
AFDELING INFORMATICA

stichting

mathematisch

centrum

ANDREWS. TANENBAUM
INTRODUCTION TO ALGOL 68

IN 2/73

~
MC

MAY

2e boerhaavestraat 49 amsterdam

!Mf,1.IOTHE6K MATHEMATISCH C.:ENl"RUM
AMSTERDAM

PJun..ted a;t .the Ma.the.ma.tic.al Cenvte, 49, 2e BoeJLhaa.ve6:tJr,a,a,t,, Am.o.teJLdam.

The Ma;the.ma.:U.c.a.l Cenvte, 6ou.n.ded .the 11-.th 06 FebJtuaJLy 1946, h:, a. n.on.
pJto6U i..n..o.tUU-tlon. cumi..n.g a.t .the pJtomo.:tlon. 06 pull.e ma.the.ma.:U.c..o a.n.d U.o
a.pp.Uc.a.:U.on..o. I.t h:, .opon..ooJted by .the Ne.theJli.a.n.d.o GoveJLn.men..t .thJtou.gh :the
Ne.theJli.a.n.d.o 0Jtga.n.i..za.:U.on. 6oJt .the Adva.n.c.e.men..t o 6 Pu11.e Re6 ea.Jtc.h (Z. W. 0) ,
by .the Mu.n.i..ei.pa.lUy 06 Am.o.teJLdam, by .the Un.i..ve.lL6liy 06 Am.o.teJLdam, by
.the FJtee Un.i..ve.lL6Uy a.t Am.o.teJLdam, a.n.d by i..n.du..o.tlue6.

ACM-Computing Reviews-category: 4.22

PREFACE

These notes on ALGOL 68 were originally presented orally to an
undergraduate class in the spring of' 1973. They were printed and distributed
as the second chapter of the course lecture notes. This report is a reprint
of' that chapter. As a consequence the sections and :f'igures are numbered as
they were in the origina1.

· The notes are intended as an introduction to ALGOL 68 :f'or students
having already had one introductory course in computer science. It is
assumed that they are familiar with an algorithmic language such as BASIC,
FORI'RAN, PL/1, or ALGOL 60. It is ho~d that even freshmen and sophomores
can understand this report.

A.S. TanenballIIl
.Amste:ro.am, May 1973

,

CHAPTER 2 - INTRODUCTION 'ID ALGOL 68

Throughout this book algorithms are given for various techniques such

as evaluating arithmetic expressions and sorting a list of names. It is

necessary to have so:ioo way of expressing these algorithms in a clear and

unambiguous manner. Ordinary English is too verbose and ambiguous to be

satisfactory, furthermore we would like to write algorithms in a way such that

they can be carried out by a computer.

Anyone who thinks that English is suitable as a method for precisely

describing things should p:mder the various meanings of "You would never

recognize little Freddy. He has grown another :foot" or the following bulletin

board advertisement "Gem.an shephe:ro. dog for sale. He will eat anything and is

especially fond of children" or the following newspaper headline, concerning

the exhibition of a copy of a painting, "Parents., pupils, faculty enjoy

reproduction". If writing unambiguous English were easy, lawyers would not

write sentences like "This agreement shall be construed and interpreted

according to the laws of the State of New York and shall be binding up:m the

parties hereto, their heirs, successors, assigns, and personal

representatives; and references to the lessor and to the lessee shall include

their heirs successors, assigns and personal representations". We will

therefore use a programming language to express algorithms.

There already exist hundreds of programming languages, and the number

is growing rapidly. Most of these, however, are for special applications, such

as making computer generated cartoons, controlling equipment in an alltomated

factory, or helping civil engineers design bridges. To express the algorithms

in this book., we need a general purpose programming language in which we can

easily describe complicated kinds of data and express operations on the data

in a convenient fonn. FORI'RAN and ALGOL 60 are widely used, but both are ,c

:restricted to handling very simple kinds of data, and performing very simple

operations on that data. For example, neither FORTRAN nor ALGOL 60 can

manipulate character strings conveniently.

There a.re two languages that come closer to what we need: ALGOL 68 and

PL/1. PL/1 was designed by a committee, and it shows. Each committee member

wanted his favorite feature included, and most of them were accepted. The

result was an unwieldy language with a very large collection of features that

do not fit together well. As a consequence it is difficult to learn.

ALGOL 68, on the other hand, was designed to be as "orthogonal" as

possible. This means that there are a small number of basic ideas that can be

combined in many ways to produce a highly expressive language whose parts fit

together very well. Orthogonal design also means that almost a1JY' construction

that both "makes sense" and is unambiguous is aJJ.owed. As a consequence ALGOL

68 is easy to learn, comprehensive and therefore is ideaJJ.y suited to the

teaching of computer science. In this book ALGOL 68 will be used for

expressing algorithms.

The purpose of this chapter is to explain enough about ALGOL 68 that

you can understand the algorithms given in this book. Features of .ALGOL 68 not

needed in this book, e.g. binary tra.nsput, heap genera.tors, unions, and long

reals will not be mentioned. You should be aware tbat the description which

follows is by no means complete. If the reader wishes an introduction to the

complete language, he should see either ".An Informal Introduction to .!\LGOL 6811

by Lindsey and van der Meulen or "an ALGOL 68 Companion" by Peck. (See

bibliography) As a final note, we mention that the .ALGOL 68 report is already

famous f'or its obscure te:mdnology, thus in some cases the terms used in this

book differ from those in the report. We do this in order to make these terms

easier to understand.

3

2. 1 Some basic features of ALGOL 68

ALGOL 68 programs consist of a sequence of symbols, including the lower

case letters a - z, the digits O - 9, certain special. characters e.g. + - = ;

, : < > () [] , and certain wolds printed in boldface type such as BEGDI IF --
SKIP THEN TRUE ELSE FALSE FI END. When writing programs with pencil and paper, -----------
boldface is indicated by underlining the wolds e.g. begin,!! skip~~

~ ~ !! ~- Comments, which begin and end with the# or ~ symbol, ma;y

be inserted between any two symbols. The ALGOL 68 compiler does not process

comments; they are for the purpose of helping other people understand what the

program does. They shouJ.d be used generously. Spaces and carriage returns {end

of card) mey be inserted between any two symbols to improve readability.

One of the most basic features of a programming language is the kind of

data which can be expressed in it. ALGOL 68 provides a rich collection of data

types, three of the simplest types being integers, characters and booleans.

The computers memory is divided up into a large number of equaJ.ly sized

pieces, usually cal.led words or bytes. The amount of space occupied by a datum

{e.g. an integer) varies from computer to computer. Figure 2-37 illustrates a

computer whose memory is divided into 8 bit bytes, in which booleans occupy

less than 1 byte, characters occupy exactly 1 byte, and integers occupy 4

bytes. The memory space occupied by a boolean, character, integer, or other

object is referred to its location. Thus there are boolean locations,

character locations., integer locations, etc., which in general are different

sizes. Each location has a unique numerical address which identifies it.

The proper wrd used to distinguish integers from characters from booleans is

~- Integers., characters and booleans are 3 different modes. Thus, a mode is

a kind of object. The concept of mode is the most important concept in the

entire language, so it is -worth dwelling upon this point for a little while.

We can make an analogy between the computer's memory, which is divided up into
'"

locations of various sizes, each of which can accomodate exactly one object of

4

the mode appropriate for that location, and a hypothetical city, which is

divided up :into buildings of various sizes, each of which can hold only 1

object. One kind of location in the city is a doghouse, which can hold one

object of mode dog. Another kind of location is a hangar, which may conta:in

one object of mode airplane. Yet another kind of location is a church steeple

which conta:ins one object of mode bell. A fourth kir.d of location is a

computer center which holds one object of mode computer. ,

Just as a memory location for an integer can hold any one of a variety

of integers, (o, -3, and 1944 come to mind at the moment) a given doghouse may

contain Jack's dog or Susa.n's dog or Bob's dog, but it may not hold an object

of mode airplane. Similarly a computer center may conta:in an IBM computer or a

CDC computer, but :not an object of mode dog. An object is not permanently

attached to its location. But can be moved to another location of the proper

mode whenever needed.

A location in the computer• s memory that can hold an integer is called

an integer variable, while a location that can hold a character is a character

variable, etc. A variable can be given an identifier so the programmer can

refer to it by an easy to remember symbolic name instead of its (numerical)

address. Thus the identifier is an alias for the address, not the object at

that address. This is illustrated :in figure 2-38.

The programmer informs the computer how many variables of each mode she

needs, and their names, by declarations. A declaration specifies

1 , The mode of the objects being declared

2. The identifiers for the objects

Figure 2-1 shows 3 declarations. The first declares 2 integer variables with

identifiers 11number of girlfriends" and "pelican count". The second declares 1

character variable whose identifier is "grade expected :in this course". The

third declares 2 boolean variables, with identifiers "voted in last election" ,,

and "likes mustard".

5

There are several things to note about these declarations. First,

integer variable declarations start with mr (not IN'JEGER) while CHAR and BOOL ·- --- - -
are used for character and boolean variables respectively. Second, identifiers

may be as long as desired, and may have spaces "inside" for readability.

Third, each declaration declares variables of onJ.y 1 mode, but it may declare

arbitrarily many variables of that mode. The various identifiers are separated

by commas. Fourth, declarations are separated by semicolons. The declaration

in figure 2-1 causes 5 locations in the computer's memory to be reserved, one

for each of these 5 variables. Associated with each location is an identifier,

(given in the declaration) which can be used in subsequent statements. The

identifier is equivalent to the address of the location, not the contents of

the location. This distinction is absolutely cruciaJ.. The identifier is a

symbolic name for the numerical address of the location. Sometimes we will

refer to "the object whose address is X" or "the object in location X". In all

cases it should be remembered that X is a symbolic name for the address of a

location containing an object of some specific mode, and not the name of the

object itself. Thus is illustrated in figure 2-39.

An object of mode boolean has one of two values, either TRUE or FALSE. - -
An object of mode character has a value equaJ. to some character. The set of

characters available is implementation dependent, but includes at least one

set of letters, the digits, and some speciaJ. characters. When characters are

used as constants., they are written with quotation marks a.round them. An

object of mode integer has as its value an integer.

2. 1 . 1 Assignment statements

A basic statement is the assignment statement, which assigns a vaJ.ue to

a variable . .An assignment statement has 3 parts:
,,

1. A destination (written to the left of the := symbol)

6

2. A becomes symbol, written :=

3, A source (written to the right of the := symbol)

The destination is an expression which when evaluated gives an address of a

location. The destination is so named because an object is :put in the address

specified by it. The source is an expression which when evaluated specifies an

object of the required mode. The simplest example of a destination is an

identifier. The simplest example of a source is a constant. Thus

number of girlfriends : = 3

is an assignment with source = 3 and destination = number of girlfriends. It

is :pronounced "number of girlfriends becomes 311
• When this statement is

executed, an integer with value 3 is :put in the location whose address is

"number of girlfriends11
• Since "number of girlfriends" identifies a location

(i.e. is the address of a location) whose object must be of mode integer, and

since 3 is an object of mode integer, everything is fine, and the assignment

takes :place.

Consider the statement

number of girlfriends : = number of girlfriends - 1

The destination of this assignment is the location whose address is 11 number of

girlfriends", as above, but the source is more complicated. The identifier

"number of girlfriends" identifies a location., i.e. is equivalent to the

address of some location, whereas the constant 1 is an object of mode integer.

Surely it is :not intended to subtract 1 from the address "number of

girlfriends" and use that as the source? of course :not. What is intended is

that the current value of the object in the location whose address is "number

of girlfriends" should be used, not the address itself, and from that 1 is to

be subtracted. The result of the subtraction is to be :placed in the address

given by the destination. The operation of' using the contents of a location

instead of its address is called dereferencing. Dereferencing is illustrated
(i,

in figure 2-40. Note that in the above assignment "number of girlfriends" is

7

deref'e:renced when used in the source but not when used in the destination.

This occurs because the minus operator needs two integers as operands, not an

address and an integer, while the destination must be an address. .If' the

destination were deref'erenced as well as the source, we would have nonsense:

3 := 3 - 1

One of' the nice things about ALGOL 68 is that deref'erencing happens

automatically where it is needed, and· does not happen (in f'act is f'orbidden)

where it should not happen. Those points where de:ref'erencing is to occur are

ca.ref'ully specif'ied in the ALGOL 68 report, and agree with one I s common sense

interpretation.

:Most other programming languages do not make such a sharp distinction

between the address of' a location, and the contents of' the location. As a

consequence it is usually possible to make disastrous errors such as changing

the value of' 3 into 2 by an assignment, if' done in a suf'f'iciently subtle way

(f'or example, supplying a constant as an actual parameter in a procedure call

where an address should be). Because ALGOL 68 makes such a rigid distinction

between the address of' a location and the contents of' the location, this kind

of' error is caught by the compiler in every case.

2.1.2 Conditional statements

Another kind of' statement is the conditional, or £ statement. In this

statement a condition is tested. If' the condition is f'ound to be true, then

the statement f'ollowing the ~ is executed. If' the condition is not true,

the statement f'ollowing the ~ is skipped, and the statement f'ollowing the

ELSE is executed instead. Figure 2-2 shows an ,B:: statement. The statement is

executed as f'ollows. "bottle has deposit" is the address of' a location

•
containing an object of' mode boolean. Boolean objects a.re either TRUE or FAI.BE.

A condition must be either ~ or FAIBE, so "bottle has deposit" is

8

dereferenced and the contents of its location is tested. If it is true, then

the statement

price:= cost of product+ amount of deposit

is executed. Before the addition can be carried out, both "cost of product"

and "amount of deposit" are dereferenced since we want to add two integers,

not two addresses.

