
Volume �� ����� �		
� pp� 
�
 � 
��

The Necessity of Fitted Operators and Shishkin Meshes

for Resolving Thin Layer Phenomena

J�J�H� Miller

Department of Mathematics� Trinity College� Dublin� Ireland

E� O�Riordan

School of Mathematical Sciences� Dublin City University� Dublin� Ireland

�� Introduction

In this paper we consider two distinct classes of problems on the same domain
D � � � ��� T � where the open interval � � ��� ��	 Both classes of problems
involve simple parabolic partial di
erential equations whose solutions have thin
layers	 It turns out that for the �rst class of problems there is no �tted operator
method on a uniform rectangular mesh that gives satisfactory numerical solu�
tions
 but it is easy to construct a simple piecewise uniform Shishkin mesh and
a standard �nite di
erence operator
 which give a numerical method having
satisfactory numerical solutions	 Indeed an equally simple Shishkin mesh can
be constructed
 which gives essentially second order convergence in the space
variable	

For the second class of problems no rectangular mesh can be found on which
a standard �nite di
erence operator gives a numerical method having satisfac�
tory solutions	 This implies
 in particular
 that there is no �tted mesh method
using a rectangular piecewise uniform �tted mesh and a standard �nite di
er�
ence operator which give a numerical method with satisfactory approximate
solutions	

In short we can say that these two simple classes of problems demonstrate
the following� if we have to �nd satisfactory numerical solutions to problems
involving thin layers
 then we cannot use standard �nite di
erence operators
on uniform rectangular meshes	 In some cases it su�ces to use standard �nite
di
erence operators on piecewise�uniform Shishkin meshes
 but in general it is
necessary to use �tted �nite di
erence operators on piecewise�uniform Shishkin
meshes	

First
 we de�ne more precisely what we mean by a satisfactory numerical
method	 This is based on what is regarded as satisfactory by end�users of a
numerical method
 rather than various weaker de�nitions currently adopted by
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many professional numerical analysts	 The former de�nition is based on what
is required by
 for example
 design engineers who may need reliable numerical
solutions in safety�critical situations
 while the latter de�nitions are often based
on what is currently possible to establish by rigorous mathematical analysis	

We take the view that the least an end�user should expect of a numerical
method
 which is designed to solve problems with thin layer phenomena
 is
the following� the numerical solutions should be parameter�robust and globally
pointwise�convergent	 By parameter�robust we mean that the convergence be�
haviour is robust with respect to the parameters determining the thinness of
the layer phenomena �for example
 the singular perturbation parameters�
 and
by globally pointwise�convergent we mean that convergence is measured in the
maximum norm and that convergence occurs at every point of the domain
 not
just at the mesh points	

Expressing the above de�nition in more mathematical terms we say that
a numerical method is parameter�robust �or ��uniform� if there exist positive
constants N�� C and p
 independent of � and N 
 such that for all N � N�

sup
�����

jj �U� � u�jj � CN�� �

where jj � jj indicates the maximum norm on �D� u� is the exact solution on
D and �U� is the piecewise bilinear interpolant on D of a �nite di
erence or
�nite element solution generated by the numerical method on a mesh DN

� 	
Engineers generally also
 quite correctly
 insist that the appropriately normal�
ized �nite di
erence quotients of the approximate solution and the analogously
normalized derivatives of the exact solution satisfy a similar ��uniform error
estimate	 They also require that dependent variables like mass
 which are ob�
viously non�negative
 should be approximated by non�negative numerical solu�
tions� in other words that the numerical solutions are of physical relevance	 The
latter requirement can normally be achieved in practice by using a monotone
numerical method	 In this paper we do not discuss the former requirement

beyond stating that the ��uniform methods described here
 based on �tted ��
nite di
erence operators and piecewise�uniform Shishkin meshes do have these
additional properties	

�� Two simple classes of problems

The �rst class of problems is the following initial�boundary value problem for
the singularly perturbed heat equation

���
��

�u�
�t

� �
��u�
�x�

in D �

u� � � on �� �

�P��

where �� � �l ��r ��b with �b the bottom edge of D and �l��r the left
 right
edges respectively	 We take homogenous initial conditions �j�b � � and we

