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We analyse and numerically study streamline-diffusion finite element methods
applied to a singularly perturbed convection-diffusion two-point boundary value
problem whose solution has a single boundary layer. We first consider arbitrary
meshes, then in analysing the scheme on a Shishkin mesh, we consider two for-
mulations on the fine part of the mesh: the usual streamline diffusion upwinding
and the standard Galerkin method. The error estimates we report are given in
the discrete L®™ norm and in particular describe the dependence of the error
on the user-chosen parameter 7o specifying the mesh. When 7p is too small,
the error becomes O(1), but for 7o above a certain threshold value, the error is
small and increases very slowly as a function of 79. Numerical tests support the
theoretical results for the L° norm.

1. INTRODUCTION
We consider the singularly perturbed boundary value problem

(Lu)(z) := —eu"(z) + a(z)u'(x) = f(z) forz € (0,1), (1.1)
u(0) = u(l) =0,

where ¢ is a small positive parameter, a(z) > « > 0 for all z € [0, 1] and some
constant «, and the functions a and f are sufficiently smooth. The solution of
(1.1) has a boundary layer at z =1 (see, e.g., [12, 13]).
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Convection-diffusion problems of this type arise in linearised versions of the
Navier-Stokes equations, so it is important to devise effective methods for their
numerical solution. Many such methods have been proposed in the literature;
see [13] for a survey.

In this context, one of the most commonly used numerical methods is the
streamline-diffusion finite element method (SDFEM), which combines good
stability properties with high accuracy. It was introduced by Hughes and
Brooks [4] and its convergence properties have been studied by many authors
[5, 7, 10, 11, 19]. The method has also been extended to much more compli-
cated problems, such as the incompressible Navier-Stokes equations [6, 8, 18].
Nevertheless, the precise behaviour of the SDFEM on nonuniform meshes is
unknown. As a first step towards a better understanding of the properties of
the SDFEM on meshes that are designed for convection-diffusion problems, we
shall give a sharp analysis of its behaviour when it is used to solve (1.1) on
arbitrary and special meshes.

Recently, several upwind finite difference methods for (1.1) have been stud-
ied on special meshes [1, 9, 16] and e-uniform convergence results have been
proved. The difference schemes produced by the SDFEM differ from these up-
wind methods. The most prominent difference is that, unlike the methods in
[1, 9, 16], the SDFEM scheme loses consistency at any mesh point where the
local mesh is nonuniform.

In this paper, we shall develop techniques sharper than those of [1, 9, 16] to
analyse the SDFEM. In particular, we are able to make precise the relationship
between the error in the numerical solution and the user-chosen mesh parameter
for the well-known Shishkin mesh. Previous work on the effect of varying this
parameter has been confined to numerical experiments (see, e.g., [2], where an
alternative difference method is used on the Shishkin mesh).

Let our mesh be defined by 0 = 9 < 1 < ... < zny = 1, where N is
some positive integer. For ¢ = 1,..., N we set x;_1/» = (z;—1 + z;)/2 and
hi = ; — z;—1. Let H = max; h;. Given a mesh function v = {v;}, define the
forward and backward difference operators Dy and D_ by

Vit1 — U; Vi — Vij—1
Divi:=——— and D_v;:= ——,
’ hit1 ’ hi
respectively.
Let ¢;, for t =0,..., N, be the usual basis functions for the space of piece-
wise linear functions, viz.,
T — T
2 for @€ [wim, @)
hi
() = ) Tyl —x
¢i(r) =9 T T for  ze [T, Tiy1]
hit1
0 for x g [mi_1,$i+1]

Set VN := span{¢y,...,¢n_1}. The SDFEM for solving (1.1) is defined as
follows:
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Find uny € VN such that, for all vy € VN,

N

! ! ! ! !
E / (euyvy + auyvn + aund;_qj2av)y) dz
i=1"Ti-1

Zq

N
= Z f(’UN + (Si_l/QG,’U}V) dx. (]‘2)
i=1

Ti—1

Here 6;_1 /> is called the streamline diffusion parameter, or SD-parameter for
short. If §;_1/2 = 0 for i = 1,...,N, then we get the standard Galerkin
discretization for (1.1), which is known to produce nonphysical oscillations
unless the mesh is very fine.