If "bottle has deposit" is faJ.se the statement

price:= cost of product

is executed instead. This statement is executed by first dereferencing "cost

of product" to get the object contained in it. A copy of this object is placed

in the location whose address is price. Since a new copy of the object is

created, the old one remains undisturbed in "cost of product". Figure

2-2 illustrates some other points. First, statements are separated from

declarations and from other statements by semicolons. Second, no semicolon is

placed at the end of the THEN part or ELSE part, al.though if either part - -
contained m:,re than 1 statement, these statements would be separated by

semicolons. Third, notice that the third line contains 2 statements, and that

the IF statement as a whole occupies 4 lines and is indented to improve
,r

readability. Fourth, the conditional. statement is ended with _!!, (£ spelled

backwards) . The reason for having an explicit symbol to end the IF statement

will be discussed later.

Another form of the conditional statement has no~ part, as shown in

figure 2-3. If the condition is not true, the statement following the ~ is

not executed. In this example the condition is

number of legs> 50.

This is evaJ.uated by first dereferencing the identifier "number of legs" to

get the vaJ.ue of the integer at that address. This integer is then compared to

50. If it is 51 or more the centipede count is increased. If it is 50 or less,

execution continues with the statement following the FI.

9

2.1.3 Input/output

ALGOL 68 aJ.lows a wide range of styles of input and output, ranging

from a simple print(X) to sophisticated formatted transput operations on

files, with user control over aJ.l error handling. In this book we will be

content to use the simplest fonns namely read(X), which reads in 1 object of

the required mode (even an a.rra;y) and stores it in the location whose address

is X, and print(X) which prints the object whose address is X. If the thing in

parentheses following print is a string of characters within quotation marks,

the characters are printed, but the quotation marks are not printed.

AGOL 68 aJ.so aJ.lows x to be themselves a list of variables, thus

permitting more than 1 variable to be read or printed with a single statement.

Such a list must be enclosed in an additionaJ. set of parentheses. An example

is

read((a, b, c, d)).

The statement

new line;

causes subsequent output to be printed beginning at the start of the next line.

Successive uses of print cause items to be printed on the same line until

there is no room left, in which case printing continues on the next line. The

number of characters per print l:ine varies from computer to computer.

2. 1.4 Loops

Since performing a sequence of statements repeatedly is very connnon,

ALGOL 68 provides a statement for controlling repetition. One fonn of it is

show.n in figure 2-4. The variable after the ~, caJ.J.ed the controlled

10

variable, is set to 1, a test is made to see if it is less than 100., and if so

the statement after the £Q is executed. Then i is incremented by 2 and the

print statement executed again. For each successive value of "odd number'' a

test is made to see if it is greater than 100, in which case the repetition

stops.

The controlled variable must not be declared. It is always an integer,

so the compiler does this automatically. The expressions after FROM, 'IO and BY -- -
may be a;n;y expressions yielding an integer as a result. These expressions are

evaluated before the loop is begun to determine how ma;n;y times the statement

following the E_Q is to be executed. If the values of the expressions

subsequently change, this has no effect on the number of repetitions.

The FOR and the identifier following it may be omitted if the

controlled variable is not needed. If the word ~ and the expression

following it are omitted, the counting starts at 1 • If the word 'IO and the

expressions following it are omitted, the repeating continues until terminated

by some other mechanism. If the ~ part is omitted, a default of 1 is used.

In contrast with the above form of the FOR statement which causes a -
statement to be repeated a fixed number of times, there is another form that

causes the statement following the £Q to be repeated as long as some condition

is true. The condition, written between WH:gJ! and DO is tested; if it is true, - -
the statement following the £Q is executed. The test is then repeated, and if

still true, the statement following the £Q is executed again. This process is

repeated until the condition yields false. Figure 2-5 shows how the smallest

integer whose square is larger than 1000 can be computed, and stored in the

location whose address is n. Common sense requires that the expression

following the WHIIE yield a boolean value, either TRUE or FALSE. As usual, - - -
ALGOL 68 obliges by allowing an arbitrarily complicated expression (even 100

pages long) provided the result is of mode boolean.

These two forms of repetition may be combined into one FOR statement

11

whose mst general :form is shown in :figure 2-oa, where a, b, and c are

expressions whose result is of md.e integer, and condition is an expression

whose result is of mde boolean. The execution starts with the evaluation of

the expressions a, b, and c. The results are then copied to secret memory

locations x, y, and z respectively so the programmer can not change them. Then

i is set to x. If i is less than or equal to y and the condition is true, the

statement is executed. Then i is increased by z and the test of i against y is

repeated along with another test of the condition. If i ~ y and the condition

is still true the statement :following the EQ is repeated again. This process

continues until either i > y or the condition becomes false. Note that unlike

a, b, and c which a.re evaluated once and for all at the beginning of the ~

statement (with the results stored awey in x, y, and z for safe keeping) the

condition is evaluated over again before each repetition. If a is initially

greater than b or if the condition is initially :false, the statement will not

be executed at all. Note that if the expression c yields a negative integer,

the counting is negative and the test becomes i ~ y instead of i ~ y. Figure

2-6 shows several examples of~ statements.

2.1.5 Com.pound statements, ranges and programs

The ~ statement allows only 1 statement to be repeated. Frequently it

is desired to repeat a whole sequence o:f statements, not just one, so ALGOL 68

provides a mechanism :for :for.ming compound statements, which are treated as

single statements. A compound statement, or technically a strong void closed

clause, consists of the word~ followed by a series of declarations and

statements (which may include conditional statements., FOR statements, and even -
other compound statements) separated by semicolons. The last statement in the

series must be directly followed by END, with no semicolon directJ.y preceeding ,, -
it. In place of~ and~, left and right parentheses may be used. Figure

12

2-7 shows examples of~ statements followed by compound statements.

Figure 2-7a contains a compound statement which will be repeated 10

times, with i taking on the values 1 through 10 on successive iterations. Each

iteration prints one line, containing i, i 1' 2, and i 1' 3. Note that an

arbitrary expression can be printed. The result of executing the~ statement

of figure 2-7 a will be to print out a table of the integers from 1 to 1 O along

with their squares and cubes.

Figure 2-7b contains a FOR statement whose repeatable statement is

itself a FOR statement. First i is set to 1, the default when no FROM pa.rt is -
given, then the statement following the DO is executed once. Since that

statement is itself a FOR statement, executing it once involves repeated

executing the statement after its~ until it is finished. Then i is set to 2,

and the second~ statement is executed once, meaning another 4 executions of

the compound statement following it. In all, 8 lines will be printed like this

1 1

1 2

1 3

4

2 1

2 2

2 3

2 4

A compound statement may also include declarations as well as

statements. A compound statement that includes 1 or more declarations is

called a~- The variables declared within a range may onl.y be used within

that ra.Ilge {and other ranges that occur inside of it), and may not be used

outside the range. Although it is possible to use the same identifier for

13

different variables declared in different ranges, the practice can be

confusing. It is best to give each new variable a unique name.

A complete program consists of a single compound statement or range,

i.e. it begins with BEGIN and ends with END (or lef't and right parentheses - -
respectively, if one prefers). Figure 2-7c is a complete program to print out

a series of numbers, each term of which (except the first 2 which are both 1)

is equal to the sum of the 2 preceeding terms. The series stops just before a

term 2: 1000 would have been printed.

Figure 2-6 is a complete .ALGOL 68 program with 6 conditional.

statements, 3 repetition statements, 11 assignment statements and 13

input/output statements. Note that print (pennies) prints out the value of the

integer variable "pennies", whereas print ("pennies") prints out the 7 letters

p e n n i e s.

2.2 Modes, objects and values

In the previous sections the modes integer, character and boolean were

introduced. In the following sections a few roore simple modes will be

introduced and it will be shown how to build up new modes from the simpler

ones.

2.2.1 Primitive modes

In addition to the modes integer, boolean, and character, ALGOL 68

provides a mode :real, which is an attempt to model the real. number system of

classical. mathematics. Real numbers are objects consisting of 2 integers, f

and e, used to :represent numbers of the form f X b 1' e, where b is the base of

the number system. The domain of the objects of mode real is very wide,

encompassing tens or even hundreds of orders of :magnitude, depending on the

14

computer. The number of significant digits in a real is also computer

dependent, but is frequently in the range 8 to 15 digits.

Another primitive mode is format. Objects of mode format are used to

control the formatting of input and output. Another basic mode is bits, which

aJ.lows the programmer to use machine woms conveniently and efficiently for

storing and retrieving information.

2.2.2 Procedure modes

A whole class of modes are the procedures. A procedure is a piece of

program that takes n input parameters, n ~ o, and (optionaJ.ly) produces a

result. For example, the absolute value function for integers is an object of

mode ~ (.!!£) .!!£ because it takes an integer as input and delivers an

integer as result. Just as there are many distinct objects of mode integer,

e.g. o, 6, -17 and 2, there are many distinct objects of mode PROC (INT) INT. ---
A procedure taking 2 integers as parameters and producing an integer as result

e.g. a procedure "add" which adds two integers, is of mode PB.DC (INT,INT) INT. ----- -- -
A procedure that has 2 integer parameters and produces a boolean as result

(e.g. a procedure "less than" which yields true if the first parameter is less

than the second, and false otherwise.) has mode PROC (INT,mT) BOOL. The mode ----
of a procedure is written as the wom ~ followed by the modes of its

parameters in parentheses., followed by the mode of its result. Procedures with

no result have the vrom ~ in place of the mode of the result. Furthermore,

if the procedure has no parameters, the parentheses are omitted. Since there

are an :Infinite number of combinations of parameters (because there is no

limit to the number of parameters a procedure can have) there are an infinite

number of procedure mdes. A few procedure modes and examples of procedures

that could be defined for them are shown in figure 2-9.

Unlike most programming languages, procedures in ALGOL 68 are objects

15

and can be manipulated like other objects. Procedure variables exist and can

be assigned values, just like any other variable. If' f' is declared by

PROC (~) ~ f';

then f' is the address of' a memory location just the proper size f'or a

procedure taking 1 real as parameter and producing 1 real as resuJ.t. Of' course

procedures vary in size, but it is the compiler writer's responsibility to

solve this problem. He might f'or example, put the procedure somewhere else in

memory, and put only the address of' the procedure in f'. A:f'ter the assignation

f' := sin

Where sin is the usual trigonometric f'unction, f'(x) will compute sin(x). The

ability to treat procedures like any other objects is very useful, and follows

from the orthogonality of ALGOL 68.

2.2.3 Arrays

Many problems involve data organized into vectors or matrices. By a

vector we mean a one d:imensional sequence of objects of some mode; by a matrix

we mean a two d:imensional array of objects. The elements of a vector or matrix

may be primitive elements, such as booleans, integers or cha::racters, or they

may themselves be composite objects. As an example, consider a model for a

computer memory composed of 4o96 16-bit words. A word can be regarded as a 16

element boolean vector, and the whole memory can be regarded as a linear

sequence of 4o96 words, i.e. a vector whose elements are boolean vectors.

The official ALGOL 68 term covering vectors, matrices, and 3 and higher

dimensional arrays is multi;e!e value, although we will use the tenn array f'or

simplicity. An array is a collection of objects., all of' which have the same

mode. An array is itself' an object and has a mode. Array variables exist, and

may be declared and assigned values, just as with variables of any other mode.

' A 1 dimensional array of integers has mode [] _f!E pronounced "row of

16

integer". A 2 dimensional a.rra;y of integers has mde [,] llT, pronounced "row

row of integer" • A 3 dimensional a.?Ta;y of integers has mde [, ,] INT,

pronounced "row row row of integer". In general. the mode of an arra;y is an

open square bracket, followed by a number of commas equal to the

dimensionality of the arra;y minus 1, followed by a close square bracket

followed by the mode of the objects comprising the a.rra;y. Objects of different

dimensions have different IIDdes.

Declarations of a.rra;y variables are slightly different than

declarations of sey integer variables. The reason for this is that to declare

an integer variable, specifying the IIDde of the object and the identifier is

enough. The ALGOL 68 compiler knows how much space reserve in memory for the

object of m::>de integer. For an arra;y variable, the situation is different. The

compiler can only reserve enough space if told how much space to reserve, i.e.

how man;y- elements the array has. To declare a boolean a.rray variable named rb,

which is to contain a 1 dimensional boolean arra;y whose elements are numbered

1 to 10 one writes

[1: 10] ~ rb

The lower and upper bounds are written inside the brackets, separated by a

colon. The mde of the object contained in the variable rb is [] ~, not

[1: 10] BOOL, i.e. the bounds are not pa.rt of the mode.

Figure 2-10 shows several examples of declarations of arra;y variables.

In all cases the lower and upper bounds must be given. Each bound is an

integer constant, or an expression yielding an integer. Bounds may be

positive, negative or zero. In figure 2-10h the size of the arra;y rrb depends

upon the values of n 1, n2, n3, and n4 at the moment the declaration is

executed. The location whose ad.dress is rrb will contain enough space for (n2

- n1 + 1) X (n4 - n3 + 1) booleans.

If the word~ appears before the sub symbol, the size of' the arra;y ,,

ma;y be changed during execution of the program. Since the new size ma;y be

17

larger than the old size, the compiler must provide a means whereby the array

can be automatically m:>ved to a new location with enough room. As a

consequence flexible arrays, as they are called, are not very efficient. One

important use for them however is for variable length character strings.

2.2.3.1 Subscripting

The next step in learning how to use arrays and array variables

involves learning how to assign val.ues to array elements. If ri is a 1

dimensional. integer array variable as declared in. figure 2-1 Oa, then ri[1] is

the first element, ri[2] is the second element, and ri[k] is the k-th element.

