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ABSTRACT

We define a class of process algebras with silent step and a generalised operation
∑

that allows explicit

treatment of alternative quantification over data, and we investigate the specific subclass formed by the

algebras of finite processes modulo rooted branching bisimulation. We give a ground complete axiomatisation

for those branching bisimulation algebras of which the data part has built-in equality and Skolem functions.
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1. Introduction

In Groote and Luttik (1998) we proposed an axiomatisation of process algebras with data, conditionals
and alternative quantification, that we called pCRL-algebras. We proved that our axiomatisation is
complete for strong bisimulation algebras of which the data part has built-in equality and Skolem
functions. This seems a rather severe restriction; it implies that the entire first-order theory of the
data algebra is decidable. However, in the same paper we argue that one cannot do much better.
It turns out that strong bisimulation is not recursively enumerable (it is Π0

4-hard), and clearly, the
existence of a general axiomatisation would contradict this.

The main cause for the complexity of the theory pCRL is the binder
∑

that is used to express
alternative quantification over data. If d0, d1, d2, . . . is an enumeration of some data type D and x
is a variable that ranges over D, then we let the process term

∑
x:D p refer to the (possibly infinite)

alternative composition of the processes p[x := d0], p[x := d1], p[x := d2], . . . . Such an operation is
a useful specification tool, since it allows us to describe the action that inputs an arbitrary element
from some data type. For instance the term

∑
n:N read(n) · p(n) refers to the process that reads an

arbitrary natural number and then executes the process p instantiated with this particular natural
number.

In this paper we shall address the extension of the theory pCRL with an element τ (‘silent step’)
that represents internal activity, and we study it in branching bisimulation semantics. This extension
is operationally conservative (processes that do not involve τ are branching bisimilar if, and only if,
they are strongly bisimilar), so the question of whether two processes are branching bisimilar is at
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least as hard as the question of whether they are strongly bisimilar. Nevertheless, we shall prove that
the extension to a branching bisimulation algebra of any strong bisimulation algebra for which we
provided an axiomatisation in our previous paper, is axiomatised just by adding the two branching
bisimulation laws of Van Glabbeek and Weijland (1996).

As far as we know, the only other investigation of alternative quantification in branching bisimu-
lation semantics is by Klusener (1992). In his work, a (time-stamped) τ is included in a real time
process algebra with integration. To the axioms for strong bisimulation Klusener adds a single law
to arrive at an axiomatisation of branching bisimulation. It defines the interaction of three concepts
(integration, internal activity, and real time) in one go, and is therefore of complicated nature.

Klusener’s setting resembles ours in that integration can be viewed as alternative quantification
over the datatype of real numbers. On the other hand, our setting is simpler, because there is no
interaction between data and sequential composition, and our τ has no parameter. From the results in
the present paper we conclude that the complexity of Klusener’s law is not caused by the combination
of integration and internal activity.

Other extensions of message-passing process algebras with the silent step have been carried out by
Hennessy and Lin (1996), Lin (1995), and Parrow and Victor (1998). Contrary to our approach, these
extensions take place in a variant of weak bisimulation semantics of Milner (1980). In the first two
papers the extension takes place in a setting with input prefixing instead of alternative quantification
(we proved in Groote and Luttik (1998) that the input prefix mechanism is in general a less expressive
operation than alternative quantification). In both papers it is shown that it suffices to add Milner’s
τ -laws.

The paper of Parrow and Victor (1998) deals with the extension of the fusion calculus with silent
steps. In the fusion calculus there is a single binder that resembles our alternative quantification. The
authors argue that, since mismatch operators do not distribute over prefixes in a setting with fusion
actions, Milner’s third τ -law must be replaced by two schemes.

This paper is organised as follows. In the next section we define the theory of process algebras with
data, conditionals, alternative quantification and silent step, and we define the notions of strong and
branching bisimulation that give rise to specific models of this theory. In §3 we show that branching
bisimulation is first-order definable. This result plays a key role in our completeness proof, which is
given in §4.

Acknowledgements We thank Michel Reniers for his careful reading of a draft version of this
paper.

2. Process Algebras with Data and Silent Step

In this section we define the class of process algebras with data, conditionals, alternative quantification
and the silent step, which we call pCRLτ , and we introduce the notions of strong- and branching
bisimulation. We assume that the reader has some familiarity with universal algebra, for which
we refer to McKenzie et al. (1987). We refer to Groote and Luttik (1998) for an account of the
generalisation of some of the notions in universal algebra to a setting with infinitary (or: generalised)
operations.