In order to evaluate the integrals in (1.2) we apply the standard midpoint
rule

[ W) e~ 55—y )Was0 ),

i—

Let the discrete solution of (1.2) be

N
un(z) =Y uidi(x).
i=0

Then, taking vy = ¢; fori =1,..., N — 1 in (1.2), we get the scheme
LN (ui) = Niy12fipr/2 + tic1yaficije, fori=1,...,N—1, (1.3)

ug =uny =0,

where
LN (u) = _h% {D u; — D_u;}
FAit1/20i1172D1ui + pi120i-1/2D-u; (1.4)
and
Ntz i= hit1 — 2(;';'1/204'4—1/2 L i hi + 251'2_};/2041'—1/2 .
v {2

When € is small relative to the local meshsize, a standard way of stabilizing
this scheme is to choose §;,1 /> according to the formula

Oiv1/2 = hit1/(2a5412)- (1.5)
For this special choice the scheme (1.3) becomes
€
LN (ug) = % {Dyu; — D_w;i} +a;_1/2D_u;
fi—1/2 5 fori:l,...,N—l, (16)

u = un=20.
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If the local meshsize is small enough — in particular if a;;1/2hi+1 < 2¢
— then the standard Galerkin method works well, so it is possible to choose
di+1/2 = 0. Thus the second special scheme that we consider is (1.3) with the
choice

0, if ai+1/2hi+1 < 2g,
5i+1/2 = i
20412

, it agp1phi > 26 (1.7)

This generates a scheme whose difference operator we call LY.

In all variations of the SDFEM, one always chooses d;;1/2 in such a way
that 0 < 6;11/2 < hiy1/(2a;41/2). Thus we shall assume that Ajyq1/2 > 0
and prip1 > 1 /2. Moreover, we add a condition that guarantees that the
difference scheme satisfies a discrete maximum principle (Lemma 2.2 below):
we shall henceforward assume that the parameters A and p satisfy

T Z Ai+1/2 Z 0 and Mi+1/2 Z 1/2 for all . (18)
hiaii1/2

Both our special choices (LY and L) satisfy (1.8).

REMARK 1.1. When the functions a and f are constants, then the choice

h; 1 ah; 1 2e
Siv1so = —2 ( coth—=L — 1.9
i+1/2 % <CO % ahis (1.9)

yields the exact solution at all nodes [3]. For this choice of 0, if the mesh is

fized then
hit1
Hm 8y = —2t.
s—lgl‘*' +1/2 2a

That is, the choice (1.5) is essentially the limiting case of (1.9) when € is small
compared with the local meshsize.

The plan of the paper is the following. First, in Section 2, we outline an
analysis of the scheme on a general mesh. In Section 3 we study its behaviour
on a Shishkin mesh, which is a piecewise uniform mesh. The transition point
that separates the coarse and fine portions of the Shishkin mesh is given by

1
1—T::1—min{—,T—OslogN},
2"«

where 7y is a user-chosen parameter. While Shishkin meshes have been used
to compute numerical solutions of many singularly perturbed differential equa-
tions, no previous analysis has revealed the relationship between 73 and the
error in the computed solution. We state the results of such an analysis here.
In Section 4 we describe numerical experiments that demonstrate both the
accuracy obtained when using the Shishkin mesh and the sharpness of the
theoretical relationship between the error and 7y that was proved in Section 3.
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Full details of the analysis outlined here can be found in [17].
Notation. Throughout the paper C' will denote a generic positive constant that
is independent of € and the mesh. In the particular case of a Shishkin mesh
(Sections 3 and 4) it will also be independent of 7. When we write, e.g.,
g; = O(ehj), we mean that |g;| < Ceh; (and note that C is independent of j).

2. ERROR ESTIMATE ON AN ARBITRARY MESH
The following ingredients are essential in the analysis leading to our error esti-
mates.

— Decomposition of the exact solution (1.1) into smooth and layer parts,
which can be found in [9]:

LEMMA 2.1. The solution w of (1.1) can be decomposed as u(xz) = G(z) +
E(z) on [0,1], where for any prescribed finite order ¢ and 0 < z < 1, the
smooth part G satisfies LG(x) = f(x) and

G ()| <C fork=0,1,...,q, (2.1)
while the layer part E satisfies (LE)(x) =0, and

|E® ()] < Ce7Feol=0/e fork=0,1,...,q. (2.2)

— Discrete Maximum Principle:

LEMMA 2.2. The discrete operator LN satisfies a discrete mazimum prin-
ciple, i.e., if {vi} and {w;} are mesh functions that satisfy vo < wo,
vy < wy, and LN (v;) < LN(w;) fori = 1,...,N — 1, then v; < w;
for all i.