These are integer variables and can be used as destinations in assignment, or

they can be dereferenced and used in sources., or as operands, etc. Using only

1 element is called subscripting. Using an element from an n dimensional. array

requires n subscripts. To set al.l 10 elements of the integer array ri to O, we

can write

FOR i ~ 1 !Q 10 ~ ri[i]:= 0

To set al.l 1000 elements of rrrb declared in figure 2-1 Oc to ~, we can

write

FOR i FROM 1 TO 10 DO ~ j FROM

rrrb[i,J,k]:= ~

TO 10 DO FOR k FROM 1 TO 10 DO

~ statements and arreys go together well. Of course individual. elements can

be assigned values separately. If re is declared as in figure 2-1 Od,

rc[6]:= "x"

assigns the character x to the character variable re[6] . The other elements of

the array are unchanged.

It is al.so possible to assign al.l the elements of an array at once, e.g.

[1:10] INT x,y; FOR i FROM 1 TO 10 DO x[i]:= iJ
£.·- - -

y:= X

18

The latter assignment is equivalent to

FOR i FROM 1 TO 10 E_Q y[i]:= x[i]

2.2.3.2 Slicing

In addition to being able to manipulate the individual elements of' an

array by subscripting, subarrays can also be manipulated as a whole. Subarrays

are properly called slices. Subscripting is. a special case of' slicing. Figure

2-11 shows the declaration of' three 1 dimensional integer array variables, a,

b and c. First the array a is initialized, then b and c are set equal to a.

This means that the location b, which has room f'or 10 integers, is filled with

10 integers whose values are identical to the integers in location a, and

similarly f'or c. The assignment

b[7:10]:= a[7:10]

does exactly what you expect; namely, it is equivaJ.ent to

b[7]:= a[7]; b[8]:= a[8]; b[9]:= a[9]; b[10]:= a[10].

The statement c:= b assigns the entire array b to c, i.e. it is equivalent to

FOR i FROM 1 TO 10 £9_ c[i] := b[i]

A column of' a matrix can be assigned to a vector as shown in figure

2-12. The reason this makes sense is that the destination is a 1 dimensional

integer array variable, so the source must be an object whose mode is that of'

a 1 dimensional integer array. Unsliced, 11mat II is a 2 dimensional integer

array, but the value of' the slice on the right hand side of' the assignment is

just the whole 8th column of' mat, which is a 1 dimensional integer array, so

the sou,rce is a 1 dimensional array. The assignment is equivalent to

~ i ~ 0 TO 6 E_Q vec[i]:= mat[i,8]

19

We note here an important point about slices in assignments: the bounds in the

source and the bounds in the destination must match, even if not shown

exp].icity, as above.

2.2.4 Structures

A:rra:ys are used to group together objects of the same mode. Structures

are used to group together objects whose modes may or may not be identicaJ.. A

structure is composed of 1 or more objects caJ.led fields each of which has an

identifier (more correctly, a tag) associated with it caJ.led the field

selector. Structures are themselves objects and have modes. The mode of' a

structure depends upon the mode of its fields and the names of' its field

selectors. Two structure modes are the same, if and only if' the modes and

selectors of the fields a.re the same. Structure variables exist and can be

declared, and used, for example, as sources and destinations in assignments •

.An example of a structure variable declaration is:

STRUCT ([1: 3] CHAR type, mr seats, BOOL jet, quiet) aircraft - - -
This declares aircraft to be a variable capable of holding a structure whose

first field is a 3 character string caJ.led type, whose second field is an

integer called seats, and whose third and fourth fields are both booleans,

called jet and quiet, respectively.

'Ib use any of' the fields of' a structure, e.g. as a source, destination,

or operand, one writes the field selector, followed by the word f)!, followed

by the name of' the structured variable, e.g.

type 9!'. aircraft : = 1174 711
;

seats 9!'. aircraft:= 350;

jet OF airer-a.ft : = TRUE;

quiet OF aircraft : = ~

assign; values to all 4 fields of' the variable aircraft. The operation of'

20

selecting;one fieJ;q. ~fL~ ~~O!t.g~y.~,i~)in fact called selecting.

The fields of a structure ~ be objects of any mode, including arrays.,

as above, and even other structures. An individual field ~ be changed
,• ,

without affecting the values of the other fields. Some properl:iies of

structures and arrays a.re compared in figure 2-13.

2.2.5 References

We have mentioned addresses of objects quite a few times so far, now it

is time to consider them more ca.ref'ully. An identifier has been considered

synonymous with the address of the memory location into which an object of

some specific mode can be put. In ALGOL 68 addresses are also objects, and can

be handled as such. The mode of any address is "reference to" followed by the

mode of the object contained in its location. Thus the address of a mem:>ry

location containing an integer has mode "reference to integer".

We can now consider assignment statements to involve 2 objects, the

destination, which must be of mode "reference to something", and the source

which must be of mode II something", where something can be any allowed mode.

In parl:iicular, something could even be of mode "reference to integer". ALGOL

68 allows "reference to integer" variables, which contain an object of mode

"reference to integer". Thus a "reference to integer" variable contains as its

object the address of an integer, whereas an integer variable contains an

integer, not an address. Now of course, an address is just some bit pattem in

the computer's memory and it might be the same bit pattern as some integer,

but "reference to integer", "reference to boolean", and integer a.re all 3

distinct nodes and cannot be mixed.

On the CDC Cyber series computers, an integer requires 60 bits and an

address 18 bits. On the IBM 370 1 s an integer is 32 bits, and an address is 24

bits. Objects of mode integer and mode "reference to integer'' usually have

different sizes, a general characteristic of different m::xies.

An example of a "reference to boolean" variable declaration is

REF BOOL p --

21

which declares p to be a variable which contains as its object the address of

a boolean. Furthermore, p itself is an object of mode "reference to reference

to boolean" •

2.2.6 Mode declarations

The data used by an .ALGOL 68 program consists of a collection of

objects. Each object has a m:::>de. Some modes are "built in" to ALGOL 68, e.g.

~' ~, ~, and ~, while other modes can be constructed using ~,

~, [] , and STRUCT. To allow programmers to define their ow.n modes and then

declare va-riables of these modes, ALGOL 68 provides a wey to invent new modes

and add them to the language so they can be used just like the bull t in modes

B!,!, ~, ~, and RE.AL. A mode is added to the language by a mode

declaration. An example is:

MODE STRING = FLEX [1 : 0] CHAR ---- - -
which declares STRING to be a :roode. The bounds 1 : O imply that when a string

variable is declared, initially no space is reserved for it, but because it is

flexible, a II string" of characters of any size can be assigned to a string

va-riable. This new mode can now be used just as if it were buil"t-in. For

example,

STRING s

declares s to be a string variable in exactly the same wa;y that

INT k

declares k to be an integer variable. Since strings are so u:seful, this

definition of string is in fact already built-in, so the programmer need not

declare it herself.

22

Figure 2-14 shows several examples of mode declarations and figure 2-15

shows some declarations of variables using these modes. Variables of any mode

ma;y be initiaJ.ized at the time of their declaration by following the name with

a becomes symbol (: =) and an expression yielding an object of the required

mode. Arreys and structures may also be 1n1 tialized by listing their elements

or fields inside parentheses. It is possible to partiaJ.ly initiaJ.ize a newly

declared object by writing~ in place of any (or all) elements or fields.

The value of ~ is undefined, and is onl.y used when that element or field

will later acquire a vaJ.ue by assignment.

The declaration of VEC'IOR in figure &-14 causes x in figure 2-15 to

become a 1 dimensional real array variable. Since n is 3 at the time x is

declared (the vaJ.ue of n at the time the mode VECTOR is declared is

immaterial) x has 3 elements. These are initiaJ.ized by the ~ displey (2.0,

3.0, 4.0) in figure 2-15, and cause assignment of values to the elements of

the vector x just as if we had written

x[1]:= 2.0; x[2]:= 3.0; x[3]:= 4.0

The variable xx is a real 3><3 matrix variable, with mode row row of reaJ.. It

is initiaJ.ized as shown, where (1.0,2.0,3.0) is the first row, i.e. elements

xx[1,1], :xx[1,2], and xx[1,3]; (2.0,3.0,4.0) is the second row, i.e. elements

xx[2,1], xx[2,2], and xx[2,3], and (3.0,4.0,5.0) is the third row.

The declaration of rat demonstrates the use of a structure displey to

initialize "numerator OF rat11 to 2 and "denominator OF rat" to 7. The

declaration of john illustrates a.YlOther structure displey. Since objects of

mode PERSON have 5 fields, the structure display also needs 5 fields, each of

the proper mode. For the declaration of john to be correct., bill and mary

would have to be declared as PERSONs somewhere in the program. The declaration

of jones shows how a structure one of whose fields is an arrey can be

initialized. The expression ,,

(nancy, peter)

23

is itself a row display, and thus can be used to initiaJ.ize an array such as

[1 : 2] PERSON child.

The declaration of jones raises an important p:>int. Supp:>se it is

desired to print out the name of child [1] of the variable jones. The

expression

child Q! jone s

is a selection from a structured value, and is itself an array variable. As a

consequence this array variable can be subscripted. However

child Q! jones[1] (wrong)

is wrong becauses subscripting binds more tightly than Q!. The expression

child Q! jones [1] would be correct if jones were an array of structures one

of whose fields were child. In that case, jones[1] would be the entire first

element (a structure) and the action of selection could be per.f'ormed on that

structure. The correct way to print the name of the first child (nancy) is

print(name Q! (child Q! jones)[1])

The parentheses force "child OF jones" to be subscripted. Since child OF jones - -
is an array, that is fine. The expression

(child Q! jones)[1]

is an object of m::>de PERSON, and can be selected from using the field

selectors name, father, mother, age, and smokes.

It is instructive to compare the m:>de BRIDGEHAND to the m:>de FAMILY.

North is initiaJ.ized to a row display containing 13 elements, each of which is

a 2 character structure display. Suppose we wish to print the rank of the

first card. The expression

north[l]

represents a structure with 2 fields, rank and suit. We can select from it, so

print(rank Q! north[1])

is correct. Here no extra set of parentheses is needed because subscripting

binds m::,re tightly than _9!, and in this case that is what is needed. Extra

24

parentheses are al.ways allowed however, so if' one is unsure they can be used

to avoid dif'f'iculty.

The variables w, reg, cc, and t are not initialized. The mode

INSTRUCTION is a mode all of' whose f'ields are of' the same mode, thus it could

have been declared as an an-ay

MJDE INSTRUCTION = [1 : 4] ~

instead of as a structure but to use the first element we must write

add[1]

:Instead of

opcode.!!'. add

Which choice is made depends upon which form the programmer finds most

convenient for the problem at hand. ALGOL 68 is very flexible, and of'ten

provides several. ways of' expressing equivaJ.ent ideas.

The declaration of' twa520 illustrates the use of' SKIP to initiaJ.ize -
some fields of' the structure, but not all of' them. In particular 1 field,

passenger, is not initialized at the time the variable is declared. When the

name and phone of' passenger[1] are known, they can be assigned by

name 9!'. (passenger Q!'. twa520)[1] : = 11tarzan11
;

phone E! (passenger.!!'. twa520)[1] := 914 723 4567

What may appear complicated at first, will later be seen to be straightforward

and simple. The key to writing expressions involving both selecting and

slicing is to carefully note the mode of each expression. The variable twa520

is a structure so it must be selected f'rom, not subscripted. Clearly,

passenger is the field selector desired, not number, pilot, movie, or nonstop.

The expression

(passenger 9!'. twa520)

is an a:rrey, so we must subscript it, not select f'rom it. We want the first

passeng~r, so we write

(passenger.!!'. twa520)[1]

25

Since (passenger OF twa520) is an array of structures, subscripting it gives a

structure to be selected from, e.g.

name _Q!'. (passenger ~ twa520)[1]

which can then be used as a destination, source, operand, etc. Anyone who

still thinks this unnecessarily complicated should try expressing the same

ideas in FORTRAN, ALGOL 60, or BASIC.

The m::>de TREE is interesting. It has 3 fields, an integer and 2

addresses. In terms of allocating space for~ variables, it ha.rdJ.y matters

that the addresses a.re addresses of other objects of m::>de ~- Binary trees

are a very useful data type in many areas of computer science, so modes such

as this a.re very valuable. A mode which is defined in terms of itself is

called a recursive ~- One must exercise some care when declaring recursive

modes. For example

!:!!!?! ~ = STRUCT (.!!E val, ~ left, right) (wrong)

is wrong. Sup:pose that an integer requires 1 word of mem::>ry and a BUSH

requires N words of memory. Then a declaration like

~ blueberry

would require enough space to be reserved in the computer's mem::>ry for one

object of mode ~ (1 word) and 2 objects of' mode ~ (2N words). This is a

total. of 2N+1 word for each object of made ~- But this contradicts our

statement that a~ required only N words. The definition is impossible,

since a BUSH can hardly contain an INT plus 2 BUSHes. The mode TREE presents - - - -----
no such problem since it only claims space for an .Ef!'. and 2 addresses, not 2

objects of m::>de TREE. As you probably expect by now, ALGOL 68 allows

essential.ly all m::>des that are reasonable and prohibits those that are not,

but the formal test to see if a given mode is allowed is unfortunately too

complex to be given here. Interested readers may consult van Wijngaarden

(1968).

It is important not to lose sight of the fact that prograzmrer created

26

modes like PERSON are used just as thought they were built in (see figure 2-15).

The ability of a programmer to define modes suitable for her application is

the m:>st power.ful feature of .ALGOL 68. In a later section you will see bow to

define operators to perform actions on programmer defined modes. For example,

in a program to pla;y bridge, a m:>nadic operator to count the number of points

in an object of nnde BRIDGEHAND might be use.ful.

Mode declarations can be used to define synonyms for modes. Thus users

who like writing IN'IBGER instead of l!! can declare them to be equivalent by

MODE INTEGER= INT.

