stichting
mathematisch
centrum MC

AFDELING INFORMATICA IN 2/73 MAY

ANDREW S. TANENBAUM
INTRODUCTION TO ALGOL 68

o B
@ﬁ%
T

2e boerhaavestraat 49 amsterdam

pBLIQTHERK MATHEMATISCH CEMTRUM
AMSTERDAM

Printed at the Mathematical Centre, 49, 2e¢ Boerhaavestraat, Amsterndam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
profit institution aiming at the promotion of puwre mathematics and Aits
applications. 1t 4s sponsorned by the Netherlands Govermment through the
Netherlands Onganization for the Advancement of Pure Research (Z.W.0),
by the Municipality of Amsterdam, by the University of Amstendam, by
the Free University at Amsterdam, and by Andustries.

ACM-Computing Reviews-category: 4.22

PREFACE

These mnotes on ALGOL 68 were originally presented orally to an
undergraduate class in the spring of 1973. They were printed and distributed
as the second chapter of the course lecture notes. This report is a reprint
of that chapter. As a consequence the sections and figures are numbered as
they were in the original.

The notes are intended as an introduction to ALGOL 68 for students
having already had one introductory course in computer science. It is
assumed that they are familiar wibth an algorithmic language such as BASIC,
FORTRAN, PL/1, or ALGOL 60. It is hoped that even freshmen and sophomores
can understand this report.

A.S. Tanenbaum
Amsterdam, May 1973

CHAPTER 2 ~ INTRODUCTION TO ALGOL 68

Throughout this book algorithms are given for various techniques such
as evaluating arithmetic expressions and sorting a list of names. It is
necessary to have some way of expressing +these algorithms in a clear and
unambiguous msnner. Ordinary English 1is too verbose and ambiguous to be
satisfactory, furthermore we would like to write algorithms in a way such that
they can be carried out by a computer.

Anyone who +thinks that English is suitable as a method for precisely
describing things should ponder the various meanings of "You would never
recognize little Freddy. He has grown another foot" or the following bulletin
board sdvertisement "German shepherd dog for sale. He will eat anything and is
especially fond of children" or the following newspaper headline, concerning
the exhibition of a copy of a painting, "Parents, pupils, faculty enjoy
reproduction”. If writing unambiguous English were easy, lawyers would not
write sentences 1like "This agreement shall bé construed and interpreted
according to the laws of the State of New York and shall be binding upon the
parties hereto, their Theirs, successors, assigns, and personal
representatives; and references to the lessor and to the lessee shall include
their heirs successors, assigns and personal representations”. We will
therefore use a programming language to express algorithms.

There alresdy exist hundreds of programming langusges, and the number
is growing rapidly. Most of these, however, are for spscial applications, such
as making computer generated cartoouns, controlling equipment in an automated
factory, or helping civi;l. engineers design bridges. To express the algorithms
in this book, we need a general purpose programming language in which we can
easily describe complicated kinds of daba and express operations on the data

in a convenient form. FORTRAN and ALGOL 60 are widely used, but both are

restricted to handling very simple kinds of dabta, and performing very simple
operations on that data. For example, neither FORTRAN nor ALGOL 60 can
manipulate character strings conveniently.

There are two langusges that come closer <+t0 what we need: ALGOL 68 and
PL/1. PL/1 was designed by a committee, and it shows. Each committee member
wanted his favorite feature included, and most of them were accepted. The
result was an unwieldy language with a very large collection of features that
do not fit btogether well. As a consequence it is difficult to learm.

ALGOL 68, on the other hand, was designed to be as "orthogonal" as
possible. This means that there are a small number of basic ideas thabt can be
combined in many ways to produce a highly expressive language whose parts it
together very well. Orthogonal design also means that almost any construction
that both "mskes sense" and is unambiguous is allowed. As a consequence ALGOL
68 is easy to learn, comprehensive and therefore is ideally suited to the
teaching of computer science. In this book ALGOL 68 will be used for
expressing algorithms.

The purpose of this chapter is to explain enough sbout ALGOL 68 that
you can understand the algorithms given in this book. Features of ALGOL 68 not
needed in this book, e.g. binary transput, heap generators, unions, and long
reals will not be mentioned. You should be aware that +bthe description which
follows is by no means complete. If the reader wishes an inbroduction to the
complete language, he should see either "An Informsl Introduction to ALGOL 68"
by Lindsey and van der Meulen or "an ALGOL 68 Companion" by Peck. (See
bibliography) As a final note, we mention that the ALGOL 68 report is already
famous for its obscure terminology, thus in some cases the terms used in this
book differ from those in the report. We do this in order to make these terms

easier to understand.

2.1 Some basic fegbures of ALGOL 68

AIGOL 68 programs consist of a sequence of symbols, including the lower
case letters a — z, the digits 0 — 9, certain special characters e.g. + — = }

;2 <>()[1, and certain words printed in boldface type such as BEGIN IF

SKIP THEN TRUE ELSE FALSE FI END., When writing programs with pencil and paper,

boldface is indicated by underlining the words e.g. begin if skip then true

else false fi end. Comments, which begin and end with the =H= or J: symbol, may

be inserted between any two symbols. The ALGOL 68 compiler does not process
comentsy they are for the purpose of helping other people understand what the
program does. They should be used generously. Spaces and carriage returns (enda
of card) may be inserted between any two symbols to improve readsbility.

One of the most basic fegtures of a programming langusge is the kind of
daba which cen be expressed in it. ALGOL 68 provides a rich collection of data
types, three of the simplest types being integers, characters and booleans.
The compubters memory i1s divided up into a large number of equally sized
pieces, usually called words or bytes. The amount of space occuplied by a datum
(e.g. an integer) varies from computer to computer. FPigure 2-37 illustrates a
computer whose memory is divided into 8 bit bytes, in which booleans occupy
less than 1 byte, characters occupy exactly 1 byte, and integers occupy L
bytes. The memory space occupied by a booleasn, character, integer, or other
object 1s referred to its location. Thus there are boolean locations,
character locations, integer locstions, etc,, which in general are different
sizes. FEach location has a unigque numericel address which identifies it.
The proper word used to distinguish integers from characters from booleans is
mode. Integers, characters and booleans are 3 different modes. Thus, a mode is
a kind of object. The concept of mode is +the most important concept in the
entire language, so it is worth dwelling upon this point for a little while.
We can gnake an anslogy between the computer's memory, which is divided up into

locations of various sizes, each of which can accomodate exactly one object of

the mode sappropriate for that location, and a hypothetical city, which is
divided up into buildings of various sizes, each of which can hold only 1
object. One kind of location in +the city is a doghouse, which can hold one
oﬁject of mode dog. Another kind of location is a hangar, which may contain
one object of mode airplene. Yet another kind of location is a church steeple
which contains one object of mode bell. A fourth kind of location is a
computer center which holds one object of mode computer.

Just as a memory locablon for an inbteger can hold any one of a varlety
of integers, (0, =3, and 1944 come to mind at the moment) a given doghouse may
contain Jack's dog or Susan's dog or Bob's dog, but it may not hold an object
of mode alrplane. Similarly a compuber center may contain sn IBM computer or a
CDC computer, but not an object of mode dog. An object is not permanently
attached to its location. Bubt can be moved to another location of the proper
mode whenever needed.

A location in the computer's memory +that can hold an integer is called

an integer varigble, while a location that can hold a character is a character

variable, etc. A variable can be given an identifier so the programmer can
refer to 1t by an easy to remember symbolic nsme instead of its (numerical)
sddrees. Thus the identifier is an alias for the address, nqt the object at
that address. This is illustrated in figure 2-38.

The programmer informs the computer how many varisbles of each mode she
needs, and their names, by declarstions. A declaration specifies
1. The mode of the objects being declared
2. The identifiers for the objects
Figure 2-1 shows 3 declarstions. The flrst declares 2 integer varisbles with
identifiers "number of girlfriends" and "pelican count". The second declares 1
character varisble whose identifier is "grsde expected in this course". The
third d;eclares 2 boolean varisbles, with identifiers "voted in last election"

and "likes mustard",

There are several +things to note about +these declarations., First,

integer variable declarations start with INT (not INTEGER) while CHAR and BOOL

are used for character and boolesn varisbles respectively. Second, identifiers

may be as long as desired, and may have spaces "inside" for resdability.
Third, each declarabtion declares varisbles of only 1 mode, bubt it may declare

arbitrarily many variables of that mode. The various identifiers are separated
by commas. Fourth, declargtions are separabted by semicolons. The declaration
in figure 2~-1 causes 5 locations in the computer’s memory to be reserved, one

for each of these 5 varigbles. Associgbted with each location is an identifier,

(given in the declaration) which can be used in subsequent statements. The
identifier i1s equivalent +to the address of the location, not the contents of
the locgtion. This distinction is gbsolutely crucial. The identifier is a
symbolic nsme for the numerical address of +the location. Sometimes we will
refer to "the object whose address is X" or '"the object in location X", In all
cagses it should be remenmbered that X is a symbolic name for +the address of a
location containing an object of some specific mode, end not the name of the
object itself. Thus is illustrated in figure 2-39.

An object of mode boolean has one of two values, either TRUE or FALSE,

An object of mode character has a value equal to some character. The set of
characters avallable is implementation dependent, but includes at least one
set of letters, +the digits, and some specilal characbers. When characters are
used as constants, they are written with quotation marks around them. An

object of mode integer has as iIts value an integer.

2,1.1 Assignment statements

A basic statement is the assignment statement, which assigns a value to
a varisble. An assignment statement has 3 parts:

1. A destination (written to the left of the := symbol)

2. A becomes symbol, written :=
3. A source (written to the right of the := symbol)
The destination is an expression which when evalusgted gives an address of a
location. The destinstion is so named because an object is pub in the address
specified by it. The source is an expression which when evaluated specifies an
object of the required mode. The simplest example of g destination is an
identifier. The simplest example of a source is a constant. Thus
nunber of girlfriends := 3
is an assignment with source = 3 and destination = number of girlfriends. It
is pronounced "number of girlfriends becomes 3". When this statement is
executed, an integer with value 3 is pub in the Ilocation whose address is
"nunber of girlfriends". Since "number of girlfriends" identifies a location
(1.e. 1s the address of a location) whose object must be of mode integer, and
since 3 is an object of mode integer, everything is ~fine, and the assignment
takes place.

Consider the statement
number of girlfriends := number of girlfriends — 1
The destination of this assignment is the location whose sddress is "number of
girlfriends"”, as sgbove, but the source is more complicated. The identifier
"number of girlfriends" identifies a location, i.e. is equivalent to the
address of some location, whereas the constent 1 is an object of mode integer.
Surely it 1s not intended to subbract 1 from the address "number of
girlfriends" and use that as the source? of course not. What is intended is
that the current value of the object in the location whose address is “number
of girlfriends" should be used, not the address itself, and from that 1 is to
be subtracted. The result of the subtraction is to be placed in the address

given by +the destinstion. The operation of using the contents of a location

instead of its address 1s called dereferencing. Dereferencing is illustrated

in figure 2-40. DNote that in the above assigmment "number of girlfriends" is

dereferenced when used in +the source hut not when used in +the destination.
This occurs because the minus operator needs two inbegers as operands, not an
address and an integer, vwhile the destination must be an address. If the
destination were dereferenced as well as the source, we would have nonsense:

3 =3 -1

One of the nice things sbout ALGOL 68 is that dereferencing happens
automatically where it is needed, and does not happen (in fact is forbidden)
where it should not happen. Those points where dereferencing is to occur are
carefully specified in the ALGOL 68 report, and agree with one's common sense
interpretation.

Most other programming languages do not maske such a sharp distinction
between the address of a location, and the contents of the location. As a
consequence it 1s usually possible to make disasbrous errors such as changing
the value of 3 into 2 by an assignment, if done in a sufficiently subtle way
(for example, supplying a constant as an actual parameter in a procedure call
where an address should be). Because ALGOL 68 makes such a rigid distinction
between the address of a location and the contents of the location, this kind

of error is caught by the compiler in every case.

2.1.2 Conditional statements

Another kind of statement is the conditional, or IF statement. In this
statement a condition is tested. If the condition is found to be true, then
the shatement following the @ is executed. If the condition is not true,
the statement following the THEN is skipped, and the statement following the
@ is executed instead. Figure 2-2 shows an _I_F_ statement, The stabement is
executed as follows. "bottle has deposit" is the address of a location

containing an object of mode boolean. Boolean objects are either TRUE or FALSE,

A condition must be either TRUE or FALSE, so "bottle has deposit" is

dereferenced and the contents of its location is tested. If it is true, then
the statement

price := cost of product + amount of deposit

is executed. Before the addition can be carried out, both "cost of product"

" are dereferenced since we want to add two integers,

and "amount of deposi
not two addresses.

If "bottle has deposit" is false the statement
price := cost of product
is executed instead. This statement is executed by first dereferencing "cost
of product” to get the object contained in it. A copy of this object is placed
in the 1location whose address 1is price. ©Since a new copy of the object is
created, the old one remains undisturbed in "cost of product". Figure
2-2 illustrates some other points. First, stabements are separated from
declarations and from other statements by semicolons. Second, no semicolon is
placed at the end of the THEN part or ELSE part, although if either part
contained more than 1 statement, these statements would be separated by
semicolons. Third, notice that the third 1line contains 2 statements, and that
the IF statement as a whole occupies b 1lines and is indented to improve
readability. Fourth, the conditional stabtement is endegl with FI, (_Z@‘_ spelled
backwerds). The reason for having sn explicit symbol to end the _J;E‘_ statement
will be discussed later.