When the conditions of Lemma 2.2 are satisfied, we say that {w;} is a
barrier function for {v;}.

— Barrier Functions:

Set 8 = a/2.

LEMMA 2.3. Let z; := 1+ x; fori = 0,1,...,N. Then L~ (z;) > 8, for
i=1,...,N—1.

LEMMA 2.4. Fori=0,...,N, define the mesh function

Si:ﬁ<l+%>

Jj=1
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(with the usual convention that if i = 0, then So = 1). Then, for i =
1,...,N —1, we have

N5 > —C

~ max{e, h;} Si

for some positive constant C.

COROLLARY 2.1. For the particular case when L = LIV, Lemma 2.4 still
holds true if 8 is replaced by o in the definition of S;.

— Stability for the discrete operator LN:

The following Lemma enables us to bound the pointwise error in terms of a
discrete L; norm of the consistency error. In the terminology of [15], it says
that LY is (0o, 1)-stable, just as the differential operator L is (0o, 1)-stable
because its Green’s function is bounded pointwise.

LEMMA 2.5. Write My for the (N + 1) x (N + 1) matriz of the difference
scheme LY, where the boundary conditions are handled by (Mn)o,o = 1,
(MN)O,i = (MN)N,ifl =0 fOT = ]., e ,N, and (MN)N,N = 1. Then fOT

any (N + 1)-dimensional row vector v = (0,v1,vs,...,vn-1,0), we have,
for each i,
N—1
joil <C Y il (MnoT),l,
j=1

where T denotes transpose.
— Sharp estimate of the layer part:

LEMMA 2.6. For each i and any constant k > 0, we have

o (020 < T (1442 -

j=it1
Now we formulate the main statement of this section.

THEOREM 2.1. Let u be the solution of (1.1) and {u;} the solution of (1.3).
Assume that H is sufficiently small (independently of €). Then, for each i, we
have

N-1

|U(1’Z) — ’LLZ| S CH(E + H) + Ce Z |6j+1/2aj+1/2 — 6j—1/2aj—1/2|

Jj=1

+C ﬂ (1+%>_1. (2.4)

j=it1
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We can sharpen this result for the special case of L.

COROLLARY 2.2. Let u be the solution of (1.1) and {u;} the solution of (1.6)
(i.e., the solution computed using LY ). Assume that H is sufficiently small
(independently of ). Then, for each i, we have

N-—1 N ﬁh -1
u(z;) —ui| < CH(e+ H)+Ce > |hjur — bl +C ] <1+TJ> .

j=1 Jj=i+1

Theorem 2.1 also implies the following simpler but weaker result for the
general difference scheme LY.

COROLLARY 2.3. Let u be the solution of (1.1) and {u;} the solution of (1.3).
Assume that H is sufficiently small (independently of €). Then, for each i, we
have

N ﬁh' -1
lu(z;) —u;| < Cle + H?) +C H <1+TJ> .

Jj=i+1

3. ESTIMATE ON A SHISHKIN MESH
The accuracy of our computed solution will be improved if we use a mesh
that (at least partly) resolves the boundary layer. Many adaptive and special
meshes proposed in the literature set out to do this. (See [13] for a summary
of previous work in this direction.) In particular, Shishkin [14] introduced
piecewise uniform meshes of this type, which are simpler to handle than graded
grids.

A Shishkin mesh for (1.1) is defined in the following way: let N be an even

integer. Set
1
T = min{—,EslnN} ,
2"«

where the constant 7y is independent of ¢ and N. Divide each of the intervals
[0,1—7] and [1—7,1] into N/2 equidistant subintervals. In practice one usually
has 7 << 1, so the mesh is coarse on [0,1 — 7] and fine on [1 — 7,1].

We shall assume that 7 = (79/a)eln N, as otherwise N is exponentially
large relative to e !, which is very unlikely in practice and implies that any
reasonable numerical method will yield accurate results for (1.1). We denote
the mesh width of each subinterval in [1 —7,1] by h. Then it is easy to see that

2
N'<H<2N! and h="eN~'lN. (3.1)
(6]

The simple structure of the Shishkin mesh allows us to express the result of
Theorem 2.1 in a more accessible form for our special schemes LY and LY.

