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PREFACE 

These notes on ALGOL 68 were originally presented orally to an 
undergraduate class in the spring of' 1973. They were printed and distributed 
as the second chapter of the course lecture notes. This report is a reprint 
of' that chapter. As a consequence the sections and :f'igures are numbered as 
they were in the origina1. 

· The notes are intended as an introduction to ALGOL 68 :f'or students 
having already had one introductory course in computer science. It is 
assumed that they are familiar with an algorithmic language such as BASIC, 
FORI'RAN, PL/1, or ALGOL 60. It is ho~d that even freshmen and sophomores 
can understand this report. 

A.S. TanenballIIl 
.Amste:ro.am, May 1973 
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CHAPTER 2 - INTRODUCTION 'ID ALGOL 68 

Throughout this book algorithms are given for various techniques such 

as evaluating arithmetic expressions and sorting a list of names. It is 

necessary to have so:ioo way of expressing these algorithms in a clear and 

unambiguous manner. Ordinary English is too verbose and ambiguous to be 

satisfactory, furthermore we would like to write algorithms in a way such that 

they can be carried out by a computer. 

Anyone who thinks that English is suitable as a method for precisely 

describing things should p:mder the various meanings of "You would never 

recognize little Freddy. He has grown another :foot" or the following bulletin 

board advertisement "Gem.an shephe:ro. dog for sale. He will eat anything and is 

especially fond of children" or the following newspaper headline, concerning 

the exhibition of a copy of a painting, "Parents., pupils, faculty enjoy 

reproduction". If writing unambiguous English were easy, lawyers would not 

write sentences like "This agreement shall be construed and interpreted 

according to the laws of the State of New York and shall be binding up:m the 

parties hereto, their heirs, successors, assigns, and personal 

representatives; and references to the lessor and to the lessee shall include 

their heirs successors, assigns and personal representations". We will 

therefore use a programming language to express algorithms. 

There already exist hundreds of programming languages, and the number 

is growing rapidly. Most of these, however, are for special applications, such 

as making computer generated cartoons, controlling equipment in an alltomated 

factory, or helping civil engineers design bridges. To express the algorithms 

in this book., we need a general purpose programming language in which we can 

easily describe complicated kinds of data and express operations on the data 

in a convenient fonn. FORI'RAN and ALGOL 60 are widely used, but both are ,c 



:restricted to handling very simple kinds of data, and performing very simple 

operations on that data. For example, neither FORTRAN nor ALGOL 60 can 

manipulate character strings conveniently. 

There a.re two languages that come closer to what we need: ALGOL 68 and 

PL/1. PL/1 was designed by a committee, and it shows. Each committee member 

wanted his favorite feature included, and most of them were accepted. The 

result was an unwieldy language with a very large collection of features that 

do not fit together well. As a consequence it is difficult to learn. 

ALGOL 68, on the other hand, was designed to be as "orthogonal" as 

possible. This means that there are a small number of basic ideas that can be 

combined in many ways to produce a highly expressive language whose parts fit 

together very well. Orthogonal design also means that almost a1JY' construction 

that both "makes sense" and is unambiguous is aJJ.owed. As a consequence ALGOL 

68 is easy to learn, comprehensive and therefore is ideaJJ.y suited to the 

teaching of computer science. In this book ALGOL 68 will be used for 

expressing algorithms. 

The purpose of this chapter is to explain enough about ALGOL 68 that 

you can understand the algorithms given in this book. Features of .ALGOL 68 not 

needed in this book, e.g. binary tra.nsput, heap genera.tors, unions, and long 

reals will not be mentioned. You should be aware tbat the description which 

follows is by no means complete. If the reader wishes an introduction to the 

complete language, he should see either ".An Informal Introduction to .!\LGOL 6811 

by Lindsey and van der Meulen or "an ALGOL 68 Companion" by Peck. (See 

bibliography) As a final note, we mention that the .ALGOL 68 report is already 

famous f'or its obscure te:mdnology, thus in some cases the terms used in this 

book differ from those in the report. We do this in order to make these terms 

easier to understand. 
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2. 1 Some basic features of ALGOL 68 

ALGOL 68 programs consist of a sequence of symbols, including the lower 

case letters a - z, the digits O - 9, certain special. characters e.g. + - = ; 

, : < > ( ) [ ] , and certain wolds printed in boldface type such as BEGDI IF --
SKIP THEN TRUE ELSE FALSE FI END. When writing programs with pencil and paper, -----------
boldface is indicated by underlining the wolds e.g. begin,!! skip~~ 

~ ~ !! ~- Comments, which begin and end with the# or ~ symbol, ma;y 

be inserted between any two symbols. The ALGOL 68 compiler does not process 

comments; they are for the purpose of helping other people understand what the 

program does. They shouJ.d be used generously. Spaces and carriage returns {end 

of card) mey be inserted between any two symbols to improve readability. 

One of the most basic features of a programming language is the kind of 

data which can be expressed in it. ALGOL 68 provides a rich collection of data 

types, three of the simplest types being integers, characters and booleans. 

The computers memory is divided up into a large number of equaJ.ly sized 

pieces, usually cal.led words or bytes. The amount of space occupied by a datum 

{e.g. an integer) varies from computer to computer. Figure 2-37 illustrates a 

computer whose memory is divided into 8 bit bytes, in which booleans occupy 

less than 1 byte, characters occupy exactly 1 byte, and integers occupy 4 

bytes. The memory space occupied by a boolean, character, integer, or other 

object is referred to its location. Thus there are boolean locations, 

character locations., integer locations, etc., which in general are different 

sizes. Each location has a unique numerical address which identifies it. 

The proper wrd used to distinguish integers from characters from booleans is 

~- Integers., characters and booleans are 3 different modes. Thus, a mode is 

a kind of object. The concept of mode is the most important concept in the 

entire language, so it is -worth dwelling upon this point for a little while. 

We can make an analogy between the computer's memory, which is divided up into 
'" 

locations of various sizes, each of which can accomodate exactly one object of 
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the mode appropriate for that location, and a hypothetical city, which is 

divided up :into buildings of various sizes, each of which can hold only 1 

object. One kind of location in the city is a doghouse, which can hold one 

object of mode dog. Another kind of location is a hangar, which may conta:in 

one object of mode airplane. Yet another kind of location is a church steeple 

which conta:ins one object of mode bell. A fourth kir.d of location is a 

computer center which holds one object of mode computer. , 

Just as a memory location for an integer can hold any one of a variety 

of integers, (o, -3, and 1944 come to mind at the moment) a given doghouse may 

contain Jack's dog or Susa.n's dog or Bob's dog, but it may not hold an object 

of mode airplane. Similarly a computer center may conta:in an IBM computer or a 

CDC computer, but :not an object of mode dog. An object is not permanently 

attached to its location. But can be moved to another location of the proper 

mode whenever needed. 

A location in the computer• s memory that can hold an integer is called 

an integer variable, while a location that can hold a character is a character 

variable, etc. A variable can be given an identifier so the programmer can 

refer to it by an easy to remember symbolic name instead of its (numerical) 

address. Thus the identifier is an alias for the address, not the object at 

that address. This is illustrated :in figure 2-38. 

The programmer informs the computer how many variables of each mode she 

needs, and their names, by declarations. A declaration specifies 

1 , The mode of the objects being declared 

2. The identifiers for the objects 

Figure 2-1 shows 3 declarations. The first declares 2 integer variables with 

identifiers 11number of girlfriends" and "pelican count". The second declares 1 

character variable whose identifier is "grade expected :in this course". The 

third declares 2 boolean variables, with identifiers "voted in last election" ,, 

and "likes mustard". 
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There are several things to note about these declarations. First, 

integer variable declarations start with mr (not IN'JEGER) while CHAR and BOOL ·- --- - -
are used for character and boolean variables respectively. Second, identifiers 

may be as long as desired, and may have spaces "inside" for readability. 

Third, each declaration declares variables of onJ.y 1 mode, but it may declare 

arbitrarily many variables of that mode. The various identifiers are separated 

by commas. Fourth, declarations are separated by semicolons. The declaration 

in figure 2-1 causes 5 locations in the computer's memory to be reserved, one 

for each of these 5 variables. Associated with each location is an identifier, 

(given in the declaration) which can be used in subsequent statements. The 

identifier is equivalent to the address of the location, not the contents of 

the location. This distinction is absolutely cruciaJ.. The identifier is a 

symbolic name for the numerical address of the location. Sometimes we will 

refer to "the object whose address is X" or "the object in location X". In all 

cases it should be remembered that X is a symbolic name for the address of a 

location containing an object of some specific mode, and not the name of the 

object itself. Thus is illustrated in figure 2-39. 

An object of mode boolean has one of two values, either TRUE or FALSE. - -
An object of mode character has a value equaJ. to some character. The set of 

characters available is implementation dependent, but includes at least one 

set of letters, the digits, and some speciaJ. characters. When characters are 

used as constants., they are written with quotation marks a.round them. An 

object of mode integer has as its value an integer. 

2. 1 . 1 Assignment statements 

A basic statement is the assignment statement, which assigns a vaJ.ue to 

a variable . .An assignment statement has 3 parts: 
,, 

1. A destination (written to the left of the := symbol) 
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2. A becomes symbol, written := 

3, A source (written to the right of the := symbol) 

The destination is an expression which when evaluated gives an address of a 

location. The destination is so named because an object is :put in the address 

specified by it. The source is an expression which when evaluated specifies an 

object of the required mode. The simplest example of a destination is an 

identifier. The simplest example of a source is a constant. Thus 

number of girlfriends : = 3 

is an assignment with source = 3 and destination = number of girlfriends. It 

is :pronounced "number of girlfriends becomes 311
• When this statement is 

executed, an integer with value 3 is :put in the location whose address is 

"number of girlfriends11
• Since "number of girlfriends" identifies a location 

(i.e. is the address of a location) whose object must be of mode integer, and 

since 3 is an object of mode integer, everything is fine, and the assignment 

takes :place. 

Consider the statement 

number of girlfriends : = number of girlfriends - 1 

The destination of this assignment is the location whose address is 11 number of 

girlfriends", as above, but the source is more complicated. The identifier 

"number of girlfriends" identifies a location., i.e. is equivalent to the 

address of some location, whereas the constant 1 is an object of mode integer. 

Surely it is :not intended to subtract 1 from the address "number of 

girlfriends" and use that as the source? of course :not. What is intended is 

that the current value of the object in the location whose address is "number 

of girlfriends" should be used, not the address itself, and from that 1 is to 

be subtracted. The result of the subtraction is to be :placed in the address 

given by the destination. The operation of' using the contents of a location 

instead of its address is called dereferencing. Dereferencing is illustrated 
(i, 

in figure 2-40. Note that in the above assignment "number of girlfriends" is 
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deref'e:renced when used in the source but not when used in the destination. 

This occurs because the minus operator needs two integers as operands, not an 

address and an integer, while the destination must be an address. .If' the 

destination were deref'erenced as well as the source, we would have nonsense: 

3 := 3 - 1 

One of' the nice things about ALGOL 68 is that deref'erencing happens 

automatically where it is needed, and· does not happen (in f'act is f'orbidden) 

where it should not happen. Those points where de:ref'erencing is to occur are 

ca.ref'ully specif'ied in the ALGOL 68 report, and agree with one I s common sense 

interpretation. 

:Most other programming languages do not make such a sharp distinction 

between the address of' a location, and the contents of' the location. As a 

consequence it is usually possible to make disastrous errors such as changing 

the value of' 3 into 2 by an assignment, if' done in a suf'f'iciently subtle way 

(f'or example, supplying a constant as an actual parameter in a procedure call 

where an address should be). Because ALGOL 68 makes such a rigid distinction 

between the address of' a location and the contents of' the location, this kind 

of' error is caught by the compiler in every case. 

2.1.2 Conditional statements 

Another kind of' statement is the conditional, or £ statement. In this 

statement a condition is tested. If' the condition is f'ound to be true, then 

the statement f'ollowing the ~ is executed. If' the condition is not true, 

the statement f'ollowing the ~ is skipped, and the statement f'ollowing the 

ELSE is executed instead. Figure 2-2 shows an ,B:: statement. The statement is 

executed as f'ollows. "bottle has deposit" is the address of' a location 

• 
containing an object of' mode boolean. Boolean objects a.re either TRUE or FAI.BE. 

A condition must be either ~ or FAIBE, so "bottle has deposit" is 
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dereferenced and the contents of its location is tested. If it is true, then 

the statement 

price:= cost of product+ amount of deposit 

is executed. Before the addition can be carried out, both "cost of product" 

and "amount of deposit" are dereferenced since we want to add two integers, 

not two addresses. 