Another form of the conditlonel statement has no ELSE part, as shown in
figure 2-3. If the condition is not true, the statement following the THEN is
not executed. In this example the condition is
number of legs > 50.

This is evaluated by first dereferencing the identifier "muber of legs" to
get the value of the integer at that address. This integer is then compared to

50. If it is 51 or more the centipede count is increased. If it is 50 or less,

execution continues with the statement following the FI.

2.1.3 Input/output

ALGOL 68 allows a wide range of styles of input and output, ranging
from a simple print(X) to sophis‘tica:bed formatted transput operations on
files, with user control over all error handling. In this book we will be
content to use the simplest forms namely read(X), which reads in 1 object of
the required mode (even an array) and stores it in the location whose address
is X, and print(X) which prints the object whose address is X. If the thing in
parentheses following print is a sbring of characters within quotation marks,
the characters are printed, but the quotation marks are not printed.

AGOL 68 also allows x to be themselves a list of variables, thus
permitting more than 1 variable to be read or printed with a single statement.
Such a list must be enclosed in en additional set of parentheses. An example
is

I'ead((a: b, ¢, a)).

The statement
new line:
causes subsequén‘b output to be printed beginning at the start of the next line.
Successive uses of print cause items to be printed on the same line until
there is no room left, in which case printing continues on the next line. The

nunber of characters per print line varies from computer to computer.

2.1.L4 Loops

Since performing a sequence of stabements repeatedly is very common,
ALGOL 68 provides a statement for controlling repetition. One form of it is

shown in figure 2-4. The wvariable after the FOR, called the controlled

&

10

variable, is set to 1, a test is made to see if 1t 1is less than 100, and if so
the statement after the DO is executed. Then 1 is incremented by 2 and the
print statement executed again. For each successive value of “odd number" g
test 1s made to see if it 1s greater than 100, in which case the repetition
stops.

The controlled varisble must not be declared. It is always an integer,
so the compiler does this automatically. The expressions after FROM, 10 and BY
may be any expressions yielding an integer as & result. These exXpressions are
evalugted before the loop is begun to determine how many times the statement
following the DO 1s to be executed. If the values of the expressions
subsequently change, this has no effect on the number of repetitions.

The ‘li‘glj and the identifier following it may be omitbted if +the
controlled varisble is not needed. If the word FROM and the expression
Pollowing it are omitted, the counting starts at 1. If the word _T_Q and the
expressions following it are omitted, the repeating continues until terminated
by some other mechanism. If the BY part is omitted, a default of 1 is used.

In contrast with the sbove form of the FUR statement which causes a
statement to be repested a fixed number of times, there is another form that
causes the statement following the DO to be repeated as long as some condition
is true. The condition, written between Tf_ﬂ_{_E_Jh and _129 is tested; if it is true,
the statement following the E is execubted. The test is then repeated, and if
still true, the statement following the 1_3_9_ is executed again. This process is
repeated until the condition yields false. Figure 2-5 shows how the smallest
integer whose square is larger than 1000 can be computed, and stored in the
location whose szddress is n. Common sense requires that the expressibn

following the WHILE yield a boolean value, either TRUE or FALSE. As usual,

ALGOL 68 obliges by allowing an arbitrarily complicated expression (even 100
pages long) provided the result is of mode boolean.

These two forms of repetition may be combined into one _FEB stabtement

1

whose most general form is shm in figure 2-6a, where a, b, and c are
expressions whose result is of mode iInbeger, and condition is an expression
whose result is of mode boolean. The execution starts with the evalustion of
the expressions a, b, and c. The results are then copied to secret memory
locations x, y, and z respectively so the programmer can not change them. Then
i is set to x. If 1 is less than or equal to y and the condition is true, the
statement is executed. Then i is increased by z and the test of 1 asgainst y is
repeated gdlong with another test of the condition. If i < ¥ and the condition
is still true +the stabement following the 2[_]_ is repeasted again. This process
continues until elther 1 > y or +the condition becomes false. Note that unlike
a, b, and ¢ which are eveluated once and for all at the beginning of the FOR
statement (with the results stored awey in x, y, and z for safe keeping) the
condition is evaluated over again before each repetition., If a is initially
greater than b or if the condition i1s initially false, the statement will not
be executed at all. Note that if the expression ¢ ylelds a negabtive integer,
the counting is negabtive and the test becomes 1 > y instead of i < ¥y. Figure

2-6 shows several examples of FOR statements.

2.1.5 Compound statements, ranges and programs

The FOR statement allows only 1 statement to be repeated. Frequently it
1s desired to repeat a whole sequence of statements, not just one, so ALGOL 68
provides a wmechanism for forming compound statements, which are +treated as
single statements. A compound statement, or technically a strong void closed
clause, consists of the word BEGIN followed by a series of declarations and
statements (which may include conditional statements, FOR statements, and even

other compound statements) separated by semicolons. The last statement in the
series must be directly followed by @, with no semicolon directly preceeding

it. In place of BEGIN and END, left and right parentheses may be used. Figure

12

2~7 shows examples of EQB statements followed by compound statements.

Figure 2-7a contains a compound statement which will be repeated 10
tAimes ,» with 1 taking on the values 1 through 10 on successive iterations. Each
iteration prints one line, containing i, 1A 2, and 1 A 3. Note that an
arbitrary expression can be printed. The result of executing the _I_T_‘ILR statement
of figure 2-Ta will be to print out a taeble of the integers from 1 to 10 along
with their squares and cubes.

Pigure 2-7b contains a F_‘G_Ij statement whose repeé.table statement 1is
itself a FOR statement. First 1 is set to 1, the default when no FRIM part is
given, +then the statement following the Eg is executed once. Since +that
statement is itself a FOR statement, executing it once involves repeated
executing the statement after its DO until it is finished. Then 1 is set to 2,
and the second FOR statement is executed once, meening another 4 executions of
the compound statement following it. In all, 8 lines will be printed like this
11

1

A compound statement may also include declargbtions as well as
statements. A compound statement that includes 1 or more declarations is
called a range. The variables declared within a range may only be used within

that range (and other ranges that occur inside of it), and msy not be used

outside the range. Although it 1s possible to use the same identifier for

13

different varisbles declared in different ranges, the practice can be
confusing. It is best to give each new variable a unique name.

A complete program consists of a single compound statement or range,
i.e. it begins with BEGIN and ends with END (or left and right parentheses
respectively, if one prefers). Flgure 2-Tc is a complete program to print out
a series of numbers, each term of which (except the first 2 which are both 1)
is equal to the sum of the 2 preceeding terms. The series stops just before a
term > 1000 would have been printed.

Figure 2-8 4is a complete ALGOL 68 program with 6 conditional
statements, 3 repetition statements, 11 assignment statements and 13
input/output statements. Note that print (pennies) prints out the value of the
integer variable "pemnies", whereas print ("pennies") prints out the 7 letters

pennie s.

2.2 Modes, objects and values

In the previous sections the modes inbeger, character and boolean were
introduced. In the following sections a few more simple modes will be
introduced and 1t will be shown how to build up new modes from +the simpler

ones.

2.2.1 Primitive modes

In addition to +the modes integer, boolean, and character, ALGOL 68
provides a mode real, which is an atbtempt to model the real number system of
classical mathematics. Real nunbers are .objects consisting of 2 integers, f
and e, used to represent numbers of the form £ X b /f\ e, where b is the base of
the nuniber system., The domain of the objects of mode real is very wide,

o

encompassing tens or even hundreds of orders of magnitude, depending on the

1L

computer. The number of significant digits in a real is also compuber
dependent, but is frequently in the range 8 to 15 digits.

Another primitive mode is format. Objects of mode formabt are used to
control the formatbting of input and outpubt. Another basic mode is bits, which
allows the programmer to use machine words conveniently and efficiently for

storing and retrieving information.

2.2.2 Procedure modes

A whole class of modes are the procedures. A procedure is g piece of
program that tekes n input parameters, n >0, and (optionally) produces a
result. For example, the absolute value function for integers is an object of

mode PROC (INT) INT because it takes an integer as input and delivers an

integer as result. Just as there are many distinct objects of mode integer,

e.g. 0, 6, =17 and 2, there are many distinct objects of mode PROC (INT) INT,

A procedure teking 2 inbegers as parameters and producing an integer as result

e.g. a procedure "add" which adds two integers, is of mode PROC (INT,INT) INT,

A procedure +that has 2 integer parameters and produces a boolean as result
(e.g. a procedure "less than" which yilelds true if the first parameter is less

than the second, and false otherwise.) has mode PROC (INT,INT) BOOL, The mode

of a procedure is written as the word _f_PR_O_(_‘, followed by the modes of its
parameters in parentheses, followed by the mode of its result. Procedures with
no result have the word VOID in place of the mode of the result. Furthermore,
if the procedure has no parameters, the parentheses are omitted. Since there
are an infinite number of combinations of parsmeters (because there is no
1limit to the number of parameters a procedure can have) there are an infinite
number of procedure modes. A few procedure modes and examples of procedures
that coeld be defined for them are shown in figure 2-9.

Unlike most programming languages, procedures in ALGOL 68 are objects

15

and can be manipulsted like other objects. Procedure varisbles exist and can
be assigned values, just like any other varisble. If £ is declared by

PROC (REAL) REAL f}

then f is +the address of a memory location Just the proper size for a
procedure taking 1 real as perameber and producing 1 real as result. Of course
procedures vary in size, but it is +the compiler writer's responsibility to
solve this problem. He might for example, pubt the procedure somewhere else in
memory, and put only the address of the procedure in f. After the assignation
f := sin

Where sin is the usual trigonometric function, £(x) will compute sin(x). The
ability to treat procedures like any other objects 1s very useful, and follows

from the orthogonality of ALGOL 68.

2.2.3 Arrays

Many problems involve data orgenized into vectors or matrices. By a
vector we mean a one dimensional sequence of objects of some mode; by a matrix
we mean a two dimensionsl array of objects. The elements of a vector or matrix
may be primitive elements, such as booleans, integers or characters, or they
may themselves be composite objects. As an exemple, consider a model for a
computer memory composed of 4096 16-bit words. A word can be regarded as a 16
element boolean vector, and the whole memory can be regarded as a linear
sequence of L4096 words, il.e. a vector whose elements are boolean vectors.

The official ALGOL 68 term covering vectors, mabtrices, and 3 and higher

dimensional arrays is multiple value, although we will use the term array for

simplicity. An array 1s a collection of objects, all of which have the same
mode. An array is itself an object and has a mode. Array variables exist, and
may be declared and assigned values, just as with variables of any other mode.

&

A 1 dimensional array of integers has mode [] INT pronounced "row of

16

integer". A 2 dimensional arrsy of integers has mode [,] INT, pronounced "row
row of iInteger". A 3 dimensional array of integers has mode [,,] INT,
pronounced "row row row of integer'. In general the mode of an array is an
open square bracket, followed by a number of commas equal to the
d:!.mensionali’cy of the array minus 1, followed by a close square bracket
followed by the mode of the objects comprising the array. Objects of different
dimensions have different modes.

Declarations of array varlables are slightly dqifferent than
declarations of say inbeger varlsbles. The reason for this is that to declare
an integer varisble, specifying the mode of the object and the identifier is
enough. The ALGOL 68 compiler knows how much space reserve in memory for the
object of mode integer. For an array varisble, the situstion is different. The
compiler can only reserve enough space if told how much space to reserve, i.e.
how many elements the array has. To declare a boolean array varisble named rb,
which is to contain a 1 dimensional boolean array whose elements are numbered
1 to 10 one writes
[1:10] BOOL rb
The lower and upper bounds are written inside +the brackets, separsted by a
colon. The mode of the object contained in the varisble rb is [] BOXL, not
[1:10] BOOL, i.e. the bounds are not part of the mode.

Figure 2-10 shows several examples of declarations of array varisbles.
In all cases +the lower and upper bounds must be given. Each bound is an
integer constant, or an expression yielding an inbeger. Bounds may be
positive, negative or zero. In figure 2-10h +the size of the array rrb depends
upon the values of nl, n2, n3, and nl at the moment the declaration is
executed. 'I;he location whose address is rrb will contain enough space for (n2
—nl + 1) X (o4 — n3 + 1) booleans.

Iﬂf the word @ appears before the sub symbol, the size of the array

may be changed during execution of the program. Since the new size may be

17

larger than the old size, the compiler must provide a means whereby the array
can be aubtomaticslly moved +to a new loecgbion with enough room. As a
consequence flexible arrays, as they are called, are not very efficient. One

important use for them however is for variable length character strings.

2.2.3.1 Subscripting

The next step in learning how to use arragys and array variables
involves learning how to assign values +0 array elements. If ri is a 1
dimensional integer array varisble as declared .in.figure 2-10a, then ril1] is
the first element, ri[2] is the second element, and rilk] is the k—th element.
These are integer varlables and can be used as destinabions in assignment, or
they can be dereferenced and used in sources, or as operands, etc. Using only
1 element is called subscrigtigg. Using an element from an n dimensionsl srray
requires n subscripts. To set all 10 elements of the integer array ri to 0, we
can write
FOR 1 FROM 1 T0 10 DO ri[il:=0
To set =all 1000 elements of rrrb declared in figure 2-10c to TRUE, we can
write
FOR 4{FRM 1 1010 DO FORj FRM 110 1000 FOR k FROM 1 T0 10 DO
rrrbli, §,k]:= TRUE
FOR statements and arrays go together well. Of course individuel elements cen
be assigned values separately., If rc is declared as in figure 2-104,
re[6]:= "x"
assigns the character x to the character varisble rc[6]. The other elements of
the array are unchanged.

It 1s also possible to assign all the elements of an array at once, e.g.

[1:10] INT x,y; FOR 1 FROM 1 TO 10 DO x[i]:= 1;

yi=x

18

The latter assignment is equivalent to

FOR 1 FROM 1 TO 10 DO y[i]:= x[i]

2.2.3.2 Slicing

In addition to being able to manipulate the individual elements of an
array by subscripting, subarrays can also be manipulzted as a whole. Subarrays
are properly called _sg._i_gg§. Subscripting is a speclal case of slicing. Figure
2-11 shows the declaration of three 1 dimensional integer array variables, a,
b and ¢. First the array a is initialized, then b and c are set equal to sa.
This means that the location b, which has room for 10 integers, is filled with
10 integers whose values are identical %o the integers in location a, and

similarly for c. The assignment

b[7:10]:= a[7:10]

does exactly what you expect; namely, it is equivalent to
b[7]:= al7]; b[8]:= al81; b[9]:= al9]; b[10]:= al10].
The statement ci= b assigns the entire array b to ¢, i.e. it is equivalent to

FOR 1 FROM 1 TO 10 DO c[i]:= b[i]

A column of a matrix can he assigned to g vector as shown in figure
2-12. The reason this mskes sense is that the destination is a 1 dimensional
integer array variable, so the source must be an object whose mode is that of
a 1 dimensional integer array. Unsliced, "mat" is a 2 dimensional integer
array, but the value of the slice on the right hand side of the assignment is
just the whole 8th colum of mat, which is a 1 dimensional integer arrsy, so
the source is a 1 dimensional array. The assignment is equivalent to

FOR 1 FROM O T0 6 DO vec[i]:= mat[i,8]

19

We note here an important point about slices in assignments: the bounds in the
source and the bounds in the destination must match, even if not shown

explicity, as above.

2.2.4 Structures

Arrgys are used to group together objects of the same mode. Structures
are used bto group together objects whose modes may or may not be identical. A
structure is composed of 1 or more objects called fields each of which has an
identifier (more correctly, a tag) assoclated with it called the field
selector. Structures are themselves objects and have modes. The mode of a
structure depends wupon the mode of its fields and the names of its field
selectors. Two structure modes are the same, if and only if the modes and
selectors of +the fields are +the same. Structure variagbles exist and can be
declared, and used, for example, as sources and destinations in assignments,
An example of a structure variable declaration is:

STRUCT ([1:3] CHAR type, INT seats, BOOL jet, quiet) aircraft

This declares aircraft to be a variable capable of holding a structure whose
first field dig a 3 character string called type, whose second field i1s an
integer called seats, and whose +third and fourth fields are both booleans,
called jet and quiet, respectively.

To use any of the fields of a structure, e.g. as a source, destination,
or operand, one writes the field selector, followed by the word OUF, followed
by the name of the structured variable, e.g.
type OF aircraft := "TLT";
seats OF alircraft := 3503
Jet OF aireraft := TRUE;

quiet OF aireraft := FALSE

assign§ values to all U4 fields of the variable aircraft. The operation of

%

selecting one field of a s{’jc.gct}l;e is in fact called selecting.

The fields of a structure may be objects of any mode, including arrays,
as @above, and even other structures. An individual field may be changed
without affecting the wvalues of +the other fields. Some properties of

structures and arrays are compared in figure 2-13.

2.2.5 References

We have mentioned addresses of objects quite a few times so far, now it
is time to consider them more carefully. An identifier has been considered
synonymous with the address of the memory location into which an object of
some specific mode can be put. In ALGOL 68 addresses are also objects, and can
be handled as such. The mode of any address is "reference to" followed by the
mode of the object contained 1in its location. Thus +the address of a memory
location containing an integer has mode "reference to integer".

We can now consider assignment statements to 1Involve 2 objects, the
destination, which must be of mode "reference to something", and the source
which must be of mode " something”, where something can be any allowed mode.
In particular, something could even be of mode "reference to integer", ALGOL
68 allows "reference to integer" varisbles, which contain an object of mode
"peference to integer". Thus a "reference to integer" varisble contains as its
object the address of an integer, whercas an integer variable contains an
integer, not an sddress. Now of course, an address is just some bit pattern in
the computer’s memory and it might be +the same bit pattern as some integer,
but "reference to integer", ‘reference to boolean", and intéger are all 3
distinct modes and cannot be mixed.

On the CDC Cyber series computers, an integer requires 60 bits end an
address 18 bits. On the IBM 370's an integer is 32 bits, and an address is 2L

bits. Objects of mode integer and mode "“reference to integer' ‘usually have

21

different sizes, a general characteristic of different modes.
An example of a "reference to boolean" varisble declaration is
REF BOOL p
which declares p to be a variable which contains as its object the sddress of

a boolean. Furthermore, p itself is an object of mode "reference to reference

to boolean".

2.2,6 Mode declarastions

The data used by an ALGOL 68 program consists of a collection of
objects. Each object has a mode. Some modes are "built in" to ALGOL 68, e.g.

INT, BOOL, CHAR, and RBEAL, while other modes can be constructed using PROC,

REF, [], and STRUCT. To allow programmers to define their own modes and then
declare varigbles of these modes, ALGOL 68 provides a way to invent new modes
and 2d4d them to the language so they can he used just like the bullt in modes

INT, BOOL, CHAR, =and REAL. A mode 1is added to +the language by a mode

declarabtion. An exemple is:

MODE STRING = FLEX [1:0] CHAR

which declares STRING to be a mode. The bounds 1:0 imply that when a string
varisble 1s declared, initially no space 1s reserved for it, but because it is
flexible, a "string" of characters of any size can be assigned to a string
varigble. This new mode can now be usged just as if it were built—in. For
example,

STRING s

declares s to be a string variable in exactly the same way that

INT k

declares k to be an integer varisble., Since strings are so useful, +this
definition of string is in fact already built—~in, so the programmer need not

decl aré it herself.

22

Figure 2-14 shows several examples of mode declerations and figure 2-15
shows some declarations of variables using these modes. Varlables of any mode
may be Initialized at the time of their declaration by following the name with
a becomes symbol (:=) and an expression yielding an object of the required
mode. Arrays and structures may a2lso be initialized by listing their elements
or fields inside parentheses. It is possible to partially initialize a newly
declared object by writing _§I_€}_E in place of any (or all) elements or fields.
The value of SKIP is undefined, and is only used when that element or field
will later acquire s value by assignment.

The declaration of VECIOR in figure 2-1 causes x in figure 2-15 to
become a 1 dimensional real array variasble. Since n is 3 at the time x is
declared (the value of n at the time the mode VECTOR 1is declared is
immaterial) x has 3 elements. These arve initialized by the row display (2.0,
3.0, 4.0) in figure 2-15, and cause assignment of values to the elements of
the vector x just as if we had written
x[1]:= 2.05 x[2]:= 3.05 x[3]:= 4.0
The variable xx is 2 real 3X3 mabrix variable, with mode row row of real. It
is initialized as shown, where (1.0,2.0,3.0) is the first row, i.e. elements
xxl1,1], xx[1,2], and xx[1,3]; (2.0,3.0,4.0) is the second row, i.e. elements
xx[2,1], xx[2,2], and xx[2,3], and (3.0,4.0,5.0) is the third row.

The declaration of rat demonstrates the use of a structure displey to

initislize ‘“numerstor OF rat" to 2 and "denominator OF rat" to 7. The
declaration of John illustrates another structure display. Since objects of
mode PERSON have 5 fields, the structure display also needs 5 fields, each of
the proper mode. For +he declaration of Jjohn to be correct, hill and mary
would have to be declared as PERSONs somewhere in the program. The declaration
of Jjones shows how a structure one of whose fields is an array can be
initialized. The expression

(nancy, peter)

23

is itself a vow display, and thus can be used to initialize an array such as
[1:2] PERSON child.

The declaratioh of Jjones raises an important point. Suppose it 1is
desired to print out the name of child [1] of the varisble jones. The
expression
child QE Jjones
is a selection from a structured value, and is itself an array varisble. As a
consequence this array varisble can be subscripted. However
child OF jones[1] (wrong)
is wrong becauses subscripting binds more tightly than Q_E The expression
child OF jones [1] would be correct if jones were an array of structures one
of whose fields were child. In that case, jones[1] would be the entire first
element (a structure) and the action of selection could be performed on that
structure. The correct way to print the name of the first child (nancy) is
print(neme OF (child OF jones)[1])

The parentheses force "child OF jones" to be subscripted. Since child OF jones
is an array, that is fine. The expression

(child OF jones)[1]

is an object of mode PERSON, and can be selected from using the field
selectors name, father, mother, age, and smokes.

It is instructive to compsre the mode BRIDGEHAND to the mode FAMILY,
North is initialized to a row display conbtaining 13 elements, each of which is
a 2 character structure display. Suppose we wish to print +the rank of the
first card. The expression
north[1]
represents a structure with 2 fields, rank and sult. We can select from it, so
print(rank OF north[1])
is correct. Here no extra set of parentheses is needed because subscripbing

binds more tightly than OF, and in this case that is what is needed. Extra

2l

parentheses are always allowed however, so if one is unsure +they can be used
to avoid difficulty.

The variables w, reg, cc, and t are not initialized. The mode
INSTRUCTION is a mode all of whose fields are of the same mode, thus it could
have been declared as an array

MODE INSTRUCTION = [1:4] INT

instead of as a structure but to use the first element we must write

add[1]

instead of

opcode OF add

Which choice is made depends upon which form +the programmer finds most
convenient for the problem at hand. ALGOL 68 is very flexible, and often
provides several ways of expressing equivalent ideas.

The declaration of twa520 illustrates the use of _E:‘:_IEE to initialize
some fields of the structure, but not all of them. In particular 1 field,
passenger, is not dinitiglized at the time the variable is declared. When the
name and phone of passenger[1] are known, they can be assigned by
neme OF (passenger OF twa520)[1] := "tarzan";
phone OF (passenger OF twa520)[1] := 91l 723 L567
What may appear complicabed at first, will later be seen to be straightforward
and simple. The key to writing expressions dinvolving both selecting and
slicing is to carefully note the mode of each expression. The variable twa520
is a structure so it must be selected from, not subscripted. Clearly,
passenger is the field selector desired, not number, pilot, movie, or nonstop.
The expression
(passenger OF twa520)

is an array, so we must subscript it, not select from it. We want the first

passenger, so we write

(passenger OF twa520)[1]

25

Since (passenger _QF__ twa520) is an array of sbtructures, subscripting it gives a
structure to be selected from, e.g.

neme OF (passenger OF twa520)[1]

which can then be used as a destination, source, operand, etc. Anyone who
st1ll thinks this un;;cessarily complicabed should +try expressing the same
ideas in FORTRAN, AILGOL 60, or BASIC.

The mode TREE is Interesting. It has 3 fields, an integer and 2
addresses, In terms of allocating space for @_ varigbles, it hardly matters
that the addresses are addresses of other objects of mode Em_lﬁ_ Binary trees
are a very useful daba type in many areas of computer science, so modes such
as this sare very valuagble. A mode which is defined in terms of itself is

called a recursive mode. Une must exercise some care when declaring recursive

modes., For example

MODE BUSH = STRUCT (INT val, BUSH left, right) (wrong)

is wrong. Suppose +that an integer requires 1 word of memory and a §y§§
requires N words of mewory. Then a declarstion like
_]?_I_J_S_Ij blueberry
would require enough space to be reserved in the computer's memory for one
object of mode INT (1 word) and 2 objects of mode BUSH (2N words). This is a
total of 2N+1 word for each object of made BUSH. But this contradicts our
statement that a _]§_11§I:I required only N words. The definition is impossible,
since a BUSH can hardly contain an INT plus 2 BUSHes. The mode TREE presents
no such problem since 1t only claims space for an INT and 2 addresses, not 2
objects of mode TREE. As you probably expect by now, ALGOL 68 allows
essentially a2l1 modes that are reasonable and prohibits those that are not,
but the formel test to see if a given mode is allowed is unfortunately too
complex to be given here. Interested readers may consult van Wijngaarden
(1968).

ﬁlt is importent not to lose sight of the fact that programmer created

26

modes like PERSON are used just as thought they were built in (see figure 2-15).
The ability of a programmer to define modes suitable for her application is
the most powerful feature of ALGOL 68. In a later section you will see how to
define operators to perform actions on programmer defined modes. For example,
in a program to play bridge, a monadic operator to count the number of points
in an object of mode BRIDGEHAND might be useful.

Mode declarations can be used to define synonyms for modes. Thus users
who like writing INTEGER instead of INT cen declare them to be equivalent by

MODE INTEGER = INT.

2.3 Units

We have used the term “expression" quite often so far without precisely
defining what it is. Now we will examine the concept in detail. The ALGOL 68
term for the intuitive idea of '“expression" is unit, which is short for
unitary clause., A unit, when evaluated, ylelds a value which is an object of
some specific mode. A unit which when evaluated yields an integer is called an
integer unit. A unit which evaluates to a boolean is called a boolean units a
unit that evaluates to the address of a character 1s called a reference to
character unit, ete.

AIGOL 68 requires certain kinds of units in certain places.,for
example, a subscript must be an inbeger unit. An integer wnit is also needed
after FROM, TO, and BY in a FOR statement. The condition following the IF in a
conditional stabement obviously must be a boolean, not an integer, The
destination of an integer assignment must be +the address of an inbeger
location, i.e. a "reference to integer" unit.

There are many forms a unit can take. We will examine 9 of them. As an
example e will show how the form under discussion is used as the source of an

assigmment, but of course units are wused in other places as well. In the

27

examples 1 will be assumed to be an integer variable.

2.3.1 Denotations

The simplest form of a unit is a denotation, (called a constant in some
programming langusges). An example of the constant 3 used as a unit is
i:=3
The expressions on the right hand side of the := symbol in figure 2-15 are all
denotations (although other units are also allowed) and therefore units.
Constants for structure and row modes are also allowed, and consist of a list
of constents. There 1is no official word for such constants, but we will use
the term denotation to include them, although in a strict sense they are not
denotations. A unit of a structure or row mode is called a display. Figure

2-16 shows the declarations used by figures 2-17 to 2-25.

2.3.2 Varlables

The next simplest kind of unit is a variable. If j is declared by

INT

then Jj is an address of an integer, and therefore has mode reference to
integer. One might think that

ii= J

would be forbidden, since the source of an assignment %o an integer varisble
must be an integer unit, not a "reference to integer" unit. Bubt our old friend
dereferencing comes to +the rescue and dereferences Jj, burning it into an
integer. Dereferencing, as you will recall, takes an address as inpub, and
produces the object at the address as the result. If the object is a unit of
mode something, then the address has mode "reference to something”, so

derefer;zncing turns an object of mode "reference to something" into an object

28

of mode "something". That is why it is called dJereferencing: it removes a
reference.

Dereferencing is an example of a coercion. A coercion is an action that
replaces an object of one mode (usually +the wrong mode) with a different
object, hopefully of the right mode. Any object of mode "reference to
something" can be dereferenced when it appears as the source in an assignment,
or as an operand in a formula etc.

There is one other coercion that is worth mentioning (amd 4 others that

are not worth mentioning) called deproceduring. Deproceduring starbs with a

procedure whose mode 1s procedure something, and produces as its result an
object of mode something. For exemple if r is a real variable, then

r:= random

(where random has mode FPROC REAL) does not appear to be proper, since the
source should be of mode REAL not mode PROC REAL. Deproceduring, like
dereferencing happens automstically when needed. Coerclons are a rather subtle
idea and have more +to do with the syntax of a program +than with what it does.
If you do not see why i:= J or ri= random would be incorrect without
coercions, do mnot worry sabout it. It's really not very important. The
discussion of coercions was included only because some clever resders may
notice the apparent inconsistency which coercions solve. People who like this
sort of thing will probably like the other 4 coercions as well. Figure 2-18

shows examples of varisbles of various modes.

2.3.3 Slices

The third form of a unlt is a slice, which includes subscrpted
expressions such as
(child OF jones)[1].

A slice has 2 parts, an array to be sliced, and the index or indicés, enclosed

29

within square brackets, The expression gbove is considered to be a slice
rather than a selection because slicing is the last operation performed, i.e.
child OF jones is an array and it is sliced. If len is a 1 dimensional integer
array, then

i:= len[1]

is an example of a slice being used as a unit., More examples are shown in

figure 2-19.

2.3.4 Selections

The fourth form of a wunit is a selection. Like a slice, a selection
also has 2 parts, separated by OF. These parts are the field selector and the
gstructure being selected from. The field selector must be an Identifier and
cannot be computed (because it is not an object). The structure being selected
frdm mzy be the result of evaluating an expression. An example of a selection
being used as a unit is
i:= age QE Jjohn

where john is declared in figure 2-15, More examples are shown in figure 2-20.

2.3.5 Procedure calls

The fifth kind of unit is a procedure call. A procedure call causes a
procedure to be executed and (optionally) return a result. If the result is an
integer unit, the procedure call can be used anywhere an integer unit is
allowed. If the call yilelds a reference to boolean, the call can be used
wherever a reference to boolean unit is required, or even where a boolean unit

is required, because the result can be dereferenced.

A call has 2 parts, the procedure 4to be called, and the parameter list.

The mode of the result of a procedure call can be found by looking at the mode

30

of the procedure called. Procedures with parameters always have modes of the
form

PROC (mode of parameter 1, mode of parameter 2, etc) mode of result

or

PROC (mode of parameter 1, mode of perameter 2, etc) VOID

Calls of procedures of the second form cannot be wused as units 1in sources,
subscripts ete. Calls of procedures of the first form may be used anywhere a
unit of "mode of result" is needed. As an example, if count is a procedure of

mode PROC (INT) INT, i.e. it tekes 1 integer a.s parameter and delivers an

integer as result, then
+= count(Jj)
illustrates a procedure czll being used as an integer unit.

A procedure call i1s very similar to a deprocedured variable. The only
difference ls that procedure calls always have parameters, and deproceduring
occurs only for procedures with no parameters. This distinction is needed to
avoid certaln ambiguities which can zresult if the result of a procedure is
another procedure.

A procedure is the ALGOL 68 method of implementing the idea of a
function in clagsical mathematics. A function in classical mathematics has O
or more parameters and delivers a result., The ALGOL 68 concept of a procedure
is more general, since a procedure may have no parameters and yield VOID
instead of a value.

BExamples of calls used as units cen be found in figure 2-21.

2.3.6 Formulas

The sixth kind of unit is a formula. A formula consists of an operator
and its opsrands(s). Monadic operators have only 1 operand, for example, ABS i

has the value of the absolute value of i, Dyadic operators have 2 operands,

31

for example j+k is a formuls in which +the operator + has 2 operands. ALGOL 68
has well over 100 built—in operators, and the programmer can define new ones
just as she can define new modes. An operand in a formula may itself be a
formila, for example the formula 2Xn, may be used as the right operand of + to
yield another formula, e.g. j+2Xn. Denotabtions, varisbles, slices, selections,
and procedure calls (among other things) may also be used as operands,
allowing very general formulas to be expressed. An example of a formula used
as a unilt is

i:= j+k

More examples of formulas as units are shown in figure 2-22.

2.3.7 Assignments
The seventh kind of unit is an assignment. An assignment can stand by

itself as a statement, but it can also be used as a unit. When used as a unit,
the value of an assignment is the value of 1ts destination, not its source. In
ji= k the value of the assigmment is Jj, which is of mode "reference to
integer".Thus j:= k can be used anywhere a “reference to integer" unit needed,
or because it can be dereferenced, it can also be used anywhere an integer
unit is needed. Consider the assignment

ii= Ji=k

Here 1 is +the destination and j:= k is the source. As 2 consequence of
allowing assignments as units, ALGOL 68 gets multiple assignment statements as
an extra added attraction, for free. The above stabtement is equivalent to the
2 assignments

Je=ks i:=

but is easler to write. The reason that k is first assigned to j, then j is
assigned to i, is that j:= k is the source of the assignment to 1. Before an

assignment can be performed, the source and destination of the assigmment must

32

be evaluated, and as a "byproduct" of evaluating the source j:= k, k is

assigned to j. See figure 2-23 for more examples of assigmments as units.

2.3.8 Closed clauses

The elghth kind of unit is a closed clause. A serial clause consisbts of

a series of zero or more statements and/or declarations followed by a unit. A

serial clause has the mode and value of its final unit. A closed clause is a

serial clause enclosed by either BEGIN END or by parentheses. A closed clause
has a mode and a value, namely the mode and value of the unit at the end of
its serial clause. For exsmple

(read(3)s J:= J+3; IF § <O THEN j:= O FI; j+1)

is a closed clause, hence a unit. It's serial clause ends with the formula
J+1, so the value of the closed clause 1s j+1, which is an integer unit. This
closed clanse may be used anywhere an integer unit may be used (even if it
seems somewhat strange at first). For eXample,

i:= (read(J)s Jji= j+3; IF § < O THEN j:= O FI; j+1)

1s a perfectly valid assignment, which may elther stand alone as a statement,
or be used as a unit. The gbove assigmment is evaluated in 5 steps

1. J is read in

2. j 1s increased by 3

3., if J is negative it is set to O

L, j+1 is computed (but j is not changed)

5. the integer computed in step 4 is stored in i

It should be noted that a seriel clause need not have any statements or

declarations, therefore a unit all by ibself is also a serial clause. A

£

33

unit in parentheses is a serial clause in parentheses, so it is a closed
clause hence a unit. Therefore unnecessary parentheses around units are
allowed, and are somebimes useful for improving readebility. Figure 2-41
illustrates the relation between a unit, a serisl clause, and a closed clause.

Examples of closed clauses are shown in figure 2-2L.,

2.3.9 Conditional clauses

The ninth kind of unit is a conditional clause. A conditional clause
consists of an IF part, a THEN part, and an ELSE part. The THEN and ELSE parts

consist of the words THEN and ELSE respectively, followed in each case by a

serial clause. The two serial clauses must either be of the same mode, or be
coerceable to the same mode. The mode of a conditional clause i1s the mode of
its serial clauses, or if they have different modes, the mode +to which they
may be both coerced. For example,
ir= IF i < j THEN k ELSE read(n); n+1 FI
is a valid assigmment. If i 1s less than j, k is assigned to i, otherwise n is
read in and n+1 1s assigned to i. The formula n+1 at the end of the ELSE part
does not change the value of n of course, anymore than i:= n+1 would change n.
The restriction +that both serial clauses must be or be coercesble to
the same mode is needed to avoid nonsensical assignments. Consider the meaning
of

1:= IF k<O THEN L4 ELSE TRUE FI (wrong)

If ¥ is less than O, i becomes 4. If k is greater than or equal to 0, the
statement requires assigning a boolean value, TRUE, to an integer variable,
which is impossible. On the other hand,

i:= IF k<O THEN L4 ELSE i FI

is fine. The denotation 4 is of mode integer, while the object i is of mode
"yeference to integer", but it can be dereferenced to produce an object of

mode integer, so both serial clauses can be coerced to mode integer.

34

A conditional clause and & conditional statement are really slightly
different forms of the same beast. The difference is that while a conditional
clause glways has a value, a conditional statement stands alone, so it does
not need a value. The ELSE part of a conditional clause is not strictly
required, but it hardly mskes much sense to write
ir=TIF i) THEN k FI
since if j>1 the result will be undefined.

The reason that f‘_{ is required to terminate conditional clauses and
statements can now be given. If no FI were required, then
IF i=0 THEN IF j=O THEN j:= j+1 ELSE i:= i+1
would be ambiguous. It might mean

IF 1=0

THEN IF j=O THEN j:= j+1 ELSE i:= 1+1 FI

FI

or 1t might mean

IF i=0

THEN IF j=O THEN j:= j+1 FI

ELSE i:= i1
FI
which have very different meanings. In the first interpretation, if 1 is not
zero the statement is finished and mnothing happens., In the second
interpretation, if i is not zero then it is increased by 1. This is the famous
"dangling else" problem. Some programming languages solve it by not permitting
IF statements in then parts. Others solve it by arbitrarily declaring one
interpretation or the other to be correct. FORTRAN solves +the problem by not
allowing else parts at all. That certainly awvoids the awmbiguity, but
unfortunately »i't also makes programming very difficult. The ALGOL 68 solution
of requiring conditional statements and to end in FI is symmetric, elegant,
and always unambiguous.

Exemples of conditionel clauses are shown in figure 2-25,

35

2.4 Where units and serial clauses are allowed

In the preceeding sections, 10 different kinds of expressions have been
introduced: denotations, variables, slices, selections, procedure calls,
formulas, assignments, closed clauses, conditional clauses and serial clauses.
ALGOL 68 programs are built from sbatements that use these and a few
relatively unimportant other kinds of expressions. Not every kind of
expression can be used everywhere, however, since ambiguities would result if
this were allowed. For example, assignments are not a.llowed as operands of
formuilas. Consider what would happen to the assignment
ir= j+
if j, which is an operand of +, were replaced by bthe assigoment ki= 1. We
would have
i:= k= 11
which is allowed but is not what was Intended. It sets k to 1+1, i.e. to 2,
then sets 1 to k, also 2. If instead of writing the assignment k:= 1 as the
left operand of + we write the closed clause (k:= 1) we get
ir= (k= 1) + 1.

The above first sets k to 1, and then 1 to 2, which is quite different than
the previous expression. To avoid this sort of ambiguity, ALGOL 68 only allows
constructions in positions where no confusion can arise.

Figure 2-26 shows a number of syntactic positions within programs where
expressions are required. For each syntactic position the kinds of

constructions that are allowed are shown at the right. Thus after E‘_ or WHILE

a boolean serial clause, or any kind of boolean unit (or something coerceable
to a boolean unit) will suffice. We emphasize that a unit yielding a
"reference to boolean" object, e.g. a variable such as g, is quite acceptable

in a position requiring a boolean unit, since it can be dereferenced, yielding

36

a boolean. An expression which can be coerced to +the proper mode is always
acceptable.

A serigl clause consists of zero or more statements followed by an
unit, so every unit is glso a serial clause, although serial clauses are in
general not units. In other words, "seriagl clause" encompasses more than
"unit" so it is redundant to list both of them together. Whenever a serial
clause is allowed, a unit is certainly allowed. Nevertheless unit 1s listed

too as a reminder, where appropriste.

2.5 Procedures

The most powerful technique for writing a large or complicated program
is breagking it up into a number of smaller, and conceptuglly simpler pieces,
called procedures. Some people prefer the term subroutine instead of
procedure; both are widely used. They will be used interchangeably in this
book, in accordance with common usage.

A procedure is used to perform some logical task, for example computing
the value of sin or arctan or the cube root of some input value, called a

parsmeter or argument. If the procedure has only 1 result, <the result can be

returned as the value of the procedure. Alternately, the procedure can change
one of its parameters, e.g. set a variable to the answer.

In ALGOL 68, procedures are objects and have modes and values just as
other objects. The value of a procedure 1is & plece of program that performs
some computation and possibly returns some value, An example of & procedure
variable declaration initialized to a procedure that determines if its second
parameter is 1 larger than its first parameter is
PROC (INT,INT) BOOL adjacent:= (INT i,INT j) BOOL: i+1 = j
Notice that this declaration has the same form as all the other declarations.

&

First is the mode, in this case PROC(INT,INT) BOOL because the procedure has 2

37

integers as parameters and delivers a boolean as result (meaning a call to
this procedure may be used anywhere a boolean unit is required). Following the
mode is (as usual in all declarations) the identifier which identifies the
procedure. This is then followed by a becomes symbol and the initial value of
the procedure. Compare the structure of the sbove procedure declaration to the
integer declaration

INT ji=1 + 1

The right hand side of & becomes symbol in an inbteger dJdeclaration is an
integer unit. ILogically +the right heand side of a becomes symbol 1in a

PROC(INT, INT) BOOL declaration should be a PROC(INT,INT) BOOL unit, which it

is. We will now describe what a unlt for a procedure is.
Units for procedures begin with a 1list of the modes of the parameters,

\
each of which is followed by an identifier called a formal parameter. The

entire 1list of formel parameters is enclosed in parentheses and followed by
the mode of the procedure’s result. This is followed by & colon. The colon is
followed by a unit of the mode of the result. The value of this wnit is the
value of the procedure, so naturally it must be the same mode as the result.
In the sbove procedure declaration, j = 1+1 is a formula, hence a unit, which
has the value TRUE if J and 1+1 are equal and FAISE if J and i+ are unequal.
Thus j = i+1 is a boolean unit, which it should be (since the mode of the
procedure’s result is boolean). Note that := is the becomes symbol, while = is
the equality symbol.

An example of a procedure call to adjacent i1s
read(n); read(k); IF adjacent(n,k) THEN print(“ok") FI
which reads in 2 integers and prints ok if the second integer is equal to the
first integer plus one. The call adjacent(n,k) produces a boolean, so it can
be used after IF, where any boolean unit or serial clause may be placed.

The call adjacent(n,k) tests to see if n+1 = k. It does not test to see

i

if k+1 = n. The reason has to do with the way actual parameters are accessed

38

by proceduras. At the time a procedure is called, space is reserved 1n the
computer?s memory for the parameters. The number and mode of the parameters
can be determined from the mode of the procedure. Thus a

PROC(INT, INT) BOOL

has 2 integers as parameters, whereas a

PROC([] BOOL,CHAR,REF INT) INT

has a 1 diniensione.l boolean array, a character, and the address of an integer
as its 3 parameters. At the time of the call, copies of the actual parameters
are made and put Into the space reserved for them. The first actual parametér
can be accessed by using +the identifier of the first formal parameter. The
second actual parameter can be accessed by using the identifier of the second
formal parameter, and so forth. The order in which +the actual parameters are
listed 1s thus very important.

A very lmportant point is that parameters are objects not varisbles. In
the declaration
INT 1
i is an integer variable, that is 1 itself is an address of an integer, not an
integer. Because it is an address of an integer, i.e. i has mode "reference to
integer", 1t can be used as a destination in an assignment, however, the
declaration
PROC(INT) INT pi:= (INT i) INT : i:= i+ (wrong)
1s incorrect because here 1 is an integer, not an integer variable. Suppose pl
is called by pi(n). At the time of the call the following things happen
(conceptually a clever compiler may be sble to do soms optimization). First n,
which ig the address of an integer, is dereferenced ylelding an integer. A
copy of this integer 1s then placed in the space reserved for it by procedure
p1. The identifier i identifies the integer itself, and not its address. As a
consequence, the object 1 has mode integer and not mode “reference to

integer", so it camnot be changed. By declaring a formal parameter to be of a

39

mode not starting with "reference +to", one can protect the corresponding

actual parameter from being accidently changed. This helps catch programming
errors.
Of course if it is desired to change i, we can write

PROC(REF INT) INT p2:= (REF INT i) INT : i:= i+1

A call of p2(n) will cause the address of n to be copied into the space
reserved for i. No dereferencing heppens In +this case because the formal
parameter is of mode "reference to integer" and the actual parameter 1s also
of mode "reference to integer". Thus a copy of the address of n is made, not a
copy of the integer of which n is the address. When p2 is executed the formuls
i+1 is evaluated by fetching i1, i.e. the copy of the address of n. This ob;ject
is then dereferenced because + requires integers not addresses, as operands.
The process of dereferencing i fetches the object whose address is i, namely
the contents of n. The addition is performed and the result is stored back
into n. The result of p2(n) is n:= n+1l.

Three facts gbout parsmeters will be repeated for emphasis:

1. An actual parameter (after coercion) must be of the same mode as the

corresponding formal parameter.

2. A formal parameter has the mode appearing in front of I1it. A formal

parameter written as INT i really is an integer, not a "reference to integer".

3. A copy 1s made of the actual parameter, after coercilon. Accesses by the

procedure to the formal parameter are to this copy, not the original.

The examples given above are all very simple. A more common situation

1s a procedure whose unit (i.e. its body) is a closed clause. Figure 2-27

shows a complete program that reads in 20 integers comprising 2 vectors of

length 10 and prints their inner product, i.e.

al1] x b[1] + a[2] x v[2] + a[3] X b[3] + ... + a[10] X b[10]

We note several things about this program. Filrst, the formal parameters
y and 2z are written after the same mode declarer. This is an alternate form

which is easier to write than

([1 o ¥,[] T z).

Second, the modes of y and z do not have upper and lower bhounds specified.
Modes never have bounds, although of course variable declarations such as a
and b do have bounds. Third, the integer unit comprising the procedure body is
a closed clause, whose serial clause ends in a varieble, answer. The mode of
answer is reference to integer, but is dereferenced to give an integer.

The declaration of a procedure 1s somewhat wordy, since the wmodes of
the formal parameters are listed twice. If there are many parameters, this can
be a nuisance. Thus ALGOL 68 provides another form for procedure declarations,
namely the left hand side of the := is replaced by the word ;PR_QE and the
procedure name, and the := is changed into an = to indicate the alternate form
is being used. Strictly spegking, an object declared by this alternative is
not a procedure varisble, i.e. it does not have mode "reference to procedure
something", but is an object of mode "procedure something". For our purposes
the 2 forms are close enough. Figure 2-28 shows innerproduct in this alternate
form. We will use this simplified form throughout the book.

We now consider a final item. A procedure which returns no explicit
value has mode VOID for its result. A call of such a procedure cannot be used

as a source, or a destination, or an operand, or anywhere an object of some

mode 1s needed, however, it can be used where a statement is needed such as in

a serial clause.

L

2.6 Operators

Congider the program of figure 2-29. It declares a mode V_@gﬂ_li, and a
procedure to add 2 vectors, and then uses those definitions +to add L4 vectors
and print the result. The statement
v5:= vectoradd(vectoradd(vectoradd(vi,v2),v3),vh)
although ghastly to look at is quite correct, since an actual parameter may be
any kind of unit, (see figure 2-25) and a procedure call, such as
vectoradd(v1,v2) is certainly a unit. Hence vectoradd(vi,v2) mey be used as an
actual parameter,

The difficulty with the above expression 1is that although perfectly
acceptable to +the computer, we mere humans are accustomed to a notation in
which the operator comes between the operands, not in front of them. ALGOL 68
comes +to the rescue once more by allowing us +to define new operators. A
formula in ALGOL 68 is really just a procedure call in a different notation.

Consider the operator + in the integer formula
1+ 2
as compared to the operator + in the real formula
1.5 + 2.5
They are actually different operators with the same symbol, +. The first
operator takes 2 integers and performs an integer additlon, yielding an
integer. The second operator adds 2 reals, ylelding another real. OUn almost
all computers different hardware instructions are provided for performing
integer and real arithmetic, but +this causes no problem for the ALGOL 68
compiler, which merely examines the modes of the operands to determine which
operator is intended.

There are 2 kinds of operators, monadic, which take 1 operand (as in

@_ i)‘ and dyadic, which +take 2 operands (as in i~j). The definition of a

L2

monadic operator specifies the mode of its operand and the mode of its result.
The definition of a dyadic operator specifies the modes of Dboth of its
operands, and the mode of its result. When the ALGOL 68 compiler finds an
operator it must iInspect its operstor definition +table to find out which
definition is appropriate for that operator's operands. ‘In this way + can be
defined to signify one operation for integer operands, another operstion for
real operands, a different operation for 1 dimensional integer array operands,
and still another operation for 2 dimensional boolean arrays. In fact, the
programmer may define as many other operations on as many other distinct pairs
of modes as she wishes. Note that + defined +to operste on an _Qlﬂ_‘g as left .
operand and a REAL as right operand is distinct from + defined to operate on a
REAL as left operand and a INT as right operand. ’Both of these operators are
again different from + defined to operate on 2 _I_N__T_s or 2 E_E:A_L_s. If 1 1s an _I_I_TP__
varigble and x a REAL variable, the L formulas
1+7, 1+x, x+i, x4x
all wuse distinct buillt—~in operator definitions. As 1if this generality and
power were not enough, AILGOL 68 also allows the programmer to chenge any of
the buillt In definitions. Thus a programmer who desired could redefine + to
mean addition on integers and subtraction on reals.

Figure 2-30 ghows figure 2-29 redone using an operator instead of a
procedure. An operator definition consists of the word 0P, followed by the
operator (which may be a BOLDFACE word), followed by an equals sign. The text
to the right of the equals sign is exactly the same as that for a procedure
definition.

As another example, below is an operator definition which declares ‘l/ to
be the same as X for integers, so i‘{/j means the same as ixj (although ‘{/ is
still undefined for reals).

0P ¥ = (int 1,3) int : iX]

43

In formulas like
ity X k
we know that the multiplication 1is operformed before the addition because
multiplication has a higher priority than addition. ALGOL 68 allows the
priority of dyadic operators to be changed, and the priority of new dysdie
operators to be defined. Dyadic operators have priority between 1 and 9,
inclusive. Monadic operators have priority 10, which implies that
-1 A2
(where A means exponentiation) has the meaning
(=1) A 2 and not — (1 A 2)

The following opriority declarations have the effect of causing addition to
bind more tightly than multiplication

PRIORITY + =7, X = 6

Thus after these declarations, 2+3x4 evaluates as (2+3)xL4t which is 20.

A very large number of operator definitions in AIGOL 68 are built—in.
Figure 2-31 1lists a few of the more important ones.

There are 2 quasi operators IWB and UPB that are also useful. Both are
monadic and both operate on all 1 dimensional arrays. The value of E_@ i1 is
the lower bound of i1, and the value of y__Pl_i i1 is the upper bound of i1. These
are particularly useful in procedures and operators that have a 1 dimensional
array as parameter. They allow the procedure to determine the bounds of the
array, so that every element of the array may be accessed. Figure 2-32
illustrates their use. First n is read in, and then i1 is declared to have n
elements. The wmonadic operator BIGGEST needs to know how many elements are
contained in its parameter so it will be able to test all of them to find the
biggest one. The value of +the operator is the wvalue of the largest element.
These operators are quasi operators because they are automatically defined on
all 1 dimensional array modes. Normal operators have to be defined separately

&

for each mode. For example

Ly

[4:9] STRUCT (INT a,b) s

is an array of 6 structures and we can write LWB s, which has the value L,

2.7 Serial, collateral, and parallel actions

In general, statements are executed one after another in +the order
written. The semicolon can be regarded as a go—on operator, which causes
execution to continue. In some situations, however, there is no inherent
sequencing. For example there is no reason for the first unit in a row display
to be evaluated before the last one. Nor is there any reason why the left
overand of a dyadic operator should be evalua‘béd before the right operand. In
some other programming languages units are evaluated left to right but nothing
in classical mathematics suggests any precedent for this.

In formulating ALGOL 68, the designers intentionally specified that the
order of evaluating certain things, such as +the left and right operands of an
operator, be undefined. This was done for three reasons. First, it discourages
programmers from meking use of the order, since they do not know what it is,
and in fact it need not be consistent. Programs which execute differently
depending on the order in which +things are evaluated are bad programs. They
are difficult to understand and are not likely to give the same result on all
computers. An example of a program whose result depends wupon the order of
evaluation of operands is
BEGIN INT i,J5 print((read(i); 1) — (read(j); Jj) END
If the input data is 1 followed by 2, then -1 will be printed if the left
operand of the — operator is evaluated first and +1 if +the right operator is
evaluated first.

The second reason the order of evaluastion is intentionally undefined is
to give.the ALGOL 68 compiler writer the freedom to do evaluations in the most

efficient order. In some situations doing something in one order may be

5

preferable to doing them in another order, and if the compiler writer were
forced to do everything strictly 1left to right then he could not take
advantage of these situations to produce faster machine code. For example,
consider the serisl clause

INT i,3,ks read(1); J:= =13 ki= p(1) + p(J)

On a computer with one fast register used for arithmetic, after evalusting j:=
-1 +the register contains the value of j. It might be more efficient to
evaluate the right operand of + before the left, since J is already in the
fast register. However, 1f the 1language had specified +that operands are
evaluated left to right, the compiler writer would have no choice but to
evaluate the procedure call p(i) first, even though it is less efficient.

The +third reason for having +the order of evaluation of certain
constructions undefined is that some computers have more than 1 processor, and
are thus capable of performing more than 1 computation gt a given time. The
evaluation of i~j 1is a trivial case, since the only action required +to
evaluate each operand is dereferencing, bubt it i1s quite possible +that each
operand of some dyadic operator could be =& closed clause 100 pages long. Or
more importantly a row display with 64 units might consist of 64 closed
clauses, each 10 pages long. If such a program were run on a computer with 64
processors, 1t would clearly be terribly inefficient to require +that closed
clause n be completely evaluated before the evaluation of closed clause n+1
beging. Obviously it would be much better to give each processor its own
closed clause to evaluate, so they could be evaluated in parallel.

Actions that have no specified ordering in +time are said to be

evaluated collaterslly. A collateral clause is g list of units separated by

commas, and enclosed by BEGIN END or parentheses. The order in which the units
of a collateral clause are evaluated 1s expressly undefined. Figure 2-23 lists
some evaluations that are performed collaterally. If the elements of the

i

collateral clause are all statements, i.e. void units, the collateral clause

may be used in any position in which a statement is allowed. Thus

BEGIN i:=1, j:= 2, ki= 3 END

is a void collateral clause and can be used just 1like an ordinary statement,
just as though the commas were semicolons.

Consider the following +two programs, the first of which contains a
closed clause and the second of which contains a collateral clause.

BEGIN INT i:= 03 (i:= i+13 i:= i+1); print(i) END

BEGIN INT i:= O3 (i:= 1+1, i:= i+1); print(1) END

The only difference is that in the first clause the assignment statements are
separated by a semicolon and in the second one they are separated by a comma,
only one tiny spot of ink difference in appearance, but a very large
difference in meaning as we shall see.

The first program prints 2 just as you expect, but the second requires
closer scrutiny. Since the order of evaluation of the units 1in a collateral
clause is undefined. The first one might be completed first, then the second
one begun, giving the same result as the closed clause. However, on a computer
with 2 processors, the sequence of actions might be as follows |
1. Processor 1 fetches 1 into a register local to itself
2. Processor 2 fetches i into a register local to itself
3. Processor 1 adds 1 to its register containing i
L. Processor 2 adds 1 to its register containing i
5. Processor 1 stores its register back into memory location i
6. Processor 2 stores its register back into memory location i
The result is that i becomes 1, into i, instead of 2. As a consequence, the
second program may print 2 or it may print 1. Random numbers are very useful
in computer science, but this is not a recommended technique for printing them.
Note that if the second unit were evaluated before the first, the result would
have beein 2. The difficulty only arises when the units actually are evaluated

collaterally. Note that

k7

BEGIN INT i:= 0,J:= 03 (i:= 1#1,j:= j+1); print(i); print(j) END

produces identical results independent of the order of evaluation of the units.
The moral of the story is: collateral clauses are an Important programming
technique but some care is required in their use.

There are some applications in which 2 processors rumning in parallel
must cooperate with each other. For example, a computer with 2 processors
might use one processor to compute values of some function and store them in
an ares of memory. The other processor might be removing these values and
printing them. These +two activities must be synchronized to avoid having the
first processor continue generating values when there is no room left to store
them. Similarly the second processor must stop running when the memory is
temporarily empty and wait for the next value to be computed and made
available in the memory. AIGOL 68 provides a mechanism for synchronizing
collateral clauses. Synchronized collateral clauses are called parallel

clauses, and will be discussed In detail in chapter 7.

2.8 Miscellaneous statements

It occurs occasionally in programming that 1 out of a large group of
statements is to be executed, depending upon the value of some varisble ALGQOL
68 provides a CASE statement for this purpose. A CASE statement is of the form
CASE integer unit IN sV, sV ... s‘VnQ_U_]_?sE_S_j_X(_I
The CASE statement 1is executed as follows. The integer unit is evaluated. If
its value is 1, s ‘{/ 1 is executed, if its value is 2, s ‘{/ 2 is executed, etc,
If the value of the integer unit is less than 1 or greater than n i.e. it 1s
out of range, s is executed. After the selected statement is executed, the
CASE statement is finished and eXecution continues with the statement

following the ESAC. The CASE statement

CASE f IN s1 OUT s2 ESAC

L8

is identiecal to
IF 1 = 1 THEN s1 ELSE s2 FI
The word OUT and the statement following 1t may be omitted 1f there is no
possibility that the integer unit will be less than 1 or more than the nunber
of statements between IN and QUT.

There is one finsal item to be mentioned sbout ALGOL 68. It is possible
to label any statement with an identifier followed by & colon. There exists a
GOTO statement which can be used to jump to a label. In recent years it has
become increasingly clear thet having GOTO statements in programming language
is bad, in that programs with many jumps usually have many errors as well. A
few references to the continuing GOTO controversy are given in the
bibliography. The need for meny GOTO statements usually indicates a poorly
structured program. Upon finding the apparent need for a GOTO statement, the
programmer should examine the program very carefully to see if perhaps the use
of a FOR statement or a procedure would not maske the program logically clearer.
Using GOTO's should be compared to parachuting out of an airplane: it cen be

done, but there is usually a better way.

2.9 Summary

In this section some of the major features of ALGOL 68 will be reviewed.
The language is built around the concept that in the computerfs memory there
exist objects. Bach object has an address, a mode, and_a value. There exist
many actions that can be performed on these objects, such as slicing,
selecting, adding and assigning. The execution of a program consists of
carrying out a sequence of actions.

Figure 2-34 shows a summary of the ALGOL 68 modes. Figure 2-35 gives s
summary of the kinds of statements and declarations available. The statements

in a program and not the declarations really do +the work, and it is

k9

interesting to note how few ALGOL 68 has. Of the 7 types of statements, only
the first U really count, since read and print are actually procedure calls
and _G@ should be avoided. Despite the fact, or more accurately, because of
the fact, that ALGOL 68 has so few statements, it is possible to express a
very wide class of algorithms very conveniently in it. This i1is an important
recognition, and the reader would do well to ponder its meaning. Figure 2-36
summarizes the 9 types of units. Figure 2-42 summarizes the grammatical
structure of ALGOL [(: |
A glossary of important terms introduced in this chapter follows.

Actual parameter -— An object supplied to a procedure as Input. In the
procedure call sin(x), x is an actual parameter.

Assignment — Variables are given values by assigning to them. In ALGOL 68 i:=
2 ig an example of an assignment. It can either be used as an ordinary
statement by d1itself, or it can be used as a unit, as in a[i:= 2], in which

statement by itself, or it can be used as a unit.

Closed clause — A serial clause enclosed by BEGIN END or parentheses. For

exemple (INT 1,33 read(1); i+j) is a closed clause. A closed clause is a unit.

Coercion — An implicit process of changing an object of one mode into an
object of another mode. Dereferencing and deproceduring are two types of

coercions.

Collateral clause — A series of units separated by commas and enclosed by

BEGIN END or parentheses. The order in which the units of a collateral clause

are evaluated is undefined, +thus leaving open the possibility that on a

computer with more than 1 processor several units may be evaluated

Fs

concurrently.

50

Conditional clause — A construction of the form Ir condition THEN .., EISE ,,..

E . The value of the conditional clause depends upon whether the condition is
true or false. This construction mgy also be used by itself as a conditional

statement.
Denotation — A constant. Examples 4, TRUE, "x".

Deproceduring — The process of replacing a procedure name by its resﬁl‘b. This
is simply a special name for a procedure call for the special case of a
procedure with no parameters. For example, in REAL x:= random, the procedure
randonm cannot be assigned to x, since the source must be of mode "rea.l, s0
random is deprocedured, i.e. "called" to deliver a real which can be assigned
to x. Deproceduring is a coercion. In this example although random has ﬁode

PROC REAL, it can be written in a position requiring an object of mode REAL

because it can be coerced to REAL by deproceduring.

Dereferencing - The process of replacing an object of mode "reference to
something" by an object of mode "something". In i:= j both i and j are of mode
"reference to integer". However, an assignment to an integer varisble i such
as 1 requires an object of mode integer as source, not +the sddress of an
integer. To solve +this synbtactlc problem and allow the assignment to be
meaningful, the Integer whose address is j is used instead of the address

itself.

Dyadic — A dyadic operator is one with 2 operands, such as + in i+j.

Field selector — A structure is an object containing 1 or more objects called

fields. Each field has a name, called a field selector. In STRUCT (STRING

51
breed, INT weight) breed and weight are field selectors.
Formal parameter — In a procedure declaration parameters are declared by

specifying +their modes, and giving them symbolic names to be used in the

procedure. These are formal parameters. In PROC bump = (REF INT k) INT : k:=

k+1, k is a formal parameter.

Mode — The property of an object which specifies the type of object it is.

Examples of modes are INT, BOOL, REAL, CHAR, []INT, [,]INT, STRUCT(INT

num,denom), PROC(INT) INT and STRING.

Mode declaration — A definition of a new mode. Examples: MODE REGISTER =

[0:15] BOOL =nd MODE MATRIX = [1:n,1:n] REAL.

Monadic — A monadic operator is one with only 1 operand. In i:= ABS j, ABS 1is

a monadic opergtor.

Operator declaration — A definition of a new operator, e.g. 92 HALF = (w_ i)
INT : i : 2 defines HAIF to be a monadic operator so j:= HALF 6 will assign 3

to Jj.

Row display — A collateral clause of mode row of something used as a unit. For
example, in [1:5] INT i1:= (0,1,3,9,~2) the collateral clause (0,7,3,9,-2) is

used as a row display.

Selection - The use of one field of a structure as a unit. If house is

declared STRUCT(INT price, STRING style) house then "price OF house" and
R RRrGSe— | CERIRETE ’ AT BT R

52

"style OF house" are selections. Selections can be used as sources or as

destingtions in assignment stabements and in many other positions.

Serial clause — A series of statements and declarations followed by a unit, or

a unit all by itself. Example: INT 1,j; i:= 05 j:= 2.

Slice — One or more elements of an array. If i1 is declared [1:6] INT 11 then

11[2], 11[6] and 11[2:5] are all slices.

Structure display — A collateral clause used as a denotation. For example in

STRUCT (STRING name, INT length, BOOL filthy) lake:= ("erie",400,TRUE) the

collateral clause ("erie",400,TRUE) is a structure display.

Unit - An expression that ylelds a value. Denotations, variebles, slices,
selections, formulas, assignations, calls, closed clauses, and conditional

clauses are all units.

>3

PROBLEMS CHAPTER 2

Varisbles mentioned in the problems but not explicitly declared are assumed
to be declared in figure 2-16.

1., What are the modes of: i, p, ¢, s, il and 127
2. What are the modes of 2, TRUE, "pigey"?

3. Is it possible to uniquely determine the mode of (0,1,2)?
If so, what is it? If not, give 2 modes it might be.

4, Does every object have a mode? If not give an example of an object with
no mode.

5. The procedures sin and sqrt both take a real parameter and deliver a
regl result. Do they have the same mode? If so, what 1s it?

6. Is it possible to declare an operstor which changes the mode of s
given object? If so give an example.

7. How many distinct modes are there?
8. What is another word for denotation?

9. Give an example of a denotation for each of the following modes: _JI\I_'_I'_,
[1 CHAR, STRUCT(INT i, BOOL pig).

10. How many boolean denotations are there?
11. Is "3" a denotation?
12, Which of the following are integer denotations? L, (10), -2, 0001.

13. Give an example of azn assignment stabtement, an _I_F_ statement, and
a FOR statement.

14, Which of the following are valid statements?

a) IF i<0 THEN k:= 1 FI
b) TF i$0 THEN ki= 1
c) IF i=0 THEN i:= O ELSE i:= 0 FI
d) IF 150 V3% 4 A k=3 THEN i:= 0; j:= O ELSE k:= 0 FI
e) TF k=1 THEN i>0 EILSE J:= 0 FI
£) FOR i:= 1 10 3 BY 1 DO j:= J+1
g) WHILE DO i:=~-1
h) FROM IF i<0 THEN 1 ELSE 2 FI TO 3 DO ni= n+1
i) TOR 1 WHILE P:= q DO q:= FALSE
J) FOR 1 FROM time OF album[2T 10 i1[2] DO 11[1]:=
15, If i:= 1, j:= 2, k:= 50, il:= (2,1,2,1,2,5,9,3,-1,~6) and n:= 0, what
is the value of n aft.er each of 'bhe following statements is executed.
a) FOR 1 FROM 4 TO j DO ni=n + 1
b) FROM 17[2] T0 11[67 DO n:= n+
¢) WHILE(i:= —Ij 1<0) DO n:= n +1
d) FROM 1 TO k DO BEGIN k:= 10; n:= n+1 END
e) 0 _D_D—n:= n+1

54

16.

7.

18.

19.
20.

21‘

22,

23.

2k,

25.

Which of the following are valid varisble declarations?
a) INT ki= 1

b) RBF INT k:= 1

c) REF INT k=1

da) TTBOOL v

e) STRUCT(INT,BOOL) s

You are to agree or disagree with the following statement and defend
your viewpoint: The text INT i,J; Ji= 03 i:= j is incorrect because
in an integer assignment The destination must be an object of mode
reference to integer, 1.e. the address of an integer (which it is)
and the source must be an object of mode integer (which it is not,
gince J is also of mode reference to :Lnteger) Therefore 1:= j is
Incorrect.

What is the essentlal difference hetween i:= 1 and i:= j?
What are the 9 kinds of units? Glve an example of each.

Which of the following constructions are correct?

a) 11[IF p THEN 2 ELSE 3 fil

b) FROMUINT I57reed(1]; 1) 70 10 DO ni= ntl

e) Ti=ji=

d) FROM sbscissa OF gp TO ordinate OF gp DO ni:= n+1

e) IF i<o THEN :LE‘fSE JTFL := IF k2 THEN i+1 ELSE 3 FI

Consider the declaration.

[1:50] STRUCT(STRING symbol,INT value,[1:10] BOOL attributes)h
Whet mode do each of the following have?

a) hlk]

b) velue OF h[4]

¢) symbol OF h[29]

d) attrivbutes OF h[1]

e) (attributes OF h[1])[10]

Is the following statement valid, snd if so, what does it do +0 k?
(read(y); IF j<O THEN j:= 0 FIjk) := (n:= 132)

Is the following a unit, and if so what is its value and mode?
(read(i); = IXis (read(j), Ji= g+ M)

Which of the following are correct assignments?
Give the values of all varisbles assigned to

a) ii= je= 2
b) i:=3:=2
e) (1:= §):=3
a) i:= (j:= 3)
e) 1= 1

After the declarstions
[1:5] BOOL pp:= éTRUE »TRUE, FALSE, TRUE, FALSE) 5

[1:5] BOOL qq:= mEm‘mmm)
W]f)la’b are the values of pplL1] o pplo] after
a) ppi= qq

b) ppl1:5]:= qa[1:5]

e) ppl3:5]:= qal3:5]

d) ppl2]:= qq[3]

e) ppl1]:= qqll]:= TRUE

55

26. Which of the following operators are dyadic?

27a

28.

29.

30.

31.

32.

a) OP X = (INT 1) INT : 1

b) OP X = (INT k) INT : k+

¢) 0P x = (INT 4,57 INT : ixJ

a) OF x = (INT 1, PROC VOID p) VOID : TO i DO p
e) OF x = (INT 1,57 BOOL ¢ i=j - -
If N is defined by

OP A = (INT k) INT : k+1

What is The valle assigned to n in ni= A A A 22

If + is defined by QP + = (INT 4,J) INT : i~j
what is the value assigned T n in ni= 3+2

After the declargtions

PROC p = (INT i, STRIN s) CHAR : s[il;

BTROCT(INT employees, STRING name) company:= (1000, “"general wideet")
what is the value of the call p(3,name OF company)?

Write a declaration for a procedure "biggest" with 3 integers as parameters.
The value of the procedure is the largest of the 3 integers given as
parameters.

Write a procedure of mode PROC([] INT,INT) BOOL that searches its first
parameter element by element and returns TRUE if some element matches the
second parsmeter and FALSE if not.

Write a procedure taking as parsmeter an 8 X 8 character matrix, each of
whose elements is "r", "b", or “e" (red,black,empty) corresponding to

a checkerboard and which returns the number of black pieces minus the
nunber of red pieces.

56

int number of girlfriends, pelican count;
Cher grade expected in this course;
bool voted in last election, likes mustard

Figure 2-1. Declarations for 2 integer variables, 1 character variable,
and 2 boolean varisbles.

bool bottle has deposit;

Int " price, cost of product, amount of deposit;

T bottle has deposit

= then price:= cost of product + amount of deposit
else price:= cost of product

Figure 2-2. Use of conditional statement.

int number of legs, centipede count;

3{ number of legs > 50

' then centipede count:= centipede count + 1
ige '

Figure 2-3. Conditional statement with no else part.

for odd number from 1 by 2 to 100 do print(odd number)

Figure 2-l. A for statement that prints the first 50 odd numbers.

int n;
ni= 13
while n X n < 1oooggn:=n+1

Figure 2-5. Use of a while clause to find the smallest integer whose
square 1s > 1000.

57

a) for i from a by ¢ to b while condition do S
b) for 1 from O to n do S

c) to 4 do new line

d) vhile x + y 1 + jdo S

e) for k from 10 to 50 while p <O do S

f) for j from -100 to 100 do S

g) from -60 to 4096 + i x -~ xkbymxmdo S
h) for in
T from i+ixi-bxk+nxnxn
by mxnxoxp-—-axbxe

_t2 a+b+c+d+e+f
while a + 1 + 3 x j— 6>k + 409%

]

1) for i to n do if i # k then print(i) f£i

Figure 2-6. Examples of for statements. S represents some statement.

a) for i to 10 do
T begin “print(i);
T print(i x 1i);
print(i X 1 X 1);

newline
end
b) for i to 2 do
Tor j To 4 do
T begin —"printgi) H
print(J);
newline
end

¢) begin ¢ This program prints the Fibonacei numbers up to 10004
int first,second, third;
Tirst:= 13
second:= 13
while first < 1000 do
begin print(first);
newline;
third:= first + second;
first:= second;
second:= third

end
end

Figure 2-7. Use of compound statements. Figure 2-Tc is a complete program.

£

58

begin 4: This program reads two numbers, the price of an item and the amount
the customer paid for it. It then caleulates how much chenge he should
get, and prints out the correct number of quarters, dimes nickels, and
pennies to minimize the number of coins to be returned. The program
only handles change up to 99 cenbs, and prints a message if the change
is too muché
int price, amount pald, change, quarters, dimes, nickels, pennies;

rst read in the price end payment end compute the changeé

read(price); read(amount paid);
change'!= amount paid — price;
if change > 99
T then print("change > 99 cents")
else ¢test to see if the payment was exac'bl:
if change = 0
™ then print("no change")
else icompute how meny of each coin{:
quarters:= 03
dimesg:= 0O}
nickels:= 03

while change > 25 g.g

(quarters:= quarters + 13 change:= change — 25);
while change > 10 do
(dimes:= dimes + 13 change:= change — 10);
while chenge > 5 do

(nickels:= nlckels + 1); chenge:= change — 5);3
pennies:= change;

¢print resultsf

1f quarters > 0
™ then pr:mtﬁquarbers) 3
print("quarters");
newline
£i;

if dimes > 0
™ then print(dimes);
T print("dimes");
newline
£13

if nickels > 0
™ then printénickels) 3
T print("nickels");
newline
fi;

if pemnies > 0
= then prin‘bgparmies) 3
print("pennies")
fi
fi $This matches the if chenge = Of
£1 $This matches the if chang® > 99¢
end -

Figure 2-8. A complete ALGOL 68 program to calculate how to pay out change
with the minimum number of coins, using only quarters, dimes, nickels, and
pennies. '

mode

proec void

proc(real) real
proc(int,int) int
proc(int) void
proc(int,int] bool
proc(real,real) bool
proc(char, char) bool

Figure 2-9. Examples of

possible procedure

newline
sin
integer multiply

29

skip the next n records on a tape

compare the parameters for equality
compare the parameters for equality
compare the parameters for equality

procedure modes.

declaration meaning
a) [1:10] int ri; declares 1 dim.
b) [1:5,1:7T int rri; declares 2 dim.
¢) [1:10,1:10,7:10] bool rrrb; declares 3 dim.
da) [0:100] char re; declares 1 dim.
e) [-20:-6,7T78] real rrr; declares 2 dim.
£) [1:20] proc vold rpv; declares 1 dim.
g) [1:n] int TiZ; declares 1 dim.
h) [n1:n2;03:n4] bool rrb; declares 2 dim.

Figure 2-10. Declarations of arrays.

array of 10 integers
array of 35 integers
array of 1000 booleans
array of 101 characters
array of 105 reals
array of 20 procedures
array of n ints

array of booleans

begin xamples of slicing and assigning together{:

1:10] int a,b,c3

for i from 1 to 10 do a[i]:= 1 X i;
olT7:10T:= al7: 1013

b[L:6]:= a[l:6];
b[1:3]:= a[1:31;

ci=D
end

Figure 2-11. Examples of the use of slices.

60

begin [0

16,
[0:6] int Vec;
for 1 From O to 6 do
Tor j Trom 2 %o 8 do matli,jli= 1xj;3

vec[0:8]:= matl0:6,8]
en

Figure 2-12, Assigning a column of a matrix to a vector.

Property Array Structure
Mgy the elements No Yes
have different
modes?
How 1s an element subsceripting e.g. selecting e.g.
accessed? al 4] type of alrcraft
Can several Yes, by slicing no
elements be e.g. a[2:h]
accessed together?
Whet 1s the largest no limit no limit
number of elements?

Figure 2-13. Comparison of arrsys and structures,

L]

mode vector

mode mabrix

mode rational

it

mode Pperson

mode family

]

mode bridgehand

i

mode word

mode registers

mode conditioncodes

[1:n] real
[1:n,1:n] real
struct(int numerator,denominator);

struct(string name,ref person father, mother,
Int ege,bool smokes);

struct(person mommy,daddy,[1:2] person child);

[1:13] struct(char rank,suit);
[0:15] Dbool;
[0:7] woxd;

struct(bool n,z,v,c);

mode table

mode instruction

mode flight

mode tree =

mode booladdress =

[1:1000] struct(string symbol,int value);
struct(int opcode,addrl,addr2,addr3);

struct(int number, string pilot,movie,bool nonstop,
[7:350] struct(string neme, int phone) passenger);

struct(int value,ref tree left,right);

z'e;g bool

Figure 2-14. Sample mode declarations.

bool b:= true;

int ni= 3;

vector x:= (2.0,3.0,L.

0)s

matrix xx:= ((1.0,2.0,3.0),(2.0,3.0,4.0),(3.0,4.0,5.0));

rational rat:= (2,7);

person john:= ("smith",bill,mary,20,false);

family jones:= (Jjohn,linda,(nancy,peter));

bridgehand north:= (é

IIAH’ usu), ("K", "S")’ (l|9ll’ usn)’ ("7"’ usu)’ ("5": "S"),
n3u, "S") , (uQu’ an),
(m—{u, an), (")-l-", "D")’ ("2", ch));

(HJII’ IIH"), ("T"’ IIHH)’ (lt3"’ "Hll)’

word wi registers reg; conditioncodes cc; table t;

instruction add:= (4,6,8,2);

flight tweb66:= (520, "warthog","trash", true, skip);

tree th;

booladdress bad

Figure 2-15 variable declarations using the modes of figure 2-1k.

61

62

mode song = struct(string title,int time,bool folksong);

struct(int sbscissa,ordinste);

i

mode gridpoint

mode student = struct(char graie »sbool virgin,
string name,int year ar of graduation);
mode course = struct([1:n] student kids,string prof);
mode book = struct(string title,author,bool paperback);
mode library = [1:10000000] book
real Xx,Y;
int 1,3,k,n3
Bool p,qs
char ¢}

[1:700] char S;

[1:10] int 113
[1:3,1:2] int i2;

[1:4] bool boole;

[1:8] song album;

course cs101,

Pproc(int) int pi;
proc(real,real) bool p2;
proc(string, int) char p3;
proc(T, T Int,Int) 11 int pls
proc(boolT"Boo 53
[-20:420] struct(real coef,int exp) polynomisl;

gridpoint gp;
1ibrary harverd;

Figure 2-16. Declarations used in figures 2-17 to 2-25 and the problems.

Mode Denotatbions

int 1,3,0, 1492

bool true,false

char "a" +"

TT int (1776 1812 1861, 1917, 1941, 1954)
song "barbara allen’ ,183 true)

5T real é1 .0,2.0),(2.0,7.24)7

[, I (1,2), (1,4)), ((2,6) (9,~4+)))

struct(Bool b,c) (true,false)
rea
struct(real re,im) (2 78,3.14)

Figure 2-17. Examples of denotations, including constant displays, which
strictly spsaking are not called denotations.

63

Mode Variables
int i,j,k,n
bool D,4q
char c
TT int 11
string S
[T song album
gridpoint &p

Figure 2-18. Examples of variables.

Mode m Slice yieldingl object of Mode m
int 11021, 11041, 12[1 3]
ool boolel1 + 3% jl
char s[991,s[1001
song albumt1+3]
struct polynomizl[0]
student (kids of cs101)[1]
Pook harvard[i]

Figure 2-19. Examples of slices.

Mode m Selection yielding object of Mode m
int time of albuml[4],exp of polynomiallo]
bool folksong of album[1] =
char grade of sbudent
[T student kids of c¢s101
string title of album[2]

ool virgin of (kids of es101)[2xj]
bool paperback of harvard[i]

Figure 2-20. Examples of selections.

Mode m Call yilelding object of Mode m
int pi(n)
Bool p2(3.14,2.78)
char p3("doeggy",2)
TT int P12, 11037)
bool p5(folksong of album[4])

Figure 2-21. Examples of procedure calls.

6k

Mode m Formuls ylelding object of Mode m
int i+2, j+4, 3x2+1, bin+k
bool P, pva, PA(pva)
Teal 2.042.5, x+3.141592, xxy/2.0

Figure 2-22, Examples of formulas.

Mode m Assi_gnment yielding_cgbgect of mode m
int i1= 2, 11= §, i1= ji= ki=
Yool pi= true, a:=pVa
char S[3]:= ™x"
TT Int 11:= (0,1,2,3,4,5,6,7,8,9)
song albumhj'- ("silkie' ,206 true)
book harvard[21416]:= ("angust 1914", "solzhenitsyn", brue)
Teal coef of polynomiall[0]:= 2.55
string prof of ¢s101:= "barry bigbrain”

Filgure 2-23, Examples of assignment, In all cases the result of the
assignment must be dereferenced before yielding the specified mode.

Mode m Closed clsuse ylelding object of Mode m
int (x:= 13 if p then i else j £i; k)
Bool p
char éS[1:’+]:= "1ove®s s[1])
TT int éfor ito 10 do 11[1]:= 03 11)
student Tead(c5701)3 (kids of es101)[1])
gridpoint (ebscissa of gp:= ordinate of gp:= 1; gp)
It be p1§kTend
ool b""g:ﬁ p1(1):7P2(3.14,3.14); p5(q) end
Int ‘5“'{5 read(J); ii= J end
int ((((((1066))))))

e

Figure 2-2L. Examples of closed clauses. Note that 1s some cases the
value of the closed clause may have to be dereferenced before
yielding the specified mode.

65

Mode m Conditional clause Yielding object of Mode m
int if x<y then 1 else 3 fi
bool T p then p else qVp F1
char If S[T] = "x™ then S[3] else "y" £i
TT Int x[1] < 4 them x1[1:3] else x1[Ti2] £1

book

if
song IF 1 = 2 then album[1] else album[2] £I
IF i<y then harvard[i] else harvard[JT £1

Figure 2-25. Examples of conditional clauses. Note that in some cases
the value of the conditional clause must be dereferenced before yielding

the specified mode.

Position

subscript

lower bound in array declaration
upper bound in arrsy declargtion
after CASE

after from

after to

after By

condition following if
condition following while

procedure body

source in assignment

initial value of declared variable
actual parameter of a call
element of row display

element of structure display
operand of formula

following of in a selection

procedure to be called
array to be sliced

after then or after else

destination in assignment

Allowed constructions

integer unit
integer unit
iateger unit
integer unit
integer unit
integer unit
integer unit

boolean unit or boolean serisl clause
boolean unit or boolean serisl clause

unit
unit
unit
unit
unit
unit

any unit except an assignment
any unit except assigmment or formula

any unit except assignment, formula, or selection
any unit except assignment, formula, or selection

serial clause, unit

any unit except denotabtion or assignment,
providing it yields reference to something

Figure 2-26. Kinds of constructions sllowed in different positions in the

program.

begin ¢This program reads in a 10 element integer array "&, and a 10
element integer array "bv", and calls immerproduct to form the sum
al1] x b[1] + al2] x p[2] + ... al10] x v[10].
The sum is printed.{:

[1:10] int a,bs

proc([] int,[] int) int innerproduct:= ([int y,z) int:
begin "JIE answer: = -
Tor k from 1 to 10 do answer:= answer + y[i] x z[1];
answer

end,
readé a);
read(b);

print(innerproduct(a,b))
end

Figure 2-27. A program using a procedure.

proc immerproduct = ([] int y,z) int:

begin int answer:= O;
For k from 1 to 10 do answer:= answer + y[i] x z[1i];
‘answer -

e

Figure 2-28. The alternative form for a procedure declaration.

begin {:This program defines a procedure vectoradd that adds together
2 1 dimensional integer arrays with 10 elements. The use of the
procedure is demnstra.ted.{:

mode vector = [1:10] int;
vector V1,v2,v3,vl,v53

rocedure vectoradd = (vector a,b) vector:
begin lr:e_c_:’c.or sum;
For 1 from 1 to 10 do sum[1]:= a[i] + b[1];
sum

end;

{:read:.nw,ve v3, and vk and compute the sum v1 + v2 + v3 + vi
andstoreitmv‘j?:

read(v1);
readéve);
read VS):
read(vh);
v5:= vectoradd(vectoradd(vectoradd(vi,v2),v3),vl);
print(v5)
end

Figure 2-29. A program to read in and add U4 vectors using a procedure.

begin {:This program defines an operator + that sdds together
2 1 dimensional integer arrays, each with 10 elements. The use
of the operator is demonstra.ted.{:

mode vector = [1:10] int;
vector V1,v2,Vv3,Vh,v5;

op + = (vector a,b) vector:

begin XecEr sum;
Tor 1 from 1 to 10 do sumlil:= a[i] + b[1l;
sum

end;

¢read in v1, v2, v3, and v4 and compute. The sum v1 + v2 + v3 + vk
and store it in v5.

read(v1);
read(v2);
readév3);
read(vl);
v5i= vl + v2 + v3 + vh3
print(vs)
end

Figure 2-30. A program to read in and add U4 vectors using an operator.

67

68

mode of mode of
operators operands result ‘meaning
dyadic + — X : int,int int add, subtract, mltiply,divide
<<=%>> int int bool the usual meanings, e.g. i = J
- is true if and only if 1 and j

have the same value

A int int int exponentiation, i.e. 1 A j = 1j

A bool bool bool logical and

A\ bool bool bool logical or

= bool bool bool tests operands for (in) equality

<<=%$>> char char bool tests the (implementation
dependent) character codes
for equality, less ‘than ete

<<=%>> string string bool test for ordering using the
character codes. If the character
codes are in alphabetical order
as in ASCII, s1 < s2 means sl is
alphabetically before s2, ete.

+ string string string concatenation. Thus

+ char sbring string string s1:= "hot";

+ gtring char string str g2 = "dog";

+ char char string pri n%s'l + 82) will print hotdog

monegdic 7 bool bool logical not

abs ot int absolute value

s

e i

Figure 2-31. Some of the built in operators.

begin

end

{:This program reads in the length of a list of integers, then
reads the Integers themselves, The operator biggest takes a 1
dimensional integer array of arbitrary length as parameter,
and returns the largest element.

op biggest = ([] int a) int:

begIn 1Int biggie:= allwb al; ¢declare and initialize biggle to
First elementd
for i from lwb a + 1 togggad.o

if a[1] > biggle then biggle:= alil £i;

biggie
end;
int n3 declare n as integer varisble¢
Tead(n); read in n¢
[1:n] int 113 algol 68 declarations need not precede the

executable statementsé
_read(11); read in the entire arrayé
print(biggie i1) compute and print the biggesté

Figure 2-32. Use of the monadic operators lwb and upb.

69

. Source and destination in an assignment

Opzrands of a dysdic operator

. Blements in a row display

. Plelds in a structure display

Units in a collateral clause

Units in an actual parameter list

Integral units after from, to and by in a for statement
Subscripts in a slice

. Upper and lower bounds in an array declaration

10. Array to be sliced and its subscripts (in a slice)
11. Procedure to be called and its parsmeters (in a call)
12. Declarations separated by commas

[y

« & =

.

\OCDRIO\\H-;:-U)I'\J—-

Figure 2-33. Constructions evaluated collaterally.

1. Built in modes: INT, BOOL, CHAR, REAL, FORMAT

2. Array modes:
[IM is a row of M (1 dimensional array)

[,IM is a row row of M (2 dimensional array)
[,,1M is a row row row of M (3 dimensional array)
ete,

3. Structure modes:
STRUCT(M1 id1, M2 id2, ...) is a mode
T The Tirst f£ield has mode M1 and field selector id1, etc.

4. Reference to modes:
REF M 1s of mode reference to M. An object of mode REF M is called
an, M variable.

5. Procedure modes:

PROC M PROC VOID
PROC TM1) M PROC M) vOID

PROC (M1,MB) M FR‘U'Z?(M‘ME)"VOID

PROC M‘MENB)M (M1, ,M37 VOID
PROC M"MQM?, T M m'(prmm,.‘-r. "VOID

are gll modes.

Figure 2-34. Summary of ALGOL 68 modes. M1, M2, M3 and M are all arbitrary
modes, and id1, 1d2 are arbitrary identifiers.

70

Statements and examples

IF statement: IF i<0 THEN i:= 0 ELSE i:= i+1 FI

FOR statement: FOR i FROM 1 TO 10 BY 3 WHILE j<O DO S

assignment statement: i := j

CASE statement: CASE i+j IN i:= O,read(J) OUT print(i+j) ESAC
input statement(really a procedure call): read(n)
output statement(really a procedure call): print(n)

GOTO statement: GOTO jail

Declearations and exg:gples

varisgble declarstion: BOOL imbibes

procedure declaration: PROC and = (BOOL p,q) BOOQL: IF p THEN q ELSE FALSE FI

mode declarstion: MODE INTEGER = INT

overator declaration: OP X = (INT i,j) INT: ixj
priority declaration: PRIORITY, + = 5

Figure 2-35. Summary of ALGOL 68 statements and declarations.

kind

denotation:
variable:

slice:
selection:
formula:
procedure call:
assignation:

closed clause:

exsmples

2, TRUE, "c", (3.1k4)

i,x,house

a[2],a[l:5]

name OF john, f£ilthy OF erie
ath, TpAg

sin(x); sqrt(3.14)

ii= j, £ilthy OF erie:= TRUE

(FOR i T0 ¥ DO alil:= 03 a), (k)

conditional clause:IF i < O THEN 1 ELSE 2 FI

Figure 2-36. Types of units.

T

{<

addresses 1 byte

>
1000 frus ///c(ug/////} boolean location at address 1000
P Z &

1001 ,ES ‘} character location at address 1001
10062 \\\\\>u;>\ character location at address 1002
1003 7;;£:S§\7 character location at address 1003

N1 R
1004 ‘§ .

44 Emme—0b jects

1005 p integer location at address 1004
1006
1007 J

VAT a7 .
1608 jtrue //A“" ysed ///ZI} boolean location at address 1008
P &

Figure 2-37. A memory organization in which boolean locations occupy less than
one byts, character locations occupy exactly one byte, and integer locations
occupy four bytes. A byte is B bits.

L

identifiers addresses dummmm——— 1 byte

number of girlfriends = 400 '
401 integer
3 4"/'/—-object.
40z |) integer
! location
4d32

pelican count = 404
inteqger ,
. 405 106 ‘g””object integer
location
406
407

-

T character
grade sxpected in this courses 408 e 83353% er

b location

voted in last election = 409 lrayge %otl uged/////[///
likes mustard = 410 [tpue /not/used/////
-—t_/ Vil 4 /

boolean
- object

bDOIeaEdEation

boolean location

Figure 2-38, Thc relation between identifiers, addresses, objects, locations,

and variables, Five variables are shown. Etach variable has a numerical address
(400,404,408,409, or 410) and an identifier which is equivalent to that address,

as well as a location {a region in memory) in which an object can be kept. Ffor
example, the integer variable "pelican count" is at address 404 and occupies 4 bytes.

T3
bool wife is libsrated

boolean location

~C

P I
i i i ted=602 t t d
?§fe is libera ec rue :;::EE::://r ngl H;? ‘ 3//

(boolean
aob ject

address

identifier

Figure 2-39, Declaration of a boolean variable, The identifier wife is liberated
is equivalent to the address 602, It is NOT equivalent to the boolean object at
that location (in this case, true)., We will often refer to "the boolean whose
address is 'wife is liberated'™ instead of the clumsy expression "the boolean in
the location whose address is equivalent to 'wife is liberated'".

before ' after
assignment assignment
number = 400
of number = 400
girlfriends 3 of
irlfriends
9 399
a) no dereferencing
before a:;?r ment
assignment assignmen
number= 400 number = 400
of of
girlfriends - girifriends
3 2

b) dereferencing

Figure 2-40. The assignment number of girlfriends := number of girlfriends - 1
with and without dereferencing. a) If no dereferszncing took place, the
expression “"number of girlfriends-1" would have the value 400-1, which is 399,
b) With dereferencing, the value of the integer at location 400 is used instead
of 400, thus giving 3«1 as the scurce of the assignment,

Th

closed clause

.
i t= (read(j) ; Jj = j+3 ; Aif jQO then j := 0 fi 3 Jj+1)
_‘___J _——*__/) Nt
statement statdment unit
\Statement)
Y

serial clause

Figure 2-~41, Relation between serial clause, unit, and closed clause, A serial
clause is a series of 0 or more declarations and/or statements followed by a unit.
In this figure, the serial clause consists of 3 statements followed by the unit
J+l. A closed clause is a serial clause enclosed by parentheses or begin and end.
The entire right hand side of the above assignment is a closed clause. A closed
clause is itself a unit, but a serial clause is not a unit.

assignment statement: "“reference to some mode" unit,
becomes symbol,
"some mode® unit

conditional statement: if, boolean serial clause,
' then, serial clause,

{_e_z_],_s_e_, serial clause,}
fi
for statemant: ‘{jgg, identifier,}
{jﬁgﬂg, integer unit,}
{22, integer unit,l
{'_l?_z_, integer unit;’s

{ while, boolean serial zlause,}

do, statement (including a compound statement or range)

case statement: case, integer serial clauss,
in, list of statements

l out, statement }

egac

go to statement: oto, label

Figure 2-42, Definitions of statements. §:§ means optibnal.