Our first theorem gives an estimate for the error in the solution computed
by LY, expressed in terms of the parameter 79, under a mild condition on the
size of N (see Remark 3.1).

343



THEOREM 3.1. Let u be the solution of (1.1). Let our mesh be the Shishkin
mesh described above. Assume that H is sufficiently small (independently of
) and that ToN~1In N < 1. Let {u;} be the solution computed by the scheme
(1.6) that defines LY. Then for each i we have

1672
w(z;) —u;] < Cmax< N ™ex 0>,TN11HN}.
ute) ] < Cmax {N " exp (57 )
REMARK 3.1. In practice one typically has 7o € [1,10], so our assumption that
oN~'In N < 1 is not restrictive.

Now we move on to our alternative SDFEM, LY. As we shall see in Theorem
3.2, its virtue is that on the Shishkin mesh it attains almost second-order
accuracy when 7y > 2. First we state a sharper version of Lemma 2.4 for L}
on the Shishkin mesh, under two mild conditions on N.

LEMMA 3.1. Fori=1,...,N—1, let S; be the mesh function defined in Lemma
2.4 with B replaced by a. Assume that our mesh is the Shishkin mesh, that
oN~'In N < 2a/maxjgja(:) and that 26N < o. Then, fori=1,...,N —1,

we have o
LéV(Si) >

~ max{e, h;} S

for some positive constant C'.

The conditions 79N ' In N < 2a/maxqg j a(-) and 26N < a are reasonable
in practice.

THEOREM 3.2. Let u be the solution of (1.1). Let our mesh be the Shishkin
mesh. Assume that H is sufficiently small (independently of €) and that

oN"'InN < 2a/r[réai>]<a(-) and 2eN < a.

Let {u;} be the solution computed by the scheme (1.4), (1.7) that defines LY.
Then for each i we have

1673
N gy —T0 0 2 AT—21.,2
|u(z;) — il SCmaX{N exp (e%/ﬁ) ,To N~ In N}.

REMARK 3.2. Theorem 3.2 implies that for fized 79 > 2, we have the error
bound

sup max |u(z;) — ui| < M(1p) N~ 2In® N.

0<e<1 0<i<N
Thus the method is in practice almost second-order convergent, but the error
constant M depends on the value of 79. We shall verify this by numerical
experiments in the next section.

REMARK 3.3. Under the hypotheses of Theorem 3.2, the scheme LY is up-
winded only on the coarse mesh; on [1 — A, 1], where the layer is strongest, the
fine Shishkin mesh is sufficient to stabilize the method.

344



TABLE 4.1. SDFEM method, € = 10~*

[ N=16 | N=32 | N=64 | N=128 | N=256 | N=512 | N=1024 |
3.0586e-03 | 7.2236e-04 | 1.2321e-03 | 2.3350e-03 | 4.1228e-03 | 7.1356e-03 | 1.2153e-02
1.2145e-02 | 1.0514e-02 | 7.4568e-03 | 4.7669e-03 | 2.8716e-03 | 2.0652e-03 | 3.0537e-03
2.6967e-02 | 1.9871e-02 | 1.2058e-02 | 7.9023e-03 | 4.6240e-03 | 2.6346e-03 | 1.4736e-03
3.9902e-02 | 2.8100e-02 | 1.7861e-02 | 1.0745e-02 | 6.2438e-03 | 3.5437e-03 | 1.9784e-03
5.1980e-02 | 3.5554e-02 | 2.2436e-02 | 1.3450e-02 | 7.8093e-03 | 4.4318e-03 | 2.4743e-03
6.1826e-02 | 4.2587e-02 | 2.6771e-02 | 1.6089e-02 | 9.3478e-03 | 5.3106e-03 | 2.9669e-03
7.2231e-02 | 4.8787e-02 | 3.1016e-02 | 1.8669e-02 | 1.0874e-02 | 6.1843e-03 | 3.4579¢-03
8.2018e-02 | 5.5598¢-02 | 3.5189e-02 | 2.1198e-02 | 1.2385e-02 | 7.0550e-03 | 3.9475e-03
9.0330e-02 | 6.1608e-02 | 3.9018e-02 | 2.3716e-02 | 1.3890e-02 | 7.9215e-03 | 4.4361e-03
9.7215e-02 | 6.6702e-02 | 4.3208e-02 | 2.6237e-02 | 1.5379e-02 | 8.7840e-03 | 4.9237¢-03
1.0276e-01 | 7.2862e-02 | 4.6994e-02 | 2.8689¢-02 | 1.6858e-02 | 9.6442e-03 | 5.4101e-03