���



assume � is smooth and that the following compatibility conditions hold

�j�l��� �� � �j�r ��� �� � �

The solution of this problem has a parabolic boundary layer of width ��
p
�� on

each edge �l and �r
 since the corresponding reduced problem has the trivial
solution zero	

The second class of problems is also an initial�boundary value problem for
a singularly perturbed parabolic di
erential equation

���
��

x
�u�
�t

� �
��u�
�x�

� u� in D �

u� � � on �� �

�P��

We assume that � is smooth and satis�es su�cient compatibility conditions at
the corners ��� ��� ��� ��	 The solution of this problem has in general a parabolic
boundary layer of width ��

p
�� on each edge �l and �r
 and also a boundary

layer of width ��x� on �b	 This follows from the fact that the solution of the cor�
responding reduced problem is e�

t

x 	 Because �b is the boundary corresponding
to t � � this boundary layer is sometimes called an initial layer	

�� The numerical methods

For the �rst class of problems �P�� we consider two numerical methods
 one of
which is ��uniform the other is not	 The �rst is a �tted operator method on a
uniform rectangular mesh �DN

u � fxigNx

� � ftjgNt

� where xj �
i
Nx

� tj �
j
Nt

T
and N � �Nx� Nt�	 It uses the second order centred �nite di
erence operator
in x

��x��xi� �
��D�

x �D�
x �

xi�� � xi��
��xi�

and the �rst order backward di
erence operator in t

D�
t ��tj� �

��tj�� ��tj���

tj � tj��
�

The resulting numerical method is the �tted �nite di
erence method

��
�

D�
t U� � �	��xU� on DN

u �

U� � u� on �� � �DN
u �

�PN
� �

where 	 � 	�x� t�N� �� is any admissable �see ���
 chapter ��� �tting factor	
The �rst theorem is a negative result
 which shows that no such numerical

method is satisfactory for our �rst class of problems	 For a particular choice
of boundary conditions �e	g	
 ���� t� � t��
 a suitable �tting factor could be
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theoretically found so that the resulting numerical method is ��uniform for
this particular choice of boundary conditions	 However
 the numerical method
with this �tting factor will not be ��uniform for a di
erent set of boundary
conditions �e	g	
 ���� t� � t��	

Theorem �� The �tted operator method �PN
� � on a uniform rectangular mesh

is not ��uniform for the class of problems �P�� for any choice of admissable
�tting factor 	�

Proof� See Shishkin ��� for the original proof	 A more readable version is
given in ���
 chapter ��	 Extensions of the original result are given in Shishkin
���	 �

The second theorem shows that there is an easy �x for the above situation	 We
construct the following �tted mesh method using a standard �nite di
erence
operator with second order centred �nite di
erence in space and implicit �rst
order �nite di
erence in time	 We use a piecewise�uniform �tted rectangular
mesh
 which is the tensor product of a piecewise�uniform �tted mesh in space
and a uniform mesh in time	 To construct the piecewise�uniform mesh in space
we divide � into three subintervals �� � ��l � ��c � ��r
 where

�l � ��� 
�� �c � �
� �� 
�� �r � ��� 
� ���

The transition point 
 is �tted to the left�hand and right�hand boundary layers
by de�ning


 � minf�
�
�
p
� lnNg ���

Then a uniform mesh with N
�
subintervals is placed on ��c
 and uniform meshes

with N
�
subintervals are placed on each of ��l and ��r	 The resulting mesh on

�� is obviously piecewise�uniform
 and it reduces to a uniform mesh whenever

 � �

�
	 The latter occurs if � or N are su�ciently large	 Note that the mesh

��N
� � fxigNx

� also depends on both N and �	 The resulting mesh on �DN
� is

de�ned by the tensor product

�DN
� � ��N

� � f j

Nt
TgNt

�

The �tted mesh method is then
��
�

D�
t U� � ���xU� in DN

�

U� � u� on �� � �DN
�

�PN
� �

The following theorem establishes the ��uniform convergence of the solutions
of �PN

� � to the solution of �P��	
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Theorem �� The �tted mesh method �PN
� � on the Shishkin mesh �DN

� with
transition point 
 de�ned in ��� is ��uniform for the class of problems �P���
Furthermore assuming a su�cient amount of regularity and compatability on
the data � 	 the piecewise bilinear interpolant �U� of the solution of �PN

� � and
the solution u� of problem �P�� satisfy the ��uniform global error estimate

sup
�����

jj �U� � u�jj �D � C�N��
x lnNx �N��

t �

where C is a constant independent of Nx� Nt and ��

Proof� See Shishkin ���	 �

It is a remarkable fact that a trivial modi�cation of the above ��uniform
method leads to another ��uniform method
 which has an essentially second
order convergence rate with respect to the space discretisation	 The required
modi�cation is the change of the transition point from that given in ��� to


 � minf�
�
� �
p
� lnNg ���

and the construction of the analogous piecewise�uniform mesh to the above
using this new transition point	 Note that the only di
erence in the de�nitions
��� and ��� is the factor �	 The �tted mesh method obtained by replacing the
de�nition of 
 in ��� by that in ��� is referred to as �PN

� �	 That this simple
modi�cation makes a crucial di
erence is shown by the following remarkable
theorem	

Theorem �� The �tted mesh method �PN
� � on the Shishkin mesh �DN

� with
transition point 
 de�ned in �
� is ��uniform for problem �P��� Furthermore
assuming a su�cient amount of regularity and compatability on the data � 	
the piecewise bilinear interpolant �U� of the solution of �PN

� � and the solution
u� of problem �P�� satisfy the ��uniform global error estimate

sup
�����

jj �U� � u�jj �D � C��N��
x lnNx�

� �N��
t �

where C is a constant interpolant of Nx� Nt and ��

Proof� See Shishkin ��� for the original proof for a more general problem
than �P��	 For a more readable proof for problem �P�� see ��� �

We turn now to our second class of problems �P��	 For this problem we con�
struct a numerical method using a standard �nite di
erence operator and an
arbitrary rectangular mesh as follows	
Let DN be any rectangular mesh for the problem �P�� and consider the nu�
merical method

�PN
� �

��
�

xiD
�
t U��xi� tj� � ����x � ��U��xi� tj� for all �xi� tj� � DN

U� � u� on �� �DN
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The following negative result shows that to obtain a satisfactory numerical
method it does not always su�ce to use a standard �nite di
erence operator
on a �tted mesh	

Theorem �� The numerical method �PN
� � comprising a standard �nite di�er�

ence operator on a rectangular mesh is not ��uniform for problem �P��� In
particular there is no �tted mesh method on a rectangular mesh which is ��
uniform for the class of problems �P���

Proof� This is given in Shishkin ���	 A more readable proof may be found
in ���
 chapter ��	 �

There is a way around this negative result	 This is achieved by using both a
�tted mesh and a �tted operator	 An appropriate �tted�operator �tted�mesh
method is

�PN
	 �

��
�

xi	�xi� tj�D
�
t U��xi� tj� � ����x � ��U��xi� tj� for all �xi� tj� � DN

�

U� � u� on �� � �DN
�

where the �tting factor 	 is given by

	�x� t� �
����t�e�t�x

D�
t e

�t�x

and the Shishkin mesh DN
� is the same as that in the numerical method �PN

� �	
The fact that this method is ��uniform at the mesh points follows from the
arguments given in Shishkin ���� however
 the piecewise�bilinear interpolant U�

does not satisfy an ��uniform error estimate	 In Shishkin ���
 a variant �PN

 �

of �PN
	 � is constructed using the same �tted �nite di
erence operator and

a rectangular �tted mesh
 which is �tted not only to the parabolic boundary
layers but also to the initial layer	 The bilinear interpolants U� of the numerical
solutions of �PN


 � are shown to be ��uniformly convergent at all points of the
domain D	

�� Conclusion

Satisfactory numerical methods for solving singular perturbation problems al�
ways require Shishkin meshes and sometimes require
 in addition
 �tted opera�
tors	 The two negative results above
 in Theorems � and � are stated in a form
which is close to the original	 However
 it is important to note that the positive
results in Theorems � and � are stated and proved by Shishkin in much greater
generality than is given here	 The motivation of the present paper is to explain
clearly
 using the two simple concrete classes of problems �P�� and �P��
 these
remarkable results due to Shishkin	 Our wish is that their signi�cance becomes
apparent to a wider audience than has heretofore been the case	
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