2.1 The theory pCRLτ

For the purpose of this paper we fix a many-sorted, first-order data signature ∆ that contains at least
a sort b of booleans with function declarations for >, ⊥, ¬, ∧, and ∨. We assume that A is a set of
action declarations over ∆, function declarations of the form a: s1 · · · sn → p with s1, . . . , sn ∈ ∆ and
p 6∈ ∆, which are usually denoted by a:s1 · · · sn.
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We obtain the pCRLτ -signature over ∆ and A by extending ∆ with a sort p, the action declarations
in A, and

1. nullary function declarations δ:λ→ p (λ refers to the empty sequence) for ‘deadlock’ and
τ :λ→ p for the ‘silent step’;

2. binary function declarations ( + ):pp→ p for choice and ( · ):pp→ p for sequential com-
position;

3. a ternary function declaration ( � � ):pbp→ p for conditionals (p � b� q should be read
as ‘then p if b else q’); and

4. a binder declaration
∑

:p for alternative quantification over data (if d0, d1, d2, . . . is an enumer-
ation of elements of some data type and x ranges over the same type, then

∑
ξ p[x := ξ] refers

to the (possibly infinite) choice between p[x := d0], p[x := d1], p[x := d2], . . . .)

Let Σ denote such a pCRLτ -signature. Terms over Σ are constructed using disjunct, countably infinite
families X and Ξ of free and bound variables for ∆ (if s ∈ ∆ is a sort, then we denote by Xs the set of
variables in X of sort s). Terms of sort p we refer to as p-ground process terms (note that X does not
contain variables of sort p); they are considered modulo α-conversion. The other terms over Σ and X
are data terms ; these may contain free variables. A process term a = a(t̄), with a:s̄ ∈ A, is called an
action term; we adopt the convention that the leading action declaration of an action term is denoted
by the name of the action term in typewriter font, e.g., a refers to the leading action declaration of a.

We adopt some notational conventions regarding boolean terms and process terms. Function dec-
larations are usually written in mixfix notation and brackets are omitted where possible. We give the
following precedence to the operators: ( + ) <

∑
< ( � � ) < ( · ). Terms of the form p · q

are usually written pq. If p = p(x1, . . . , xn) is a process term, xi ∈ Xsi (for 1 ≤ i ≤ n) and ξ is a
bound variable of sort si, then we shall use

∑
xi:si

p as an abbreviation for the term
∑
ξ p[xi := ξ].

Note that by α-conversion the specific choice of the bound variable ξ is immaterial and that the free
variable xi does not occur in

∑
xi:si

p. Thus, provided that Xs is infinite for all sorts s ∈ ∆, we
may choose xi different from all the other free variables that occur in a context; e.g., if p =

∑
x1:s1

p′

and q =
∑
x2:s2

q′, then we may assume without loss of generality that x1 6= x2, x1 6∈ FV(q) and
x2 6∈ FV(p). This assumption will often be implicitly present. We use

∑
x1···xn:s1···sn p as an abbrevi-

ation of
∑
x1:sn

· · ·
∑
xn:sn

p.
The axioms of the theory pCRLτ are the axioms for boolean algebras (see e.g. Koppelberg (1989))

and the axioms depicted in Table 1; we obtain the subtheory pCRL by omitting the axioms B1 and
B2. We write pCRLτ ` p ≈ q if the identity p ≈ q is derivable from the axioms of pCRLτ by means of
generalised equational logic, that is equational logic extended with a congruence rule for binders (cf.
Groote and Luttik (1998)). In this particular setting, this rule takes the form

p ≈ q∑
ξ(p[x := ξ]) ≈

∑
ξ(q[x := ξ])

with x a variable in X.

In derivations we shall use BA to refer to applications of the boolean axioms.
In the sequel, we shall make liberal use of an element ε that acts as a unit for ·. That is, we assume

p · ε = ε · p = p. We stress that ε is not an element of Σ and that it is only used to facilitate notation.
It is well-known that process terms may be thought of as having the form defined below.

Definition 2.1 Let A be the set of action terms, and let B be the set of boolean terms.
We inductively define the set of basic terms as follows:

1. δ is a basic term;

2. if p is a basic term or p = ε, then
∑
x̄:s̄ a · p� b� δ (with a ∈ A∪{τ} and b ∈ B) is a basic term;

and
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(A1) x+ y ≈ y + x
(A2) x+ (y + z) ≈ (x+ y) + z
(A3) x+ x ≈ x
(A4) (x+ y)z ≈ xz + yz
(A5) x(yz) ≈ (xy)z
(A6) x+ δ ≈ x
(A7) δx ≈ δ

(Sum1)
∑
v:s y ≈ y

(Sum3)
∑
ξ p[v := ξ] ≈

∑
ξ p[v := ξ] + p

(Sum4)
∑
v:s(p+ q) ≈

∑
v:s p+

∑
v:s q

(Sum5) (
∑
v:s p)y ≈

∑
v:s py

(Sum12) (
∑
v:s p) � b� δ ≈

∑
v:s p� b� δ

(B1) xτ ≈ x
(B2) x(τ(y + z) + y) ≈ x(y + z)

(Cond1) x�>� y ≈ x
(Cond2) x�⊥� y ≈ y
(Cond3) x� b� y ≈ x� b� δ + y � ¬b� δ
(Cond4) (x� b1 � δ) � b2 � δ ≈ x� b1 ∧ b2 � δ
(Cond5) (x� b1 � δ) + (x� b2 � δ) ≈ x� b1 ∨ b2 � δ
(Cond6) (x� b� δ)y ≈ xy � b� δ
(Cond7) (x + y) � b� δ ≈ x� b� δ + y � b� δ

Table 1: The axioms for pCRLτ for a given a pCRLτ -signature Σ; the Sum-axioms are schemes in
which p and q range over p-ground process terms; the symbols x, y and z are free variables of sort
p, and b, b1 and b2 are free variables of sort b. (We have kept our numbering consistent with Groote
and Ponse (1994): they have an axiom Sum2 that defines α-conversion.)

3. if p and q are basic terms, then p+ q is a basic term.

Lemma 2.2 (Basic Term Lemma) For every p-ground process term p there exists a basic term q
such that pCRL ` p ≈ q.
Proof. Straightforward by induction on the number of symbols in p. �
We call a basic term simple if it is of the form∑

x̄:s̄ a · p� b� δ,

where p is a basic term or ε. Defining δ =
∑
i∈∅ pi, any basic term can be written as∑

i∈I
pi, pi a simple basic term for all i ∈ I (I finite).

2.2 The Branching Bisimulation Algebra

For the rest of this paper we fix a ∆-algebra D that contains a boolean algebra with precisely two
elements; we denote D(>) (the interpretation of > in D) by >>>, and D(⊥) by ⊥⊥⊥. We construct models
for pCRL and pCRLτ , based on D, by constructing an algebra of processes P, defining congruences
↔ and ↔rb on this algebra, and taking the quotients P/↔ and P/↔rb; they will turn out to be a
pCRL-algebra and a pCRLτ -algebra, respectively.

Processes First, define a set A of atomic actions by

A = {a〈d1, . . . , dn〉 | a:s1 · · · sn ∈ A and di ∈ D(si) for 1 ≤ i ≤ n }.
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a a−−→ ε for all a ∈ Aτ

p a−−→ p′

p ··· q a−−→ p′ ··· q
p a−−→ ε

p ··· q a−−→ q
a ∈ Aτ and p,p′,q ∈ P

p a−−→ q∑∑∑
P′ a−−→ q

a ∈ Aτ , p ∈ P′ ⊆ P and q ∈ Pε

Table 2: The transition system specification for P.

Let δ and τ be distinct elements such that δ, τ 6∈ A; we shall abbreviate A ∪ {τ} by Aτ . The set
P =

⋃
n∈ω Pn of processes is obtained by the following recursion

P0 = Aτ ∪ {δ}
Pn+1 = Pn ∪ {p ··· q,

∑∑∑
P′ | p,q ∈ Pn, ∅ 6= P′ ⊆ Pn};

we shall write p +++ q for
∑∑∑
{p,q}.

Let P be the Σ-algebra of which the restriction to ∆ is D, P(p) = P, and operations on P defined
by

P(a)(d1, . . . , dn) = a〈d1, . . . , dn〉 for each a:s1 · · · sn ∈ Σ;
P(τ) = τ ;
P(δ) = δ;
P(+)(p,q) = p +++ q;
P(·)(p,q) = p ··· q;

P( � � )(p,b,q) =
{

p if b =>>>;
q if b =⊥⊥⊥; and

P(
∑

)(P′) =
∑∑∑

P′ for each ∅ 6= P′ ⊆ P.

Operational Semantics For convenience of notation we define Pε = P ∪ {ε} and, for any binary
relation R on P, Rε = R∪{〈ε, ε〉}. The rules in Table 2 define a transition relation −−→ ⊆ P×Aτ×Pε

on P. In the sequel, we shall tacitly assume that p ranges over P and p′ ranges over Pε in p a−−→ p′.
If there is an a ∈ Aτ such that p a−−→ p′, then we call p′ a residual of p.

Let us first recall the definition of strong bisimulation.

Definition 2.3 (Strong Bisimulation) A binary relation R ⊆ P×P is called a strong bisimula-
tion relation if it is symmetric and Rε satisfies

if 〈p,q〉 ∈ R and p a−−→ p′, then there exists q′ ∈ Pε such that q a−−→ q′ and 〈p′,q′〉 ∈ Rε.

If p,q ∈ P and there is a strong bisimulation relation that contains the pair 〈p,q〉, then p and q are
called strongly bisimilar (notation: p↔ q).

Strong bisimulation gives rise to a model P/↔ for the axiom system pCRL (cf. Groote and Luttik
(1998)), that we call the strong bisimulation algebra for D and A:

Theorem 2.4 The family ↔ = 〈θs| s ∈ S〉 with θp=↔ and θs= id(P(s)) for s 6= p is a congruence
on P, and P/↔ |= pCRL.

Let us write p0 =⇒ pn to abbreviate a (possibly empty) sequence of τ -transitions

p0
τ−−→ p1

τ−−→ . . .
τ−−→ pn n ≥ 0.
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Definition 2.5 (Branching Bisimulation) A binary relation R ⊆ Pε×Pε is called a branching
bisimulation if it is symmetric and 〈p,q〉 ∈ R implies

i. if p a−−→ p′, then either a = τ and 〈p′,q〉 ∈ R, or there exist q∗ ∈ P and q′ ∈ Pε such that
q =⇒ q∗ a−−→ q′ and 〈p,q∗〉, 〈p′,q′〉 ∈ R; and

ii. p =⇒ ε if, and only if, q =⇒ ε.

If p,q ∈ Pε, and there is a branching bisimulation relation that contains the pair 〈p,q〉, then p and
q are called branching bisimilar (notation: p↔b q).

Clearly, in accordance with Table 2 we can associate with every element of A a labeled tree. If
we consider the induced set of labeled trees modulo isomorphism, then we obtain a subalgebra of the
algebra of graphs of Van Glabbeek and Weijland (1996). Consequently, the following lemma, proved
in Van Glabbeek and Weijland (1996), also holds in our setting.

Lemma 2.6 (Stuttering Lemma) If p0
τ−−→p1

τ−−→ . . . τ−−→pn and p0 ↔b pn, then pi ↔b pj for all
i, j ≤ n.

The relation↔b is not a congruence, for if a and b are distinct atomic actions, then τ ··· a +++ a↔b a,
but τ ··· a +++ a +++ b 6↔b a +++ b. This motivates the following definition.

Definition 2.7 A branching bisimulation relation R is rooted with respect to p if 〈p,q〉 ∈ R and
p a−−→ p′ implies that there exists a q′ such that q a−−→ q′ and 〈p′,q′〉 ∈ R.

If p,q ∈ P and there is a branching bisimulation relation that contains the pair 〈p,q〉 and that is
rooted with respect to p and q, then p and q are called rooted branching bisimilar (notation: p↔rb q).

Lemma 2.8 The family↔rb = 〈θs| s ∈ S〉 with θp=↔rb and θs= id(P(s)) for s 6= p is a congruence
on P, and P/↔rb |= pCRLτ .
Proof. Basten (1996) has shown that ↔rb is an equivalence relation on the set of labeled graphs.

By the remarks preceding Lemma 2.6 it is clear that↔rb is then also an equivalence relation on P.
In view of the definition of the operations on P we only need to show that↔rb has the substitution
property for ··· and

∑∑∑
.

If pi,qi ∈ P and Ri is a branching bisimulation relation that witnesses pi ↔rb qi (for i = 1, 2),
then it is straightforward to verify that

{〈p ··· p2,q ··· q2〉, 〈p ··· q2,q ··· p2〉 | 〈p,q〉 ∈ R1} ∪R2

is a branching bisimulation relation, and since R1 is rooted with respect to p1 and q1, R is rooted
with respect to p1 ··· p2 and q1 ··· q2. Hence p1 ··· p2 ↔rb q1 ··· q2.
If ∅ 6= P′,P′′ ⊆ P and P′/↔rb = P′′/↔rb, then for all p ∈ P′ there exists q ∈ P′′ and a branching
bisimulation Rp that is rooted with respect to p and q and contains 〈p,q〉, and for all q ∈ P′′ there
exists p ∈ P′ and a branching bisimulation Rq that is rooted with respect to p and q and contains
〈q,p〉. Arbitrary unions of branching bisimulations are branching bisimulations. Thus it follows
that the relation

{〈
∑∑∑

P′,
∑∑∑

P′′〉, 〈
∑∑∑

P′′,
∑∑∑

P′〉} ∪
⋃
{Rp | p ∈ P′} ∪

⋃
{Rq | q ∈ P′′}

is a branching bisimulation relation, and it is clear that it is rooted with respect to
∑∑∑

P′ and
∑∑∑

P′′.
We conclude that ↔rb is a congruence on P.
Since ↔ ⊆ ↔rb, we find by the Second Isomorphism Theorem (p. 149 of McKenzie et al. (1987))
that P/↔rb is a homomorphic image of P/↔. Hence, by the HSP Theorem (p. 237 of McKenzie
et al. (1987)), we conclude that P/↔rb |= pCRL. It remains to verify that P/↔rb |= B1,B2; we
leave it to the reader to find the witnessing relations. �
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We call P/↔rb the branching bisimulation algebra for D and A.

Definition 2.9 (τ -inertness and compactness) We call a τ -transition p τ−−→p′ inert if p↔b p′.
We call p ∈ P compact if p has no inert τ -transitions and, recursively, all its residuals are compact,
that is, if there are no p1, . . . ,pn,p′ ∈ Pε such that

p a1−−→ p1
a2−−→ · · · an−−→ pn

τ−−→ p′ and pn ↔b p′.

Lemma 2.10 (Compactness) If all residuals of p and q are compact, then p↔rb q iff p↔ q.
Proof. Since any strong bisimulation relation containing the pair 〈p,q〉 is a branching bisimulation

relation that is rooted with respect to p and q, the implication from right to left is immediate. For
the other direction observe that, by rootedness, it suffices to show that if p and q are compact and
p↔b q, then p↔ q.
If p↔b q and p τ−−→ p′ then p′ 6↔b q; so if p↔b q and p a−−→ p′, then there exists q∗,q′ ∈ P such
that q =⇒ q∗ a−−→ q′, p↔b q∗ and p′ ↔b q′. Using Lemma 2.6 and compactness we may conclude
that q = q∗, so q a−−→ q′. It follows that p↔ q. �

3. The first-order definability of branching bisimulation

The set of first-order ∆-formulae is the smallest set that contains the ∆-equations and is closed under
the connectives ¬, ∧, and ∀ of first-order logic. We abbreviate (> ≈ >) by >, ¬(> ≈ >) by ⊥ (instead
of (> ≈ >) we could of course have used any other tautology). Moreover, we use ∨ and ∃ according
to their well-known definition in terms of ¬, ∧ and ∀. We shall use the standard satisfaction relation
(see e.g. Chang and Keisler (1990)); if ϕ is a first-order ∆-formula and α is a valuation of X in D,
then we shall write D, α |= ϕ to express that ᾱ(ϕ) is true of D (if α is a valuation of X in D, then
we shall denote by ᾱ the unique extensions of α to functions from terms to elements of D and from
formulae to truth values).

Our goal in this section is to associate to every pair 〈p, q〉 of p-ground process terms a first-order
∆-formula ϕ such that D, α |= ϕ iff ᾱ(p) ↔b ᾱ(q). In the sequel, we shall postulate the existence of
such a formula by means of the phrase “p↔b q is first-order definable”; we shall denote the formula
by [p↔b q].

Lemma 3.1 For each p-ground process term p there exists a first-order ∆-formula p↓ such that
D, α |= p↓ iff ᾱ(p) =⇒ ε, for all valuations α of X in D.
Proof. By structural induction on p; we give the definitions and leave their straightforward

correctness proofs to the reader. We define δ↓ := ⊥, τ ↓ := >, and a↓ := ⊥ for all action terms
a 6= τ . If there exist formulae pi↓ (i = 1, 2) such that D, α |= pi↓ iff ᾱ(pi) =⇒ ε, then we can define
(p1 + p2)↓ := (p1 ↓ ∨ p2 ↓), (p1 · p2)↓ := (p1 ↓ ∧ p2 ↓), (p1 � b� p2)↓ := (((b ≈ >) ∧ p1 ↓) ∨ ((b ≈
⊥) ∧ p2 ↓)), and (

∑
x:s p1)↓ := (∃x:s)(p1 ↓). �

Theorem 3.2 For all p-ground process terms p and q there exists a first-order ∆-formula ϕ such
that D, α |= ϕ iff ᾱ(q)↔b ᾱ(p), for all valuations α of X in D.
Proof. Identities between action terms and τ are first-order definable. Namely, if a = a(t1, . . . , tm)

and a′ = a′(t′1, . . . , t′n) with a:s̄, a′:s̄′ ∈ A ∪{τ}, then ᾱ(a) = ᾱ(a′) iff a = a′ and ᾱ(tk) = ᾱ(t′k), for
all 1 ≤ k ≤ m = n; so we can define

[a↔b a
′]↔

{
⊥ if a 6= a′

(t1 ≈ t′1) ∧ · · · ∧ (tm ≈ t′m) otherwise.

For the proof of this theorem we may assume, by Lemmas 2.2 and 2.8, that p and q are basic terms.
So let I and J be disjoint finite sets such that

p =
∑
i∈I

pi, q =
∑
j∈J

qj , with pi and qj simple.
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We proceed by induction on the sum of the complexities |p| and |q| of p and q respectively, defined
as the maximal nesting of ·, with |δ| = 0 and |a| = 1 if a is an action term or τ .
If |p| + |q| = 0, then p = q = δ; so ᾱ(p) = ᾱ(q) for all valuations α of X in D, and p ↔b q is
first-order definable as the formula >.
For the induction step we distinguish two cases: (1) one of |p| and |q| equals 0; and (2) |p|, |q| > 0.

1. Suppose |p| > 0, |q| = 0 and pi =
∑
x̄i:s̄i

aip
′
i � bi � δ. By induction hypothesis we find that

p′i ↔b δ is first-order definable, whence so is

ϕ =
∧
i∈I

(∀x̄i:s̄i)((bi ≈ ⊥) ∨ ([ai ↔b τ ] ∧ [p′i ↔b δ])).

If D, α |= ϕ, then ᾱ(p) a−−→p′ implies that a = τ and p′ ↔b δ, whence ᾱ(p)↔b δ. Conversely,
if D, α 6|= ϕ, then there exists a sequence d̄i of elements of D such that ᾱ[x̄i:=d̄i](bi) = >>>, and
ᾱ[x̄i:=d̄i](ai) 6= τ or ᾱ[x̄i:=d̄i](p

′
i) 6↔b δ. Hence ᾱ(p) 6↔b δ. We conclude that ϕ indeed defines

[p↔b q].

2. Next, suppose that |p|, |q| > 0, each pi is as in the previous case, and qj =
∑
x̄j :s̄j

ajq
′
j � bj � δ.

It suffices to prove that p↔b p+qj is first-order definable, for all j ∈ J ; for then, by symmetry,
q ↔b q + pi is also first-order definable, for all i ∈ I, and by the identity

p↔b p+
∑
j∈J

qj = p+ q =
∑
i∈I

pi + q ↔b q

to conclude that [p↔b q] := (
∧
i∈I [q ↔b q + pi]) ∧ (

∧
j∈J [p↔b p+ qj ]) is a correct definition.

We now define

ϕτ := [aj ↔b τ ] ∧ [q′j ↔b p],

ϕ⊆ :=
∨
i∈I

(∃x̄i:s̄i)((bi ≈ >) ∧ [ai ↔b τ ] ∧ [p′i ↔b p
′
i + qj ]), and

ϕ→ :=
∨
i∈I

(∃x̄i:s̄i)((bi ≈ >) ∧ [ai ↔b aj ] ∧ [p′i ↔b q
′
j ]).

We complete the proof by verifying that the definition

[p↔b p+ qj ] := [(∀x̄j :s̄j)(bj ≈ >)→ (ϕτ ∨ ϕ⊆ ∨ ϕ→)] ∧ (qj ↓ → p↓)

is correct. Note that by induction hypothesis and Lemma 3.1 it is a well-formed ∆-formula.
It remains to verify that D, α |= [p↔b p+ qj ] if, and only if, ᾱ(p)↔b ᾱ(p) +++ ᾱ(qj).

(⇒) SupposeD, α |= [p↔b p+ qj ] and ᾱ(qj)
a−−→q′. Then there exists a sequence d̄j of elements

of D such that

ᾱ[x̄j :=d̄j](aj) = a, ᾱ[x̄j :=d̄j](q
′
j) = q′, and ᾱ[x̄j :=d̄j](bj) =>>>.

If D, α |= ϕτ , then a = τ and q′ ↔b ᾱ(p), and if D, α |= (ϕ⊆∨ϕ→), then ᾱ(p)=⇒p∗ a−−→p′

such that p∗ ↔b p∗ + ᾱ(qj), and q′ ↔b p′. Furthermore, ᾱ(p) =⇒ ε iff ᾱ(p + qj) =⇒ ε,
since D, α |= (qj ↓ → p↓). Hence ᾱ(p)↔b ᾱ(p) +++ ᾱ(qj).

(⇐) Fix an arbitrary sequence d̄j of elements of D such that ᾱ[x̄j :=d̄j](bj) =>>>; then ᾱ(qj)
a−−→

q′, with a = ᾱ[x̄j :=d̄j](aj) and q′ = ᾱ[x̄j :=d̄j](p
′
j). So if ᾱ(p) ↔b ᾱ(p) +++ ᾱ(qj), then either

a = τ and q′ ↔b ᾱ(p), whence D, α |= ϕτ , or ᾱ(p) =⇒ p∗ a−−→ p′ such that q′ ↔b p′. In
the latter case we apply Lemma 2.6 to conclude that D, α |= (ϕ⊆ ∨ ϕ→). Moreover, it is
clear that D, α |= (qj ↓ → p↓). Hence D, α |= [p↔b p+ qj ], and the theorem follows. �
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4. Completeness

We shall now prove that, under certain restrictions imposed on D, the branching bisimulation algebra
can be equationally axiomatised. We need that every first-order ∆-formula is logically equivalent to
an equation of the form b ≈ >. We shall achieve this by assuming that D has built-in equality and
Skolem functions, as defined below.

Definition 4.1 (Equality) A ∆-algebra D has built-in equality for sort s iff there exists a boolean
∆-term [x =s y] in variables x and y of sort s such that for all valuations α of X in D

ᾱ([x =s y]) =
{
>>> if α(x) = α(y)
⊥⊥⊥ otherwise.

A ∆-algebra has built-in equality if it has built-in equality for all its sorts.

Definition 4.2 (Skolem Functions) A ∆-algebra D has built-in Skolem functions if for every ∆-
formula ϕ with FV(ϕ) = {x, y1, . . . , yn} there exists a term tϕ = tϕ(y1, . . . , yn) such that for every
valuation α of X in D

D, α |= (∃x:s)ϕ implies D, α |= ϕ(tϕ(y1, . . . , yn), y1, . . . , yn).

The term tϕ shall be called a Skolem function for x.

The following proposition follows easily by structural induction on ∆-formulae.

Proposition 4.3 IfD has built-in equality and Skolem functions, then for every first-order ∆-formula
ϕ there exists a boolean term ϕb such that D, α |= ϕ iff D, α |= ϕb ≈ >.

(Aea) a(x̄) � [x̄ = ȳ] � δ ≈ a(ȳ) � [x̄ = ȳ] � δ
(Sca) (xy � b� δ) ≈ (x� b� δ)(y � b� δ)

Table 3: We define Ae = {Aea | a ∈ A}; if D has a two-element boolean algebra and built-in equality
for A, then Ae and Sca hold in the strong bisimulation algebra for D and A.

If D has built-in equality and Skolem functions, then the first-order theory of D is decidable, and
so is its equational theory EqTh(D) (i.e., the set of all equations that hold of D). In order to arrive
at a complete set of axioms for strong bisimulation we should add the axioms depicted in Table 3.
Let ΠΣ(D) = pCRL+EqTh(D)+Ae+Sca. Groote and Luttik (1998) proved that this set ground
axiomatises the strong bisimulation algebra.

Theorem 4.4 If D has built-in equality and Skolem functions, then P/↔ |= p ≈ q iff ΠΣ(D)`p ≈ q,
for all p-ground process terms p and q.

Below we shall prove that it suffices to add the τ -laws B1–2 to axiomatise the branching bisimulation
algebra. Our proof consists in showing that every p-ground process term is provably equal to a basic
term the residuals of which are all compact. Then we make use of the fact that ↔ and ↔rb coincide
on the set of processes whose residuals are compact (Lemma 2.10); for this set completeness follows
by Theorem 4.4.

First, we prove two useful consequences of the compactness lemma (Lemma 2.10) and the complete-
ness theorem for strong bisimulation (Theorem 4.4): basic terms may be split into a compact and an
inert part, and moreover, we may assume that, in certain circumstances, this inert part is of a simple
form. First, we define the notions of compactness and inertness for process terms.

We call a p-ground process term p compact if ᾱ(p) is compact, for all valuations α of X in D. If
all residuals of ᾱ(p) are compact for all valuations α of X in D, then we shall say that p has compact
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residuals. If q is a p-ground process term and, for all valuations α of X in D, ᾱ(p) a−−→ p′ implies
a = τ and p′ ↔b ᾱ(q), then we say that p is q-inert ; we define that p is ε-inert if ᾱ(p) a−−→ p′ implies
a = τ and p′ ↔b ε.

Lemma 4.5 Suppose that D has built-in equality and Skolem functions.
If p is a basic term with compact residuals, then there exist a compact basic term pc and a p-inert
basic term pτ such that ΠΣ(D) ` p ≈ pc + pτ .
Proof. Let I be a finite set such that

p =
∑
i∈I

pi, with pi =
∑
x̄i:s̄i

aip
′
i � bi � δ.

We show that each pi with ai = τ can be split into a compact part pci and a pi-inert part pτi . By
Theorem 3.2 and Proposition 4.3 there exists a boolean term b′i such that ᾱ(b′i) = >>> iff ᾱ(p) ↔b

ᾱ(p′i), for any valuation α of X in D. Consequently, the transition ᾱ(pi)
τ−−→ ᾱ(p′i) is inert iff

ᾱ(b′i) = >>>. So pci =
∑
x̄i:s̄i

τp′i � bi ∧ ¬b′i � δ is compact and pτi =
∑
x̄i:s̄i

τp′i � bi ∧ b′i � δ is pi-
inert, and we derive

pi ≈
∑
x̄i:s̄i

τp′i � (bi ∧ ¬b′i) ∨ (bi ∧ b′i) � δ (BA)

≈
∑
x̄i:s̄i

(τp′i � bi ∧ ¬b′i � δ + τp′i � bi ∧ b′i � δ) (Cond5)

≈
∑
x̄i:s̄i

τp′i � bi ∧ ¬b′i � δ +
∑
x̄i:s̄i

τp′i � bi ∧ b′i � δ (Sum4)

= pci + pτi . �

Lemma 4.6 Suppose D has built-in equality and Skolem functions, and let q be a compact process
term or ε. If p is q-inert, and p has compact residuals, then there exists a boolean term bτ such that
ΠΣ(D) ` p ≈ τq � bτ � δ.
Proof. We may assume by Lemma 2.2 that

p =
∑
i∈I

pi, with pi =
∑
x̄i:s̄i

τp′i � bi � δ.

If q = ε, then we may assume that each p′i = ε, while if q is compact then we may assume that
p′i 6= ε for all i ∈ I. By induction on the length of the sequence x̄i, we get a sequence t̄i of Skolem
functions for the x̄i such that ᾱ(bi[x̄i := t̄i]) =>>> iff D, α |= (∃x̄i:s̄i)(bi ≈ >).

Claim ᾱ(pi)↔ ᾱ(τq � bi[x̄i := t̄i] � δ), for any valuation α of X in D.

Proof. If ᾱ(pi)
τ−−→p′, then there exists a sequence d̄i of elements of D such that ᾱ[x̄i:=d̄i](bi) =>>>.

Hence ᾱ(bi[x̄i := t̄i]) =>>> and ᾱ(τq� bi[x̄i := t̄i] �δ) τ−−→q. If p′ = q = ε, then there is nothing
to prove; if p′ and q are compact, then since they are branching bisimilar, we conclude with
Lemma 2.10 that p′ ↔ q. Conversely, if ᾱ(τq � bi[x̄i := t̄i] � δ) τ−−→ q, then there exists a
sequence d̄i of elements of D such that ᾱ[x̄i:=d̄i](bi) = >>>. Hence ᾱ(pi)

τ−−→ p′, for some p′.
Again, if p′ = q = ε, then we are done, and if p′ and q are compact, then we find p′ ↔ q in
the same way as above.

Hence it follows by Theorem 4.4 that ΠΣ(D) ` pi ≈ τq � b[x̄i := t̄i] � δ; so we define

bτ =
∨
i∈I

bi[x̄i := t̄i]

and derive with Cond5

p =
∑
i∈I

pi ≈
∑
i∈I

τq � bi[x̄i := t̄i] � δ ≈ τq �
∨
i∈I

bi[x̄i := t̄i] � δ = τq � bτ � δ.
�
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Let Πτ
Σ(D) = pCRLτ+EqTh(D)+Ae+Sca.

Proposition 4.7 The following equalities are derivable from Πτ
Σ(D):

i. x(τ � b� δ) ≈ x� b� δ + xδ � ¬b� δ; and

ii. x(τ(y + z) � b� δ + z) ≈ x(y � b� δ + z).
Proof. We derive the first equality; the derivation of the second equality goes in a similar fashion

(with an application of B2 instead of B1).

x(τ � b� δ) ≈ x(τ � b� δ) � b� δ + x(τ � b� δ) � ¬b� δ (Cond1, 5,BA)
≈ xτ � b� δ + xδ � ¬b� δ (Sca,Cond2, 4, 6,BA)
≈ x� b� δ + xδ � ¬b� δ (B1) �

Now we are in a position to prove our main theorem.

Theorem 4.8 If D has built-in equality and Skolem functions, then for every p-ground process term
p there exists a basic term q such that Πτ

Σ(D) ` p ≈ q and q has compact residuals.
Proof. We may assume, by Lemmas 2.2 and 2.8, that p is a basic term.

We shall prove the theorem by induction on the complexity of |p|. Suppose |p| > 0; we need to show
that each of p’s summands is provably equal to a basic term that has compact residuals. Hence, it
suffices to consider the case where p is simple, i.e., let

p =
∑
x̄:s̄ ap

∗ � b� δ.

From the induction hypothesis, we get that p∗ has compact residuals, so with Lemma 4.5 we can
split p∗ into a compact part pc and a p-inert part pτ such that p∗ ≈ pc + pτ ; let I be a finite set
such that

pτ =
∑
i∈I

pi, with pi =
∑
x̄i:s̄i

τp′i � bi � δ.

Now it suffices to distinguish two cases: (1) pc = δ and p′i = ε for all i ∈ I, or (2) p′i 6= ε for all
i ∈ I; namely, we may derive

p ≈
∑
x̄:s̄ ap

∗ � b ∧ (p∗ ↓) � δ +
∑
x̄:s̄ ap

∗ � b ∧ ¬(p∗ ↓) � δ,

and by means of Sca, Cond4, 7, Sum12, and BA we cancel all the pi with p′i 6= ε in the left summand
and those with p′i = ε in the right summand.

1. If pc = δ, then pτ is ε-inert, so, by A6 and Lemma 4.6, there exists a boolean term bτ such
that p∗ ≈ τ � bτ � δ. We apply Proposition 4.7(i) and derive

p ≈
∑
x̄:s̄ a(τ � bτ � δ) � b� δ ≈

∑
x̄:s̄ a� b ∧ bτ � δ +

∑
x̄:s̄ aδ � b ∧ ¬bτ � δ,

and all residuals of this latter basic term are compact.
2. Suppose that p′i 6= ε for all i ∈ I. We define

p† = pc +
∑
i∈I

∑
x̄i:s̄i

p′i � bi � δ.

Since ᾱ(p†) ↔b ᾱ(p∗), pτ is p†-inert. Moreover, p† is compact, so by Lemma 4.6 there exists
a boolean term bτ such that ΠΣ(D) ` p∗ ≈ pc + τp† � bτ � δ. We derive

p ≈
∑
x̄:s̄ a(τp† � bτ � δ + pc) � b� δ

≈
∑
x̄:s̄ a(τ(p† + pc) � bτ � δ + pc) � b� δ (A1–3)

≈
∑
x̄:s̄ a(p† � bτ � δ + pc) � b� δ (Prop 4.7(ii)).
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All residuals of this latter term are compact, and we can transform it to a basic term according
to Lemma 2.2. Since this transformation does not involve applications of B1 and B2, the result
is compact, and the proof is complete. �

We now obtain that Πτ
Σ(D) is an axiomatisation of P/↔rb as an easy consequence of Theorems 4.8

and 4.4.

Corollary 4.9 If D has built-in equality and Skolem functions, then P/↔rb |= p ≈ q iff Πτ
Σ(D) `

p ≈ q, for all p-ground process terms p and q.
Proof. The implication from right to left is by Lemma 2.8. We may, by Theorem 4.8, assume that
p and q have compact residuals, so the other direction follows from Lemma 2.10 and Theorem 4.4.�
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