3
=}

PWmE=eeo000
MO RLOOD RN

TABLE 4.2. SDFEM method, ¢ = 108

N=16 I N=32 I N=64 [ N=128 [ N=256 | N=512 [ N=1024 |
3.0266e-03 | 7.4012e-04 | 1.2360e-03 | 1.1446e-03 | 8.5073e-04 | 5.6533e-04 | 3.5158e-04
1.2177e-02 | 1.0545e-02 | 7.4869e-03 | 4.7934e-03 | 2.8937e-03 1.6832e-03 | 9.5508e-04
2.6097e-02 | 1.9897e-02 | 1.2979e-02 | 7.9176e-03 | 4.6350e-03 | 2.6423e-03 | 1.4791e-03
3.9932e-02 | 2.8122e-02 | 1.7876e-02 | 1.0754e-02 | 6.2496e-03 | 3.5472e-03 | 1.9805e-03
5.2006e-02 | 3.5572e-02 | 2.2447e-02 | 1.3456e-02 | 7.8129e-03 | 4.4338e-03 | 2.4754e-03
6.1853e-02 | 4.2603e-02 | 2.6781e-02 | 1.6094e-02 | 9.3507e-03 | 5.3122e-03 | 2.9678e-03
7.2253e-02 | 4.8805e-02 | 3.1025e-02 | 1.8674e-02 | 1.0877e-02 | 6.1859e-03 | 3.4587e-03
8.2043e-02 | 5.5613e-02 | 3.5199e-02 | 2.1203e-02 | 1.2388e-02 | 7.0566e-03 | 3.9484e-03
9.0357e-02 | 6.1626e-02 | 3.9029e-02 | 2.3722e-02 | 1.3893e-02 | 7.9233e-03 | 4.4371e-03
9.7245e-02 | 6.6722e-02 | 4.3219e-02 | 2.6244e-02 | 1.5382e-02 | 8.7860e-03 | 4.0247e-03
1.0280e-01 7.2879e-02 | 4.7006e-02 | 2.8695e-02 | 1.6862e-02 | 9.6463e-03 | 5.4112e-03

3
=)
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4. NUMERICAL EXPERIMENTS

All of our experiments have been performed on Shishkin meshes using the test
problem

—eu'(z) + (1 +z(1 —2)) v'(z) = f(z) on (0,1), wu(0)=wu(l)=0,(4.1)
where f is chosen such that

1—e(1-2)/e
u(z) = ﬁ — cos gm (4.2)
is the exact solution. This solution exhibits typical boundary layer behaviour.

To construct our Shishkin mesh we have taken o = 1.0 in all our examples.
As we shall vary 79 below, there is no point in also varying « as only the
quotient 7y/c affects the placement of the mesh.

We shall study the rates of convergence for the SDFEM method for various
choices of §, viz., (1.5), (1.7) and (1.9). When ¢ is given by (1.5), we simply
refer to the resulting method as the SDFEM method; when § is defined by
(1.7), we call the method the SDFEM/Galerkin method; and when ¢ comes
from (1.9), we call the method the ezponentially fitted SDFEM.

Tables 4.1 — 4.6 show the maximum nodal errors as 7y varies, for ¢ = 1074
and € = 1078, The range of values for 7y is chosen so as to spread across the
two convergence regimes appearing in Theorems 3.1 and 3.2.

In Figures 4.1 — 4.3 we show the results for ¢ = 108 (the results for e = 10~*
are qualitatively similar). In Figures 4.1 and 4.2 we show the maximum nodal
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TABLE 4.3. SDFEM/Galerkin method, e = 10™*

