� Q

�

w
w
w
w
w
w
w
w
w
w

�� Suppose M � N is due to the last clause of the de�nition of �� Then M � C�l��SC and
N � C ��r��SC for some rewrite rule l� r and an elco C� � for l�

If M � P is M�M� � P�P� with M� � P� and M� � P� then we proceed similarly to
the previous case�

So supposeM � P is also due to the last clause of the de�nition of�� ThenM � D�g��SC
and P � D��d��SC for a rewrite rule g � d and an elco D� � for g� If in C�l��SC � C ��l��SC
no redex critical for g � d is contracted� then C ��l��SC � D���g��SC for some elco D

��� �
for g with D� � � D��� �� By weak orthogonality� we have C ��r��SC � D���d��SC � By
induction hypothesis� an elco E� � for g exists with D�� � � E� � and D��� � � E� ��
We have N � C ��r��SC � D���d��SC � E�d��SC and P � D��d��SC � E�d��SC� So take
Q �� E�d��SC� In a picture�

C�l��SC � D�g��SC �������D��d��SC � P

N � C ��r��SC � D���d��SC

�

w
w
w
w
w
w
w
w
w

���� E�d��SC � Q

�

w
w
w
w
w
w
w
w
w

�	 Conclusion ��

The case that in D�g��SC � D��g��SC no redex critical for l� r is contracted is similar�

Finally� suppose in C�l��SC � C ��l��SC a redex critical for g � d is contracted and in
D�g��SC � D��g��SC a redex critical for l� r is contracted� Then by weak orthogonality
C�r��SC � C�l��SC � D�g��SC � D�d��SC� We have M � D�d��SC � D��d��SC � N and
M � C�r��SC � C ��r��SC � P � The complexity of this diversion is strictly less than the
one of M � D�g��SC � D��d��SC and M � C�l��SC � C ��r��SC � By induction hypothesis�
a Q exists with C ��r��SC � N � Q and D��d��SC � P � Q�

C�l��SC � D�g��SC ��������������� D��d�
���� ��

�

C�r��SC � D�d��SC

�
��

C ��r��SC

�

w
w
w
w
w
w
w
w
w

��������������������� Q

�

w
w
w
w
w
w
w
w
w
w

�

Corollary
��� All weakly orthogonal Higher�Order Rewriting Systems are con�uent�

�� Conclusion

In this paper we have presented a general con	uence by
weak� orthogonality result for the
class of higher�order term rewriting systems� This result generalises known results for special
classes of rewriting systems such as TRSs� CRSs and HRSs� via a uniform presentation
preserving their common features and parametrising over their di�erences� The uniform
presentation is based on the analogy

rewriting � substitution� rules

or more tentatively�

rewriting � logic� rules

Accordingly� one can classify properties of rewriting systems into logical properties� which
depend on the logic� and rewrite properties which depend on the actual rewrite rules� Then�

weak� orthogonality can be viewed as a su cient condition on the rewrite rules allowing to
reduce the rewrite property of con	uence to a logical property�
Since� in this paper� we aimed at the development of theory for term rewriting systems we

have restricted attention to a formalisation of the proofs of the logic as
���terms� Moreover�
we have restricted attention to the propositional intuitionistic logic of application�
In future work we will consider rewriting systems having a graphical notation for substi�

tution
the proofs of the logic�� i�e� graph rewriting systems� As a �rst problem we set out
to investigate the rewrite property of optimality of rewriting as de�ned by L"evy �L"ev���� Al�
though optimal implementations using graph rewriting do exist both for the lambda calculus

�Lam�� Kat��� and for the more general class of Interaction Systems
�AL���� we think
our approach can shed new light on the subject matter� In this light� the work so far can be

�	 References

characterised as stating conditions on the form of the rewrite rules allowing to reduce opti�
mality from a rewrite property to a logical property� much in the same way as orthogonality
can be viewed as a su cient condition on the rewrite rules allowing to reduce the rewrite
property of con	uence to a logical property�

�� Acknowledgements

We are grateful for inspiring discussions with Zurab Khasidashvili� Jan Willem Klop� Aart
Middeldorp and Fer�Jan de Vries�

References

�Acz��� Peter Aczel� A general Church�Rosser theorem� Technical report� University of
Manchester� July ����

�AL�� A� Asperti and C� Laneve� Interaction systems I� the theory of optimal reductions�
Technical Report ����� INRIA�Rocquencourt� September ���

�Bar��� H�P� Barendregt� The Lambda Calculus� its Syntax and Semantics� volume ��� of
Studies in Logic and the Foundations of Mathematics� North�Holland Publishing
Company� revised edition� ����
Second printing �����

�CR��� Alonzo Church and J�B� Rosser� Some properties of conversion� Transactions of the
American Mathematical Society� �����#���� ����

�DJ�� N� Dershowitz and J��P� Jouannaud� Rewrite systems� In J� van Leeuwen� edi�
tor� Formal Methods and Semantics� Handbook of Theoretical Computer Science�

Volume B� chapter �� pages ���#���� MIT Press� ���

�DJK�� Nachum Dershowitz� Jean�Pierre Jouannaud� and Jan Willem Klop� More problems
in rewriting� Pp� ���#��� of LNCS ��� Proceedings of �th RTA� ���

�GLM�� Georges Gonthier� Jean�Jacques L"evy� and Paul�Andr"e Melli$es� An abstract stan�
dardisation theorem� In Proceedings of �th LICS� pages ��#��� Santa Cruz� Califor�
nia� ��� IEEE Computer Society Press�

�HL�� G"erard Huet and Jean�Jacques L"evy� Computations in orthogonal rewriting sys�
tems� I� Ch� �� of Computational Logic� Essays in Honor of Alan Robinson� ���

�Kat�� V� Kathail� Optimal Interpreters for lambda�calculus based functional languages�
PhD thesis� MIT� ���

�Kha�� Z�O� Khasidashvili� Expression reduction systems� In Proceedings of I� Vekua In�

stitute of Applied Mathematics� volume ��� pages ���#���� Tbilisi� ���

�Kha�� Zurab Khasidashvili� The longest perpetual reductions in orthogonal expression
reduction systems� In Proceedings of the third International Symposium on Logical

Foundations of Computer Science� pages ��#���� ���

�Klo��� J�W� Klop� Combinatory Reduction Systems� Mathematical Centre Tracts Nr� ����
CWI� Amsterdam� ���� PhD Thesis�

�Klo�� J�W� Klop� Term rewriting systems� In S� Abramsky� D� Gabbay� and T� Maibaum�
editors� Handbook of Logic in Computer Science� Volume II� Oxford University
Press� ���

References �

�KOR�� J�W� Klop� V� van Oostrom� and F� van Raamsdonk� Combinatory reduction sys�
tems� introduction and survey� Theoretical Computer Science� ������#���� ���

�Lam�� John Lamping� An algorithm for optimal lambda calculus reduction� In Proceedings
of the ��th ACM Conference on Principles of Programming Languages� pages ��#���
���

�L"ev��� Jean�Jacques L"evy� R�eductions correctes et optimales dans le lambda�calcul� PhD
thesis� Universit"e de Paris VII� ����

�Nip�� T� Nipkow� Higher�order critical pairs� In Proceedings of the sixth annual IEEE

Symposium on Logic in Computer Science� pages ���#��� ���

�Nip�� T� Nipkow� Orthogonal Higher�Order Rewrite Systems are Con	uent� In Proceedings
of the International Conference on Typed Lambda Calculi and Application� pages
���#���� ���

�Oos�� Vincent van Oostrom� Con�uence for Abstract and Higher�Order Rewriting� PhD
thesis� Vrije Universiteit� Amsterdam� March ���

�OR�� V� van Oostrom and F� van Raamsdonk� Comparing combinatory reduction sys�
tems and higher�order rewrite systems� Technical Report CS�R���� CWI� ���
Extended abstract in Proceedings of HOA���

�OR�� Vincent van Oostrom and Femke van Raamsdonk� Weak orthogonality implies con�
	uence� The higher�order case� In Proceedings of the third International Symposium

on Logical Foundations of Computer Science� pages ��#��� ���

�Raa�� F� van Raamsdonk� Con	uence and superdevelopments� In C� Kirchner� editor�
Proceedings of the �th International Conference on Rewrite Techniques and Appli�

cations� ���

�Ros��� Barry K� Rosen� Tree�manipulating systems and Church�Rosser theorems� Journal
of the Association for Computing Machinery� ��
������#���� January ����

