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ABSTRACT

Removal of LNAPL (oil) from an aquifer is described using a multi-phase 
ow model. At the well boundary

seepage face conditions are imposed. These conditions are implemented in a numerical model and withdrawal

in a two-dimensional domain is simulated for two di�erent geometries of the oil lens and for varied values of

the physical parameters. Assuming vertical equilibrium, the oil 
ow equation is reduced by vertical integration.

The well boundary condition is approximated by imposing zero oil lens thickness. Similarity solutions of the

reduced equations for the two geometries show good agreement with the numerical results in most cases.

1991 Mathematics Subject Classi�cation: 35R35, 65M06, 76S05, 76T05
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ow, LNAPL lens, removal, seepage face, vertical equilibrium, similarity

solutions, numerical simulations
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1. Introduction

Spills of hydrocarbons have caused contamination of numerous aquifers. Nonaqeous phase liquids,
such as gasoline, that are less dense than water (henceforth called oil for brevity), may accumulate as
a lens at the phreatic water surface. To remediate the contaminated aquifers, the bulk of oil in the
lens is usually �rst removed by pump and treat methods, after which the remaining (trapped) oil is
removed by other techniques, such as air sparging or bioremediation.
Pumping is commonly done through vertically drilled extraction �lters or in horizontal ditches in

case of shallow lenses. If the extraction well or ditch is partially �lled with 
uid, two 
uid phases may
seep out of the soil above the well 
uid level, similar to water seepage in the dam problem [6, 12].
Multi-phase seepage is a complicated process, since the nonwetting phase may seep out at virtually
zero saturations [1, 27].
During pumping often a drawdown of the water table is created to facilitate oil 
ow towards the

extraction well. Such a local lowering of the water table may smear out the oil and increase both
the oil-invaded region and the amount of trapped oil. For this reason the drawdown of the water
table is preferably kept small. If the slope of the water table is small, the lens may be at vertical

ow equilibrium, except close to the pumping well or ditch. At vertical equilibrium pressure distri-
butions are hydrostatic and therefore the vertical dimension of the multi-phase 
ow problem can be
eliminated by vertical integration of variables. In that situation only the oil 
ow equation needs to
be considered [7, 21, 23, 25].
Corapcioglu e.a. [11] modeled an axisymmetric two-pump recovery system, in which the lower well

was assumed to create a drawdown of the water table and the upper well was assumed to extract free
oil at a constant rate. They used a sharp-interface approach and assumed that the well was located
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within the oil lens at any time, which may only be realistic during the early stages of pumping when
the oil layer is relatively thick. After linearizing equations analytical solutions were obtained.
Huyakorn e.a. and Wu e.a. [16, 26] numerically investigated withdrawal of an oil lens in a three-

dimensional domain assuming vertical 
ow equilibrium. In [16] withdrawal wells were assumed to
operate under prescribed volumetric extraction rates, where the separate water and oil extraction
rates were determined by the phase mobilities. In [26] the well bore pressure and the productivity
index for a local grid block were computed as in the oil reservoir engineering literature, see e.g. [13],
to determine the separate water and oil extraction rates. Both studies were restricted to the part of
the oil lens where only water and oil were present, thus neglecting the three-phase zone.
Wu e.a. [27] discussed numerical implementation of seepage boundary conditions, also for three-

phase 
ow. Although at seepage boundaries the well pressure is known, they imposed sink terms for
water and oil similar to the well conditions of [26] with a large arti�cial productivity index.
In this study we present a model for the behavior of an oil lens on the water table in a two-

dimensional domain for two lens geometries, where withdrawal occurs through a well with constant

uid level. To treat the corresponding multi-phase seepage face conditions, we impose the so called
Signorini conditions. Numerically, we compared implementation of these conditions as sink terms
according to [27] to a more direct implementation. For the situation in which the well 
uid level is
equal to the phreatic water surface in the soil, we perform several numerical computations and give
an indication of their accuracy, especially near the seepage boundary.
As numerical models still require large computation times and are not always able to handle the

boundary conditions accurately, approximate analytical solutions can be very helpful. We use the
vertical equilibrium assumption of capillarity-gravity-segregated 
ow to reduce the multi-phase 
ow
problem to a single equation for oil 
ow [7, 25]. In the vertically integrated problem for the layer
thickness we approximate the well boundary condition by taking lens thickness equal to zero. Similar
problems for water out
ow from an aquifer, with sharp interfaces, were studied by Boussinesq [6]
and by Barenblatt [4] who derived analytical solutions. We use the generalizations of these analytical
solutions that account for capillary forces, to describe oil lens extraction with possible incorporation
of oil entrapment by water. In Appendix 3 we show that a similar analytical solution can be obtained
for oil removal in a semi-in�nite three-dimensional domain.
The analytical solutions are compared with the numerical results. We indicate in which cases the

analytical solutions with the approximate well condition appropriately approximate the solutions of
the nonreduced 
ow model.

2. Model

We model withdrawal of an oil lens in a two-dimensional domain 0 < X < L, �1 < Z < 1, with
L > 0, and a well at X = 0. Two important situations that are di�erent with respect to the horizontal
extension of the domain, are considered. The �rst concerns a horizontally bounded domain as shown
in Figure 1.a, i.e. L < 1, which re
ects either the left half of a symmetric domain with a second
well at X = 2L or a situation with a vertical impervious boundary at X = L. The second concerns
a domain, that is unbounded to the right, as shown in Figure 1.b, i.e. L = 1, where the oil lens is
bounded by X = Xl and can spread out in horizontal direction.
We use for both water (w) and oil (o) the mass balance equations

�
@ Sj
@ T

+
@ Uj

@ X
+
@ Vj
@ Z

= 0; j = w; o (2.1)

and Darcy's Law

Uj = �
K krj
�j

@ Pj
@ X

(2.2)

Vj = �
K krj
�j

�
@ Pj
@ Z

+ �j g

�
; j = w; o; (2.3)
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(a) (b)

Figure 1: Geometry of an oil lens in a domain that is bounded to the right (a) and that is unbounded
to the right (b).

where T is time, X and Z are the horizontal and vertical coordinates respectively, Sj is e�ective
phase saturation, Uj and Vj are phase horizontal and vertical 
ow velocities respectively, Pj is phase
pressure, �j phase density, krj phase relative permeability, �j phase viscosity, � porosity, K absolute
permeability and g gravitation. We assume that the soil is homogeneous and isotropic, that both

uids are incompressible and that air is present with saturation Sa and constant pressure (Pa = 0).
According to [22] we de�ne the total 
uid saturation St, trapped oil saturation Sot, free oil saturation
Sof , apparent water saturation Swa, oil-water capillary pressure Pow and air-oil capillary pressure Pao,
which satisfy the constitutive relations

Sw + So = St

St + Sa = 1

Sw + Sot = Swa

Sof + Sot = So

Pow = Po � Pw

Pao = �Po:

For the retention functions we use

Swa =

8>>>>>>><
>>>>>>>:

1 if Pw > 0 and Po < Pw�
1 +

�
�ow
�w g

Pow

�n�
1
n
�1 if

8<
:

0 < Pw < Po or

Pw < 0 and Po >
1

�ao
Pw�

1 +

�
��

�w g
Pw

�n�
1
n
�1 if Po <

1

�ao
Pw < 0

(2.4)

St =

8>>>>><
>>>>>:

1 if Po > 0 or Pw > 0�
1 +

�
�ao

�w g
Pao

�n�
1
n
�1 if

1

�ao
Pw < Po < 0

Swa if Po <
1

�ao
Pw < 0;

(2.5)
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where � > 0 and n > 1 are soil parameters. Furthermore, �ow = � �ow and �ao = ��ao, where
�ow and �ao are the ratios of the oil-water and the air-oil to the air-water surface tensions, with
1

�ow
+

1

�ao
= 1. Relative permeabilities satisfy [19]

krw = Sw
1
2

�
1�

�
1� S

n
n�1
w

�
1� 1

n

�
2 (2.6)

kro = (St � Swa)
1
2

��
1� S

n
n�1
wa

�
1� 1

n �
�
1� S

n
n�1

t

�
1� 1

n

�
2: (2.7)

At locations where oil has been present we model oil entrapment by the linear relation [25]

Sot =

�
�
�
Swa � Smin

w

�
if Swa > Smin

w

0 if Swa = Smin
w ;

(2.8)

where the minimum water saturation Smin
w is given by

Smin
w (X;Z; T ) = min

T 0�T
Sw (X;Z; T 0) : (2.9)

The constant � 2 [0; 1] is the maximum trapped oil saturation, which is obtained when Smin
w = 0 and

Swa = 1.
Equations (2.1), (2.2) and (2.3) are solved for time T > 0 in the domain of Figure 1. The free oil

is con�ned to two layers [23]. Between the levels Z = Zu and Z = Zao water, (free) oil and air are
present, whereas between the levels Z = Zao and Z = Zow only water and (free) oil are present. At
the level Z = Zw we have Pw = 0, which corresponds outside the oil lens to the phreatic surface. For
L = 1 the levels Zu, Zao and Zow coincide for X = Xl at Z = Zw. Hence, Zow(X;T ), Zao(X;T ),
Zu(X;T ) are de�ned by

St = 1; Sof = 0 if Z < Zow

St = 1; Sof > 0 if Zow < Z < Zao

St < 1; Sof > 0 if Zao < Z < Zu

St < 1; Sof = 0 if Z > Zu;

In terms of capillary pressures these levels are given by

Pow (Zow) = 0; Pao (Zao) = 0;
�ao
�ow

Pao (Zu) = Pow (Zu) : (2.10)

In the well at the left side of the boundary X = 0 the 
uid level is �xed at Z = 0. We impose
well conditions, which may include seepage of oil at the entire boundary X = 0 and seepage of water
for Z > 0. At seepage boundaries a certain phase can only 
ow out, in which case its pressure is
equal to the pressure outside the porous medium [10, 12]. Hence, similar to water seepage in the dam
problem [6, 12], we impose the Signorini conditions [2, 14] for multi-phase seepage

Pw � Pout; Uw � 0; (Pw � Pout) Uw = 0 for X = 0; Z > 0
Po � Pout; Uo � 0; (Po � Pout) Uo = 0 for X = 0; �1 < Z <1;

(2.11)

and also

Pw = Pout for X = 0; Z � 0; (2.12)

where

Pout (Z) =

�
0 for Z > 0
��w g Z for Z � 0:

(2.13)
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For L <1 we impose additionally no-
ow conditions at X = L, i.e. Uj = 0 for j = w; o.
At T = 0 we take initial pressure distributions

Pw (X;Z; 0) = Pw;i (X;Z)
Po (X;Z; 0) = Po;i (X;Z)

�
for 0 < X < L; �1 < Z <1; (2.14)

such that oil has nonzero saturation So;i in a lens with the �nite horizontal extension Xl � L, which
has prescribed volume

V0 = �

Z 1

�1

Z 1

0

So;i dX dZ = �

Z Zu

Zow

Z Xl

0

(St (Po;i)� Swa (Pw;i; Po;i)) dX dZ: (2.15)

If L <1 we identify Xl � L. At T = 0 no oil is trapped.
We de�ne characteristic horizontal lengthscales according to

Xc =

�
L for L <1

�ow V0 for L =1
(2.16)

and a characteristic vertical lengthscale, velocity, pressure and time according to

Zc =
1

�ow
; Uc =

K �o g

�o
; Pc =

�o g

�ow
; Tc =

Xc

Uc

(2.17)

This leads to the dimensionless variables

uj =
Uj

Uc

; vj =
Vj
Uc

; pj =
Pj
Pc

; x =
X

Xc

; z =
Z

Zc

; t =
T

Tc
; j = w; o: (2.18)

Similarly, Pout; Pw;i; Po;i; Xl; Zw; Zow; Zao and Zu become dimensionless by scaling with Pc; Xc

and Zc.
Combining equations (2.1), (2.2) and (2.3) into two Richards equations the resulting problem is

(j = w; o)

�
@ Sj
@ t

�
�o
�j

�
Zc

Xc

@

@ x

�
krj

@ pj
@ x

�
+
Xc

Zc

@

@ z

�
krj

�
@ pj
@ z

+
�j
�o

���
= 0 (2.19)

for x > 0; �1 < z <1; t > 0. The boundary conditions become

pj � 0; uj � 0; pj uj = 0 for x = 0; z > 0

pw = �
�w
�o

z

po � �
�w
�o

z; uo � 0;

�
po +

�w
�o

z

�
uo = 0

9>>=
>>; for x = 0; z � 0

(2.20)

and additionally for the bounded domain uj = 0 for x = 1; �1 < z <1. The initial conditions are

pw (x; z; 0) = pw;i (x; z)
po (x; z; 0) = po;i (x; z)

�
for x > 0; �1 < z <1; (2.21)

with

�

Z zu

zow

Z xl

0

(St (po;i)� Swa (pw;i; po;i)) dx dz = �0; (2.22)

where �0 =
V0

XcZc

.
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3. Numerical results

3.1 Numerical model

We simulated the withdrawal of an oil lens with the numerical model of [24, 25], which we adapted
for the seepage face boundary conditions. In this model equations (2.1), (2.2) and (2.3) are combined
into the mixed form of the Richards equation [9, 17] for both water and oil. Computations were done
in non-transformed physical variables. The 
ow domain was discretized by linear triangular �nite
elements. Time discretization was fully implicit. The resulting algebraic equations were solved by
the modi�ed Picard method [9], that gave good mass balances. Convergence was obtained for the
Picard iterations by adjusting the time steps. The initial time step was 0.10 hours and the maximum
allowable time step 50 hours.
Some soil and 
uid parameters were not varied :

Kabs = 7:09 � 10�12 m2, � = 0.400,
�w = 1:00 � 10�3 Pas, �w = 1:00 � 103 kgm�3,
�o = 5:00 � 10�4 Pas, g = 9.80 m s�2:

We varied the parameters L, V0, n, �, �ow, �o and � as summarized in Table 1. Additionally, the
maximum computed times Te and the characteristic lengths and times are listed.

Table 1: Parameters and characteristic lengths and times that were used in the computations. Case
1 re
ects the simulation with di�erent treatments of the seepage face conditions, case 2 the simula-
tion with grid re�nements, case 3-10 the simulations on the unbounded domain and case 11-18 the
simulations on the bounded domain.

case L V0 n � �ow �o � Te Zc Xc Tc

(m) (m3) (m�1) (103 kgm�3) (103 h) (m) (m) (h)

1 1 0.200 3.0 1.00 2.25 0.700 0.0 1.00 0.444 0.450 1.285
2 10.0 1.00 3.0 1.00 2.25 0.700 0.0 10.0 0.444 10.0 28.56
3 1 1.00 3.0 1.00 2.25 0.700 0.0 50.0 0.444 2.25 6.425
4 1 1.00 2.0 1.00 2.25 0.700 0.0 50.0 0.444 2.25 6.425
5 1 1.00 5.0 1.00 2.25 0.700 0.0 50.0 0.444 2.25 6.425
6 1 1.00 3.0 2.00 2.25 0.700 0.0 50.0 0.222 4.50 12.85
7 1 1.00 3.0 1.00 1.80 0.700 0.0 50.0 0.556 1.80 5.140
8 1 1.00 3.0 1.00 2.25 0.850 0.0 50.0 0.444 2.25 5.291
9 1 1.00 3.0 1.00 2.25 0.700 0.30 50.0 0.444 2.25 6.425
10 1 1.00 3.0 1.00 2.25 0.700 0.45 50.0 0.444 2.25 6.425
11 10.0 1.00 3.0 1.00 2.25 0.700 0.0 60.0 0.444 10.0 28.56
12 10.0 1.00 2.0 1.00 2.25 0.700 0.0 30.0 0.444 10.0 28.56
13 10.0 1.00 5.0 1.00 2.25 0.700 0.0 100 0.444 10.0 28.56
14 10.0 1.00 3.0 2.00 2.25 0.700 0.0 100 0.222 10.0 28.56
15 10.0 1.00 3.0 1.00 1.80 0.700 0.0 60.0 0.556 10.0 28.56
16 10.0 1.00 3.0 1.00 2.25 0.850 0.0 60.0 0.444 10.0 23.52
17 10.0 1.00 3.0 1.00 2.25 0.700 0.30 60.0 0.444 10.0 28.56
18 10.0 1.00 3.0 1.00 2.25 0.700 0.45 60.0 0.444 10.0 28.56

3.2 Treatment of seepage face conditions

Condition (2.11) requires that at nodes of the seepage boundary either a velocity (no-
ow) or a
pressure is prescribed. We compare two approaches to dealing with this condition numerically.
In an attempt to model all types of boundary conditions by source / sink terms, it has been

proposed [27] to treat this variational condition by imposing at every phase j seepage node the sink
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term (in physical dimensions)

Uj = ��
K krj
�j

max (0; Pj � Pout) ; (3.1)

where � is a large number. In this condition the pressure gradient of the horizontal 
ow velocity (2.2)
is replaced by the product � � (Pj � Pout) and consequently a large value of � represents a �ne
mesh in the X-direction. The underlying concept is that the 
ow velocity Uj remains non-zero,
even at nodes where the oil relative permeability approaches zero, which happens if both 
uids are

owing, or if the pressure di�erence Pj � Pout goes to zero. During every time step condition (3.1)
is evaluated implicitly, such that after convergence the correct out
ow velocity and pressure Pj are
approximated. For a 
owing phase the latter becomes almost equal to Pout. Unfortunately, if � is
large, the convergence requires large numbers of iterations.
Alternatively, the well-conditions can be treated straightforwardly by imposing at every seepage

node �
Pj = Pout if Uj < 0
Uj = 0 if Pj < Pout:

(3.2)

Hence, if the pressure is imposed exactly equal to the outside pressure, the 
ow velocity is computed as
usual from equation (2.2) using the pressure gradient over the grid element adjacent to the boundary
and the element averaged oil relative permeability. For a su�ciently �ne X-discretization, we obtain
accurate results with a limited number of iterations. As the sti�ness matrix with its modi�cations for
Dirichlet conditions is not changed during a time step, we evaluate condition (3.2) at the end of each
time step, where the automatic time stepping guarantees su�cient accuracy.
To compare the e�ect of the 'iterative' condition (3.1) and the 'direct' condition (3.2), we simulated


ow with the set of parameters of case 1 of Table 1. A domain of 16.5 m wide and 1.5 m high was
used, with uniform Z-discretization (19 nodes). For the X-discretization (41 nodes) element widths
increased from 0.068 m to 0.679 m for increasing X . The top and bottom boundaries were taken
impermeable to both phases and the right boundary was impermeable to oil. The water level at
the well boundary at the left side (X = 0), was taken at 0.5 m above the bottom of the domain.
At the right boundary, water pressures were taken hydrostatic with Pw = 0 again at 0.5 m above
the bottom, yielding an essentially horizontal water table. At T = 0 h we imposed hydraulic heads

(Hj;i =
Pj;i

�w g
+

�j

�w
Z) for each phase, given by

Hw;i = 0:0 m for 0:0 < X < 16:5 m; �0:5 < Z < 1:0 m

Ho;i =

�
0:0 m for 0:0 < X < 0:1; and 4:0 < X < 16:5 m; �0:5 < Z < 1:0 m

0:172 m for 0:1 < X < 4:0 m; �0:5 < Z < 1:0 m;
(3.3)

such that 0.200 m3 oil was present in the domain. This simulation re
ects withdrawal in an unbounded
domain (L = 1) in the sense of Figure 1.a. Multi-phase 
ow during 1000 h was computed, where
the well conditions were treated either by condition (3.1) with � = 100 m�1 and � = 1000 m�1

respectively, or by condition (3.2). In Figure 2 we compare the results in terms of the vertically
integrated (free) oil saturations wf = �

R
Sof dz at three times and in terms of the oil volume in the

domain � = �
R R

Sof dx dz. As oil 
ows out only through the well boundary, the oil volume can be

obtained from the cumulative oil out
ow rate :
R t
0

R
z
uo(0; �; �) d� d� = 1 � �. Figure 2 shows that

as � increases, the 'iterative' solutions appear to converge to the solution obtained with the 'direct'
condition.
Figure 2.c shows the oil pressure distribution at the well boundary. At about z = 0:35 the well con-

dition switches from the zero pressure to the no-
ow condition, whereas the oil pressure is hydrostatic
for z > 0:35. This level marks the top of the oil seepage face. For z < 0 the oil pressure is equal to the
water pressure and hence the oil saturation is zero, but oil 
ows out at those nodes where oil is present
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(a) (b)

(c)

Figure 2: Comparison of seepage face treatment (case 1) by the 'iterative' condition (with � =
100; � = 1000) and the 'direct' condition in terms of vertically integrated oil saturations wf as a
function of x (a), oil volume in the domain � as a function of t (b) and oil pressure distribution po at
the well boundary as a function of z at t = 156 (c).
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inside the domain. We observe that the 'iterative' condition yields a smoothed approximation of the
correct oil pressure po at the well boundary. For the larger value of � the approximation is slightly
better in agreement with the exact condition. However, the number of (Picard) iterations and time
steps needed for convergence becomes very large: the present simulation with � = 100 took about 6
h and with � = 1000 about 45 h, whereas the simulation with the 'direct' condition required only 20
min. Hence, at least for this type of computations the 'direct' approach is preferable.

3.3 Grid re�nements

Especially near the part of the well boundary where oil 
ows out, large pressure gradients occur
and the e�ects of discretization may be substantial. To investigate this, we performed a series of
simulations in which we re�ned both the X-grid and the Z-grid near the well boundary. A domain of
10.0 m wide and 2.5 m high was used. For every simulation the X-grid between 1.0 and 10.0 m had 15
elements, whose widths increased from 0.351 to 0.849 m, and the Z-grid between 0.5 and 2.0 m had
15 elements of uniform height. The X-discretization between 0.0 and 1.0 m and the Z-discretization
between �0:5 and 0.5 m were varied as follows:

grid x1 : 3 elements, width increasing from 0.111 to 0.556 m,
grid x2 : 6 elements, width increasing from 0.028 to 0.306 m,
grid x3 : 12 elements, width increasing from 0.007 to 0.160 m,
grid z1 : 5 elements, height 0.20 m,
grid z2 : 10 elements, height 0.10 m,
grid z3 : 20 elements, height 0.05 m.

We considered the combinations (x1,z3), (x2,z3), (x3,z3), (x3,z1) and (x3,z2) and simulated 
ow
with the set of parameters of case 2 of Table 1. The top, bottom and right boundaries were taken
impermeable to both phases, which re
ects withdrawal from an essentially bounded domain, see
Figure 1.b. The water level at the well boundary was taken at 0.5 m above the bottom of the domain.
At T = 0 h we imposed for each phase hydraulic heads

Hw;i = 0:0 m for 0:0 < X < 10:0 m; �0:5 < Z < 2:0 m
Ho;i = 0:215 m for 0:0 < X < 10:0 m; �0:5 < Z < 2:0 m

(3.4)

such that 1.0 m3 oil was present in the domain. Multi-phase 
ow during 10000 h was simulated.
In Figure 3 the solutions corresponding to the re�nements are presented in terms of the vertically

integrated oil saturations at three times. The solutions corresponding to the x-grid re�nement seem
to converge, but since the di�erences between solutions corresponding to the z-grid re�nement do not
uniformly decrease, the dependence on the z-grid near the well boundary is less straightforward.
The situation near the well boundary is illustrated by Figure 4. In Figure 4.a oil pressures are given

for X between 0.0 and 0.5 m and Z between �0:5 and 0.5 m in dimensionless variables at T = 10000 h.
Observe that roughly above z = 0:30 oil pressures are negative and nearly hydrostatically distributed
and no oil 
ows out. Below z = �0:80 oil pressures are equal to the hydrostatic water pressures,
which means that oil is neither present nor does it 
ow out. Between z = �0:80 and z = 0:30 oil 
ows
out and large oil pressure gradients occur, which cause numerical di�culties.
Figure 4.b shows the horizontal water uw and oil uo 
ow velocities at the well boundary between

z = �0:60 and z = 0:60 at 5 di�erent times. For the present situation with no decline of the water
table throughout the domain only water in
ow occurred below the well water level. Oil 
owed out
mainly above this water level with velocities, that were much larger than the water in
ow velocities.
Between t = 210 and t = 350 the maximum level where oil 
owed out, i.e. the top of the oil seepage
face, decreased from z = 0:3375 to z = 0:225, which are the positions of two horizontal gridlines. As
oil out
ow is maximum just below and vanishes abruptly at the top of the seepage face, this may be
another source of numerical di�culties.
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(a)

(b)

Figure 3: Vertically integrated oil saturations wf (case 2) as a function of x for re�nement of x-grid
near the well boundary (a) and for re�nement of z-grid near the well boundary (b).
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Figure 4: Oil pressure contourlines in the neighbourhood of the well boundary t = 350 (a) and water
and oil 
ow velocities at the well boundary at several times (b) for the grid re�nement (x3,z3) (case
2).
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3.4 Sensitivity analysis

With condition (3.2) and grid re�nement (x3,z3) near the seepage boundary, we performed a series
of simulations in which we varied parameters as shown in Table 1, with case 3 as a reference case for
the unbounded domain simulations 3 to 10 and case 11 for the bounded domain simulations 11 to
18. For the unbounded domain the X-grid (from 1 to 55 m) consisted of 42 elements, whose widths
increased from 0.356 to 2.215 m, and the Z-grid for the entire domain was the same as near the well
boundary, with 15 elements of uniform height between 0.5 and 2.0 m, which yielded 1980 nodepoints
in total. Initially, we imposed water hydraulic heads Hw;i = 0:0 m throughout the entire domain
and oil hydraulic heads such that 1.0 m3 oil was present in the domain (e.g. for case 3 Ho;i = 0:215
m for 0:0 < X < 9:6 m, Ho;i = 0:107 m for 9:6 < X < 12 m and Ho;i = 0:0 m for X > 12 m).
These computations took typically 16 h on a HP 9000 735/125 workstation. For the bounded domain
the discretization (1008 nodepoints) and initial conditions were taken the same as in case 2. The
corresponding computation times were typically about 3 h.
For the unbounded domain cases the pro�les of wf were similar to those shown in Figure 2.a, whereas

for the bounded domain cases the pro�les looked like those of Figure 3. The varied parameters n, �,
�ow and �o most likely a�ect the thickness of the oil layers and thus the seepage 
ow rate.
In Figure 5 we present the removal rates, i.e. the evolution of �. We observe that removal happens

much slower in the unbounded domain (Figure 5.a) than in the bounded domain (Figure 5.b). As
expected the van Genuchten parameter n largely a�ects the removal rate, in the sense that large
values of n correspond with slow removal (cases 5 and 13). The e�ects of changing �, �ow and �o
(cases 6, 7, 8, 14, 15 and 16) are not very large. The larger value of the parameter � (cases 6 and 14)
slighty fastens the removal, which is contrary to the e�ect that � has on other processes like oil lens
redistribution, see e.g. [25]. The coincidence of cases 7 and 8 happened by chance. As expected also
the trapping parameter � is important, especially because a large amount of oil cannot be removed at
all.
In Figure 6 we present for the unbounded domain cases the �rst moment in x-direction of the

vertically integrated free oil saturationsM1 = �
R
xwf dx dz. These moments itself have no important

physical meaning, but we observe that for most cases they became almost constant after a very short
time, which we will come back to in Section 4.3. Only for a large value of n (case 5) and for the
entrapment cases 9 and 10 the moment did not become constant.

4. Analytical approximations

4.1 Reduced equations

To obtain analytical approximations for the decay of the oil lens at an essentially horizontal water
table, we assume that vertical oil velocities can be neglected. According to [6] a necessary condition
for this vertical 
ow equilibrium is that the horizontal extension of the lens is much larger than its
vertical extension, say Xl=(Zu � Zow) � 1. Then, the vertical capillary and the gravitational forces
balance and capillary pressures are hydrostatically distributed. Furthermore, if additionally the oil
saturations, and thus the oil mobilities, are much smaller than the water saturations and mobilities,
we may assume that the water pressures are hydrostatically distributed with reference level pw = 0 at
z = 0, and thus water and oil 
ow are segregated [25]. The numerical results indicate that the vertical
equilibrium assumption is justi�ed shortly after the start of the 
ow process everywhere in the lens
away from the well boundary, see also [25]. The vertical pressure distributions are given by

pw = �
�w
�o

z for�1 < z <1 (4.1)

po = zao � z for zow < z < zu: (4.2)

According to de�nition (2.10) we may relate the separating levels in the oil lens by

zow = �
�o
� �

zao; zu =
�ow
1�D

zao with D =
�ow� �

�ao �o
(4.3)
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(a)

(b)

Figure 5: Oil volumes as a function of time for the unbounded domain (a) and for the bounded domain
(relative to the initial volume) (b). For cases 9, 10, 17 and 18 also the trapped oil volumes are shown.
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Figure 6: First moments of the vertically integrated free oil saturations as a function of time for the
unbounded domain.

and � � = �w � �o. To ensure that oil is con�ned to layers of �nite thickness, we take D < 1 [8, 20].
Neglecting vertical velocities, equation (2.19) for oil

�
@ So
@ t

�
Zc

Xc

@

@ x

�
krj

@ zao
@ x

�
= 0 (4.4)

describes the entire 
ow process [7, 25].
Because vertical pressure distributions are hydrostatic, we further reduce equation (4.4) by vertical

integration, which requires evaluation of

wf = �

Z zu

zow

Sof dz = �

Z zu

zow

(St � Swa) dz (4.5)

�k =

Z zu

zow

kro(Swa; St) dz =

Z zu

zow

kro(Swa; St) dz; (4.6)

where wf (r; t) represents the free oil volume per unit lateral area and �k(r; t) the vertically integrated
relative permeability [7, 16, 23, 25, 26]. To rewrite equation (4.4) in terms of the variable wf only,
we approximate both �k and zao by power law functions of wf in Appendix 1. To achieve this, we
approximate the retention functions (2.4) and (2.5) by power law functions, which is reasonable in
case of vertical 
ow equilibrium [25]. We obtain

zao = �1 w
1

n+1

f and �k = �2 w
5n�2
2 (n+1)

f ; (4.7)

where �1 and �2 are given by (A 16) and (A 17).
Additionally, we de�ne wo(r; t) as the total oil volume per unit lateral area, wt(r; t) as the trapped

oil volume, with wt = wo � wf , and wm(r; t) as the maximum oil volume, i.e.

wm(r; t) = max
t0�t

wf (r; t
0): (4.8)

The hydrostatic pressure assumption implies that for every lateral position the integrated apparent
water saturation attains its minumum at the time wf attains its maximum. Hence, the vertically
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integrated trapping mechanism (2.8) is given by

wt =

8><
>:

ct (wm � wf ) if
@ wf

@ t
� 0

0 if
@ wf

@ t
> 0

(4.9)

at every lateral position where wf is positive, with ct =
�o
�w

� [25], see Appendix 1. Writing the

vertically integrated time derivative of equation (4.4) as

@ wo

@ t
=

8><
>:

@ wf

@ t
if

@ wf

@ t
> 0

@ wf

@ t
(1� ct) if

@ wf

@ t
� 0;

(4.10)

we arrive at the nonlinear di�usion equation

F (
@ wf

@ t
) = 


@

@ x
(wm

f

@ wf

@ x
) for t > 0; 0 < x < xl; (4.11)

where

p =
1

1� ct
; p � 1 (4.12)


 =
Zc p �1 �2

Xc (n+ 1)
(4.13)

m =
3n� 2

2 (n+ 1)
;

1

4
< m <

3

2
(4.14)

and F is de�ned for argument y by

F (y) =

�
p y if y > 0
y if y � 0:

(4.15)

Observe that if entrapment is not included, p = 1 and F (y) = y for all y, whereas for the bounded
domain wf is decreasing everywhere and simply yields F (y) � y.
Near the well boundary oil pressures are not hydrostatically distributed and equation (4.11) is

not valid. Therefore, it is not possible to relate wf to the level zao (4.7) and to transform the well
condition (2.20) into an appropriate condtion for wf at the well boundary. However, we know that
below the well water level oil saturations are zero and we assume that the part of the seepage boundary
above the water level is small. Hence, we impose the Dirichlet condition

wf (0; t) = 0 (4.16)

and mention that for (4.16) the out
ow rate q(t) = �
 wm
f

@ wf

@ x
(0; t) is nonzero provided

@ wf

@ x
(0; t) =1.

Furthermore, if L <1 we impose at the right boundary the no-
ow condition

@ wf

@ x
(1; t) = 0: (4.17)

The initial condition corresponding to (2.14) is

wf (x; 0) = wi(x); (4.18)



16

where wi = �
R
Si dz is the initial oil volume per unit lateral area. According to condition (2.15) wi

satis�esZ xl

0

wi (x) dr = �0: (4.19)

For L = 1 we mention two important features of wf which can be veri�ed easily. The 'di�usion'
coe�cient wm

f vanishes for wf = 0, which implies that the free boundary xl which separates the
regions where wf > 0 and wf = 0, is at every time at �nite distance from the z-axis. Considering
that the speed sl at which the free boundary moves is equal to the horizontal oil velocity at the free
boundary, this speed is given by [4, 7]

sl = lim
x"xl

wm�1
f

@ wf

@ x
: (4.20)

Furthermore, if p = 1 the �rst moment of wf satis�es [4]Z xl

0

xwf dx = const: (4.21)

4.2 Analytical solutions

Equation (4.11) is the (modi�ed) porous medium equation which admits similarity solutions of the
form [3, 15]

wfa(x; �t) = �t�� h(x �t��); (4.22)

with constant � and �. We have introduced �t = 
 (t� t0) with t0 representing the time at which the
solution becomes singular.
For L < 1, the solution of equation (4.11) is positive on the �xed region [0; 1], which requires

� = 0, and the transformation (4.22) is a simple separation of variables. Substitution of (4.22) with

� = 0 into equation (4.11) yields � =
1

m
and the ordinary di�erential equation

(hm h 0) 0 = �
h

m
for 0 < � < 1 (4.23)

for h(�), with � � x. To facilitate the computation of h, we apply the scaling

~h(�) = C�
2
m h(C �); � =

�

C
; (4.24)

for any positive constant C [21, 25]. In this case we take C = 1, because the length of the domain is
equal to 1 and ~h is the solution of equation (4.23) on the domain 0 < � < 1, where primes 0 denote
di�erentiation with respect to �.
Scaling of the boundary conditions (4.16) and (4.17) yields ~h(0) = 0 and ~h 0(1) = 0. To derive

the corresponding solution of equation (4.23), which was obtained by Boussinesq [6] for m = 1, we
substitute ~y = �~hm ~h 0, the transformed oil 
ux. The resulting equation for ~y(~h) has the solution

~y(~h) = �

s
2

m (m+ 2)

q
~hm+2(1)� ~hm+2: (4.25)

Hence, we obtain implicitly for ~h(�)

� =

s
m ~hm(1)

2 (m+ 2)
B� ~h(�)

~h(1)

�m+2

�
m+ 1

m+ 2
;
1

2

�
; (4.26)
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where

B�(a; b) =

Z �

0

�a�1(1� �)b�1 d�; (4.27)

is the incomplete B-function. Substitution of � = 1 into equation (4.26), yields the value of ~h(1).
Inserting ~h(1) in (4.25) gives the 
ux ~y(~h), in particular at � = 0.
For L =1, we write the similarity solution (4.22) for convenience as

wfa(x; t) =

�
�t�� h(x �

1
2 �t��) for 0 < x < A��

1
2 �t�

0 for x � A��
1
2 �t� ;

(4.28)

where A��
1
2 �t� , with positive A, represents the free boundary beyond which wfa = 0. Substitution

of (4.28) into equation (4.11) shows that the similarity pro�le h(�), with variable � = x �
1
2 �t�� , satis�es

the equation

(hm h 0) 0 = F (�� h 0 � k h) for 0 < � < A; (4.29)

with k =
�

�
, and � and � satisfying

2 � +m�� 1 = 0: (4.30)

Observe that for the similarity solution (4.28) the momentMk�1 =
R
xk�1 wf dx is time-independent [25],

i.e.

Mk�1;a = ��
1
2
k

Z A

0

�k�1 h(�) d�; (4.31)

which is a generalization of property (4.21).
After the scaling (4.24) with C = A, ~h is the solution of equation (4.29) for 0 < � < 1. Boundary

condition (4.16) yields ~h(0) = 0 and at the free boundary we have ~h(1) = 0.
For p = 1 property (4.21) requires k = 2, i.e.

� = 2 � =
1

m+ 1
; (4.32)

and equation (4.29) has the explicit Dipole solution [5, 15]

~h(�) =

�
m (m+ 1)

m+ 2
(�

m
m+1 � �2)

� 1
m

: (4.33)

The transformed oil 
ux ~y = �~hm ~h 0 at � = 0 is given by

~y(� = 0) = �
1

m+ 1

�
m (m+ 1)

m+ 2

�1+
1
m

: (4.34)

The �rst moment of ~h, which is the transformed version of the moment (4.31) for k = 2, i.e.
R
� ~h d�,

is given by

~M1 =
m+ 1

m+ 2

�
m (m+ 1)

m+ 2

� 1
m

B

�
m+ 1

m+ 2
+ 1;

1

m
+ 1

�
; (4.35)

where B = B1 (4.27) is the B-function.
For p > 1 the trapping parameter k and the solution of equation (4.29) cannot be found exactly.

Hence, we compute numerically the similarity pro�le and the value of k, see also [25], for which the
procedure is described in Appendix 2. We obtain the trapping parameter k as a function of p, which
is shown in Figure 7 for di�erent m-values.
In Appendix 3 we show that a similarity solution similar to (4.28) can be obtained for oil removal

in a semi-in�nite three-dimensional domain.
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Figure 7: Parameter k as a function p for several values of m.

4.3 Agreement between numerical and analytical approximations

The similarity solutions wfa(x; �t) only provide reasonable approximations of the withdrawal process, if
we �nd appropriate values of t0 and also of A for the unbounded domain. As the initial condition (4.18)
in general does not have the similarity shape and as vertical equilibrium conditions are only established
some time after the start of the 
ow process, we estimate the unknown values from oil lens (shape)
properties after a su�ciently large time, rather than from the initial condition. We compute t0 and A
from the numerical solutions for the free oil volume per unit lateral area wfn of Section 4.1, where the
subscript n identi�es the numerical solution, by comparing wfn with the analytical wfa of Section 4.2.
In practice, it is relatively easy to determine t0 and A by measuring the out
ow rate and by comparing
it with the analytically obtained out
ow rate. Measuring once yields the value of t0 for the bounded
domain, whereas measuring at two di�erent times yields the values of both A and t0 for the unbounded
domain.
To obtain the values of A and t0 from the numerical solution for L = 1 (cases 3-10 of Table 1),

we use at one time the moment Mk�1 (4.31) and the oil out
ow rate, q(t) =
R t
0

R
z
uo(0; �; �) d� d� .

Observe from Figure 6 that except for case 5 (large n) all cases with zero entrapment (k = 2) had
an approximately time-independent �rst moment in agreement with (4.21) after a short time. In case
of entrapment (case 9 and 10) we computed k = 2:29 and k = 2:48 respectively and Mk�1;n became
time-independent as well. This indicates that, except for a large value of n (case 5), the 
ow processes
quickly satis�ed the vertical equilibrium conditions and that the boundary condition (4.16) was a
good approximation of the non-reduced well condition. For the similarity solution we have

Mk�1;a = ��
1
2
k Ak+ 2

m ~Mk�1; (4.36)

where ~Mk�1 =
R
�k�1 ~h d�, the moment in terms of the transformed ~h(�) (4.24), which is given

by (4.35) for k = 2 and obtained numerically for k > 2. By identifying Mk�1;n and Mk�1;a at
t = 0:1 te, we obtained the values of A, which are listed in Table 2.
The out
ow rate is given for the similarity solution by

qa(�t) = �
 wm
fa

@ wfa

@ x
(0; �t) = 
 �

1
2 �t�(m+1)��� A1+

2
m ~y(� = 0); (4.37)

with �t = 
 (t � t0). For p = 1 ~y(� = 0) is given by (4.34) and for p > 1 it is computed numerically.
We identify qa and its numerical equivalent qn at t = 0:1 te and obtain the values of t0, which are also
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Table 2: Parameter values for the similarity solution and deviations of the analytical solution from
the numerical solution

case 
 A t0 �� case 
 t0 ��

3 0.0680 1.68 -188 0.0305 11 0.0153 -207 0.0821
4 0.100 1.89 -63.3 -0.00766 12 0.0225 -83.6 0.114
5 0.0621 1.62 -1250 0.359 13 0.0140 -330 0.710
6 0.0170 1.41 -104 -0.0106 14 0.00764 -266 0.0127
7 0.215 1.74 -92.9 0.00794 15 0.0387 -101 0.0744
8 0.108 1.64 -92.1 0.0196 16 0.0244 -137 0.0225
9 0.0860 1.63 6.82 0.0269 17 0.0194 -168 0.105
10 0.0992 1.60 -30.1 0.0573 18 0.0223 -180 0.138

listed in Table 2.
The values of k, A and t0 determine wfa(r; �t). In Figure 8.a we present wfn and wfa for case 3 at
several times. Observe that the agreement between the pro�les is good, except near x = 0.
In Figure 8.b we present also the free oil volume � which is a global and practically relevant

characteristic. The analytically and numerically obtained volumes show very good agreement at all
times. For all cases (3-10) we calculated the relative deviations of � at the maximum computed time
te

�� =
�n(te)� �a(te)

�n(te)
: (4.38)

The values of �� which are listed in Table 2, are less than 6 percent, except for large n.
When oil entrapment is taken into account (cases 9-10), the trapped oil volume per unit lateral area

according to the analytical solution can be found in exactly the same way as described in [25].
For L < 1 we obtain the value of t0 by identifying the numerical oil out
ow rate qn(t) at x = 0

and the out
ow rate corresponding to the similarity solution, i.e.

qa(�t) = �
 wm
fa

@ wfa

@ x
(0; �t) = 
 �t�

1
m
�1 ~y(� = 0); (4.39)

with ~y(� = 0) given by (4.25), at t = 0:1 te. In Figure 9 we present wfn and wfa for case 11 at several
times and the free oil volumes �n and �a. The pro�les show good agreement, except near x = 0
and the volumes agree very well at all times. For all cases (11-18) we computed also the deviations
�� (4.38), which are listed in Table 2. These deviations are less than 14 percent, except for large n
(case 13). The deviations for the bounded domain are slightly larger than for the unbounded domain.
This may be caused by numerical errors, as the absolute values of the remaining free oil volumes for
the bounded domain became very small, see Figures 5.b and 9.b.
Although the approximation (4.16) of the well boundary condition, i.e. wf (0; t) = 0, is not in

agreement with the numerically obtained free oil volume per unit lateral area wfn(0; t), see Figures 8.a
and 9.a, this approximation leads to almost correct out
ow rates and thus to almost correct solutions.
At the well boundary most oil is present above the oil seepage face, where no out
ow occurs. This
means that the largest fraction of wfn(0; t) does not contribute to the out
ow rate. For large values of
n (cases 5 and 13) as well as for small values of � (not shown here) the analytical approximations are
less accurate and removal happens relatively slowly. For these parameter values the capillary pressure
functions (Pow(Swa); Pw(Swa) and Pao(St) of relations (2.4,2.5)) decrease rapidly from a relatively
large value to zero, when the respective saturations approach one. This behavior corresponds to large
entry pressures, which may explain that a larger fraction of wfn(0; t) contributes to the out
ow rate
and that the approximation (4.16) of the well boundary condition is less adequate.
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(a)

(b)

Figure 8: Numerical and analytical free oil volumes per unit lateral area (a) and free oil volumes in
the domain (b) for case 3 after �tting parameters at t = 778.
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(a)

(b)

Figure 9: Numerical and analytical free oil volumes per unit lateral area (a) and free oil volumes in
the domain (b) for case 11 after �tting parameters at t = 210.
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5. Conclusions

We modeled withdrawal of a lens of organic contaminant in a two-dimensional domain, which is either
�nite or semi-in�nite in the horizontal direction. At the well we imposed seepage face conditions for
multi-phase 
ow, i.e. a phase can only 
ow out, in which case its pressure is equal to the pressure
outside the soil.
Using a numerical multi-phase 
ow model we simulated the withdrawal process with a constant


uid level in the well that is equal to the phreatic surface in the soil. Implementation of the seepage
face conditions as sink terms with a large arti�cial productivity index, as was proposed earlier, was
compared with the direct implementation of the variational condition. For increasing values of the
index the sink term solutions converged to the 'direct' solutions, but required much more computation
time. Hence, the 'direct' implementation is both more accurate and more e�cient. Close to the well
boundary steep pressure gradients occurred. Re�nement of the X-grid led to convergence of solutions
near the seepage face. Oil out
ow velocities showed a steep peak in vertical direction just below
the top of the oil seepage face, which required very accurate discretization. Simulations for di�erent
parameters showed that removal was slower in the semi-in�nite domain in which the oil lens continued
to spread horizontally. For large values of the parameter n the removal rate was small. Even for the
present simulations with no drawdown of the water table much oil became entrapped.
To derive analytical approximations we assumed vertical equilibrium of the oil lens and we integrated

the oil 
ow equation vertically. We approximated the seepage face conditions by taking the oil volume
per unit lateral area equal to zero, yielding however a nonzero out
ow rate. Both for the bounded and
the unbounded domain similarity solutions of the resulting di�erential equations were available, which
were either explicit or easy to compute. For the unbounded domain a time-independent moment of
the similarity solution was determined. The approximate independence of time of this moment for the
corresponding numerical solution justi�ed the vertical equilibrium assumption and the approximation
of the well boundary condition. Comparison of the analytical and numerical moments for short times
yielded the value of one of the unknown constants in the analytical solution. The remaining unknown
constant was obtained by comparison of the numerically and analytically obtained out
ow rates for the
bounded and the unbounded domain. After �tting the two constants for a small time, the analytical
solution was used to predict for larger times. Except for larger values of n, the agreement between
analytical approximations and numerical results was good. In practice, the determination of the two
constants in the analytical solution may be done using out
ow rates, which are easily accesible, for
two di�erent times.

Appendix 1. Vertically integrated variables

The vertically integrated free oil saturation (4.5) is

wf = �

Z zu

zow

(1� Swa) dz � �

Z zu

zao

(1� St) dz (A 1)

We use the �rst two terms of the Taylor series expansion for small values of

�
�ow Pow
�w g

�n

and�
�ao Pao
�w g

�n

in relations (2.4) and (2.5) and use relations (4.1) and (4.2) to approximate

1� Swa � (1�
1

n
) (
�ow Pow
�w g

)n = (1�
1

n
) (

�o
�w

) n (zao +
� �

�o
z) n (A 2)

1� St � (1�
1

n
) (
�ao Pao
�w g

)n = (1�
1

n
) (

�ao �o
�ow �w

) n (z � zao)
n: (A 3)

Hence, we obtain

wf � �1 z
n+1
ao (A 4)
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where

�1 = �
n� 1

n(n+ 1)

�w
� �

1

(1�D)n
: (A 5)

The vertically integrated relative permeability (4.6) is

�k =

Z zao

zow

(1� Swa)
1
2 (1� S

n
n�1
wa ) 2�

2
n dz +

+

Z zu

zao

(St � Swa)
1
2 ((1� S

n
n�1
wa ) 1�

1
n � (1� S

n
n�1

t ) 1�
1
n ) 2 dz: (A 6)

We use again the Taylor series expansion to approximate

1� S
n

n�1
wa � (

�ow Pow
�w g

)n = (
� �

�w
) n (z � zow)

n (A 7)

1� S
n

n�1

t � (
�ao Pao

�w g
)n = (

�ao �o

�ow �w
) n (z � zao)

n: (A 8)

Only the �rst integral of equation (A 6), denoted by �k1, can be approximated analytically, i.e.

�k1 = �2 z
5n
2
�1

ao ; (A 9)

where

�2 =
2

5n� 2
(
n� 1

n
)
1
2
�w
� �

: (A 10)

The second integral of equation (A 6), denoted by �k2, is

�k2 = Ik �3 z
5n
2
�1

ao ; (A 11)

where

�3 = (
n� 1

n
)
1
2
�w
� �

D

(1�D)
5n
2
�1

(A 12)

and the integral

Ik(n;D) =

Z
1

0

((D y + 1�D)n � y n)
1
2 ((D y + 1�D)n�1 � y n�1) 2 dy; (A 13)

that does not depend on zao and must be approximated numerically.
As a result we obtain

zao = �1 w
1

n+1

f (A 14)

�k = �2 w
5n�2
2 (n+1)

f ; (A 15)

where

�1 = �
�1
n+1

1
= �

�1
n+1 (

n (n+ 1)

n� 1
)

1
n+1 (

� �

�w
)

1
n+1 (1�D)

n
n+1 (A 16)

�2 = (�2 + Ik �3) �
2�5n
2 (n+1)

1
=

= �
2�5n
2 (n+1) (

n� 1

n
)

3�4n
2 (n+1) (n+ 1)

5n�2
2 (n+1) (

� �

�w
)

3n�4
2 (n+1) �

� (
2

5n� 2
(1�D)

n (5n�2)

2 (n+1) +
D

(1�D)
5n�2
2 (n+1)

Ik): (A 17)
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To obtain the the trapping constant ct in (4.9), we introduce the additional elevations zmin
ow ; zmax

ao

and zmax
u , which determine the maximum oil and minimum water saturations. The trapped oil volume

per unit lateral area is given by

wt = � �

Z zmax
u

zmin
ow

(Swa � Smin
w ) dz = � (�

Z zmax
u

zmin
ow

(1� Smin
w ) dz +

� �

Z zu

zow

(1� Swa) dz � �

Z zmax
u

zu

(1� Swa) dz): (A 18)

Using (A 2) and (A 3) we obtain

�

Z zmax
u

zmin
ow

(1� Smin
w ) dz � �

Z zu

zow

(1� Swa) dz �
�1

1�D
((zmax

ao )n+1 � zn+1ao ): (A 19)

For zu < z < zmax
u Swa is given by the third expression of (2.4), therefore we approximate

�

Z zmax
u

zu

(1� Swa) dz � �
n� 1

n(n+ 1)

�ow
(1�D)n+1

((zmax
ao )n+1 � zn+1ao ): (A 20)

Hence, we combine (A 19) and (A 20) to obtain

wt = �1 �
�o
�w

((zmax
ao )n+1 � zn+1ao ) = �

�o
�w

(wm � wf ); (A 21)

yielding ct = �
�o
�w

.

Appendix 2. Evaluation of the ordinary differential equation

For the scaled variable ~h(�) we solve the nonlinear di�erential equation

(~hm ~h 0) 0 = F (�� ~h 0 � k ~h) for 0 < � < 1; (A 1)

with boundary conditions

~h(0) = 0; ~h(1) = 0: (A 2)

Furthermore, in view of condition (4.20) we impose

~hm�1 ~h 0(1) = �p: (A 3)

Therefore, on the right half of the domain we transform equation (A 1) into a system of two di�erential
equations with

yr;1 = ~hm and yr;2 = ~hm�1 ~h 0: (A 4)

This yields8<
:

y 0r;1 = myr;2

y 0r;2 = �
y2r;2
yr;1

+ F (��
yr;2
yr;1

� k)
for

1

2
< � < 1; (A 5)

with boundary conditions yr;1(1) = 0 and yr;2 = �p.
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Since near � = 0 the 
ux ~hm ~h 0 is nonzero and bounded, on the left half of the domain we transform
equation (A 1) into a system of two di�erential equations with

yl;1 = ~hm+1 and yl;2 = ~hm ~h 0: (A 6)

This yields8><
>:

y 0l;1 = (m+ 1) yl;2

y 0l;2 = F (��
yl;2

y
m

m+1

l;1

� k y
1

m+1

l;1 ) for 0 < � <
1

2
; (A 7)

with boundary condition yl;1(0) = 0.

Imposing continuity of ~h and ~h 0 at � =
1

2
, the two systems (A 5) and (A 7) are solved sequen-

tially by shooting backward from � = 1 using a fourth order Runge-Kutta scheme. As yl;1(0) varies
monotonically with k we can use a simple iteration to vary k untill the solution satis�es yl;1(0) = 0.

Appendix 3. Removal in a three-dimensional domain

Removal of oil through a horizontal ditch in a three-dimensional semi-in�nite domain under vertical

ow equilibrium conditions is described similar to equation (4.11) by

F (
@ wf

@ t
) = 
r � (wm

f rwf ) for t > 0; 0 < x1 <1; 0 < x2 < f(x1; t) (A 1)

where the ditch is located at x1 = 0. The curve x2 = f(x1; t) de�nes the free boundary beyond which
no oil is present and we assume that f is �nite for all values of x1 � 0 and t > 0. Similar to (4.16)
and (4.18) we impose

wf (0; x2; t) = 0 (A 2)

and

wf (x1; x2; 0) = wi(x1; x2); (A 3)

with Z 1

0

Z f

0

wi(x1; x2) dx2 dx1 = 1; (A 4)

the prescribed inital volume. Furthermore, we impose by symmetry

@ wf

@ x2
(x1; 0; t) = 0: (A 5)

In analogy to (4.28) equation (A 1) admits a similarity solution of the form [15]

wfa(x1; x2; t) = t��h(~�); ~� =

�
�1
�2

�
= �

1
2 t��

�
x1
x2

�
; (A 6)

with constants � and � satisfying (4.30), which is positive for 0 < �1 < a and 0 � �2 < g(�1) with
a = g(0). The set � = f0 � �1 � a; �2 = g(�1)g denotes the free boundary for the similarity solution.
Substitution of (A 6) into equation (A 1) yields

r � (hmrh) + ~� � rh+ k h = 0 for 0 < �1 < a; 0 < �2 < g(�1); (A 7)
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with k =
�

�
. Imposing the transformed versions of conditions (A 2) and (A 4), i.e.

h(~�)j�1=0 = 0 and
@h

@�2
(~�)j�2=0 = 0; (A 8)

requires k � 3, whereas k = 3 for p = 1 (no trapping). Similar to property (A 3) we have

(hm�1rh+ ~�) � rh = 0 for ~� 2 �: (A 9)

Since h is also invariant under a scaling similar to (4.24), it is possible to solve for this similarity
solution in two dimensions and to obtain an analytical approximation of light oil removal in a three-
dimensional situation.
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