0 N=16 N=32 N=64 N=128 | N=256 N=512 N=1024
0.2 1.3495e-02 7.4173e-03 3.7919e-03 2.3180e-03 4.1032e-03 7.1140e-03 1.2130e-02
0.4 1.3295e-02 5.9575e-03 2.4994e-03 1.0215e-03 1.3474e-03 2.0404e-03 3.0310e-03
0.6 1.0767e-02 3.9505e-03 1.3699e-03 4.6801e-04 4.3947e-04 5.8434e-04 7.5714e-04
0.8 8.5223e-03 2.6555e-03 8.2288e-04 2.5515e-04 1.4009e-04 1.6631e-04 1.8879e-04
1.0 7.4269e-03 2.3737e-03 7.5361e-04 2.3725e-04 7.4005e-05 4.6283e-05 4.6724e-05
1.2 7.8940e-03 2.6544e-03 8.8510e-04 2.8740e-04 9.1378e-05 2.8541e-05 1.1213e-05
1.4 9.1636e-03 3.2429e-03 1.1148e-03 3.6907e-04 1.1874e-04 3.7296e-05 1.1486e-05
1.6 1.1242e-02 4.0688e-03 1.4114e-03 4.7068e-04 1.5240e-04 4.8007e-05 1.4799e-05
1.8 1.3533e-02 4.9962e-03 1.7532e-03 5.8899e-04 1.9130e-04 6.0325e-05 1.8602e-05
2.0 1.5928e-02 6.0782e-03 2.1547e-03 7.2320e-04 2.3489e-04 7.4140e-05 2.2868e-05
2.2 1.9489e-02 7.3961e-03 2.5759e-03 8.7261e-04 2.8315e-04 8.9433e-05 2.7587e-05
TABLE 4.4. SDFEM/Galerkin method, e = 1078
T N=16 N=32 N=64 N=128 | N=256 N=512 N=1024
0.2 1.3463e-02 7.3800e-03 3.7495e-03 1.8213e-03 8.6074e-04 3.9953e-04 1.8314e-04
0.4 1.3256e-02 5.9156e-03 2.4593e-03 9.8542e-04 3.8695e-04 1.5019e-04 5.7887e-05
0.6 1.0729e-02 3.9162e-03 1.3421e-03 4.4688e-04 1.4694e-04 4.8101e-05 1.5740e-05
0.8 8.4894e-03 2.6321e-03 8.0772e-04 2.4576e-04 7.4049e-05 2.2103e-05 6.5398e-06
1.0 7.4044e-03 2.3597e-03 7.4532e-04 2.3273e-04 7.1598e-05 2.1702e-05 6.4895e-06
1.2 7.8771e-03 2.6453e-03 8.8000e-04 2.8476e-04 9.0097e-05 2.7914e-05 8.4927e-06
1.4 9.1515e-03 3.2352e-03 1.1110e-03 3.6721e-04 1.1786e-04 3.6882e-05 1.1299e-05
1.6 1.1231e-02 4.0629e-03 1.4084e-03 4.6923e-04 1.5166e-04 4.7664e-05 1.4642e-05
1.8 1.3523e-02 4.9908e-03 1.7507e-03 5.8770e-04 1.9063e-04 6.0006e-05 1.8456e-05
2.0 1.5919e-02 6.0741e-03 2.1522e-03 7.2199e-04 2.3425e-04 7.3827e-05 2.2725e-05
2.2 1.9483e-02 7.3921e-03 2.5735e-03 8.7140e-04 2.8251e-04 8.9126e-05 2.7445e-05
TABLE 4.5. Exponentially fitted SDFEM, ¢ = 104
T N=16 N=32 N=64 N=128 | N=256 N=512 N=1024
0.2 1.3370e-02 7.3464e-03 3.7510e-03 1.8378e-03 8.8330e-04 4.2451e-04 2.0873e-04