2.3 Units

We have used the term "expression" quite often so far without precisely

defining what it is. Now we will examine the concept in detail. The .ALGOL 68

term for the intuitive idea of 11expression11 is unit, which is short for

unitary clause. A unit, when evaluated, yields a val.ue which is an object of

some specific node. A unit which when evaluated yields an integer is cal.led an

integer unit. A unit which evaluates to a boolean is called a boolean unit; a

unit that evaluates to the address of a character is called a reference to

character unit, etc •

.ALGOL 68 requires certain kinds of uni ts in certain places., for

example, a subscript must be an integer unit. An integer unit is al.so needed

after FROM, TO, and~ in a~ statement. The cond.ition following the~ in a

cond.itional statement obviously must be a boolean., not an integer. The

destination of an integer assignment must be the address of an integer

location., i.e. a 11reference to integer" unit.

There are many forms a unit can take. We will examine 9 of them. As an

example we will show how the form und.er discussion is used as the source of an
'"

assignment, but of course units are used in other places as well. In the

27

examples i will be assumed to be an integer variable.

2. 3. 1 Denotations

The simplest form of a unit is a denotation, {caJJ.ed a constant in some

programming languages). An example of the constant 3 used as a unit is

i := 3

The expressions on the right hand side of the := symbol in figure 2-15 are aJJ.

denotations (al.though other uni ts are al.so aJJ.owed) and therefore uni ts.

Constants for structure and row nxxles are al.so aJJ.owed, and consist of a list

of constants. There is no official. word for such constants, but we will use

the term denotation to include them, al though in a strict sense they are not

denotations. A unit of a structure or row mode is caJJ.ed a displa;y. Figure

2-16 shows the declarations used by figures 2-17 to 2-25.

2.3.2 Variables

The next simplest kind of unit is a variable. If j is declared by

then j is an address of an integer, and therefore has mode reference to

integer. One might think that

i:= j

would be forbidden, since the source of an assignment to an integer variable

must be an integer unit, not a 11reference to integer" unit. But our old friend

dereferencing comes to the rescue and dereferences j, turning it into an

integer. Dereferencing, as you will recall, takes an address as input, and

produces the object at the address as the result. If the object is a unit of

mode something, then the address has mode "reference to something", so
,,

dereferencing turns an object of mode "reference to something" into an object

28

of mode II something". That is why it is caJ.1ed dereferencing: it removes a

reference.

Dereferencing is an example of a coercion. A coercion is an action that

replaces an object of one mode (usually the wrong mode) with a different

object, hopefully of the right mode. Any object of mode "reference to

something" can be dereferenced when it appears as the source in an assignment,

or as an operand in a formula etc •

There is one other coercion that is worth mentioning (and 4 others that

are not worth mentioning) caJ.1ed deproceduring. Deproceduring starts with a

procedure whose m:>de is procedure something, and produces as its result an

object of mode something. For example if r is a real variable, then

r:= random

(where random has m:>de !!Q£ ~) does not appear to be proper, since the

source should be of mode REAL not mode PROC REAL. Deproceduring, like - --
dereferencing happens automatically when needed. Coercions are a rather subtJ.e

idea and have more to do with the syntax of a program than with what it does.

If you do not see why i: = j or r: = random would be incorrect without

coercions, do not worry about it. It's really not very important. The

discussion of coercions was included only because some clever read.ers may

notice the apparent inconsistency which coercions solve. People who like this

sort of thing will probably like the other 4 coercions as well. Figure 2-18

shows examples of variabl.es of various modes.

2.3.3 Slices

The thi:ro. form of a unit is a slice, which includes subscrpted

expressions such as

(child OF jones)[1]. -
A slice has 2 parts, an array to be sliced, and the index or indices, enclosed

29

with:in square brackets. The expression above is considered to be a slice

rather than a selection because slicing is the last operation performed, i.e.

child 2!'. jones is an array and it is sliced. If len is a 1 dimensionaJ. integer

array, then

i: = len[1]

is an example of a slice being used as a unit. More examples are shown in

figure 2-19.

2.3.4 Selections

The fourth form of a unit is a selection. Like a slice, a selection

aJ.so has 2 parts, separated by 9!· These parts are the field selector and the

structure being selected from. The field selector must be an identifier and

cannot be computed (because it is not an object). The structure being selected

from :may be the result of evaluating an expression. An example of a selection

being used as a unit is

i: = age .Q! john

where jolm is declared in figure 2-15. More examples are shown in figure 2-.20.

2.3.5 Procedure caJ.ls

The fifth kind of unit is a procedure caJ.l. A procedure caJ.l causes a

procedure to be executed and (optionally) return a result. If the result is an

integer unit, the procedure call can be used anywhere an integer unit is

allowed. If the caJ.l yields a reference to boolean, the caJ.l can be used

wherever a reference to boolean unit is required, or even where a boolean unit

is required, because the result can be dereferenced.

A caJ.l has 2 parts, the procedure to be caJ.led, and the parameter list.
'"

The mode of the result of a procedure call can be found by looking at the mode

30

of' the procedure called. Procedures with parameters al.ways have modes of' the

form

PROC (mode of' parameter 1, mode of' parameter 2, etc) mode of' result -
or

PROC (mode of' parameter 1., mode of' paraxooter 2., etc) ~

Cal.ls of' procedures of' the second form cannot be used as units in sources,

subscripts etc. Cal.ls of procedures of' the first fonn ma;y- be used anywhere a

unit of' "mode of result" is needed. As an example., if count is a procedure of

mode PROC (~) .!!!!'., i.e. it takes

integer as result., then

1: = count(j)

integer as pa-raxooter and delivers an

111 ustrates a procedure call being used as an integer unit.

A procedure call is very similar to a deprocedured variable. The only

difference is that procedure calls always have paraxooters., and deproceduring

occurs only for procedures with no parameters. This distinction is needed to

avoid certain ambiguities which can result if the result of' a procedure is

another procedure.

A procedure is the ALGOL 68 method of' implementing the idea of' a

f'l,mction in classical mathematics. A function in classical. mathematics has 0

or more parameters and delivers a result. The ALGOL 68 concept of' a procedure

is more general., since a procedure :ma;y have no parameters and yield~

instead of a vaJ.ue.

Examples of' cal.ls used as units can be found in figure 2-21 •

2. 3. 6 Formulas

The sixth kind of unit is a formula. A formula consists of an operator

and its operands(s). Monadic operators have onJ.y 1 operand., f'or example, .ABS 1
,, -

has the value of' the absolute value of i. Dyadic operators have 2 operands,

31

for example j+k is a formula in which the operator + has 2 operands. ALGOL 68

has well over 100 built-in operators, and the programmer can define new ones

just as she can define new m:>des. An operand in a formula may itself be a

formu.la, for example the formuJ.a 2Xn, may be used as the right operand of + to

yield another formula, e.g. j+2Xn. Denotations, variables, slices., selections,

and procedure cal.ls (among other things) may al.so be used as operands,

al.lowing very general. formu.las to be expressed. An example of a t'ormuJ.a used

as a unit is

i:= j+k

More examples of formulas as uni ts are shown in figure 2-22.

2.3.7 Assignments

The seventh kind of unit is an assignment. An assignment can stand by

itself as a statement, but it can al.so be used as a unit. When used as a unit,

the val.ue of' an assignment is the value of its destination, not its source. In

j: = k the value of the assignment is j, which is of' mode 11reference to

integer". Thus j : = k can be used anywhere a "reference to integer" unit needed,

or because it can be dereferenced, it can al.so be used anywhere an integer

unit is needed. Consider the assignment

i:=j:=k

Here i is the destination and j: = k is the source. As a consequence of

allowing assignments as units, ALGOL 68 gets multiple assignment statements as

an extra added attraction, for free. The above statement is equivalent to the

2 assignments

j: = ki i:= j

but is easier to write. The reason that k is first assigned to j, then j is

assigned to i, is that j: = k is the source of the assignment to i. Before an

assignment can be performed, the source and destination of the assignment must

32

be evaluated, and as a "byproduct" of evaluating the source j:= k, k is

assigned to j. See figure 2-23 for m:>re examples of assignments as units.

2.3.8 Closed clauses

The eigh~h kind of unit is a closed clause. A serial clause consists of

a series of zero or m:>re statements and/or declarations followed by a unit. A

serial clause has the mde and value of its final unit. A closed clause is a

serial clause enclosed by either~ ~ or by parentheses. A closed clause

has a mode and a value, namely the mde and value of the unit at the end of

its serial clause. For example

(reaa.(J); J:= J+3; E J < o ~ J:= o _[!; J+1)

is a closed clause, hence a unit. It's serial clause ends with the formuJ.a

j+1, so the value of the closed clause is j+1, which is an integer unit. This

closed clause ma;y- be used anywhere an integer unit may be used (even if it

seems somewhat strange at first). For example,

i:= (read(j); j:= j+3; IF j < 0 TEEN j:= 0 FI; j+1) - - -
is a perfectly valid assignment, 'Which ma;y- either stand alone as a statement,

or be used as a unit. The above assignment is evaluated in 5 steps

1 • j is read in

2. j is increased by 3

3. if j is negative it is set to O

4. j+1 is computed {but j is not changed)

5. the integer computed in step 4 is stored in i

It should be noted that a serial clause need not have any statements or

declarations, therefore a unit all by itself is also a serial clause. A

"

33

unit in parentheses is a serial clause in parentheses, so it is a closed

clause hence a unit. Therefore unnecessary p-s.rentheses a.round units are

al.lowed, and a.re sometimes useful for improving readability. Figure 2--41

illustrates the relation between a unit, a serial. clause, and a closed clause.

Examples of' closed clauses a.re shown in figure 2-24.

2.3.9 Conditional. clauses

The ninth kind of' unit is a conditional. clause. A conditional. clause

consists of' an IF part., a THEN part., and an EISE part. The 'IflEN and ELSE parts - - .____ ----- -
consist of' the words THEN and~ respectively, followed in each case by a

serial. clause. The two serial. clauses must either be of' the same mode, or be

coerceable to the same n:ode. The mode of' a conditional. clause is the n:ode of'

its serial. clauses, or if' they have different modes, the mode to which they

may be both coerced. For example.,

i:= _!!'. i < j ~ k ~ read(n); n+1 FI

is a val.id assignment. If' i is less than j, k is assigned to i, otherwise n is

read in and n+1 is assigned to i. The formula n+1 at the end of' the ELSE pa.rt -
does not change the val.ue of' n of' course, anymore than i: = n+1 would change n.

The restriction that both serial. clauses must be or be coerceable to

the same n:ode is needed to avoid nonsensical. assignments. Consider the meaning

of'

i:= IF k<O ~ 4 ~ ~ !'.,! (wrong)

If' k is less than o, i becomes 4. If' k is greater than or equal. to o, the

statement requires assigning a boolean val.ue, TRUE, to an integer variable.,

which is impossible. On the other hand,

i:= IF k<O THEN 4 ELSE i FI

is f'ine. The denotation 4 is of' mode integer, while the object i is of' mode

"ref'e~nce to integer", but it can be dereferenced to produce an object of

mode integer, so both serial. clauses can be coerced to n:ode integer.

34

A conditional clause and a conditional statement are really slightly

different f'orms of' the same beast. The difference is that while a conditional

clause always has a value., a conditional statement stands alone., so it does

not need a value. The ~ part of' a conditional clause is not strictly

required, but it hardly makes much sense to write

i: = IF i<j ~ k FI

since if' j::::_i the result will be undefined.

The reason that !,! is required to terminate conditional clauses and

statements can now be given. If' no !,! were required., then

IF i=O ~ 1! j=O ~ j:= j+1 ~ i:= i+1

would be ambiguous. It might mean

IF i=O

~ 1! j=O ~ j:= j+1 ~ i:= i+1 FI

FI

or it might mean

IF i=O

FI

~ 1! j=O ~ j:= j+1 FI

ELSE i:= 1+1

which have very dif'f'erent meanings. In the f'irst interpretation, if i is not

zero the statement is finished and nothing happens. In the second

interpretation, if i is not zero then it is increased by 1 • This is the fazoous

"dangling else" problem. Some programming languages solve it by not permitting

1! statements in then parts. Others solve it by arbitrarily declaring one

interpretation or the other to be correct. FORTRAN solves the problem by not

allowing else parts at all. That certainly avoids the ambiguity, but

unfortunately it also makes programming very difficult. The ALGOL 68 solution

of requ~ring conditional statements and to end in FI is symmetric, elegant.,

and always unambiguous.

Examples of conditional clauses are shown in figure 2-25.

35

2.4 Where units and serial. clauses are allowed

In the preceeding sections, 10 different kinds of expressions have been

introduced: denotations, variables, slices, selections, procedure cal.ls,

formulas, assignments, closed clauses, conditional. clauses and serial. clauses.

ALGOL 68 programs are built from statements that use these and a few

relatively unimportant other kinds of expressions. Not every kind of

expression can be used everywhere, ho-vrever, since ambiguities would result if

this were al.lowed. For example, assignments are not al.lowed as operands of

formulas. Consider what would happen to the assignment

i:= j+1

if j, which is an operand of +., were replaced by the assignment k: = 1. We

would have

i:= k:= 1+1

which is allowed but is not -what was intended. It sets k to 1+1, i.e. to 2,

then sets i to k, also 2. If instead. of writing the assignment k:= 1 as the

left operand of + we write the closed clause (k:= 1) we get

i:= (k:= 1) + 1.

The above first sets k to 1, and then i to 2, which is quite dif'ferent than

the previous expression. To avoid this sort of ambiguity, ALGOL 68 only al.lows

constructions in positions where no confusion can arise.