If "bottle has deposit" is faJ.se the statement 

price:= cost of product 

is executed instead. This statement is executed by first dereferencing "cost 

of product" to get the object contained in it. A copy of this object is placed 

in the location whose address is price. Since a new copy of the object is 

created, the old one remains undisturbed in "cost of product". Figure 

2-2 illustrates some other points. First, statements are separated from 

declarations and from other statements by semicolons. Second, no semicolon is 

placed at the end of the THEN part or ELSE part, al.though if either part - -
contained m:,re than 1 statement, these statements would be separated by 

semicolons. Third, notice that the third line contains 2 statements, and that 

the IF statement as a whole occupies 4 lines and is indented to improve 
,r 

readability. Fourth, the conditional. statement is ended with _!!, (£ spelled 

backwards) . The reason for having an explicit symbol to end the IF statement 

will be discussed later. 

Another form of the conditional statement has no~ part, as shown in 

figure 2-3. If the condition is not true, the statement following the ~ is 

not executed. In this example the condition is 

number of legs> 50. 

This is evaJ.uated by first dereferencing the identifier "number of legs" to 

get the vaJ.ue of the integer at that address. This integer is then compared to 

50. If it is 51 or more the centipede count is increased. If it is 50 or less, 

execution continues with the statement following the FI. 
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2.1.3 Input/output 

ALGOL 68 aJ.lows a wide range of styles of input and output, ranging 

from a simple print(X) to sophisticated formatted transput operations on 

files, with user control over aJ.l error handling. In this book we will be 

content to use the simplest fonns namely read(X), which reads in 1 object of 

the required mode (even an a.rra;y) and stores it in the location whose address 

is X, and print(X) which prints the object whose address is X. If the thing in 

parentheses following print is a string of characters within quotation marks, 

the characters are printed, but the quotation marks are not printed. 

AGOL 68 aJ.so aJ.lows x to be themselves a list of variables, thus 

permitting more than 1 variable to be read or printed with a single statement. 

Such a list must be enclosed in an additionaJ. set of parentheses. An example 

is 

read((a, b, c, d)). 

The statement 

new line; 

causes subsequent output to be printed beginning at the start of the next line. 

Successive uses of print cause items to be printed on the same line until 

there is no room left, in which case printing continues on the next line. The 

number of characters per print l:ine varies from computer to computer. 

2. 1.4 Loops 

Since performing a sequence of statements repeatedly is very connnon, 

ALGOL 68 provides a statement for controlling repetition. One fonn of it is 

show.n in figure 2-4. The variable after the ~, caJ.J.ed the controlled 
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variable, is set to 1, a test is made to see if it is less than 100., and if so 

the statement after the £Q is executed. Then i is incremented by 2 and the 

print statement executed again. For each successive value of "odd number'' a 

test is made to see if it is greater than 100, in which case the repetition 

stops. 

The controlled variable must not be declared. It is always an integer, 

so the compiler does this automatically. The expressions after FROM, 'IO and BY -- -
may be a;n;y expressions yielding an integer as a result. These expressions are 

evaluated before the loop is begun to determine how ma;n;y times the statement 

following the E_Q is to be executed. If the values of the expressions 

subsequently change, this has no effect on the number of repetitions. 

The FOR and the identifier following it may be omitted if the 

controlled variable is not needed. If the word ~ and the expression 

following it are omitted, the counting starts at 1 • If the word 'IO and the 

expressions following it are omitted, the repeating continues until terminated 

by some other mechanism. If the ~ part is omitted, a default of 1 is used. 

In contrast with the above form of the FOR statement which causes a -
statement to be repeated a fixed number of times, there is another form that 

causes the statement following the £Q to be repeated as long as some condition 

is true. The condition, written between WH:gJ! and DO is tested; if it is true, - -
the statement following the £Q is executed. The test is then repeated, and if 

still true, the statement following the £Q is executed again. This process is 

repeated until the condition yields false. Figure 2-5 shows how the smallest 

integer whose square is larger than 1000 can be computed, and stored in the 

location whose address is n. Common sense requires that the expression 

following the WHIIE yield a boolean value, either TRUE or FALSE. As usual, - - -
ALGOL 68 obliges by allowing an arbitrarily complicated expression (even 100 

pages long) provided the result is of mode boolean. 

These two forms of repetition may be combined into one FOR statement 
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whose mst general :form is shown in :figure 2-oa, where a, b, and c are 

expressions whose result is of md.e integer, and condition is an expression 

whose result is of mde boolean. The execution starts with the evaluation of 

the expressions a, b, and c. The results are then copied to secret memory 

locations x, y, and z respectively so the programmer can not change them. Then 

i is set to x. If i is less than or equal to y and the condition is true, the 

statement is executed. Then i is increased by z and the test of i against y is 

repeated along with another test of the condition. If i ~ y and the condition 

is still true the statement :following the EQ is repeated again. This process 

continues until either i > y or the condition becomes false. Note that unlike 

a, b, and c which a.re evaluated once and for all at the beginning of the ~ 

statement (with the results stored awey in x, y, and z for safe keeping) the 

condition is evaluated over again before each repetition. If a is initially 

greater than b or if the condition is initially :false, the statement will not 

be executed at all. Note that if the expression c yields a negative integer, 

the counting is negative and the test becomes i ~ y instead of i ~ y. Figure 

2-6 shows several examples of~ statements. 

2.1.5 Com.pound statements, ranges and programs 

The ~ statement allows only 1 statement to be repeated. Frequently it 

is desired to repeat a whole sequence o:f statements, not just one, so ALGOL 68 

provides a mechanism :for :for.ming compound statements, which are treated as 

single statements. A compound statement, or technically a strong void closed 

clause, consists of the word~ followed by a series of declarations and 

statements (which may include conditional statements., FOR statements, and even -
other compound statements) separated by semicolons. The last statement in the 

series must be directly followed by END, with no semicolon directJ.y preceeding ,, -
it. In place of~ and~, left and right parentheses may be used. Figure 



12 

2-7 shows examples of~ statements followed by compound statements. 

Figure 2-7a contains a compound statement which will be repeated 10 

times, with i taking on the values 1 through 10 on successive iterations. Each 

iteration prints one line, containing i, i 1' 2, and i 1' 3. Note that an 

arbitrary expression can be printed. The result of executing the~ statement 

of figure 2-7 a will be to print out a table of the integers from 1 to 1 O along 

with their squares and cubes. 

Figure 2-7b contains a FOR statement whose repeatable statement is 

itself a FOR statement. First i is set to 1, the default when no FROM pa.rt is -
given, then the statement following the DO is executed once. Since that 

statement is itself a FOR statement, executing it once involves repeated 

executing the statement after its~ until it is finished. Then i is set to 2, 

and the second~ statement is executed once, meaning another 4 executions of 

the compound statement following it. In all, 8 lines will be printed like this 

1 1 

1 2 

1 3 

4 

2 1 

2 2 

2 3 

2 4 

A compound statement may also include declarations as well as 

statements. A compound statement that includes 1 or more declarations is 

called a~- The variables declared within a range may onl.y be used within 

that ra.Ilge {and other ranges that occur inside of it), and may not be used 

outside the range. Although it is possible to use the same identifier for 
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different variables declared in different ranges, the practice can be 

confusing. It is best to give each new variable a unique name. 

A complete program consists of a single compound statement or range, 

i.e. it begins with BEGIN and ends with END (or lef't and right parentheses - -
respectively, if one prefers). Figure 2-7c is a complete program to print out 

a series of numbers, each term of which (except the first 2 which are both 1) 

is equal to the sum of the 2 preceeding terms. The series stops just before a 

term 2: 1000 would have been printed. 

Figure 2-6 is a complete .ALGOL 68 program with 6 conditional. 

statements, 3 repetition statements, 11 assignment statements and 13 

input/output statements. Note that print (pennies) prints out the value of the 

integer variable "pennies", whereas print ("pennies") prints out the 7 letters 

p e n n i e s. 

2.2 Modes, objects and values 

In the previous sections the modes integer, character and boolean were 

introduced. In the following sections a few roore simple modes will be 

introduced and it will be shown how to build up new modes from the simpler 

ones. 

2.2.1 Primitive modes 

In addition to the modes integer, boolean, and character, ALGOL 68 

provides a mode :real, which is an attempt to model the real. number system of 

classical. mathematics. Real numbers are objects consisting of 2 integers, f 

and e, used to :represent numbers of the form f X b 1' e, where b is the base of 

the number system. The domain of the objects of mode real is very wide, 

encompassing tens or even hundreds of orders of :magnitude, depending on the 
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computer. The number of significant digits in a real is also computer 

dependent, but is frequently in the range 8 to 15 digits. 

Another primitive mode is format. Objects of mode format are used to 

control the formatting of input and output. Another basic mode is bits, which 

aJ.lows the programmer to use machine woms conveniently and efficiently for 

storing and retrieving information. 

2.2.2 Procedure modes 

A whole class of modes are the procedures. A procedure is a piece of 

program that takes n input parameters, n ~ o, and (optionaJ.ly) produces a 

result. For example, the absolute value function for integers is an object of 

mode ~ (.!!£) .!!£ because it takes an integer as input and delivers an 

integer as result. Just as there are many distinct objects of mode integer, 

e.g. o, 6, -17 and 2, there are many distinct objects of mode PROC (INT) INT. ---
A procedure taking 2 integers as parameters and producing an integer as result 

e.g. a procedure "add" which adds two integers, is of mode PB.DC (INT,INT) INT. ----- -- -
A procedure that has 2 integer parameters and produces a boolean as result 

(e.g. a procedure "less than" which yields true if the first parameter is less 

than the second, and false otherwise. ) has mode PROC (INT,mT) BOOL. The mode ----
of a procedure is written as the wom ~ followed by the modes of its 

parameters in parentheses., followed by the mode of its result. Procedures with 

no result have the vrom ~ in place of the mode of the result. Furthermore, 

if the procedure has no parameters, the parentheses are omitted. Since there 

are an :Infinite number of combinations of parameters (because there is no 

limit to the number of parameters a procedure can have) there are an infinite 

number of procedure mdes. A few procedure modes and examples of procedures 

that could be defined for them are shown in figure 2-9. 

Unlike most programming languages, procedures in ALGOL 68 are objects 
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and can be manipulated like other objects. Procedure variables exist and can 

be assigned values, just like any other variable. If' f' is declared by 

PROC (~) ~ f'; 

then f' is the address of' a memory location just the proper size f'or a 

procedure taking 1 real as parameter and producing 1 real as resuJ.t. Of' course 

procedures vary in size, but it is the compiler writer's responsibility to 

solve this problem. He might f'or example, put the procedure somewhere else in 

memory, and put only the address of' the procedure in f'. A:f'ter the assignation 

f' := sin 

Where sin is the usual trigonometric f'unction, f'(x) will compute sin(x). The 

ability to treat procedures like any other objects is very useful, and follows 

from the orthogonality of ALGOL 68. 

2.2.3 Arrays 

Many problems involve data organized into vectors or matrices. By a 

vector we mean a one d:imensional sequence of objects of some mode; by a matrix 

we mean a two d:imensional array of objects. The elements of a vector or matrix 

may be primitive elements, such as booleans, integers or cha::racters, or they 

may themselves be composite objects. As an example, consider a model for a 

computer memory composed of 4o96 16-bit words. A word can be regarded as a 16 

element boolean vector, and the whole memory can be regarded as a linear 

sequence of 4o96 words, i.e. a vector whose elements are boolean vectors. 

The official ALGOL 68 term covering vectors, matrices, and 3 and higher 

dimensional arrays is multi;e!e value, although we will use the tenn array f'or 

simplicity. An array is a collection of objects., all of' which have the same 

mode. An array is itself' an object and has a mode. Array variables exist, and 

may be declared and assigned values, just as with variables of any other mode. 

' A 1 dimensional array of integers has mode [ ] _f!E pronounced "row of 
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integer". A 2 dimensional a.rra;y of integers has mde [,] llT, pronounced "row 

row of integer" • A 3 dimensional a.?Ta;y of integers has mde [, , ] INT, 

pronounced "row row row of integer". In general. the mode of an arra;y is an 

open square bracket, followed by a number of commas equal to the 

dimensionality of the arra;y minus 1, followed by a close square bracket 

followed by the mode of the objects comprising the a.rra;y. Objects of different 

dimensions have different IIDdes. 

Declarations of a.rra;y variables are slightly different than 

declarations of sey integer variables. The reason for this is that to declare 

an integer variable, specifying the IIDde of the object and the identifier is 

enough. The ALGOL 68 compiler knows how much space reserve in memory for the 

object of m::>de integer. For an arra;y variable, the situation is different. The 

compiler can only reserve enough space if told how much space to reserve, i.e. 

how man;y- elements the array has. To declare a boolean a.rray variable named rb, 

which is to contain a 1 dimensional boolean arra;y whose elements are numbered 

1 to 10 one writes 

[ 1: 10] ~ rb 

The lower and upper bounds are written inside the brackets, separated by a 

colon. The mde of the object contained in the variable rb is [] ~, not 

[ 1: 10] BOOL, i.e. the bounds are not pa.rt of the mode. 

Figure 2-10 shows several examples of declarations of arra;y variables. 

In all cases the lower and upper bounds must be given. Each bound is an 

integer constant, or an expression yielding an integer. Bounds may be 

positive, negative or zero. In figure 2-10h the size of the arra;y rrb depends 

upon the values of n 1, n2, n3, and n4 at the moment the declaration is 

executed. The location whose ad.dress is rrb will contain enough space for (n2 

- n1 + 1) X (n4 - n3 + 1) booleans. 

If the word~ appears before the sub symbol, the size of' the arra;y ,, 

ma;y be changed during execution of the program. Since the new size ma;y be 
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larger than the old size, the compiler must provide a means whereby the array 

can be automatically m:>ved to a new location with enough room. As a 

consequence flexible arrays, as they are called, are not very efficient. One 

important use for them however is for variable length character strings. 

2.2.3.1 Subscripting 

The next step in learning how to use arrays and array variables 

involves learning how to assign val.ues to array elements. If ri is a 1 

dimensional. integer array variable as declared in. figure 2-1 Oa, then ri[ 1] is 

the first element, ri[2] is the second element, and ri[k] is the k-th element. 

These are integer variables and can be used as destinations in assignment, or 

they can be dereferenced and used in sources., or as operands, etc. Using only 

1 element is called subscripting. Using an element from an n dimensional. array 

requires n subscripts. To set al.l 10 elements of the integer array ri to O, we 

can write 

FOR i ~ 1 !Q 10 ~ ri[i]:= 0 

To set al.l 1000 elements of rrrb declared in figure 2-1 Oc to ~, we can 

write 

FOR i FROM 1 TO 10 DO ~ j FROM 

rrrb[i,J,k]:= ~ 

TO 10 DO FOR k FROM 1 TO 10 DO 

~ statements and arreys go together well. Of course individual. elements can 

be assigned values separately. If re is declared as in figure 2-1 Od, 

rc[6]:= "x" 

assigns the character x to the character variable re[ 6] . The other elements of 

the array are unchanged. 

It is al.so possible to assign al.l the elements of an array at once, e.g. 

[1:10] INT x,y; FOR i FROM 1 TO 10 DO x[i]:= iJ 
£.·- - -

y:= X 
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The latter assignment is equivalent to 

FOR i FROM 1 TO 10 E_Q y[i]:= x[i] 

2.2.3.2 Slicing 

In addition to being able to manipulate the individual elements of' an 

array by subscripting, subarrays can also be manipulated as a whole. Subarrays 

are properly called slices. Subscripting is. a special case of' slicing. Figure 

2-11 shows the declaration of' three 1 dimensional integer array variables, a, 

b and c. First the array a is initialized, then b and c are set equal to a. 

This means that the location b, which has room f'or 10 integers, is filled with 

10 integers whose values are identical to the integers in location a, and 

similarly f'or c. The assignment 

b[7:10]:= a[7:10] 

does exactly what you expect; namely, it is equivaJ.ent to 

b[7]:= a[7]; b[8]:= a[8]; b[9]:= a[9]; b[10]:= a[10]. 

The statement c:= b assigns the entire array b to c, i.e. it is equivalent to 

FOR i FROM 1 TO 10 £9_ c[ i] := b[ i] 

A column of' a matrix can be assigned to a vector as shown in figure 

2-12. The reason this makes sense is that the destination is a 1 dimensional 

integer array variable, so the source must be an object whose mode is that of' 

a 1 dimensional integer array. Unsliced, 11mat II is a 2 dimensional integer 

array, but the value of' the slice on the right hand side of' the assignment is 

just the whole 8th column of' mat, which is a 1 dimensional integer array, so 

the sou,rce is a 1 dimensional array. The assignment is equivalent to 

~ i ~ 0 TO 6 E_Q vec[i]:= mat[i,8] 
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We note here an important point about slices in assignments: the bounds in the 

source and the bounds in the destination must match, even if not shown 

exp].icity, as above. 

2.2.4 Structures 

A:rra:ys are used to group together objects of the same mode. Structures 

are used to group together objects whose modes may or may not be identicaJ.. A 

structure is composed of 1 or more objects caJ.led fields each of which has an 

identifier (more correctly, a tag) associated with it caJ.led the field 

selector. Structures are themselves objects and have modes. The mode of' a 

structure depends upon the mode of its fields and the names of' its field 

selectors. Two structure modes are the same, if and only if' the modes and 

selectors of the fields a.re the same. Structure variables exist and can be 

declared, and used, for example, as sources and destinations in assignments • 

.An example of a structure variable declaration is: 

STRUCT ( [ 1: 3] CHAR type, mr seats, BOOL jet, quiet) aircraft - - -
This declares aircraft to be a variable capable of holding a structure whose 

first field is a 3 character string caJ.led type, whose second field is an 

integer called seats, and whose third and fourth fields are both booleans, 

called jet and quiet, respectively. 

'Ib use any of' the fields of' a structure, e.g. as a source, destination, 

or operand, one writes the field selector, followed by the word f)!, followed 

by the name of' the structured variable, e.g. 

type 9!'. aircraft : = 1174 711
; 

seats 9!'. aircraft:= 350; 

jet OF airer-a.ft : = TRUE; 

quiet OF aircraft : = ~ 

assign; values to all 4 fields of' the variable aircraft. The operation of' 
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selecting;one fieJ;q. ~fL~ ~~O!t.g~y.~,i~)in fact called selecting. 

The fields of a structure ~ be objects of any mode, including arrays., 

as above, and even other structures. An individual field ~ be changed 
,• .... , 

without affecting the values of the other fields. Some properl:iies of 

structures and arrays a.re compared in figure 2-13. 

2.2.5 References 

We have mentioned addresses of objects quite a few times so far, now it 

is time to consider them more ca.ref'ully. An identifier has been considered 

synonymous with the address of the memory location into which an object of 

some specific mode can be put. In ALGOL 68 addresses are also objects, and can 

be handled as such. The mode of any address is "reference to" followed by the 

mode of the object contained in its location. Thus the address of a mem:>ry 

location containing an integer has mode "reference to integer". 

We can now consider assignment statements to involve 2 objects, the 

destination, which must be of mode "reference to something", and the source 

which must be of mode II something", where something can be any allowed mode. 

In parl:iicular, something could even be of mode "reference to integer". ALGOL 

68 allows "reference to integer" variables, which contain an object of mode 

"reference to integer". Thus a "reference to integer" variable contains as its 

object the address of an integer, whereas an integer variable contains an 

integer, not an address. Now of course, an address is just some bit pattem in 

the computer's memory and it might be the same bit pattern as some integer, 

but "reference to integer", "reference to boolean", and integer a.re all 3 

distinct nodes and cannot be mixed. 

On the CDC Cyber series computers, an integer requires 60 bits and an 

address 18 bits. On the IBM 370 1 s an integer is 32 bits, and an address is 24 

bits. Objects of mode integer and mode "reference to integer'' usually have 



different sizes, a general characteristic of different m::xies. 

An example of a "reference to boolean" variable declaration is 

REF BOOL p --
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which declares p to be a variable which contains as its object the address of 

a boolean. Furthermore, p itself is an object of mode "reference to reference 

to boolean" • 

2.2.6 Mode declarations 

The data used by an .ALGOL 68 program consists of a collection of 

objects. Each object has a m:::>de. Some modes are "built in" to ALGOL 68, e.g. 

~' ~, ~, and ~, while other modes can be constructed using ~, 

~, [ ] , and STRUCT. To allow programmers to define their ow.n modes and then 

declare va-riables of these modes, ALGOL 68 provides a wey to invent new modes 

and add them to the language so they can be used just like the bull t in modes 

B!,!, ~, ~, and RE.AL. A mode is added to the language by a mode 

declaration. An example is: 

MODE STRING = FLEX [ 1 : 0] CHAR ---- - -
which declares STRING to be a :roode. The bounds 1 : O imply that when a string 

variable is declared, initially no space is reserved for it, but because it is 

flexible, a II string" of characters of any size can be assigned to a string 

va-riable. This new mode can now be used just as if it were buil"t-in. For 

example, 

STRING s 

declares s to be a string variable in exactly the same wa;y that 

INT k 

declares k to be an integer variable. Since strings are so u:seful, this 

definition of string is in fact already built-in, so the programmer need not 

declare it herself. 
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Figure 2-14 shows several examples of mode declarations and figure 2-15 

shows some declarations of variables using these modes. Variables of any mode 

ma;y be initiaJ.ized at the time of their declaration by following the name with 

a becomes symbol (: =) and an expression yielding an object of the required 

mode. Arreys and structures may also be 1n1 tialized by listing their elements 

or fields inside parentheses. It is possible to partiaJ.ly initiaJ.ize a newly 

declared object by writing~ in place of any (or all) elements or fields. 

The value of ~ is undefined, and is onl.y used when that element or field 

will later acquire a vaJ.ue by assignment. 

The declaration of VEC'IOR in figure &-14 causes x in figure 2-15 to 

become a 1 dimensional real array variable. Since n is 3 at the time x is 

declared ( the vaJ.ue of n at the time the mode VECTOR is declared is 

immaterial) x has 3 elements. These are initiaJ.ized by the ~ displey (2.0, 

3.0, 4.0) in figure 2-15, and cause assignment of values to the elements of 

the vector x just as if we had written 

x[1]:= 2.0; x[2]:= 3.0; x[3]:= 4.0 

The variable xx is a real 3><3 matrix variable, with mode row row of reaJ.. It 

is initiaJ.ized as shown, where (1.0,2.0,3.0) is the first row, i.e. elements 

xx[1,1], :xx[1,2], and xx[1,3]; (2.0,3.0,4.0) is the second row, i.e. elements 

xx[2,1], xx[2,2], and xx[2,3], and (3.0,4.0,5.0) is the third row. 

The declaration of rat demonstrates the use of a structure displey to 

initialize "numerator OF rat11 to 2 and "denominator OF rat" to 7. The 

declaration of john illustrates a.YlOther structure displey. Since objects of 

mode PERSON have 5 fields, the structure display also needs 5 fields, each of 

the proper mode. For the declaration of john to be correct., bill and mary 

would have to be declared as PERSONs somewhere in the program. The declaration 

of jones shows how a structure one of whose fields is an arrey can be 

initialized. The expression ,, 

(nancy, peter) 
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is itself a row display, and thus can be used to initiaJ.ize an array such as 

[ 1 : 2] PERSON child. 

The declaration of jones raises an important p:>int. Supp:>se it is 

desired to print out the name of child [ 1 ] of the variable jones. The 

expression 

child Q! jone s 

is a selection from a structured value, and is itself an array variable. As a 

consequence this array variable can be subscripted. However 

child Q! jones[ 1] (wrong) 

is wrong becauses subscripting binds more tightly than Q!. The expression 

child Q! jones [ 1 ] would be correct if jones were an array of structures one 

of whose fields were child. In that case, jones[ 1] would be the entire first 

element ( a structure) and the action of selection could be per.f'ormed on that 

structure. The correct way to print the name of the first child ( nancy) is 

print(name Q! (child Q! jones)[ 1]) 

The parentheses force "child OF jones" to be subscripted. Since child OF jones - -
is an array, that is fine. The expression 

(child Q! jones)[1] 

is an object of m::>de PERSON, and can be selected from using the field 

selectors name, father, mother, age, and smokes. 

It is instructive to compare the m:>de BRIDGEHAND to the m:>de FAMILY. 

North is initiaJ.ized to a row display containing 13 elements, each of which is 

a 2 character structure display. Suppose we wish to print the rank of the 

first card. The expression 

north[l] 

represents a structure with 2 fields, rank and suit. We can select from it, so 

print( rank Q! north[ 1 ] ) 

is correct. Here no extra set of parentheses is needed because subscripting 

binds m::,re tightly than _9!, and in this case that is what is needed. Extra 
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parentheses are al.ways allowed however, so if' one is unsure they can be used 

to avoid dif'f'iculty. 

The variables w, reg, cc, and t are not initialized. The mode 

INSTRUCTION is a mode all of' whose f'ields are of' the same mode, thus it could 

have been declared as an an-ay 

MJDE INSTRUCTION = [ 1 : 4] ~ 

instead of as a structure but to use the first element we must write 

add[ 1] 

:Instead of 

opcode.!!'. add 

Which choice is made depends upon which form the programmer finds most 

convenient for the problem at hand. ALGOL 68 is very flexible, and of'ten 

provides several. ways of' expressing equivaJ.ent ideas. 

The declaration of' twa520 illustrates the use of' SKIP to initiaJ.ize -
some fields of' the structure, but not all of' them. In particular 1 field, 

passenger, is not initialized at the time the variable is declared. When the 

name and phone of' passenger[ 1] are known, they can be assigned by 

name 9!'. (passenger Q!'. twa520 )[ 1] : = 11tarzan11
; 

phone E! (passenger.!!'. twa520)[1] := 914 723 4567 

What may appear complicated at first, will later be seen to be straightforward 

and simple. The key to writing expressions involving both selecting and 

slicing is to carefully note the mode of each expression. The variable twa520 

is a structure so it must be selected f'rom, not subscripted. Clearly, 

passenger is the field selector desired, not number, pilot, movie, or nonstop. 

The expression 

( passenger 9!'. twa520) 

is an a:rrey, so we must subscript it, not select f'rom it. We want the first 

passeng~r, so we write 

(passenger.!!'. twa520)[1] 
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Since (passenger OF twa520) is an array of structures, subscripting it gives a 

structure to be selected from, e.g. 

name _Q!'. (passenger ~ twa520 )[ 1] 

which can then be used as a destination, source, operand, etc. Anyone who 

still thinks this unnecessarily complicated should try expressing the same 

ideas in FORTRAN, ALGOL 60, or BASIC. 

The m::>de TREE is interesting. It has 3 fields, an integer and 2 

addresses. In terms of allocating space for~ variables, it ha.rdJ.y matters 

that the addresses a.re addresses of other objects of m::>de ~- Binary trees 

are a very useful data type in many areas of computer science, so modes such 

as this a.re very valuable. A mode which is defined in terms of itself is 

called a recursive ~- One must exercise some care when declaring recursive 

modes. For example 

!:!!!?! ~ = STRUCT (.!!E val, ~ left, right) (wrong) 

is wrong. Sup:pose that an integer requires 1 word of mem::>ry and a BUSH 

requires N words of memory. Then a declaration like 

~ blueberry 

would require enough space to be reserved in the computer's mem::>ry for one 

object of mode ~ ( 1 word) and 2 objects of' mode ~ (2N words). This is a 

total. of 2N+1 word for each object of made ~- But this contradicts our 

statement that a~ required only N words. The definition is impossible, 

since a BUSH can hardly contain an INT plus 2 BUSHes. The mode TREE presents - - - -----
no such problem since it only claims space for an .Ef!'. and 2 addresses, not 2 

objects of m::>de TREE. As you probably expect by now, ALGOL 68 allows 

essential.ly all m::>des that are reasonable and prohibits those that are not, 

but the formal test to see if a given mode is allowed is unfortunately too 

complex to be given here. Interested readers may consult van Wijngaarden 

( 1968). 

It is important not to lose sight of the fact that prograzmrer created 
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modes like PERSON are used just as thought they were built in (see figure 2-15). 

The ability of a programmer to define modes suitable for her application is 

the m:>st power.ful feature of .ALGOL 68. In a later section you will see bow to 

define operators to perform actions on programmer defined modes. For example, 

in a program to pla;y bridge, a m:>nadic operator to count the number of points 

in an object of nnde BRIDGEHAND might be use.ful. 

Mode declarations can be used to define synonyms for modes. Thus users 

who like writing IN'IBGER instead of l!! can declare them to be equivalent by 

MODE INTEGER= INT. 

2.3 Units 

We have used the term "expression" quite often so far without precisely 

defining what it is. Now we will examine the concept in detail. The .ALGOL 68 

term for the intuitive idea of 11expression11 is unit, which is short for 

unitary clause. A unit, when evaluated, yields a val.ue which is an object of 

some specific node. A unit which when evaluated yields an integer is cal.led an 

integer unit. A unit which evaluates to a boolean is called a boolean unit; a 

unit that evaluates to the address of a character is called a reference to 

character unit, etc • 

.ALGOL 68 requires certain kinds of uni ts in certain places., for 

example, a subscript must be an integer unit. An integer unit is al.so needed 

after FROM, TO, and~ in a~ statement. The cond.ition following the~ in a 

cond.itional statement obviously must be a boolean., not an integer. The 

destination of an integer assignment must be the address of an integer 

location., i.e. a 11reference to integer" unit. 

There are many forms a unit can take. We will examine 9 of them. As an 

example we will show how the form und.er discussion is used as the source of an 
'" 

assignment, but of course units are used in other places as well. In the 
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examples i will be assumed to be an integer variable. 

2. 3. 1 Denotations 

The simplest form of a unit is a denotation, {caJJ.ed a constant in some 

programming languages). An example of the constant 3 used as a unit is 

i := 3 

The expressions on the right hand side of the := symbol in figure 2-15 are aJJ. 

denotations (al.though other uni ts are al.so aJJ.owed) and therefore uni ts. 

Constants for structure and row nxxles are al.so aJJ.owed, and consist of a list 

of constants. There is no official. word for such constants, but we will use 

the term denotation to include them, al though in a strict sense they are not 

denotations. A unit of a structure or row mode is caJJ.ed a displa;y. Figure 

2-16 shows the declarations used by figures 2-17 to 2-25. 

2.3.2 Variables 

The next simplest kind of unit is a variable. If j is declared by 

then j is an address of an integer, and therefore has mode reference to 

integer. One might think that 

i:= j 

would be forbidden, since the source of an assignment to an integer variable 

must be an integer unit, not a 11reference to integer" unit. But our old friend 

dereferencing comes to the rescue and dereferences j, turning it into an 

integer. Dereferencing, as you will recall, takes an address as input, and 

produces the object at the address as the result. If the object is a unit of 

mode something, then the address has mode "reference to something", so 
,, 

dereferencing turns an object of mode "reference to something" into an object 
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of mode II something". That is why it is caJ.1ed dereferencing: it removes a 

reference. 

Dereferencing is an example of a coercion. A coercion is an action that 

replaces an object of one mode (usually the wrong mode) with a different 

object, hopefully of the right mode. Any object of mode "reference to 

something" can be dereferenced when it appears as the source in an assignment, 

or as an operand in a formula etc • 

There is one other coercion that is worth mentioning ( and 4 others that 

are not worth mentioning) caJ.1ed deproceduring. Deproceduring starts with a 

procedure whose m:>de is procedure something, and produces as its result an 

object of mode something. For example if r is a real variable, then 

r:= random 

(where random has m:>de !!Q£ ~) does not appear to be proper, since the 

source should be of mode REAL not mode PROC REAL. Deproceduring, like - --
dereferencing happens automatically when needed. Coercions are a rather subtJ.e 

idea and have more to do with the syntax of a program than with what it does. 

If you do not see why i: = j or r: = random would be incorrect without 

coercions, do not worry about it. It's really not very important. The 

discussion of coercions was included only because some clever read.ers may 

notice the apparent inconsistency which coercions solve. People who like this 

sort of thing will probably like the other 4 coercions as well. Figure 2-18 

shows examples of variabl.es of various modes. 

2.3.3 Slices 

The thi:ro. form of a unit is a slice, which includes subscrpted 

expressions such as 

(child OF jones)[1]. -
A slice has 2 parts, an array to be sliced, and the index or indices, enclosed 
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with:in square brackets. The expression above is considered to be a slice 

rather than a selection because slicing is the last operation performed, i.e. 

child 2!'. jones is an array and it is sliced. If len is a 1 dimensionaJ. integer 

array, then 

i: = len[ 1] 

is an example of a slice being used as a unit. More examples are shown in 

figure 2-19. 

2.3.4 Selections 

The fourth form of a unit is a selection. Like a slice, a selection 

aJ.so has 2 parts, separated by 9!· These parts are the field selector and the 

structure being selected from. The field selector must be an identifier and 

cannot be computed (because it is not an object). The structure being selected 

from :may be the result of evaluating an expression. An example of a selection 

being used as a unit is 

i: = age .Q! john 

where jolm is declared in figure 2-15. More examples are shown in figure 2-.20. 

2.3.5 Procedure caJ.ls 

The fifth kind of unit is a procedure caJ.l. A procedure caJ.l causes a 

procedure to be executed and (optionally) return a result. If the result is an 

integer unit, the procedure call can be used anywhere an integer unit is 

allowed. If the caJ.l yields a reference to boolean, the caJ.l can be used 

wherever a reference to boolean unit is required, or even where a boolean unit 

is required, because the result can be dereferenced. 

A caJ.l has 2 parts, the procedure to be caJ.led, and the parameter list. 
'" 

The mode of the result of a procedure call can be found by looking at the mode 
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of' the procedure called. Procedures with parameters al.ways have modes of' the 

form 

PROC (mode of' parameter 1, mode of' parameter 2, etc) mode of' result -
or 

PROC (mode of' parameter 1., mode of' paraxooter 2., etc) ~ 

Cal.ls of' procedures of' the second form cannot be used as units in sources, 

subscripts etc. Cal.ls of procedures of' the first fonn ma;y- be used anywhere a 

unit of' "mode of result" is needed. As an example., if count is a procedure of 

mode PROC (~) .!!!!'., i.e. it takes 

integer as result., then 

1: = count(j) 

integer as pa-raxooter and delivers an 

111 ustrates a procedure call being used as an integer unit. 

A procedure call is very similar to a deprocedured variable. The only 

difference is that procedure calls always have paraxooters., and deproceduring 

occurs only for procedures with no parameters. This distinction is needed to 

avoid certain ambiguities which can result if the result of' a procedure is 

another procedure. 

A procedure is the ALGOL 68 method of' implementing the idea of' a 

f'l,mction in classical mathematics. A function in classical. mathematics has 0 

or more parameters and delivers a result. The ALGOL 68 concept of' a procedure 

is more general., since a procedure :ma;y have no parameters and yield~ 

instead of a vaJ.ue. 

Examples of' cal.ls used as units can be found in figure 2-21 • 

2. 3. 6 Formulas 

The sixth kind of unit is a formula. A formula consists of an operator 

and its operands(s). Monadic operators have onJ.y 1 operand., f'or example, .ABS 1 
,, -

has the value of' the absolute value of i. Dyadic operators have 2 operands, 
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for example j+k is a formula in which the operator + has 2 operands. ALGOL 68 

has well over 100 built-in operators, and the programmer can define new ones 

just as she can define new m:>des. An operand in a formula may itself be a 

formu.la, for example the formuJ.a 2Xn, may be used as the right operand of + to 

yield another formula, e.g. j+2Xn. Denotations, variables, slices., selections, 

and procedure cal.ls ( among other things) may al.so be used as operands, 

al.lowing very general. formu.las to be expressed. An example of a t'ormuJ.a used 

as a unit is 

i:= j+k 

More examples of formulas as uni ts are shown in figure 2-22. 

2.3.7 Assignments 

The seventh kind of unit is an assignment. An assignment can stand by 

itself as a statement, but it can al.so be used as a unit. When used as a unit, 

the val.ue of' an assignment is the value of its destination, not its source. In 

j: = k the value of the assignment is j, which is of' mode 11reference to 

integer". Thus j : = k can be used anywhere a "reference to integer" unit needed, 

or because it can be dereferenced, it can al.so be used anywhere an integer 

unit is needed. Consider the assignment 

i:=j:=k 

Here i is the destination and j: = k is the source. As a consequence of 

allowing assignments as units, ALGOL 68 gets multiple assignment statements as 

an extra added attraction, for free. The above statement is equivalent to the 

2 assignments 

j: = ki i:= j 

but is easier to write. The reason that k is first assigned to j, then j is 

assigned to i, is that j: = k is the source of the assignment to i. Before an 

assignment can be performed, the source and destination of the assignment must 
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be evaluated, and as a "byproduct" of evaluating the source j:= k, k is 

assigned to j. See figure 2-23 for m:>re examples of assignments as units. 

2.3.8 Closed clauses 

The eigh~h kind of unit is a closed clause. A serial clause consists of 

a series of zero or m:>re statements and/or declarations followed by a unit. A 

serial clause has the mde and value of its final unit. A closed clause is a 

serial clause enclosed by either~ ~ or by parentheses. A closed clause 

has a mode and a value, namely the mde and value of the unit at the end of 

its serial clause. For example 

(reaa.(J); J:= J+3; E J < o ~ J:= o _[!; J+1) 

is a closed clause, hence a unit. It's serial clause ends with the formuJ.a 

j+1, so the value of the closed clause is j+1, which is an integer unit. This 

closed clause ma;y- be used anywhere an integer unit may be used (even if it 

seems somewhat strange at first). For example, 

i:= (read(j); j:= j+3; IF j < 0 TEEN j:= 0 FI; j+1) - - -
is a perfectly valid assignment, 'Which ma;y- either stand alone as a statement, 

or be used as a unit. The above assignment is evaluated in 5 steps 

1 • j is read in 

2. j is increased by 3 

3. if j is negative it is set to O 

4. j+1 is computed {but j is not changed) 

5. the integer computed in step 4 is stored in i 

It should be noted that a serial clause need not have any statements or 

declarations, therefore a unit all by itself is also a serial clause. A 

" 
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unit in parentheses is a serial clause in parentheses, so it is a closed 

clause hence a unit. Therefore unnecessary p-s.rentheses a.round units are 

al.lowed, and a.re sometimes useful for improving readability. Figure 2--41 

illustrates the relation between a unit, a serial. clause, and a closed clause. 

Examples of' closed clauses a.re shown in figure 2-24. 

2.3.9 Conditional. clauses 

The ninth kind of' unit is a conditional. clause. A conditional. clause 

consists of' an IF part., a THEN part., and an EISE part. The 'IflEN and ELSE parts - - .____ ----- -
consist of' the words THEN and~ respectively, followed in each case by a 

serial. clause. The two serial. clauses must either be of' the same mode, or be 

coerceable to the same n:ode. The mode of' a conditional. clause is the n:ode of' 

its serial. clauses, or if' they have different modes, the mode to which they 

may be both coerced. For example., 

i:= _!!'. i < j ~ k ~ read(n); n+1 FI 

is a val.id assignment. If' i is less than j, k is assigned to i, otherwise n is 

read in and n+1 is assigned to i. The formula n+1 at the end of' the ELSE pa.rt -
does not change the val.ue of' n of' course, anymore than i: = n+1 would change n. 

The restriction that both serial. clauses must be or be coerceable to 

the same n:ode is needed to avoid nonsensical. assignments. Consider the meaning 

of' 

i:= IF k<O ~ 4 ~ ~ !'.,! (wrong) 

If' k is less than o, i becomes 4. If' k is greater than or equal. to o, the 

statement requires assigning a boolean val.ue, TRUE, to an integer variable., 

which is impossible. On the other hand, 

i:= IF k<O THEN 4 ELSE i FI 

is f'ine. The denotation 4 is of' mode integer, while the object i is of' mode 

"ref'e~nce to integer", but it can be dereferenced to produce an object of 

mode integer, so both serial. clauses can be coerced to n:ode integer. 
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A conditional clause and a conditional statement are really slightly 

different f'orms of' the same beast. The difference is that while a conditional 

clause always has a value., a conditional statement stands alone., so it does 

not need a value. The ~ part of' a conditional clause is not strictly 

required, but it hardly makes much sense to write 

i: = IF i<j ~ k FI 

since if' j::::_i the result will be undefined. 

The reason that !,! is required to terminate conditional clauses and 

statements can now be given. If' no !,! were required., then 

IF i=O ~ 1! j=O ~ j:= j+1 ~ i:= i+1 

would be ambiguous. It might mean 

IF i=O 

~ 1! j=O ~ j:= j+1 ~ i:= i+1 FI 

FI 

or it might mean 

IF i=O 

FI 

~ 1! j=O ~ j:= j+1 FI 

ELSE i:= 1+1 

which have very dif'f'erent meanings. In the f'irst interpretation, if i is not 

zero the statement is finished and nothing happens. In the second 

interpretation, if i is not zero then it is increased by 1 • This is the fazoous 

"dangling else" problem. Some programming languages solve it by not permitting 

1! statements in then parts. Others solve it by arbitrarily declaring one 

interpretation or the other to be correct. FORTRAN solves the problem by not 

allowing else parts at all. That certainly avoids the ambiguity, but 

unfortunately it also makes programming very difficult. The ALGOL 68 solution 

of requ~ring conditional statements and to end in FI is symmetric, elegant., 

and always unambiguous. 

Examples of conditional clauses are shown in figure 2-25. 
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2.4 Where units and serial. clauses are allowed 

In the preceeding sections, 10 different kinds of expressions have been 

introduced: denotations, variables, slices, selections, procedure cal.ls, 

formulas, assignments, closed clauses, conditional. clauses and serial. clauses. 

ALGOL 68 programs are built from statements that use these and a few 

relatively unimportant other kinds of expressions. Not every kind of 

expression can be used everywhere, ho-vrever, since ambiguities would result if 

this were al.lowed. For example, assignments are not al.lowed as operands of 

formulas. Consider what would happen to the assignment 

i:= j+1 

if j, which is an operand of +., were replaced by the assignment k: = 1. We 

would have 

i:= k:= 1+1 

which is allowed but is not -what was intended. It sets k to 1+1, i.e. to 2, 

then sets i to k, also 2. If instead. of writing the assignment k:= 1 as the 

left operand of + we write the closed clause (k:= 1) we get 

i:= (k:= 1) + 1. 

The above first sets k to 1, and then i to 2, which is quite dif'ferent than 

the previous expression. To avoid this sort of ambiguity, ALGOL 68 only al.lows 

constructions in positions where no confusion can arise. 

Figure 2-26 shows a number of syntactic positions within programs where 

expressions are required. For each syntactic position the kinds of 

constrt1ctions that are al.lowed are shown at the right. Thus a:rter _!!: or ~ 

a boolean serial. clause, or any kind of boolean unit (or something coerceable 

to a boolean unit) will suf'fice. We emphasize that a unit yielding a 

"reference to boolean" object, e.g. a variable such as q., is quite acceptable 

in a position requiring a boolean unit, since it can be dereferenced., yielding 
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a boolean. An expression which can be coerced to the proper mode is always 

acceptable. 

A serial clause consists of zero or .more stat-ements followed by an 

unit, so every unit is also a serial clause, although serial clauses are in 

general not units. In other woms, 11 serial clause11 encompasses more than 

11unit" so it is redundant to list both of them together. Whenever a serial 

clause is allowed, a unit is certa:in.1.y allowed. Nevertheless unit is listed 

too as a reminder, where appropriate. 

2,5 Procedures 

The m:>st powerful technique for writing a large or complicated program 

is breaking it up into a number of smaller, and conceptually simpler pieces, 

called procedures. Some people prefer the term subroutine instead of 

procedure,; both are widely used. They will be used interchangeably in this 

book, in accordance with common usage. 

A procedure is used to perform some logical task, for example computing 

the value of sin or arctan or the cube root of some input value, called a 

parameter or argument. If the procedure has only 1 result., the result can be 

returned as the value of the procedure. Alternately., the procedure can change 

one of its parameters, e.g. set a variable to the answer. 

In ALGOL 68, procedures are objects end have modes and values just as 

other objects. The value of a procedure is a piece of program that perfonns 

some computation and possibly returns some value. An example of a procedure 

variable declaration initialized to a procedure that determines if its second 

parameter is 1 la-r-ger than its first parameter is 

Notice that this declaration has the same form as all the other declarations. 

First is the lOOde, in this case ~(~,E!!) ~ because the procedure has 2 
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integers as parameters and delivers a boolean as resuJ.t (meaning a call to 

this procedure may be used a;n;ywhere a boolean unit is required) • Following the 

mode is ( as usual in all declarations) the identifier which identifies the 

procedure. This is then followed by a becomes symbol and the initial value of 

the procedure. Compare the structure of the above procedure declaration to the 

integer declaration 

INT j:= i + 1 

The right hand side of a becomes symbol in an integer declaration is an 

integer unit. Iogically the right hand side of a becomes symbol in a 

PROC(INT,INT} BODL declaration shouJ.d be a PROC(INT,M) BOOL unit., which it ---- -- --- --
is. We will now describe what a unit for a procedure is. 

Units for procedures begin with a list of the modes of the parameters., 
\ 

each of which is followed by an identifier called a formal parameter. The 

entire list of formal parameters is enclosed in parentheses and followed by 

the mde of the procedure's resuJ.t. This is followed by a colon. The colon is 

followed by a unit of the mode of the resuJ.t. The value of this unit is the 

value of the procedure, so naturaJ.J.y it must be the same mode as the resuJ. t. 

In the above procedure declaration, j = i+1 is a formula, hence a unit., which 

has the value TRUE if j and 1+1 are equal and ~ if j and 1+1 are unequal. 

Thus j = i+1 is a boolean unit, which it shouJ.d be (since the node of the 

procedure I s resuJ. t is boolean). Note that : = is the becomes symbol., while = is 

the equality symbol. 

An example of a procedure call to adjacent is 

read(n); read(k); _!! adj acent(n., k) ~ print( 11ok11
) !'.! 

which reads in 2 integers and prints ok if the second integer is equal to the 

first integer plus one. The call adjacent(n,k) produces a boolean., so it can 

be used after IF, where any boolean unit or serial clause may be placed. 

The call adjacent(n,k) tests to see if n+1 = k. It does not test to see 

if k+1 = n. The reason has to do with the way actual parameters are accessed 
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by procedures. At the time a procedure is ca1led., space is reserved in the 

computer's memory for the parameters. T.he · number and mode of the parareters 

can be determined f'rom the mode of the procedure. Thus a 

has 2 integers as parameters, whereas a 

has a 1 dimensiona1 boolean a-rTay, a character, and the address of an integer 

as its 3 parameters. At the time of the ca11, copies of the actua1 parameters 

are made and put int-0 the space reserved for them. The first actua1 parameter 

can be accessed by using the identifier of the first formal parameter. The 

second actua1 parameter can be accessed by using the identifier of the second 

formal. parameter, and so forth. The order in which the actual parameters are 

listed is thus very important. 

A very important point is that parameters are objects not variables. In 

the declaration 

INT i 

i is an integer variable, that is i itself is an address of an integer, not an 

integer. Because it is an address of an integer, i.e. i has mode "reference to 

integer", it can be used as a destination in an assignment, however, the 

declaration 

(wrong) 

is incorrect because here i is an integer, not an integer variable. Suppose p1 

is ca1led by p1 (n). At the time of the ca11 the following things happen 

( conceptua1ly a clever compiler ma;y- be able to do some optimization) . First n, 

which is the address of an integer, is dereferenced yielding an integer. A 

copy of this integer is then placed in the space reserved for it by procedure 

p 1 . The identifier i identifies the int.ager itself, and not its address. As a 

consequence, the object i has mode integer and not mode "reference to 
' 

integer", so it cannot be changed. By declaring a f'ormal parameter to be of a 
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mode not starting with "reference to", one can protect the corresponding 

actual. parameter from being accidently changed. This helps catch programming 

errors. 

Of course if it is desired to change i, we can write 

PROC(REF INT) INT p2:= (REF INT i) INT: i:= i+1 ---- -- -
A call of p2(n) will cause the address of n to be copied into the space 

reserved for i. No dereferencing happens in this case because the formal 

parameter is of m::>de "reference to integer" and the aduaJ. parameter is aJ.so 

of mode "reference to integer". Thus a copy of the address of n is made, not a 

copy of the integer of which n is the address. When p2 is executed the formula 

i+1 is eval.uated by fetching i, i.e. the copy of the address of n. This object 

is then dereferenced because + requires integers not addresses, as operands. 

The process of dereferencing i fetches the object whose address is i, namely 

the contents of n. The ad.di tion is performed and the result is stored back 

into n. The result of p2(n) is n:= n+1. 

Three facts about parameters will be repeated for emphasis: 

1 . An actuaJ. parameter ( after coercion) must be of the same mode as the 

corresponding formal parameter. 

2. A formal. parameter has the m::>de appearing in front of it. A fo:nnaJ. 

parameter written as ~ i really is an integer., not a "reference to integer'' . 

3. A copy is made of the actuaJ. parameter, after coercion. Accesses by the 

procedure to the formal. parameter are to this copy, not the original. 

The examples given above are al.l very s:l.mple. A more coDm:m situation 

is a procedure whose unit (i.e. its body) is a closed clause. Figure 2-2.7 , 

shows a complete program that reads in 20 integers com.prising 2 vectors of 
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length 10 and prints their inner product, i.e. 

a[1] X b[1] + a[2] X b[2] + a[3] X 'b[3] + ... + a[10] X b[10] 

We note several things about this program. First, the formal. parameters 

y and z a.re written after the same mode declarer. This is an alternate form 

which is easier to write than 

([] ~ y,[] :rnT z). 

Second; the modes of y and z do not have upper and lower bounds specified. 

Modes never have bounds, al though of course variable declarations such as a 

and b do have bounds. Third, the integer unit comprising the procedure body is 

a closed clause, whose serial clause ends in a variable, answer. The mode of 

answer is reference to integer, but is dereferenced to give an integer. 

The declaration of a procedure is somewhat wordy, since the modes of 

the formal parameters are listed twice. If there are many parameters, this can 

be a nuisance. Thus ALGOL 68 provides another form for procedure declarations., 

namely the left hand side of the : = is replaced by the word ~ and the 

procedure name., and the := is changed. into an = to indicate the alternate form 

is being used. Strictly speaking, an object declared. by this alternative is 

not a procedure variable, i.e. it does not have mode "reference to procedure 

something", but is an object of mode "procedure something". For our purposes 

the 2 forms are close enough. Figure 2-28 shows innerproduct in this alternate 

form. We will use this simplified. form throughout the book. 

We now consider a final item. A procedure which returns no explicit 

value has mode VOID for its result. A call of such a procedure cannot be used 

as a source, or a destination, or an operand, or anywhere an object of some 

mode is needed, however, it can be used where a statement is needed such as in 

a serial clause. 
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2. 6 Operators 

Consider the program of' f'igure 2-29. It declares a nnde VECTOR, and a 

procedure to add 2 vectors, and then uses those def'initions to add 4 vectors 

and print the result. The statement 

v5:= vectoradd(vectoradd(vectoradd(v1,v2),v3),v4) 

although ghastly to look at is quite correct, since an actual parameter may be 

any kind of' unit, (see f'igure 2-26) and a procedure call, such as 

vectoradd(v1,v2) is certainly a unit. Hence vectoradd(v1,v2) may be used as an 

actual. parameter. 

The dif'f'icul ty with the above expression is that al though perf'ectly 

acceptable to the computer, we mere humans are accustomed to a notation in 

which the operator comes between the operands, not in front of them. ALGOL 68 

comes to the rescue once m:,re by allowing us to define new operators. A 

formula in ALGOL 68 is reaJ.ly just a procedure call in a different notation. 

Consider the operator + in the integer formula 

1 + 2 

as compared to the operator + in the real. formula 

1.5 + 2.5 

They are actuaJ.ly different operators with the same symbol, +. The first 

operator takes 2 integers and perf'orms an integer addition, yielding an 

integer. The second operator adds 2 reaJ.s., yielding another real.. On almost 

all computers diff'erent haroware instructions are provided for perf'ormi:ng 

integer and real. a't'ithmetic, but this causes no problem for the .ALGOL 68 

compiler., which merely examines the nndes of the operands to determine which 

operat-or is intended. 

There are 2 kinds of operators., nnnadic., which take operand (as in 

ABS i) and dyadic, which take 2 operands (as in i-j). The definition of a 
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monadic operator specifies the mode of" its operand and the mode of its result. 

The definition of" a dyadic operator specifies the modes of both of its 

operands, and the IIOde of" its result. When the ALGOL 68 compiler finds an 

o-perator it must inspect its operator definition table to find out which 

definition is appropriate for that operator's operands. In this way + can be 

defined to signify one operation for integer operands, another operation for 

real operands, a different operation for 1 dimensional integer array operands, 

and still another operation for 2 dimensional boolean arrays. In fact, the 

-programmer may define as many other operations on as many other distinct pairs 

of" nodes as she wishes. Note that + defined to operate on an ~ as left 

operand and a ~ as right operand is distinct from + defined to operate on a 

~ as left operand and a~ as right operand. Both of" these operators are 

again different from + defined to operate on 2 ~s or 2 REALs. If i is an INT 

variable and x a~ variable, the 4 formulas 

i+1, i+x, x+i, x+x 

all use distinct built-in operator definitions. As if" this generality and 

power were not enough, ALGOL 68 also allows the programmer to change any of" 

the built in definitions. Thus a programmer who desired could redefine + to 

mean addition on integers and subtraction on reals. 

Figure 2-30 shows figure 2-29 redone using an operator instead of" a 

-procedure. An operator definition consists of the word _f!, followed by the 

operator (which may be a BOIDFACE word), :followed by an equals sign. The text 

to the right of" the equals sign is exactly the same as that for a procedure 

definition. 

As another example, below is an operator definition which declares 'V to 

be the same as x for integers, so i'VJ means the s~ as iXj (although 'V is 

still undefined for reals). 

~ 'V = { int i, j ) int : iXj 
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we know that the multiplication is performed before the addition because 

multiplication has a higher priority than addition. ALGOL 68 allows the 

-priority of dyadic operators to be changed, and the priority of new dyadic 

oi;,erators to be defined. Dyadic operators have priority between 1 and 9, 

inclusive. Monadic operators have priority 10, which implies that 

(where 1' means exponentiation) has the meaning 

(-1) 1' 2 and not - ( 1 1' 2) 

The following priority declarations have the effect of causing addition to 

bind more tightly than multiplication 

PRIORITY + = 7, X = 6 

Thus af'ter these declarations, 2+3X4 evaluates as (2+3)x4 which is 20. 

A very large number of operator definitions in ALGOL 68 are built-in. 

Figure 2-31 lists a few of the more important ones. 

There are 2 quasi operators ~ and ~ that are also useful. Both are 

monadic and both operate on all 1 dimensional arrays. The value of~ i 1 is 

the lower bound of i 1, and the value of ~ i 1 is the upper bound of i 1 • These 

are particularly useful in procedures and operators that have a 1 dimensional 

array as parameter. They allow the procedure to determine the bounds of the 

array, so that every element of the array may be accessed. Figure 2-32 

illustrates their use. First n is read in, and then i 1 is declared to have n 

elements . The monadic operator BIGGEST needs to know how many elements are 

contained in its parameter so it will be able to test all of them to find the 

biggest one. The vaJ.ue of the operator is the value of the largest element. 

These operators are quasi operators because they are automatically defined on 

all 1 dimensional array modes. Normal operators have to be defined separately 

for each mode. For example 
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[ 4: 9] STRUCT (.!!!E a, b) s 

is an array of 6 structures and we can write LW.S s, which has the value 4. 

2. 7 Serial, collateral, and parallel actions 

In general, statements are executed one after another in the order 

written. The semicolon can be regarded as a go-on operator, which causes 

execution to continue. In some situations, however, there is no inherent 

sequencing. For example there is no reason for the first unit in a row display 

to be evaluated before the last one. Nor is there aJJY reason wby the left 

o-perand of a dyadic operator should be evaluated before the right operand. In 

some other programming languages units are evaluated left to right but nothing 

in classical mathematics suggests any precedent for this. 

In formulating ALGOL 68, the designers intentionally specified that the 

order of evaluating certain things, such as the left and right operands of an 

operator, be undefined. This ·was done for three reasons. First, it discourages 

programmers from making use of the order, since they do not know what it is, 

and in fact it need not be consistent. Programs which execute differently 

depending on the order in which things are evaluated are bad programs. They 

are difficult to understand and are not likely to give the same result on all 

computers. An example of a program whose result depends upon the order of 

evaluation of operands is 

BEGIN INT i,j,; print{{read(i),; i) - (read(j ),; j) END 

If the input data is 1 followed by 2, then -1 will be printed if the left 

onerand of the - operator is evaluated first and +1 if the right operator is 

evaluated first. 

The second reason the order of evaluation is intentionally undefined is 

to give,,the ALGOL 68 compiler writer the freedom to do evaluations in the most 

efficient order. In some situations doing something in one order may be 
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forced to do everything strictly left to right then he could not take 

advantage of these situations to produce faster machine code. For example, 

consider the serial. clause 

INT i,j,k; read(i); j:= -1; k:= p(i) + p(j) 

On a computer with one fast register used for arithmetic, after evaluating j:= 

-1 the register contains the vaJ.ue of j. It might be more efficient to 

evaJ.uate the right operand of + before the left, since j is already in the 

fast register. However, if the language had specified that operands are 

evaJ.uated left to right, the compiler writer -would have no choice but to 

evaJ.uate the procedure caJ.l p(i) first, even though it is less efficient. 

The third reason for having the order of evaJ.uation of certain 

constructions undefined is that some computers have more than 1 processor, and 

are thus capable of performing n:ore than 1 computation at a given time. The 

evaJ.uation of i-j is a trivial. case, since the only action required to 

evaJ.uate each operand is dereferencing, but it is quite possible that each 

o-perand of some dyadic operator could be a closed clause 100 pages long. Or 

more importantly a row display with 64 units might consist of 64 closed 

clauses, each 10 pages long. If such a program were run on a computer with 64 

-processors, it would clearly be terribly inefficient to require that closed 

clause n be completely evaJ.uated before the evaJ.uation of closed clause n+1 

begins. Obviously it -would be much better to give each processor its own 

closed clause to evaJ.uate, so they could be evaJ.uated in paraJ.lel. 

Actions that have no specified ordering in time are said to be 

evaJ.uated collateraJ.ly. A collateral. clause is a list of units separated by 

commas, and enclosed by~~ or parentheses. The order in which the units 

of a collateral. clause are evaJ.uated is expressly undefined. Figure 2-23 lists 

some evaJ.uations that are performed collateraJ.ly. If the elements of the 

collateraJ. clause are all statements, i.e. void units, the collateral. clause 
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may be used in any position in which a statement is allowed. Thus 

~ i:= 1, j:= 2, k:= 3 ~ 

is a void collateral clause and can be used just like an ordinary statement, 

just as though the commas were semicolons. 

Consider the following two programs, the first of which contains a 

closed clause and the second of which contains a collateral clause. 

~ ~ i:= o; (i:= 1+1; i:= i+1); print(i) ~ 

BEGIN INT i:= o; (i:= 1+1, i:= 1+1 ); print(i) END 

The only difference is that in the first clause the assignment statements are 

separated by a semicolon and in the second one they are separated by a comma, 

only one tiny spot of ink difference in appearance, but a very large 

difference in meaning as we shall see. 

The first program prints 2 just as you expect, but the second requires 

closer scrutiny. Since the order of evaluation of the units in a collateral 

clause is undefined. The first one might be completed first, then the second 

one begun, giving the same result as the closed clause. However, on a comput,er 

with 2 processors, the sequence of actions might be as follows 

1 . Processor 1 fetches i into a register local to itself 

2. Processor 2 fetches i into a register local to itself 

3. Processor 1 adds to its register containing i 

4. Processor 2 adds to its register containing i 

5. Processor 1 stores its regist-er back into memory location i 

6. Processor 2 stores its register back into memory location i 

The result is that i becomes 1, into i, instead of 2. As a consequence, the 

second program may print 2 or it may print 1 . Random numbers are very useful 

in computer science, but this is not a recommended t-ecbnique for printing them. 

Note that if the second unit were evaluated before the first, the result would 

have been 2. The difficulty only arises when the units actually are evaluated ,, 

collaterally. Note that 



~ _!!!'. i:= O,j:= o; (i:= i+1,j:= j+1); print(i); print(j) ~ 

produces identical results independent of the order of evaluation of the units. 

The m:,ral of the story is: collateral clauses are an important programming 

technique but some care is required in their use. 

There are some applications in which 2 processors running in parallel 

must cooperate with each other. For example, a computer with 2 processors 

might use one processor to compute values of some function and store them in 

an area of mem:,ry. The other processor might be removing these values and 

printing them. These two activities must be synchronized to avoid having the 

first processor continue generating values when there is no room left to store 

them. Similarly the second processor must stop running when the memory is 

temporarily empty and wait for the next value to be computed and made 

available in the men:ory. ALGOL 68 provides a mechanism for synchronizing 

collateral clauses. S;ynchronized collateral clauses are called paraJ.lel 

clauses, and will be discussed in detail in chapter 7. 

2.8 Miscellaneous statements 

It occurs occasionally in programming that 1 out of a large group of 

statements is to be executed, depending upon the value of some variable .ALGOL 

68 provides a CASE statement for this purpose. A~ statement is of the form 

CASE integer unit IN s 'V 1, s 'V 2, ••• s o/ n OUT s ESAC -- - - -
The CASE statement is executed as follows. The integer unit is evaluated. If 

its value is 1, s y 1 is executed, if its value is 2, s 'V 2 is executed, etc. 

If the value of the integer unit is less than 1 or greater than n i.e. it is 

out of range, sis executed. After the selected statement is executed, the 

CASE statement is finished and execution continues with the statement 

following the ESAC. The CASE statement 

CASE! IN s1 OUT s2 ESAC 
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is identical to 

IF i = 1 THEN s1 ELSE s2 FI 

The word OUT and the statement following it ma;y be omitted if there is no 

possibility that the integer unit will be less than 1 or more than the number 

of statements between IN and OUT. 

There is one final item to be mentioned about .ALGOL 68. It is possible 

to label any statement with an identifier followed by a colon. There exists a 

GOTO statement which can be used to jump to a label. In recent years it has 

become increasingly clear that having ~ statements in programming language 

is bad, in that programs with many jumps usually have man;y errors as well . A 

few references to the continuing ~ controversy are given in the 

bibliogranhy. The need for many GOTO statements usually indicates a poorly 
. -

structured "9rogram. Upon finding the apparent need for a ~ statement, the 

programmer should examine the program very carefully to see if perhaps the use 

of a FOR statement or a procedure would not make the program logically clearer. 

Using ~•s should be compared to parachuting out of an airplane: it can be 

done, but there is usually a better ·way. 

2.9 Summary 

In this section some of the major features of' ALGOL 68 will be reviewed. 

The language is built around the concept that in the computer's memory there 

exist objects. Each object has an address., a mode, and a value. There exist 

many actions that can be performed on these objects, such as slicing, 

selecting, adding and assigning. The execution of' a program consists of 

carrying out a sequence of actions. 

Figure 2-34 shows a summary of' the ALGOL 68 modes. Figure 2-35 gives a 

summa.I"Y,; of the kinds of statements and declarations available. The statements 

in a program and not the declarations really do the work, and it is 
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the first 4 really count, since read and print are actuaJ.ly procedure caJ.ls 

and~ should be avoided. Despite the fact, or more accurately, because of 

the :fact, that ALGOL 68 has so few statements, it is possible to express a 

very wide class of algorithms very conveniently in it. This is an important 

recognition, and the reader would do well to ponder its meaning. Figure 2-36 

summarizes the 9 types of uni ts. Figure 2-42 summarizes the gramnaticaJ. 

structure of ALGOL [ ( : 

A glossary of important terms introduced in this chapter :follows. 

Actual parameter - An object supplied to a procedure as input. In the 

-procedure caJ.l sin(x), x is an actual parameter. 

Assignment - Variables are given vaJ.ues by assigning to them. In ALGOL 68 i:= 

2 is an example of an assignment. It can either be used as an ordinary 

statement by itself, or it can be used as a unit, as in a[i:= 2], in which 

statement by itself, or it can be used as a unit. 

Closed clause - A serial clause enclosed by~ ~ or parentheses. For 

example (INT i,j,; read(i).; i+j) is a closed clause. A closed clause is a unit. 

Coercion - An implicit process of changing an object of one mode into an 

object of another mode. Dereferencing and deproceduring are two types of 

coercions. 

Collateral clause - A series of units separated by conn:nas and enclosed by 

BEGIN END or parentheses. The order in which the units of a collateral clause 

are evaluated is undefined, thus leaving open the possibility that on a 

comuuter with nnre than processor severaJ. units may be evaJ.uated 

concurrently. 
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Conditional clause - A construction of the form IF condition THEN • . • ELSE ••. - -
FI. The value of the conditional clause depends upon whether the condition is 

true or false. This construction may also be used by itself as a conditional. 

statement. 

Denotation - A constant. Examples 4, TRUE, "x". 

Deproceduring - The process of replacing a procedure name by its resuJ.t. This 

is simply a special name for a procedure cal.l for the special case of a 

procedure with no parameters. For example, in ~ x: = random, the procedure 

random cannot be assigned to x, since the source must be of mode real., so 

random is dep:rocedured, i.e. 11 called11 to deliver a real which can be assigned 

to x. Deproceduring is a coercion. In this example al though random has mode 

~ ~, it can be written in a position requiring an object of mode REAL 

because it can be coerced to~ by dep:roceduring. 

Dereferencing - The process of replacing an object of mode "reference to 

something" by an object of mode "something". In i:= j both i and j are of mode 

"reference to integer". However, an assignment to an integer variable i such 

as i requires an object of mode integer as source, not the address of an 

integer. To solve this syntactic problem and allow the assignment to be 

meaningful, the integer whose address is j is used instead of the address 

itself. 

Dyadic - A dyadic operator is one with 2 operands, such as + in i+j. 

Field ~lector - A structure is an object containing 1 or more objects called 

fields. Each field has a name, called a field selector. In STRUCT (STRING 
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breed, ~ weight) breed and weight are f'ield selectors. 

Formal. parameter - In a procedure declaration parameters are declared by 

specifying their modes, and giving them symbolic names to be used in the 

procedure. These are f'ormal parameters. In~ bump = (!!!:, _!!!: k) INT : k:= 

k+1, k is a formal parameter. 

Mode - The property of' an object which specifies the type of' object it is. 

Examples of' modes are !!£, BOOL, REAL, ~, [ ].!!'f'., 

num,denom), ~(!!£) _!!f!'. and STRING. 

STRlJCT(INT ----

Mode declaration - A definition of' a new mode. Examples: MODE REGISTER :;: -
(0: 15] BOOL and MODE MATRIX = [ 1 :n, 1 :n] REAL. - ---- -
Monadic - A monadic operator is one with only 1 operand. In i:= ~ j, ~ is 

a monadic operator. 

Operator declaration - A definition of' a new operator, e.g. OP HALF = (INT i) -- -
INT : i : 2 defines HALF to be a monadic operator so j: = ~ 6 will assign ~ 

to j. 

Row display - A collateral clause of mode row of something used as a unit. For 

example, in [1:5] _!!f!'. i1:= (O,1,3,9,-2) the collateral. clause (O,7,3,9,-2) is 

used as a row display. 

Selection - The use of one f'ield of' a structure as a unit. If' house is 

declared STRUCT(_!!f!'. price, STRING style) house then "price ~ house" and 
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"style Q! house" are selections. Selections can be used as sources or as 

destinations in assignment statements and in many other positions. 

Serial clause - A series of statements and declarations followed by a unit., or 

a unit all by itself. Example:!!!'., i,j; i:= o; j:= 2. 

Slice - One or m::>re elements of an array. If i 1 is declared [ 1: 6] _!!£ i 1 then 

11[2], 11[6] and 11[2:5] are all slices. 

Structure display - A collateral. clause used as a denotation. For example in 

STRUCT(STRING name., _!!£ length, BOOL filthy) lake : = ( 11 erie", 4oo., TRUE) the - -
collateral clause ("erie",4oo,~) is a structure display. 

Unit - An expression that yields a val.ue. Denotations, variables., slices, 

selections, formulas, assignations, calls, closed clauses, and conditional. 

clauses a.re all units. 
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PROBLEMS CHA.PIER 2 

Variables mentioned in the problems but not explicitly declared a.re assumed 
to be declared in figure 2-16. 

1. What are the m:>des of: i, p, c, s, i 1 and i2? 

2. What are the m:>des of 2, TRUE, "piggy"? 

3, Is it possible to uniquely detemine the mode of (O, 1,2)? 
If so, what is it? If not, give 2 modes it might be. 

4. Does every object have a m:>de? If not give an example of an object with 
no m:>de. 

5. The procedures sin and sqrt both take a real parameter and deliver a 
real result. Do they have the same mode? If so, what is it? 

6. Is it possible to declare an operator which changes the mode of a 
given object? If so give an example. 

7. How many distinct modes are there? 

8. What is another word for denotation? 

9. Give an example of a denotation for each of the following modes: ~, 
[] CHAR, STRUCT(INT i, BOOL pig). - ---- -

10. How many boolean denotations a.re there? 

1 1 • Is ";" a denotation? 

12. Which of the following a.re integer denotations? 4, (10), --2, 0001. 

13. Give an example of an assignment statement, an IF statement, and 
a FOR statement. -

14. Which of the following are valid statements? 
a) IF i<O THEN k:= 1 FI 
b) lF i:f=o THEN k:= 1 -
c) !F i=O THEN i:= 0 ELSE i:= 0 FI 
d) !F i>O v"J:F 4 /\ k=!°THEN i:= Q; j:= 0 EI.SE k:= 0 FI 
e) !F k=1 THEN :i>0 EI.SE J:= 0 FI - -
f) FOR i:=1TO 3 BYT°DO j:= j+1 
g) fflIIIE :i>O DO i: ~ -i -
h) FRCitTIF i<f>THEN 1 ELSE 2 FI TO 3 DO n:= n+1 
i) i\'rn"'"f11.HILE P: = q D'c'.f"'q:"= F'.ArsE -
j) FOR i FROM time □Fa.lbum[~ 11[2] DO i1[i]:= O - --- - -- -

15. If i:= 1, j:= 2, k:= 50, i1:= (2,1,2,1,2,5,9,3,-1,-6) and n:= o, what 
is the value of n after each of the following statements is executed. 
a) FOR i FROM 4 TO j DO n:= n + 1 
b) FROM iiT'2J TOi1[6TDD n:= n+1 
c) ffirn:E(i:= -TI i<O) Don:= n +1 
d) FRCJri TO k DO BEG:tlrk:= 10; n:= n+1 END 
e) m j ~n:= ii+,-



16. Which of the following are vaJ.id. variable declarations? 
a) INT k:= i 
b) ffli' INT k:= 1 
c) ffli' ffl k:= i 
d) TrBoat b 
e) STRtmT('INT, ~) s 

17. You are to agree or disagree with the following statement and defend 
your viewpoint: The text INT i, j; j := o; i:= j is incorrect because 
in an integer assignment tne destination must be an object of mode 
reference to integer, i.e. the address of an integer (which it is) 
and the source must be an object of m::>de integer (which it is not, 
since j is also of zoode :reference to integer). Therefore 1:= j is 
incorrect. · 

18. What is the essential difference between i:= 1 and i:= j? 

19. What are the 9 kinds of units? Give an example of each. 

20. 

21. 

22. 

Which of the following constrt;Lctions are correct? 
a) i1[IF p THEN 2 ELSE 3 fi] 
b) F'RORtINT--r.r reaa{!j; 1) TO 10 DO n: = n+ 1 
c) i:= j:= k - -
d) FROM abscissa OF gp TO ordinate OF gp DO n:= n+1 
e) !FI<O THEN i IDE j,rI := IF k~ Tfm:ri+1 ELSE 3 FI ____ ._..........,____,_ 

Consider the declaration. 
[1:50] STRUCT(STRING symbol,INT vaJ.ue,[1:10] BOOL attributes)h 
What mode do each of the following have? -
a) h[4] 
b) vaJ.ue OF h[4] 
c) symbolOF h[29] 
d) attributes OF h[ 1] 
e) ( attribute s-o'F h[ 1 ] )[ 10] 
Is the following statement valid and if so, what does it do +o k? 
(read(j ); B: j<.O ~ j:= 0 !!;k~ := (n:= 1;2) 

23. Is the following a unit, and if so what is its value and mode? 
(read(i); i:= :!Xi; (read(j); j:= j+,; 11

•
11
)) 

24. Which of the follo·iT:ing are correct assignments? 
Give the values of all variables assigned to 
a) i:= j:= 2 
b) i:= 3:= 2 
c) (i:= j):= 3 
d) i:= (j := 3) 
e) i:= i 

25. After the declarations 
[1:5] BOOL pp:= (TRUE,TRUE,FALSE.,TRUE,FALSE); 
[ 1: 5] mot qq: = (Firn'E-;TfflEr-;l'm°E,'msf, TRUE) 
what arethe vaJ.ues"ot pp[ 1 ]topp~ait'er 
a) pp:= qq 
b) pp[1:5]:= qq[1:5] 
c) pp[3:5]:= qq[3:5] 
d) 'pp(2] := qq[3] 
e) pp[1]:= qq(4]:= ~ 



26. Which of the following operators are dyadic? 
a) OP X = {INT i) INT : i 
b) DP x = cm k) _m : ~+! 
c) ffl5 x = {ffl i, J TINT . :iXj 
d) fili X = {ffl i, PRm-'vOID p) VOID !S! i ~ p 
e) m: X = (ffl i,j) BOOL : i=j -

27, If ,t. is defined by 
OP 1' = (INT k) INT: k+1 
what is the vaJ.ue assigned to n in n: = ,t. 1' 1' 2? 

28, If+ is defined by OP+= {INT i,j) INT: i-j 
what is the value assigned mn in n:= 3+2 

29, After the declarations 
PROC p = (INT 1, STRilr s) CHAR : s(i],; 
'STRucT(INTemployees, STR~name) company:= { 1000, "general. widget") 
what isthe value of the call p{3,name E! company)? 
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30. Write a declaration for a procedure "biggest" with 3 integers as parameters. 
The value of the procedure is the largest of the 3 integers given as 
parameters. 

31. Write a procedure of m>de PROC{(] INT,INT) BOOL that searches its first 
parameter element by elemenr-and returns TRUEif some element matches the 
second parameter and ~ if not. -

32. Write a procedure taking as parameter an 8 X 8 character matrix, each of 
whose elements is "r", "b", or "e" (red, black, empty) corresponding to 
a checkerboard and which :returns the number of black pieces minus the 
number of red pieces. 



int number of' girlfriends, pelican count; 
char grade expected in this course; 
bool voted in last election, likes mustaro. 