0.4 1.2700e-02 5.7250e-03 2.4146e-03 9.8869e-04 4.0291e-04 1.6770e-04 7.3738e-05
0.6 9.5598e-03 3.5587e-03 1.2555e-03 4.3532e-04 1.5239e-04 5.5541e-05 2.1918e-05
0.8 6.7757e-03 2.1200e-03 6.3610e-04 1.8953e-04 5.7652e-05 1.8509e-05 6.5274e-06
1.0 4.8194e-03 1.3046e-03 3.4289e-04 9.0299e-05 2.4461e-05 7.0350e-06 2.2191e-06
1.2 3.5600e-03 8.6983e-04 2.1007e-04 5.1497e-05 1.3104e-05 3.5466e-06 1.0372e-06
1.4 2.7820e-03 6.4421e-04 1.5097e-04 3.6498e-05 9.2473e-06 2.4931e-06 7.1607e-07
1.6 2.3114e-03 5.2858e-04 1.2486e-04 3.0722e-05 7.9406e-06 2.1757e-06 6.2932e-07
1.8 2.0300e-03 4.6965e-04 1.1334e-04 2.8498e-05 7.4972e-06 2.0799e-06 6.0589e-07
2.0 1.8626e-03 4.3968e-04 1.0827e-04 2.7640e-05 7.3458e-06 2.0507e-06 5.9947e-07
2.2 1.7633e-03 4.2442e-04 1.0602e-04 2.7305e-05 7.2930e-06 2.0414e-06 5.9759e-07
TABLE 4.6. Exponentially fitted SDFEM, ¢ = 108
0 N=16 N=32 N=64 N=128 | N=256 N=512 N=1024
0.2 1.3350e-02 7.3269e-03 3.7293e-03 1.8143e-03 8.5845e-04 3.9882e-04 1.8292e-04
0.4 1.2673e-02 5.6965e-03 2.3874e-03 9.6386e-04 3.8087e-04 1.4855e-04 5.7462e-05
0.6 9.5302e-03 3.5323e-03 1.2342e-03 4.1892e-04 1.4012e-04 4.6507e-05 1.5377e-05
0.8 6.7482e-03 2.0988e-03 6.2150e-04 1.7997e-04 5.1562e-05 1.4701e-05 4.1833e-06
1.0 4.7955e-03 1.2883e-03 3.3299e-04 8.4644e-05 2.1342e-05 5.3591e-06 1.3428e-06
1.2 3.5395e-03 8.5697e-04 2.0297e-04 4.7806e-05 1.1261e-05 2.6590e-06 6.3006e-07
1.4 2.7642e-03 6.3363e-04 1.4541e-04 3.3733e-05 7.9220e-06 1.8820e-06 4.5169e-07
1.6 2.2957e-03 5.1943e-04 1.2011e-04 2.8379e-05 6.8188e-06 1.6588e-06 4.0708e-07
1.8 2.0158e-03 4.6138e-04 1.0903e-04 2.6345e-05 6.4545e-06 1.5946e-06 3.9593e-07
2.0 1.8495e-03 4.3195e-04 1.0418e-04 2.5573e-05 6.3343e-06 1.5762e-06 3.9314e-07
2.2 1.7510e-03 4.1704e-04 1.0206e-04 2.5280e-05 6.2946e-06 1.5709e-06 3.9244e-07
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FIGURE 4.1. SDFEM method, ¢ = 1078
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error in the solution (as a function of N) for the values 7o = 0.8,1.0,...,2.2, and
in Figure 4.3 we take 1o = 0.2,0.4,...,2.2. We also draw two curves to illustrate

certain fixed rates of convergence, so that the reader can make comparisons. In
Figure 4.1 the lowest error curve is for 75 = 0.8, and each increase of 0.2 in 7y
moves us up to the next curve. In Figure 4.2, we see from the N = 1024 column
in Table 4.4 that the same statement holds true if we look at the right-hand
ends of the curves drawn, except that the curve 79 = 1.0 lies below the curve
for 9 = 0.8. The order of curves in Figure 4.3, for the exponentially fitted
SDFEM, is quite different; from the N = 1024 column in Table 4.6 it follows
that, considering the right-hand end of each error curve, the highest curve is for
7o = 0.2, and each increase of 0.2 in 79 moves us down to the next curve. We
see from the Figure that as 79 increases, the method switches from first order
to second order. But the exponentially fitted SDFEM is more computationally
expensive than the other two methods, and we know from Theorem 3.2 that
the simpler SDFEM/Galerkin method gives almost second-order convergence,
so we do not consider a detailed theoretical analysis of the error behaviour of the
exponentially fitted SDFEM. The (almost) first-order convergence and (almost)
second-order convergence of the SDFEM and SDFEM/Galerkin methods can
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FI1GURE 4.2. SDFEM/Galerkin method, ¢ = 1078

10

10°F E

=
=
w
T
I

!
IS
T

O((In NINY~2) E

Maximum nodal error
=
S

1
@
T

=
o
L

-6

10 ¢ E
O((1/N)~2)
10‘7 n n | n n PR | n n PR
1 2 3 4
10 10 10 10
Number of meshpoints
TABLE 4.7. SDFEM/Galerkin method, ¢ = 0.005
[0 1 N=16 I N=32 I N=64 [ N=128 [ N=256 | N=b512 | N=1024 |
0.2 1.6790e-02 3.3015e-02 5.6024e-02 7.2884e-02 5.8146e-02 2.9610e-02 1.5159e-02
0.4 1.5121e-02 1.6028e-02 2.4123e-02 2.7422e-02 1.9009e-02 8.4340e-03 3.7543e-03
0.6 1.2519e-02 7.6398e-03 1.0339e-02 1.0307e-02 6.2180e-03 2.4068e-03 9.3366e-04
0.8 1.0012e-02 3.6593e-03 4.3649e-03 3.8528e-03 2.0313e-03 6.8946e-04 2.3534e-04
1.0 8.4908e-03 2.9707e-03 1.7720e-03 1.4175e-03 6.6023e-04 1.9994e-04 6.2364e-05
1.2 8.6369e-03 | 3.0518¢-03 | 1.0215e-03 | 4.9842e-04 | 2.1120e-04 | 6.0349e-05 | 1.9468e-05
1.4 0.6807e-03 | 3.5334e-03 | 1.2123e-03 | 3.8987e-04 | 1.1739e-04 | 3.2124e-05 | 8.7822e-06
1.6 1.1692e-02 | 4.2803e-03 | 1.4869e-03 | 4.8764e-04 | 1.5050e-04 | 4.2795e-05 | 1.0795e-05
1.8 1.3926e-02 | 5.1821e-03 | 1.8137e-03 | 6.0353e-04 | 1.8902e-04 | 5.5040e-05 | 1.4565e-05
2.0 1.6269e-02 | 6.2147e-03 | 2.2114e-03 | 7.3625e-04 | 2.3217e-04 | 6.8767e-05 | 1.8798e-05
2.2 1.9707e-02 7.5225e-03 2.6294e-03 8.8379e-04 2.8001e-04 8.3961e-05 2.3489e-05

be seen clearly in Figures 4.1 and 4.2 respectively.

In all our experiments with the SDFEM and the SDFEM /Galerkin method,
when we varied 79, we observed essentially the same behaviour: at first increas-
ing 79 decreases the error, because we are in the N~ regime of Theorems 3.1
and 3.2, but eventually we move into the o N~"In N or 7 N~21n? N regime,
where increasing 7y causes the error to increase.

Next, Figure 4.4 demonstrates what can happen when 79 has been chosen
too small. The maximum nodal error of the SDFEM is studied for our test
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FIGURE 4.3. Exponentially fitted SDFEM, e = 108

O(1/N)

Maximum nodal error
=
1)
IS
T
Il

=
o,
)
T
I

O((1INY"2)

x L L

10> 1

Number of meshpoints

3

o

10

example (4.1) with e = 0.005 and several values of 79. When 79 is too small,
increasing the number of meshpoints first makes the error increase, then, after
some threshold is passed, the error starts to decrease. This behaviour occurs
because when 79 is very small, the coarse mesh intrudes on the boundary layer
region and the method behaves like an upwind method on a uniform coarse
mesh; in this setting, initially increasing N is known to increase the maximum
nodal error (cf. [13, page 41, Fig. 2.1]). The data corresponding to this Figure
are given in Table 4.7.

Finally, in Figure 4.5 we take ¢ = 0.001 and N = 64 and graph the maximum
nodal error as a function of 7y for both the SDFEM and SDFEM/Galerkin
methods.

The optimal value of 7y for each method is the value that yields the lowest
point on the corresponding curve. We see in both cases that moving 7o below
its optimal value leads rapidly to an unacceptably large error, but increasing 7y
above this optimum causes a much slower increase in the error. This fits with
the theoretical error bounds given in Theorems 3.1 and 3.2. Indeed, for larger
values of 79 we can observe the convergence behaviours of oN tIn N (i.e.,
linear in 79) and 73 N~21In” N (i.e., quadratic in 7p) that were predicted in these
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F1GURrE 4.4. SDFEM/Galerkin method, € = 0.005
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Theorems. Furthermore, because of the (almost) second-order convergence of
the SDFEM/Galerkin method, its error is for reasonable 7y much smaller than
the corresponding error of the SDFEM.

Our theory and experience lead us to conclude that the SDFEM/Galerkin
method should always be used in preference to the SDFEM, and that as the
optimal value of 79 is in practice unknown, it is wiser to choose 79 too large
than too small.
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