Figure 2-26 shows a number of syntactic positions within programs where

expressions are required. For each syntactic position the kinds of

constrt1ctions that are al.lowed are shown at the right. Thus a:rter _!!: or ~

a boolean serial. clause, or any kind of boolean unit (or something coerceable

to a boolean unit) will suf'fice. We emphasize that a unit yielding a

"reference to boolean" object, e.g. a variable such as q., is quite acceptable

in a position requiring a boolean unit, since it can be dereferenced., yielding

36

a boolean. An expression which can be coerced to the proper mode is always

acceptable.

A serial clause consists of zero or .more stat-ements followed by an

unit, so every unit is also a serial clause, although serial clauses are in

general not units. In other woms, 11 serial clause11 encompasses more than

11unit" so it is redundant to list both of them together. Whenever a serial

clause is allowed, a unit is certa:in.1.y allowed. Nevertheless unit is listed

too as a reminder, where appropriate.

2,5 Procedures

The m:>st powerful technique for writing a large or complicated program

is breaking it up into a number of smaller, and conceptually simpler pieces,

called procedures. Some people prefer the term subroutine instead of

procedure,; both are widely used. They will be used interchangeably in this

book, in accordance with common usage.

A procedure is used to perform some logical task, for example computing

the value of sin or arctan or the cube root of some input value, called a

parameter or argument. If the procedure has only 1 result., the result can be

returned as the value of the procedure. Alternately., the procedure can change

one of its parameters, e.g. set a variable to the answer.

In ALGOL 68, procedures are objects end have modes and values just as

other objects. The value of a procedure is a piece of program that perfonns

some computation and possibly returns some value. An example of a procedure

variable declaration initialized to a procedure that determines if its second

parameter is 1 la-r-ger than its first parameter is

Notice that this declaration has the same form as all the other declarations.

First is the lOOde, in this case ~(~,E!!) ~ because the procedure has 2

37

integers as parameters and delivers a boolean as resuJ.t (meaning a call to

this procedure may be used a;n;ywhere a boolean unit is required) • Following the

mode is (as usual in all declarations) the identifier which identifies the

procedure. This is then followed by a becomes symbol and the initial value of

the procedure. Compare the structure of the above procedure declaration to the

integer declaration

INT j:= i + 1

The right hand side of a becomes symbol in an integer declaration is an

integer unit. Iogically the right hand side of a becomes symbol in a

PROC(INT,INT} BODL declaration shouJ.d be a PROC(INT,M) BOOL unit., which it ---- -- --- --
is. We will now describe what a unit for a procedure is.

Units for procedures begin with a list of the modes of the parameters.,
\

each of which is followed by an identifier called a formal parameter. The

entire list of formal parameters is enclosed in parentheses and followed by

the mde of the procedure's resuJ.t. This is followed by a colon. The colon is

followed by a unit of the mode of the resuJ.t. The value of this unit is the

value of the procedure, so naturaJ.J.y it must be the same mode as the resuJ. t.

In the above procedure declaration, j = i+1 is a formula, hence a unit., which

has the value TRUE if j and 1+1 are equal and ~ if j and 1+1 are unequal.

Thus j = i+1 is a boolean unit, which it shouJ.d be (since the node of the

procedure I s resuJ. t is boolean). Note that : = is the becomes symbol., while = is

the equality symbol.

An example of a procedure call to adjacent is

read(n); read(k); _!! adj acent(n., k) ~ print(11ok11
) !'.!

which reads in 2 integers and prints ok if the second integer is equal to the

first integer plus one. The call adjacent(n,k) produces a boolean., so it can

be used after IF, where any boolean unit or serial clause may be placed.

The call adjacent(n,k) tests to see if n+1 = k. It does not test to see

if k+1 = n. The reason has to do with the way actual parameters are accessed

38

by procedures. At the time a procedure is ca1led., space is reserved in the

computer's memory for the parameters. T.he · number and mode of the parareters

can be determined f'rom the mode of the procedure. Thus a

has 2 integers as parameters, whereas a

has a 1 dimensiona1 boolean a-rTay, a character, and the address of an integer

as its 3 parameters. At the time of the ca11, copies of the actua1 parameters

are made and put int-0 the space reserved for them. The first actua1 parameter

can be accessed by using the identifier of the first formal parameter. The

second actua1 parameter can be accessed by using the identifier of the second

formal. parameter, and so forth. The order in which the actual parameters are

listed is thus very important.

A very important point is that parameters are objects not variables. In

the declaration

INT i

i is an integer variable, that is i itself is an address of an integer, not an

integer. Because it is an address of an integer, i.e. i has mode "reference to

integer", it can be used as a destination in an assignment, however, the

declaration

(wrong)

is incorrect because here i is an integer, not an integer variable. Suppose p1

is ca1led by p1 (n). At the time of the ca11 the following things happen

(conceptua1ly a clever compiler ma;y- be able to do some optimization) . First n,

which is the address of an integer, is dereferenced yielding an integer. A

copy of this integer is then placed in the space reserved for it by procedure

p 1 . The identifier i identifies the int.ager itself, and not its address. As a

consequence, the object i has mode integer and not mode "reference to
'

integer", so it cannot be changed. By declaring a f'ormal parameter to be of a

39

mode not starting with "reference to", one can protect the corresponding

actual. parameter from being accidently changed. This helps catch programming

errors.

Of course if it is desired to change i, we can write

PROC(REF INT) INT p2:= (REF INT i) INT: i:= i+1 ---- -- -
A call of p2(n) will cause the address of n to be copied into the space

reserved for i. No dereferencing happens in this case because the formal

parameter is of m::>de "reference to integer" and the aduaJ. parameter is aJ.so

of mode "reference to integer". Thus a copy of the address of n is made, not a

copy of the integer of which n is the address. When p2 is executed the formula

i+1 is eval.uated by fetching i, i.e. the copy of the address of n. This object

is then dereferenced because + requires integers not addresses, as operands.

The process of dereferencing i fetches the object whose address is i, namely

the contents of n. The ad.di tion is performed and the result is stored back

into n. The result of p2(n) is n:= n+1.

Three facts about parameters will be repeated for emphasis:

1 . An actuaJ. parameter (after coercion) must be of the same mode as the

corresponding formal parameter.

2. A formal. parameter has the m::>de appearing in front of it. A fo:nnaJ.

parameter written as ~ i really is an integer., not a "reference to integer'' .

3. A copy is made of the actuaJ. parameter, after coercion. Accesses by the

procedure to the formal. parameter are to this copy, not the original.

The examples given above are al.l very s:l.mple. A more coDm:m situation

is a procedure whose unit (i.e. its body) is a closed clause. Figure 2-2.7 ,

shows a complete program that reads in 20 integers com.prising 2 vectors of

4o

length 10 and prints their inner product, i.e.

a[1] X b[1] + a[2] X b[2] + a[3] X 'b[3] + ... + a[10] X b[10]

We note several things about this program. First, the formal. parameters

y and z a.re written after the same mode declarer. This is an alternate form

which is easier to write than

([] ~ y,[] :rnT z).

Second; the modes of y and z do not have upper and lower bounds specified.

Modes never have bounds, al though of course variable declarations such as a

and b do have bounds. Third, the integer unit comprising the procedure body is

a closed clause, whose serial clause ends in a variable, answer. The mode of

answer is reference to integer, but is dereferenced to give an integer.

The declaration of a procedure is somewhat wordy, since the modes of

the formal parameters are listed twice. If there are many parameters, this can

be a nuisance. Thus ALGOL 68 provides another form for procedure declarations.,

namely the left hand side of the : = is replaced by the word ~ and the

procedure name., and the := is changed. into an = to indicate the alternate form

is being used. Strictly speaking, an object declared. by this alternative is

not a procedure variable, i.e. it does not have mode "reference to procedure

something", but is an object of mode "procedure something". For our purposes

the 2 forms are close enough. Figure 2-28 shows innerproduct in this alternate

form. We will use this simplified. form throughout the book.

We now consider a final item. A procedure which returns no explicit

value has mode VOID for its result. A call of such a procedure cannot be used

as a source, or a destination, or an operand, or anywhere an object of some

mode is needed, however, it can be used where a statement is needed such as in

a serial clause.

41

2. 6 Operators

Consider the program of' f'igure 2-29. It declares a nnde VECTOR, and a

procedure to add 2 vectors, and then uses those def'initions to add 4 vectors

and print the result. The statement

v5:= vectoradd(vectoradd(vectoradd(v1,v2),v3),v4)

although ghastly to look at is quite correct, since an actual parameter may be

any kind of' unit, (see f'igure 2-26) and a procedure call, such as

vectoradd(v1,v2) is certainly a unit. Hence vectoradd(v1,v2) may be used as an

actual. parameter.

The dif'f'icul ty with the above expression is that al though perf'ectly

acceptable to the computer, we mere humans are accustomed to a notation in

which the operator comes between the operands, not in front of them. ALGOL 68

comes to the rescue once m:,re by allowing us to define new operators. A

formula in ALGOL 68 is reaJ.ly just a procedure call in a different notation.

Consider the operator + in the integer formula

1 + 2

as compared to the operator + in the real. formula

1.5 + 2.5

They are actuaJ.ly different operators with the same symbol, +. The first

operator takes 2 integers and perf'orms an integer addition, yielding an

integer. The second operator adds 2 reaJ.s., yielding another real.. On almost

all computers diff'erent haroware instructions are provided for perf'ormi:ng

integer and real. a't'ithmetic, but this causes no problem for the .ALGOL 68

compiler., which merely examines the nndes of the operands to determine which

operat-or is intended.

There are 2 kinds of operators., nnnadic., which take operand (as in

ABS i) and dyadic, which take 2 operands (as in i-j). The definition of a

42

monadic operator specifies the mode of" its operand and the mode of its result.

The definition of" a dyadic operator specifies the modes of both of its

operands, and the IIOde of" its result. When the ALGOL 68 compiler finds an

o-perator it must inspect its operator definition table to find out which

definition is appropriate for that operator's operands. In this way + can be

defined to signify one operation for integer operands, another operation for

real operands, a different operation for 1 dimensional integer array operands,

and still another operation for 2 dimensional boolean arrays. In fact, the

-programmer may define as many other operations on as many other distinct pairs

of" nodes as she wishes. Note that + defined to operate on an ~ as left

operand and a ~ as right operand is distinct from + defined to operate on a

~ as left operand and a~ as right operand. Both of" these operators are

again different from + defined to operate on 2 ~s or 2 REALs. If i is an INT

variable and x a~ variable, the 4 formulas

i+1, i+x, x+i, x+x

all use distinct built-in operator definitions. As if" this generality and

power were not enough, ALGOL 68 also allows the programmer to change any of"

the built in definitions. Thus a programmer who desired could redefine + to

mean addition on integers and subtraction on reals.

Figure 2-30 shows figure 2-29 redone using an operator instead of" a

-procedure. An operator definition consists of the word _f!, followed by the

operator (which may be a BOIDFACE word), :followed by an equals sign. The text

to the right of" the equals sign is exactly the same as that for a procedure

definition.

As another example, below is an operator definition which declares 'V to

be the same as x for integers, so i'VJ means the s~ as iXj (although 'V is

still undefined for reals).

~ 'V = { int i, j) int : iXj

In formulas like

i+j X k

43

we know that the multiplication is performed before the addition because

multiplication has a higher priority than addition. ALGOL 68 allows the

-priority of dyadic operators to be changed, and the priority of new dyadic

oi;,erators to be defined. Dyadic operators have priority between 1 and 9,

inclusive. Monadic operators have priority 10, which implies that

(where 1' means exponentiation) has the meaning

(-1) 1' 2 and not - (1 1' 2)

The following priority declarations have the effect of causing addition to

bind more tightly than multiplication

PRIORITY + = 7, X = 6

Thus af'ter these declarations, 2+3X4 evaluates as (2+3)x4 which is 20.

A very large number of operator definitions in ALGOL 68 are built-in.

Figure 2-31 lists a few of the more important ones.

There are 2 quasi operators ~ and ~ that are also useful. Both are

monadic and both operate on all 1 dimensional arrays. The value of~ i 1 is

the lower bound of i 1, and the value of ~ i 1 is the upper bound of i 1 • These

are particularly useful in procedures and operators that have a 1 dimensional

array as parameter. They allow the procedure to determine the bounds of the

array, so that every element of the array may be accessed. Figure 2-32

illustrates their use. First n is read in, and then i 1 is declared to have n

elements . The monadic operator BIGGEST needs to know how many elements are

contained in its parameter so it will be able to test all of them to find the

biggest one. The vaJ.ue of the operator is the value of the largest element.

These operators are quasi operators because they are automatically defined on

all 1 dimensional array modes. Normal operators have to be defined separately

for each mode. For example

44

[4: 9] STRUCT (.!!!E a, b) s

is an array of 6 structures and we can write LW.S s, which has the value 4.

2. 7 Serial, collateral, and parallel actions

In general, statements are executed one after another in the order

written. The semicolon can be regarded as a go-on operator, which causes

execution to continue. In some situations, however, there is no inherent

sequencing. For example there is no reason for the first unit in a row display

to be evaluated before the last one. Nor is there aJJY reason wby the left

o-perand of a dyadic operator should be evaluated before the right operand. In

some other programming languages units are evaluated left to right but nothing

in classical mathematics suggests any precedent for this.

In formulating ALGOL 68, the designers intentionally specified that the

order of evaluating certain things, such as the left and right operands of an

operator, be undefined. This ·was done for three reasons. First, it discourages

programmers from making use of the order, since they do not know what it is,

and in fact it need not be consistent. Programs which execute differently

depending on the order in which things are evaluated are bad programs. They

are difficult to understand and are not likely to give the same result on all

computers. An example of a program whose result depends upon the order of

evaluation of operands is

BEGIN INT i,j,; print{{read(i),; i) - (read(j),; j) END

If the input data is 1 followed by 2, then -1 will be printed if the left

onerand of the - operator is evaluated first and +1 if the right operator is

evaluated first.

The second reason the order of evaluation is intentionally undefined is

to give,,the ALGOL 68 compiler writer the freedom to do evaluations in the most

efficient order. In some situations doing something in one order may be

,:,referable to doing them in another order, and if the compiler writer were

forced to do everything strictly left to right then he could not take

advantage of these situations to produce faster machine code. For example,

consider the serial. clause

INT i,j,k; read(i); j:= -1; k:= p(i) + p(j)

On a computer with one fast register used for arithmetic, after evaluating j:=

-1 the register contains the vaJ.ue of j. It might be more efficient to

evaJ.uate the right operand of + before the left, since j is already in the

fast register. However, if the language had specified that operands are

evaJ.uated left to right, the compiler writer -would have no choice but to

evaJ.uate the procedure caJ.l p(i) first, even though it is less efficient.

The third reason for having the order of evaJ.uation of certain

constructions undefined is that some computers have more than 1 processor, and

are thus capable of performing n:ore than 1 computation at a given time. The

evaJ.uation of i-j is a trivial. case, since the only action required to

evaJ.uate each operand is dereferencing, but it is quite possible that each

o-perand of some dyadic operator could be a closed clause 100 pages long. Or

more importantly a row display with 64 units might consist of 64 closed

clauses, each 10 pages long. If such a program were run on a computer with 64

-processors, it would clearly be terribly inefficient to require that closed

clause n be completely evaJ.uated before the evaJ.uation of closed clause n+1

begins. Obviously it -would be much better to give each processor its own

closed clause to evaJ.uate, so they could be evaJ.uated in paraJ.lel.

Actions that have no specified ordering in time are said to be

evaJ.uated collateraJ.ly. A collateral. clause is a list of units separated by

commas, and enclosed by~~ or parentheses. The order in which the units

of a collateral. clause are evaJ.uated is expressly undefined. Figure 2-23 lists

some evaJ.uations that are performed collateraJ.ly. If the elements of the

collateraJ. clause are all statements, i.e. void units, the collateral. clause

46

may be used in any position in which a statement is allowed. Thus

~ i:= 1, j:= 2, k:= 3 ~

is a void collateral clause and can be used just like an ordinary statement,

just as though the commas were semicolons.

Consider the following two programs, the first of which contains a

closed clause and the second of which contains a collateral clause.

~ ~ i:= o; (i:= 1+1; i:= i+1); print(i) ~

BEGIN INT i:= o; (i:= 1+1, i:= 1+1); print(i) END

The only difference is that in the first clause the assignment statements are

separated by a semicolon and in the second one they are separated by a comma,

only one tiny spot of ink difference in appearance, but a very large

difference in meaning as we shall see.

The first program prints 2 just as you expect, but the second requires

closer scrutiny. Since the order of evaluation of the units in a collateral

clause is undefined. The first one might be completed first, then the second

one begun, giving the same result as the closed clause. However, on a comput,er

with 2 processors, the sequence of actions might be as follows

1 . Processor 1 fetches i into a register local to itself

2. Processor 2 fetches i into a register local to itself

3. Processor 1 adds to its register containing i

4. Processor 2 adds to its register containing i

5. Processor 1 stores its regist-er back into memory location i

6. Processor 2 stores its register back into memory location i

The result is that i becomes 1, into i, instead of 2. As a consequence, the

second program may print 2 or it may print 1 . Random numbers are very useful

in computer science, but this is not a recommended t-ecbnique for printing them.

Note that if the second unit were evaluated before the first, the result would

have been 2. The difficulty only arises when the units actually are evaluated ,,

collaterally. Note that

~ _!!!'. i:= O,j:= o; (i:= i+1,j:= j+1); print(i); print(j) ~

produces identical results independent of the order of evaluation of the units.

The m:,ral of the story is: collateral clauses are an important programming

technique but some care is required in their use.

There are some applications in which 2 processors running in parallel

must cooperate with each other. For example, a computer with 2 processors

might use one processor to compute values of some function and store them in

an area of mem:,ry. The other processor might be removing these values and

printing them. These two activities must be synchronized to avoid having the

first processor continue generating values when there is no room left to store

them. Similarly the second processor must stop running when the memory is

temporarily empty and wait for the next value to be computed and made

available in the men:ory. ALGOL 68 provides a mechanism for synchronizing

collateral clauses. S;ynchronized collateral clauses are called paraJ.lel

clauses, and will be discussed in detail in chapter 7.

2.8 Miscellaneous statements

It occurs occasionally in programming that 1 out of a large group of

statements is to be executed, depending upon the value of some variable .ALGOL

68 provides a CASE statement for this purpose. A~ statement is of the form

CASE integer unit IN s 'V 1, s 'V 2, ••• s o/ n OUT s ESAC -- - - -
The CASE statement is executed as follows. The integer unit is evaluated. If

its value is 1, s y 1 is executed, if its value is 2, s 'V 2 is executed, etc.

If the value of the integer unit is less than 1 or greater than n i.e. it is

out of range, sis executed. After the selected statement is executed, the

CASE statement is finished and execution continues with the statement

following the ESAC. The CASE statement

CASE! IN s1 OUT s2 ESAC

48

is identical to

IF i = 1 THEN s1 ELSE s2 FI

The word OUT and the statement following it ma;y be omitted if there is no

possibility that the integer unit will be less than 1 or more than the number

of statements between IN and OUT.

There is one final item to be mentioned about .ALGOL 68. It is possible

to label any statement with an identifier followed by a colon. There exists a

GOTO statement which can be used to jump to a label. In recent years it has

become increasingly clear that having ~ statements in programming language

is bad, in that programs with many jumps usually have man;y errors as well . A

few references to the continuing ~ controversy are given in the

bibliogranhy. The need for many GOTO statements usually indicates a poorly
. -

structured "9rogram. Upon finding the apparent need for a ~ statement, the

programmer should examine the program very carefully to see if perhaps the use

of a FOR statement or a procedure would not make the program logically clearer.

Using ~•s should be compared to parachuting out of an airplane: it can be

done, but there is usually a better ·way.

2.9 Summary

In this section some of the major features of' ALGOL 68 will be reviewed.

The language is built around the concept that in the computer's memory there

exist objects. Each object has an address., a mode, and a value. There exist

many actions that can be performed on these objects, such as slicing,

selecting, adding and assigning. The execution of' a program consists of

carrying out a sequence of actions.

Figure 2-34 shows a summary of' the ALGOL 68 modes. Figure 2-35 gives a

summa.I"Y,; of the kinds of statements and declarations available. The statements

in a program and not the declarations really do the work, and it is

interesting to note how few ALGOL 68 has. Of the 7 types of statements, only

the first 4 really count, since read and print are actuaJ.ly procedure caJ.ls

and~ should be avoided. Despite the fact, or more accurately, because of

the :fact, that ALGOL 68 has so few statements, it is possible to express a

very wide class of algorithms very conveniently in it. This is an important

recognition, and the reader would do well to ponder its meaning. Figure 2-36

summarizes the 9 types of uni ts. Figure 2-42 summarizes the gramnaticaJ.

structure of ALGOL [(:

A glossary of important terms introduced in this chapter :follows.

Actual parameter - An object supplied to a procedure as input. In the

-procedure caJ.l sin(x), x is an actual parameter.

Assignment - Variables are given vaJ.ues by assigning to them. In ALGOL 68 i:=

2 is an example of an assignment. It can either be used as an ordinary

statement by itself, or it can be used as a unit, as in a[i:= 2], in which

statement by itself, or it can be used as a unit.

Closed clause - A serial clause enclosed by~ ~ or parentheses. For

example (INT i,j,; read(i).; i+j) is a closed clause. A closed clause is a unit.

Coercion - An implicit process of changing an object of one mode into an

object of another mode. Dereferencing and deproceduring are two types of

coercions.

Collateral clause - A series of units separated by conn:nas and enclosed by

BEGIN END or parentheses. The order in which the units of a collateral clause

are evaluated is undefined, thus leaving open the possibility that on a

comuuter with nnre than processor severaJ. units may be evaJ.uated

concurrently.

50

Conditional clause - A construction of the form IF condition THEN • . • ELSE ••. - -
FI. The value of the conditional clause depends upon whether the condition is

true or false. This construction may also be used by itself as a conditional.

statement.

Denotation - A constant. Examples 4, TRUE, "x".

Deproceduring - The process of replacing a procedure name by its resuJ.t. This

is simply a special name for a procedure cal.l for the special case of a

procedure with no parameters. For example, in ~ x: = random, the procedure

random cannot be assigned to x, since the source must be of mode real., so

random is dep:rocedured, i.e. 11 called11 to deliver a real which can be assigned

to x. Deproceduring is a coercion. In this example al though random has mode

~ ~, it can be written in a position requiring an object of mode REAL

because it can be coerced to~ by dep:roceduring.

Dereferencing - The process of replacing an object of mode "reference to

something" by an object of mode "something". In i:= j both i and j are of mode

"reference to integer". However, an assignment to an integer variable i such

as i requires an object of mode integer as source, not the address of an

integer. To solve this syntactic problem and allow the assignment to be

meaningful, the integer whose address is j is used instead of the address

itself.

Dyadic - A dyadic operator is one with 2 operands, such as + in i+j.

Field ~lector - A structure is an object containing 1 or more objects called

fields. Each field has a name, called a field selector. In STRUCT (STRING

51

breed, ~ weight) breed and weight are f'ield selectors.

Formal. parameter - In a procedure declaration parameters are declared by

specifying their modes, and giving them symbolic names to be used in the

procedure. These are f'ormal parameters. In~ bump = (!!!:, _!!!: k) INT : k:=

k+1, k is a formal parameter.

Mode - The property of' an object which specifies the type of' object it is.

Examples of' modes are !!£, BOOL, REAL, ~, [].!!'f'.,

num,denom), ~(!!£) _!!f!'. and STRING.

STRlJCT(INT ----

Mode declaration - A definition of' a new mode. Examples: MODE REGISTER :;: -
(0: 15] BOOL and MODE MATRIX = [1 :n, 1 :n] REAL. - ---- -
Monadic - A monadic operator is one with only 1 operand. In i:= ~ j, ~ is

a monadic operator.

Operator declaration - A definition of' a new operator, e.g. OP HALF = (INT i) -- -
INT : i : 2 defines HALF to be a monadic operator so j: = ~ 6 will assign ~

to j.

Row display - A collateral clause of mode row of something used as a unit. For

example, in [1:5] _!!f!'. i1:= (O,1,3,9,-2) the collateral. clause (O,7,3,9,-2) is

used as a row display.

Selection - The use of one f'ield of' a structure as a unit. If' house is

declared STRUCT(_!!f!'. price, STRING style) house then "price ~ house" and

52

"style Q! house" are selections. Selections can be used as sources or as

destinations in assignment statements and in many other positions.

Serial clause - A series of statements and declarations followed by a unit., or

a unit all by itself. Example:!!!'., i,j; i:= o; j:= 2.

Slice - One or m::>re elements of an array. If i 1 is declared [1: 6] _!!£ i 1 then

11[2], 11[6] and 11[2:5] are all slices.

Structure display - A collateral. clause used as a denotation. For example in

STRUCT(STRING name., _!!£ length, BOOL filthy) lake : = (11 erie", 4oo., TRUE) the - -
collateral clause ("erie",4oo,~) is a structure display.

Unit - An expression that yields a val.ue. Denotations, variables., slices,

selections, formulas, assignations, calls, closed clauses, and conditional.

clauses a.re all units.

53

PROBLEMS CHA.PIER 2

Variables mentioned in the problems but not explicitly declared a.re assumed
to be declared in figure 2-16.

1. What are the m:>des of: i, p, c, s, i 1 and i2?

2. What are the m:>des of 2, TRUE, "piggy"?

3, Is it possible to uniquely detemine the mode of (O, 1,2)?
If so, what is it? If not, give 2 modes it might be.

4. Does every object have a m:>de? If not give an example of an object with
no m:>de.

5. The procedures sin and sqrt both take a real parameter and deliver a
real result. Do they have the same mode? If so, what is it?

6. Is it possible to declare an operator which changes the mode of a
given object? If so give an example.

7. How many distinct modes are there?

8. What is another word for denotation?

9. Give an example of a denotation for each of the following modes: ~,
[] CHAR, STRUCT(INT i, BOOL pig). - ---- -

10. How many boolean denotations a.re there?

1 1 • Is ";" a denotation?

12. Which of the following a.re integer denotations? 4, (10), --2, 0001.

13. Give an example of an assignment statement, an IF statement, and
a FOR statement. -

14. Which of the following are valid statements?
a) IF i<O THEN k:= 1 FI
b) lF i:f=o THEN k:= 1 -
c) !F i=O THEN i:= 0 ELSE i:= 0 FI
d) !F i>O v"J:F 4 /\ k=!°THEN i:= Q; j:= 0 EI.SE k:= 0 FI
e) !F k=1 THEN :i>0 EI.SE J:= 0 FI - -
f) FOR i:=1TO 3 BYT°DO j:= j+1
g) fflIIIE :i>O DO i: ~ -i -
h) FRCitTIF i<f>THEN 1 ELSE 2 FI TO 3 DO n:= n+1
i) i\'rn"'"f11.HILE P: = q D'c'.f"'q:"= F'.ArsE -
j) FOR i FROM time □Fa.lbum[~ 11[2] DO i1[i]:= O - --- - -- -

15. If i:= 1, j:= 2, k:= 50, i1:= (2,1,2,1,2,5,9,3,-1,-6) and n:= o, what
is the value of n after each of the following statements is executed.
a) FOR i FROM 4 TO j DO n:= n + 1
b) FROM iiT'2J TOi1[6TDD n:= n+1
c) ffirn:E(i:= -TI i<O) Don:= n +1
d) FRCJri TO k DO BEG:tlrk:= 10; n:= n+1 END
e) m j ~n:= ii+,-

16. Which of the following are vaJ.id. variable declarations?
a) INT k:= i
b) ffli' INT k:= 1
c) ffli' ffl k:= i
d) TrBoat b
e) STRtmT('INT, ~) s

17. You are to agree or disagree with the following statement and defend
your viewpoint: The text INT i, j; j := o; i:= j is incorrect because
in an integer assignment tne destination must be an object of mode
reference to integer, i.e. the address of an integer (which it is)
and the source must be an object of m::>de integer (which it is not,
since j is also of zoode :reference to integer). Therefore 1:= j is
incorrect. ·

18. What is the essential difference between i:= 1 and i:= j?

19. What are the 9 kinds of units? Give an example of each.

20.

21.

22.

Which of the following constrt;Lctions are correct?
a) i1[IF p THEN 2 ELSE 3 fi]
b) F'RORtINT--r.r reaa{!j; 1) TO 10 DO n: = n+ 1
c) i:= j:= k - -
d) FROM abscissa OF gp TO ordinate OF gp DO n:= n+1
e) !FI<O THEN i IDE j,rI := IF k~ Tfm:ri+1 ELSE 3 FI ____ ._..........,____,_

Consider the declaration.
[1:50] STRUCT(STRING symbol,INT vaJ.ue,[1:10] BOOL attributes)h
What mode do each of the following have? -
a) h[4]
b) vaJ.ue OF h[4]
c) symbolOF h[29]
d) attributes OF h[1]
e) (attribute s-o'F h[1])[10]
Is the following statement valid and if so, what does it do +o k?
(read(j); B: j<.O ~ j:= 0 !!;k~ := (n:= 1;2)

23. Is the following a unit, and if so what is its value and mode?
(read(i); i:= :!Xi; (read(j); j:= j+,; 11

•
11
))

24. Which of the follo·iT:ing are correct assignments?
Give the values of all variables assigned to
a) i:= j:= 2
b) i:= 3:= 2
c) (i:= j):= 3
d) i:= (j := 3)
e) i:= i

25. After the declarations
[1:5] BOOL pp:= (TRUE,TRUE,FALSE.,TRUE,FALSE);
[1: 5] mot qq: = (Firn'E-;TfflEr-;l'm°E,'msf, TRUE)
what arethe vaJ.ues"ot pp[1]topp~ait'er
a) pp:= qq
b) pp[1:5]:= qq[1:5]
c) pp[3:5]:= qq[3:5]
d) 'pp(2] := qq[3]
e) pp[1]:= qq(4]:= ~

26. Which of the following operators are dyadic?
a) OP X = {INT i) INT : i
b) DP x = cm k) _m : ~+!
c) ffl5 x = {ffl i, J TINT . :iXj
d) fili X = {ffl i, PRm-'vOID p) VOID !S! i ~ p
e) m: X = (ffl i,j) BOOL : i=j -

27, If ,t. is defined by
OP 1' = (INT k) INT: k+1
what is the vaJ.ue assigned to n in n: = ,t. 1' 1' 2?

28, If+ is defined by OP+= {INT i,j) INT: i-j
what is the value assigned mn in n:= 3+2

29, After the declarations
PROC p = (INT 1, STRilr s) CHAR : s(i],;
'STRucT(INTemployees, STR~name) company:= { 1000, "general. widget")
what isthe value of the call p{3,name E! company)?

55

30. Write a declaration for a procedure "biggest" with 3 integers as parameters.
The value of the procedure is the largest of the 3 integers given as
parameters.

31. Write a procedure of m>de PROC{(] INT,INT) BOOL that searches its first
parameter element by elemenr-and returns TRUEif some element matches the
second parameter and ~ if not. -

32. Write a procedure taking as parameter an 8 X 8 character matrix, each of
whose elements is "r", "b", or "e" (red, black, empty) corresponding to
a checkerboard and which :returns the number of black pieces minus the
number of red pieces.

int number of' girlfriends, pelican count;
char grade expected in this course;
bool voted in last election, likes mustaro.

Figure 2-1. Declarations for 2 integer variables, 1 character variable,
and 2 boolean variables.

bool bottle has deposit;
1iit" price, cost of product, amount of deposit;
Ubottle has deposit
- then price:= cost of product+ amount of deposit

else price:= cost of product
fi -

Figure 2-2. Use of conditional statement.

int number of legs,centipede count;

number of legs> 50 if

fi
then centipede count:= centipede count+ 1 -

Figure 2-3. Conditional statement with no else part. -
for odd number from 1 by 2 to 100 do print(odd number) - ---- ----

Figure a-4. A for statement that prints the first 50 odd numbers.

int·n;
nr; 1;
while n x n < 1000 do n:= n + 1

Figure 2-5. Use of a~ clause to find the smallest integer whose
square is > 1000.

a) ~ i ~ a & c ~ b ~ condition 5!£ S

b) ~ i ~ 0 ~ n 5!£ S

c) ~ 4 5!£ new line

d) ~ X + y f i + j 5!£ S

e) ~ k ~ 10 ~ 50 ~ p < 0 5!£ S

f') ~ j ~ -100 ~ 100 5!£ S

g) from -60 to 4o96 + i x j - l+o x k by m x m do s -- - - --
h) f'or in

- from i+ixi-4xk+nxnxn
by mxnxoxp-axbxc
to a+b+c+d+e+f
while a + i + 3 x j - 6 > k + 4096
doS -

i) for i to n do if i + k then print(i) fi - - -- --- -
Figure 2-6. Examples of !£! statements. S represents some statement.

a) for i to 10 do
- begin print(i);

- print(i Xi);

end

print(i x i x i);
newline

b) for i to 2 do
for j to 4 uo
- begin -print(i);

- print(j);
newline

end

c) begin ~ This program prints the Fibonacci numbers up to 1000~
int f'irst,second,third;
first:= 1;
second:= ,;
while first< 1000 do
begin print(f'irst);
- newline;

end
end

third:= first+ second;
:first: = second;
second:= third

Figure 2.-7. Use of compound statements. Figure 2.-7c is a complete program.

57

end ,,

~ This program reads two numbers, the price of an item and the allX)unt
the customer paid for it. It then caJ.culates how much change he should
get, and prints out the correct number of quarters, dimes nickels, and
pennies to minimize the number of coins to be returned. The program
only handles change up to 99 cents, and prints a message if the change
is too much~
int price, amount paid., change., quarters, dimes, nickels., pennies;
lfirst read in the price and p~nt and compute the change~

read(price); read(amount paid);
change:= amount paid - price;
if change> 99
- then lll"int(11 change > 99 cents11

)

else ttest to see it' the peyment was exact~
- if change= 0

- then :print(11:no change11
)

else tcompute how many of each coin~
- quarters:= O;

dimes:= O;
nickels:= o;

while change> 25 do
- (quarters:= quarters + 1; change:= change - 25);
while cha;nge > 1 O do
- (dimes:'; dimes + 1i change:= change - 10);
while change > 5 do
- (nickels:= 'iirckels + 1); change:= change - 5);
pennies:= change;

~print results~

it' quarters> 0
- then print(quarters);

- print("quarters");
newline

it' dimes > 0
- then print(dimes);

- print(11dimes11
);

newline
f!i

it' nickels> 0
- then print(nickels);

- print("nickels");
newline

g;

if pennies > 0
- then print(pannies);

- print("pennies")
fi

fi ~This matches the if cha;r;ige = 0~
fi ~Thismatches the it' change> 99~ - -

Figure 2-8. A complete .ALGOL 68 program to cal.culate how to pay out change
with the mininrum number of coins, using only quarters, dimes, nickels, and
pennies.

mode possible procedure

newline
sin
integer multiply
skip the next n :records on a tape
compare the parameters for equality
compare the parameters for equality
compare the para.meters for equality

Figure 2-9. Examples of procedure npdes.

declaration

a) [1:10] int ri;
b) [1 : 5, 1 : 7°r int rri;
c) [1:10,1:10,1:10] bool rrrb;
d) [O: 100] char re; -
e) [-20:-6,~] :real rrr;
f) [1 : 20] proc voi.drpv;
g) [1 :n] int r1r;-
h) [n 1 :n2,n3:n4] ~ rrb;

meaning

declares 1 dim. arra;y of 10 integers
declares 2 dim. arra;y of 35 integers
declares 3 dim. arra;y of 1000 booleans
declares 1 dim. arra;y of 101 characters
declares 2 dim. array of 105 :reaJ.s
declares 1 dim. arra;y of 20 procedures
declares 1 dim. array of n ints
declares 2 dim. array of booleans

Figure 2-10. Declarations of arrays.

end

~xamples of slicing and assigning togethe~
t 1: 10] int a, b, c;
for i from 1 to 10 do a[i]:= i Xi;
b[7:10]:= a[7TT0]; -
b[4:6]:= a[4:6];
b[1:3]:= a[1:3];
c:= b

Figure 2-11. Examples of the use of slices.

59

60

end

[0:6,2:8] int mat;
[o:6J int vec;
for i from Oto 6 do
for j from 2 to 8 do mat[i,J]:= iXJ.;
vec[0:6] := matro:o,8]

Figure 2-12. Assigning a column of a matrix to a vector.

Property Ar!.'0'3' Structure

May the elements No Yes
have different
:ioodes?

How is an element subscripting e.g. selecting e.g.
accessed? a[4] type 2£ aircraf't

Can severaJ. Yes, by slicing no
elements be e.g. a[2:4]
accessed together?

What is the largest no 11:mit no limit
number of elements?

Figure 2-13, Comparison of arreys and structures.

mode vector

mode matrix

mode rationaJ.

mode person -
~ family

~ bridgehand

mode word

~ registers

= [1:n] ~

= [1:n,1:n] ~

= struct(~ numerator,denominator);

= struct(string name,ref ~rson father, mother,
~ age,~ smokesF

= struct(person mmmy, daddy., [1 : 2] person child};

= [1: 13] struct(~ rank, suit);

= [o: 15] ~;

= (0:7] ~j

mode co:nditioncodes = struct(~ n,z,v,c);

mode table

mode instruction

~ flight

mode tree

mode booladdress

= (1:1000] struct(string symbol,~ vaJ.ue);

= struct(~ opcode,addr1,addr2,addr3);

= struct(int number,string pilot,movie,bool nonstop,
[1:350]~ruct(string name,~ phone)°passenger);

= struct(~ vaJ.ue,~ ~ le:f't,right);

= ref bool

Figure 2-14. Sample mode declarations.

~ n:= 3;

vector x:= (2.0,3.0,4.o);

matrix xx:= ((1.0,2.0,3.0),(2.o,3.o,4.o),(3,0,4.o,5.o));

rational rat:= (2,7);

person john:= ("smith", bill,mary,20,!2);

family jones: = (john, linda, (nancy, peter)) ;

bridgehand north:= (("A", 11S11
), ("K'', "S"), ("9"., 11S11

), ("7", 11S11
), ("5", 11S11

),

("3", 11S11
), (

11 Q11
, "H''), ("J", "H"), ("T", "H"), ("3", "H" },

("7", "DII), (11411, IIDII)., ("2", "C")};

~ w; registers reg; conditioncodes cc; ~ t;

instruction add:= (4,6,8,2);

flight ~a666: = (520, "warthog", "trash",~, skip);

~ t4;

booladdress bad

Figure 2-15 variable declarations using the modes of figure 2-14.

61

62

= struct(string title,int time,bool folksong); - -
~ gridpoint = struct(~ abscissa,o:ro.inate);

mode student = struct(char grade,bool virgin,
string name,~ year of graduation);

mode course = struct([1:n] student kids,str4lg prof);

mode book

~ library

= struct(string title,author,bool paperback.); -
= [1: 10000000] ~

reaJ. x,y;
int i,j,k,n;
oool p,q;
char c;
TT:Too] char s;
[1: 10] intI,;
[1:3,,:rrint i2;
[1: 4] boolooole;
[1 :8] song album;
course~01;
proc(Tut) int p1;
proc(real,reaJ.) bool p2;
pro"c(string--;Int)cnar p3;
proc([,] int,int)-rTint p4;
proc(booijoo'or p5; -
T=m:+251' struct(real coef,int exp) polynomial;
grid;e,oint gp; - -
library harvard; ·

Figure 2-16. Declarations used in figures 2-17 to 2-25 and the problems.

Mode

int
bool
char
TTTut
song
r,T"real
[,,]int
struct(oool b,c)
real -
S"triict(~ re., im)

Denotations

1,3.,0, 1492
true,false
'"a"';" 4' I J ii+ 11

(1776, 1812, 1861, 1917, ,94,, 1954)

l "barba.ra allen", 183 true)
1.0,2.0).,(2.0,7.24),

~(1,2),(1,4)),((2,6),(9,-4)))
(true,false)
3:,z;:---
(2. 78,3. 14)

Figure 2-17. Examples of denotations, including constant displays, which
strictly speaking are not called denotations.

Mode

int
bool
char
trint
strlng
[] song
gridpoint

Variables

i,j,k,n
p,q
C

i1
s
album
gp

Figure 2-18. Examples of variables.

Modem

int
'6001
char
song
struct
student
book

Slice yielding object of Modem

i 1 [2] ~ i 1 [4], i2[1, 3]
boole L i + 3 X j]
S[99][S[100]
album 1+3]
polynomial[O]
(kids of cs101)[1]
harvaraT i]

Figure 2-19. Examples of slices.

Modem

int
bool
char
Tistudent
string
bool
bool

Selection yielding object of Modem

time of album[4],exp of polynomial[O]
folksong of album[1] -
grade of ~udent
kids ofcs101
titleof album.[2]
virgin of (kids of cs101)[2Xj]
paperback £! harvard[i]

Figure 2-20. Examples of selections.

Modem

int
bool
char
Tnnt
booY-

Call yielding object of Modem

p1(n)
p2(3.14,2.78)
p3(11doggy11

, 2)
p4(i2,i1[3])
p5(folksong £! album.[4])

Figure 2-21. Examples of procedure calls.

63

64

int
bool
real

Modem Formula yielding object of' Modem

1+2, J+4, 3x2+1, 4+n+k
P"4, pVq, p'\(pVq)
2.0+2.5, x+3.141592, 'XXy/2.0

Figure 2-22. Examples of' f'ormuJ.as.

Modem

int
bool
char
Tri'nt
song
book
real
str!ng

Assignment yielding object of' modem

i:= 2, 1:= J, 1:= J:= k:= O
p:= true, q:= p V q
S[3]:= "x"
11:= (Oc1,2,3,4,5,6~7,8,9)
al bum[1 J : = (11 silkie 1,206, true)
harvard.[21416]: = (118llgU.st~411

,
11 solzhenitsyn", true)

coef' of' polynomial[O]:= 2.55 -
prof' ~ cs 101: = 11barry bigbrain11

Figure 2-23. Examples of' assigrur.ent. In all cases the result of' the
assignment must be dereferenced before yielding the specified mode.

Modem

int
bool
char
Tri'nt
student
grid.point
int
bool
1iit
Iiit

Closed clause yielding object of' Modem

(x:= 1; if' p then i else J f'i; k)
() - - - -
(§[1:4]:= 11love"; S[1])
(for i to 10 do 11[1]:= o; 11)
(read(csiO 1) ; °1'kids of' cs 101) [1])
(abscissa of' gp: = ordinate of' gp:= 1; gp)
b §iii p1 (kTend -

g p1(1);"~(3. 14, 3. 14); p5(q) end
beg!n read(J); i:= J end -
mTI(1066)))))) -

Figure 2-24. Examples of' closed clauses. Note that is some cases the
value of' the closed clause mey have to be dereferenced before
yielding the specified mode.

Modem

int

Conditional clause lielding object of Modem

if x<y then i else 3 fi
bool If p then p elseq\/p H
cnar
TTint

If S[1] = "x"lT""':filien S[TI else "y'' fi

song
book

R x[1] < 4 then x1 [1 :3] else x1 [T:2] fi
If i = 2 thenalbUin[1] else album[2] fr
R i<j then harvard[i] eise harva.ro.[jTfi - - ----- -

Figure 2-25. Examples of conditional clauses. Note that in some cases
the value of the conditional clause must be dereferenced before yielding
the specified mode.

Position

subscript
lower bound in a.rra:y declaration
upper bound in a.rrey declaration
after CASE
after from
after~
after by

condition following if
condition following while

procedure body
source in assignment
initial value of declared variable
actual parameter of a call
element of row displa:y
element of structure display

operand of formula

following 52! in a selection

procedure to be called
arrey to be sliced

after then or af'ter else

destination in assignment

Allowed constructions

integer unit
integer unit
integer unit
integer unit
integer unit
integer unit
integer unit

boolean unit or boolean serial clause
boolean unit or boolean serial clause

unit
unit
unit
unit
unit
unit

any unit except an assignment

any unit except assignment or formula

any unit except assignment, formula, or selection
any unit except assignment, formula, or selection

serial clause, unit

any unit except denotation or assignment,
providing it yields reference to something

Figure 2-26. Kinds of constructions allowed in dif':f'erent positions in the
program.

66

~This program reads in a 10 element integer arra;y "i', and a 10
element integer a:rrey "b", and calls innerproduct to f'orm the sum
a[1] x b[1] + a[2] x b[2] + ••• a[10] x b[10].
The sum is printed.~

[1: 10] ~ a, b;

proc([] int, [] ~) int innerproduct:= {[] ~ y,z) ~:
begin Iiit answer:=o; ·
- f'or k ~ 1 ~ 10 ~ answer:= answer + y[i] x z[i];

answer
end;
read.(a);
read(b);
print(innerp:roduct(a, b))

end

Figure 2-2.7. A program using a procedure.

proc innerproduct ={[]int y,z) int:
15'eg'Li int answer:= o; - -
- fork f'rom 1 to 10 ~ answer:= answer+ y[i] x z[i];

answer
end

Figure 2-2.8. The alternative f'om. f'or a procedure declaration.

end

~This program defines a procedure vectorad.d that adds together
2 1 dimensional integer ~s with 10 elements. The use of' the
procedure is demonstrated.~

mode vector = [1: 10] int;
vector v1,v2,v3,v4.,v5.; -

procedure vectoradd = { vector a, b) vector:
begin vector sum.;
- f'or 1 f'rom 1 to 10 do sum[i] : = a[i] + b [i]; - -sum

~read in v1., v2, v31 and v4 and compute the sum v1 + v2 + v3 + v4
and store it in v5•t:

read(v1);
read(v2);
read(v3);
read(v4);
v5:= vectoradd(vectoradd(vectoradd.(v1,v2),v3),v4);
print(v5)

Figure 2-29. A program to read in and add 4 vectors using a procedure. ,.

end

~This program defines an operator + t.hat adds together
2 1 dimensional. integer arrays, each with 10 elements. The use
of' the operator is demonstrated.~

mode
vector

op+=
begin

vector= [1:10] int.;
v1,v2,v3,v4,v5; -

(vector a, b) vector:
vector sum;
for i from 1 to 10 do sum[i]:= a[i] + b[i]; - - --- -sum

~read in v1, v2, v3i and v4 and compute. The sum v1 + v2 + v3 + v4
and store it in v5,1!

read(V1);
read(v2);
read(v3);
read(v4);
v5:= v1 + v2 + v3 + v4;
prlnt.(v5)

Figure 2-30. A program to read in and add 4 vectors using an operator.

68

operators
mode of
operands

mode of
result meaning

dyadic + - X : int a.dd,subtract,multiply,divide

V

+
+
+
+

int int

int int

bool bool

bool bool

bool bool

char char --
string string

string string
char string
string char
char 'clia.r -

bool the usual meanings, e. g. i = j
is true if and only if i and j
have the same value

int exponentiation, i.e. i 1' j = ij

bool logical and

bool

bool

bool

bool

~
string
string

logical or

tests operands for (in) equality

tests the (implementation
dependent) character codes
for equality, less than etc

test for onlering using the
character codes. If the character
codes a.re in alphabetical order
as in ASCII, s1 < s2 means s1 is
alphabetically before s2, etc.

concatenation. Thus
string s 1 : = "hot";
striiig s2 = "dog";
prI'iit(' s 1 + s2) will print hotdog

monadic 7
abs

bool
Int'

bool
Tr'rE""'

logical not
absolute value

Figure 2-31 • Some of the built in operators.

end

~This program reads in the length of a list of integers, then
reads the integers themselves. The operator biggest takes a 1
dimensional integer array of arbitrary length as param9ter,
and returns the largest element.~

op biggest=([] int a) int:
begin int biggie:= a[lw'b'"a]; ~declare and initialize biggie to
- first element~ -

for i f:rom lwb a + 1 to u;e~ a do
if a[iT>bie;gie then75'igg e:=a[i] fi;
biggie - -

end;
int n;
read(n);
[1:n] ~ iH

read{i1);
' print(biggie i 1)

ldecla.re n as integer variable~
read in n~
algol 68 declarations need not precede the
executable statements~

tread in the entire array~
compute and print the biggest~

Figure 2-32. Use of the monadic operators ~ and u:eb.

1 . Source and destination in an assignment
2. Operands of' a dyadic operator
3. Elements in a :row display
4. Fields in a structure display
5. Units in a collateral clause
6 • Uni ts in an actual parameter list
7. Integral uni ts a:f'ter :f'rom, to and by in a :f'or statement
8. Subscripts in a slice - - - -
9. Upper and lower bounds in an array declaration
10 • .Array to be sliced and its subscripts {in a slice)
1 1 • Procedure to be called and its parall'leters (in a call)
12. Declarations separated by commas

Figure 2-33. Constructions evaluated collaterally.

1 • Bull t in l!Ddes: INT, BCOL, CH.AR, REAL, FORMAT ---------
2. Array llDdeS:

[] M is a row of' M { 1 dimensional arrey)
[, rM is a row row - of' M (2 dimensional array)
[, ,]"14 is a row row row-of M (3 dimensional arrey)
~c. - -

3. Structure modes:
STRUCT(M1 id1, M2 id2, •••) is a mode

The Hrst :f'ield has mode M1 and field selector id 1, etc.

4. Reference to modes:
REF M is of' mode re:f'erence to M. An object of' mode ,!!!'.: ~ is called
an M-variable.

5. Procedure mdes:
PROC M
PROC '(M1) M
~ (Mi,~) M
~ (Mi,~,M3) M
PROC (Mi,~,J:13, .-:.) M
a.re'" air :trodes.' -

Figure 2-34. Summary of' ALGOL 68 modes. Ml, M2, ~ and !;! are aJ.l arbitrary
modes, and id 1, id2 a.re arbitrary identifiers."

69

70

Statements and examples

IF statement: IF i<O THEN i:= 0 ELSE i:= i+1 FI

FOR statement: FOR i FROM 1 TO 10 BY 3 WHIIE j<O DO S - --- ---- -
assignment statement: i : = j

CASE statement: CASE i+j m i:= o.,read(j) OUT print(i+j) ESAC
.....,._ _.......,. - -
input statement(really a procedure call): read(n)
output statement(:really a procedure call): print(n)

GOI'O statement: GOTO jail - -
Declarations and examples

variable declaration: BOOL imbibes

procedure declaration: PIDC and = (BOOL p.,q) BOOL: IF p TEEN q ELSE FALSE FI - - - - - ___ __
mode declaration: MODE INTEGER = mT

onerat-or declaration: ~ x = (1!£ i.,j) 1!£: ixj

priority declaration: PRIORITY,+= 5

Figure 2-35 • Summary of .ALGOL 68 statements and declarations.

kind

denotation:

variable:

slice:

selection:

formula:

procedure call:

assignation:

closed clause:

examples

2,~, "c", (3. 14)

i,x,bouse

a[2],a[4:5]

name ~ john, f'il thy ~ erie

a+b, 7 p /\ g_

sin(x); sqrt(3.14)

i:= j, filthy~ erie:= ~

(!Q!l i TON~ a[i]:= o; a).,(4)

conditional clause: IF i < 0 TEEN ELSE 2 FI

Figure 2-36. Types of' units.

71

1000

1001

1002

1003

1004

1005

1006

1007

1008

boolean location at address 1000

character location at address 1001

character location at address 1002

character location at address 1003

integer location at address 1004

boolean location at address 1008

Figure 2-37. A memory organization in which boolean locations occupy less than
one byte, character locations occupy exactly one byte, and integer locations
occupy four bytes. A byte is 8 bits.

identifiers
number of girlfriends - 400

pelican count = 404

405

406

407

l byte

~integer
3 object

integer

106
~ object

integer
location

integer
location

f c'.

grade expected in this course= 408

voted in last election = 409

character
location

bool:aafcitation

likes mustard = 410 boolean location

object

Figure 2-38. Th0 relation between identifiers, addresses, objects, locations,
and variables. Five variables are shown. Each variable has a numerical address
(400,404,400,4□g, or 410) and an identifier which is equivalent to that address,
as well as a location (a region in memory) in 'uhich an object can be kepto For
example, the integer variable "pelican count'' is at address 404 and occupies 4 bytes.

73

.!?.£91:_ wife is liberated

wife is

boolean location

libsrated:602 ~ ~d½:m
T <boolean

\ object ·

address

identifier

figure 2-39. Declaration of a boolean variable. The identifier wife is liberated
is equivalent to the address 602. It is .!:illI equivalent to the boolean object at
that location (in this case, true). We will often refer to "the boolean whose
address is 'wife is liberated'" instead of the clumsy expression "the boolean ih
the location whose address is equivalent to 'wife is liberated'"•

number = 400
of
girlfriends

number= 400
of
girlfriends

before
assignment

3

a) no dereferencing

before
assionment

3

b) dereferencing

number= 400
of
girlfriends

number= 400
of
girlfriends

after
assignment

399

after
assignment

2

Figure 2-40. The assignment number of girlfriends := number of girlfriends - 1
with and without dereferencing. a) If no dereferbncing took place, the
expression "number of girlfriends-!'' would have the value 400-1, which is 399.
b) With dereferencing, the value of the integer at location 400 is used instead
of 400, thus giving 3-1 as the source of the assignment.

74
closed clause

i ·- (read(j) ; j ·- j+3 ; .ll. j<.O~j ·- 0 .ll ; j+l) •- ·- ·-
~

_,) ' ~ \ J '-r" 'C
statlment

~tatement
statement un~

l"
serial clause

Figure 2-41. Relation between serial clause, unit, and closed clause. A serial
clause is a series of Dor more declarations and/or statements followed by a unit.
In this figure, the serial clause consists of 3 statemonts followed by the unit
j+l. A closed clause is a serial clause enclosed by parentheses or begin and~•
The entire right hand side of the above assignment is a closed clause. A closed
clause is itself a unit, but a serial clause is not a unit.

assignment statement: "reference to some mode" unit,
becomes symbol,
"some mode" unit

conditional statement: if, boolean serial clause,
then, serial clause,

for statement:

case statement:

go to statement:

{~, serial clause,)

li

l .f.2£., identifier,\

l .f..£9.!!, integer unit,)

{ ,iE_, intP.ger unit,)

l .!ll'., integer unit1

{~,boolean serial Elause,}

£!.Q., statement (inclusing a compound statement or range)

~, integer serial clause,
l!J., list of statements

l ~,statement)

~

goto, label

Figure 2-42. Definitions of statements. l-l means optional.