Figure 2-1. Declarations for 2 integer variables, 1 character variable, 
and 2 boolean variables. 

bool bottle has deposit; 
1iit" price, cost of product, amount of deposit; 
Ubottle has deposit 
- then price:= cost of product+ amount of deposit 

else price:= cost of product 
fi -

Figure 2-2. Use of conditional statement. 

int number of legs,centipede count; 

number of legs> 50 if 

fi 
then centipede count:= centipede count+ 1 -

Figure 2-3. Conditional statement with no else part. -
for odd number from 1 by 2 to 100 do print(odd number) - ---- ----

Figure a-4. A for statement that prints the first 50 odd numbers. 

int·n; 
nr; 1; 
while n x n < 1000 do n:= n + 1 

Figure 2-5. Use of a~ clause to find the smallest integer whose 
square is > 1000. 



a) ~ i ~ a & c ~ b ~ condition 5!£ S 

b) ~ i ~ 0 ~ n 5!£ S 

c) ~ 4 5!£ new line 

d) ~ X + y f i + j 5!£ S 

e) ~ k ~ 10 ~ 50 ~ p < 0 5!£ S 

f') ~ j ~ -100 ~ 100 5!£ S 

g) from -60 to 4o96 + i x j - l+o x k by m x m do s -- - - --
h) f'or in 

- from i+ixi-4xk+nxnxn 
by mxnxoxp-axbxc 
to a+b+c+d+e+f 
while a + i + 3 x j - 6 > k + 4096 
doS -

i) for i to n do if i + k then print(i) fi - - -- --- -
Figure 2-6. Examples of !£! statements. S represents some statement. 

a) for i to 10 do 
- begin print( i); 

- print(i Xi); 

end 

print(i x i x i); 
newline 

b) for i to 2 do 
for j to 4 uo 
- begin -print( i); 

- print(j); 
newline 

end 

c) begin ~ This program prints the Fibonacci numbers up to 1000~ 
int f'irst,second,third; 
first:= 1; 
second:= ,; 
while first< 1000 do 
begin print(f'irst); 
- newline; 

end 
end 

third:= first+ second; 
:first: = second; 
second:= third 

Figure 2.-7. Use of compound statements. Figure 2.-7c is a complete program. 
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end ,, 

~ This program reads two numbers, the price of an item and the allX)unt 
the customer paid for it. It then caJ.culates how much change he should 
get, and prints out the correct number of quarters, dimes nickels, and 
pennies to minimize the number of coins to be returned. The program 
only handles change up to 99 cents, and prints a message if the change 
is too much~ 
int price, amount paid., change., quarters, dimes, nickels., pennies; 
lfirst read in the price and p~nt and compute the change~ 

read(price); read(amount paid); 
change:= amount paid - price; 
if change> 99 
- then lll"int( 11 change > 99 cents11

) 

else ttest to see it' the peyment was exact~ 
- if change= 0 

- then :print( 11:no change11
) 

else tcompute how many of each coin~ 
- quarters:= O; 

dimes:= O; 
nickels:= o; 

while change> 25 do 
- (quarters:= quarters + 1; change:= change - 25); 
while cha;nge > 1 O do 
- (dimes:'; dimes + 1i change:= change - 10); 
while change > 5 do 
- (nickels:= 'iirckels + 1 ); change:= change - 5); 
pennies:= change; 

~print results~ 

it' quarters> 0 
- then print(quarters); 

- print("quarters"); 
newline 

it' dimes > 0 
- then print(dimes); 

- print( 11dimes11
); 

newline 
f!i 

it' nickels> 0 
- then print(nickels); 

- print("nickels" ); 
newline 

g; 

if pennies > 0 
- then print(pannies); 

- print( "pennies") 
fi 

fi ~This matches the if cha;r;ige = 0~ 
fi ~Thismatches the it' change> 99~ - -

Figure 2-8. A complete .ALGOL 68 program to cal.culate how to pay out change 
with the mininrum number of coins, using only quarters, dimes, nickels, and 
pennies. 



mode possible procedure 

newline 
sin 
integer multiply 
skip the next n :records on a tape 
compare the parameters for equality 
compare the parameters for equality 
compare the para.meters for equality 

Figure 2-9. Examples of procedure npdes. 

declaration 

a) [1:10] int ri; 
b) [ 1 : 5, 1 : 7°r int rri; 
c) [1:10,1:10,1:10] bool rrrb; 
d) [O: 100] char re; -
e) [-20:-6,~] :real rrr; 
f) [ 1 : 20] proc voi.drpv; 
g) [ 1 :n] int r1r;-
h) [n 1 :n2,n3:n4] ~ rrb; 

meaning 

declares 1 dim. arra;y of 10 integers 
declares 2 dim. arra;y of 35 integers 
declares 3 dim. arra;y of 1000 booleans 
declares 1 dim. arra;y of 101 characters 
declares 2 dim. array of 105 :reaJ.s 
declares 1 dim. arra;y of 20 procedures 
declares 1 dim. array of n ints 
declares 2 dim. array of booleans 

Figure 2-10. Declarations of arrays. 

end 

~xamples of slicing and assigning togethe~ 
t 1: 10] int a, b, c; 
for i from 1 to 10 do a[i]:= i Xi; 
b[7:10]:= a[7TT0]; -
b[4:6]:= a[4:6]; 
b[1:3]:= a[1:3]; 
c:= b 

Figure 2-11. Examples of the use of slices. 
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end 

[0:6,2:8] int mat; 
[o:6J int vec; 
for i from Oto 6 do 
for j from 2 to 8 do mat[i,J]:= iXJ.; 
vec[0:6] := matro:o,8] 

Figure 2-12. Assigning a column of a matrix to a vector. 

Property Ar!.'0'3' Structure 

May the elements No Yes 
have different 
:ioodes? 

How is an element subscripting e.g. selecting e.g. 
accessed? a[4] type 2£ aircraf't 

Can severaJ. Yes, by slicing no 
elements be e.g. a[2:4] 
accessed together? 

What is the largest no 11:mit no limit 
number of elements? 

Figure 2-13, Comparison of arreys and structures. 



mode vector 

mode matrix 

mode rationaJ. 

mode person -
~ family 

~ bridgehand 

mode word 

~ registers 

= [1:n] ~ 

= [1:n,1:n] ~ 

= struct(~ numerator,denominator); 

= struct(string name,ref ~rson father, mother, 
~ age,~ smokesF 

= struct( person mmmy, daddy., [ 1 : 2] person child}; 

= [ 1: 13] struct(~ rank, suit); 

= [o: 15] ~; 

= (0:7] ~j 

mode co:nditioncodes = struct(~ n,z,v,c); 

mode table 

mode instruction 

~ flight 

mode tree 

mode booladdress 

= (1:1000] struct(string symbol,~ vaJ.ue); 

= struct(~ opcode,addr1,addr2,addr3); 

= struct(int number,string pilot,movie,bool nonstop, 
[1:350]~ruct(string name,~ phone)°passenger); 

= struct(~ vaJ.ue,~ ~ le:f't,right); 

= ref bool 

Figure 2-14. Sample mode declarations. 

~ n:= 3; 

vector x:= (2.0,3.0,4.o); 

matrix xx:= ((1.0,2.0,3.0),(2.o,3.o,4.o),(3,0,4.o,5.o)); 

rational rat:= (2,7); 

person john:= ("smith", bill,mary,20,!2); 

family jones: = ( john, linda, ( nancy, peter) ) ; 

bridgehand north:= (("A", 11S11
), ( "K'', "S"), ( "9"., 11S11

), ( "7", 11S11
), ( "5", 11S11

), 

("3", 11S11
), (

11 Q11
, "H'' ), ("J", "H"), ("T", "H" ), ("3", "H" }, 

("7", "DII), (11411, IIDII)., ("2", "C")}; 

~ w; registers reg; conditioncodes cc; ~ t; 

instruction add:= (4,6,8,2); 

flight ~a666: = ( 520, "warthog", "trash",~, skip); 

~ t4; 

booladdress bad 

Figure 2-15 variable declarations using the modes of figure 2-14. 
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= struct(string title,int time,bool folksong); - -
~ gridpoint = struct(~ abscissa,o:ro.inate); 

mode student = struct(char grade,bool virgin, 
string name,~ year of graduation); 

mode course = struct([1:n] student kids,str4lg prof); 

mode book 

~ library 

= struct(string title,author,bool paperback.); -
= [ 1: 10000000] ~ 

reaJ. x,y; 
int i,j,k,n; 
oool p,q; 
char c; 
TT:Too] char s; 
[ 1: 10] intI,; 
[1:3,,:rrint i2; 
[ 1: 4] boolooole; 
[ 1 :8] song album; 
course~01; 
proc(Tut) int p1; 
proc(real,reaJ.) bool p2; 
pro"c(string--;Int )cnar p3; 
proc([,] int,int)-rTint p4; 
proc(booijoo'or p5; -
T=m:+251' struct(real coef,int exp) polynomial; 
grid;e,oint gp; - -
library harvard; · 

Figure 2-16. Declarations used in figures 2-17 to 2-25 and the problems. 

Mode 

int 
bool 
char 
TTTut 
song 
r,T"real 
[,, ]int 
struct(oool b,c) 
real -
S"triict(~ re., im) 

Denotations 

1,3.,0, 1492 
true,false 
'"a"';" 4' I J ii+ 11 

(1776, 1812, 1861, 1917, ,94,, 1954) 

l "barba.ra allen", 183 true) 
1.0,2.0).,(2.0,7.24), 

~(1,2),(1,4)),((2,6),(9,-4))) 
(true,false) 
3:,z;:---
(2. 78,3. 14) 

Figure 2-17. Examples of denotations, including constant displays, which 
strictly speaking are not called denotations. 



Mode 

int 
bool 
char 
trint 
strlng 
[] song 
gridpoint 

Variables 

i,j,k,n 
p,q 
C 

i1 
s 
album 
gp 

Figure 2-18. Examples of variables. 

Modem 

int 
'6001 
char 
song 
struct 
student 
book 

Slice yielding object of Modem 

i 1 [ 2] ~ i 1 [ 4], i2[ 1, 3] 
boole L i + 3 X j ] 
S[99][S[ 100] 
album 1+3] 
polynomial[O] 
(kids of cs101)[1] 
harvaraT i] 

Figure 2-19. Examples of slices. 

Modem 

int 
bool 
char 
Tistudent 
string 
bool 
bool 

Selection yielding object of Modem 

time of album[4],exp of polynomial[O] 
folksong of album[ 1 ] -
grade of ~udent 
kids ofcs101 
titleof album.[2] 
virgin of (kids of cs101 )[2Xj] 
paperback £! harvard[ i] 

Figure 2-20. Examples of selections. 

Modem 

int 
bool 
char 
Tnnt 
booY-

Call yielding object of Modem 

p1(n) 
p2(3.14,2.78) 
p3( 11doggy11

, 2) 
p4(i2,i1[3]) 
p5(folksong £! album.[4]) 

Figure 2-21. Examples of procedure calls. 
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int 
bool 
real 

Modem Formula yielding object of' Modem 

1+2, J+4, 3x2+1, 4+n+k 
P"4, pVq, p'\(pVq) 
2.0+2.5, x+3.141592, 'XXy/2.0 

Figure 2-22. Examples of' f'ormuJ.as. 

Modem 

int 
bool 
char 
Tri'nt 
song 
book 
real 
str!ng 

Assignment yielding object of' modem 

i:= 2, 1:= J, 1:= J:= k:= O 
p:= true, q:= p V q 
S[3]:= "x" 
11:= (Oc1,2,3,4,5,6~7,8,9) 
al bum[ 1 J : = ( 11 silkie 1,206, true) 
harvard.[21416]: = ( 118llgU.st~411

, 
11 solzhenitsyn", true) 

coef' of' polynomial[O]:= 2.55 -
prof' ~ cs 101: = 11barry bigbrain11 

Figure 2-23. Examples of' assigrur.ent. In all cases the result of' the 
assignment must be dereferenced before yielding the specified mode. 

Modem 

int 
bool 
char 
Tri'nt 
student 
grid.point 
int 
bool 
1iit 
Iiit 

Closed clause yielding object of' Modem 

(x:= 1; if' p then i else J f'i; k) 
() - - - -
(§[1:4]:= 11love"; S[1]) 
(for i to 10 do 11[1]:= o; 11) 
(read( csiO 1 ) ; °1'kids of' cs 101 ) [ 1 ] ) 
(abscissa of' gp: = ordinate of' gp:= 1; gp) 
b §iii p1 (kTend -

g p1( 1 );"~(3. 14, 3. 14); p5(q) end 
beg!n read(J ); i:= J end -
mTI(1066)))))) -

Figure 2-24. Examples of' closed clauses. Note that is some cases the 
value of' the closed clause mey have to be dereferenced before 
yielding the specified mode. 



Modem 

int 

Conditional clause lielding object of Modem 

if x<y then i else 3 fi 
bool If p then p elseq\/p H 
cnar 
TTint 

If S[ 1] = "x"lT""':filien S[TI else "y'' fi 

song 
book 

R x[ 1] < 4 then x1 [ 1 :3] else x1 [T:2] fi 
If i = 2 thenalbUin[ 1] else album[2] fr 
R i<j then harvard[i] eise harva.ro.[jTfi - - ----- -

Figure 2-25. Examples of conditional clauses. Note that in some cases 
the value of the conditional clause must be dereferenced before yielding 
the specified mode. 

Position 

subscript 
lower bound in a.rra:y declaration 
upper bound in a.rrey declaration 
after CASE 
after from 
after~ 
after by 

condition following if 
condition following while 

procedure body 
source in assignment 
initial value of declared variable 
actual parameter of a call 
element of row displa:y 
element of structure display 

operand of formula 

following 52! in a selection 

procedure to be called 
arrey to be sliced 

after then or af'ter else 

destination in assignment 

Allowed constructions 

integer unit 
integer unit 
integer unit 
integer unit 
integer unit 
integer unit 
integer unit 

boolean unit or boolean serial clause 
boolean unit or boolean serial clause 

unit 
unit 
unit 
unit 
unit 
unit 

any unit except an assignment 

any unit except assignment or formula 

any unit except assignment, formula, or selection 
any unit except assignment, formula, or selection 

serial clause, unit 

any unit except denotation or assignment, 
providing it yields reference to something 

Figure 2-26. Kinds of constructions allowed in dif':f'erent positions in the 
program. 
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~This program reads in a 10 element integer arra;y "i', and a 10 
element integer a:rrey "b", and calls innerproduct to f'orm the sum 
a[1] x b[1] + a[2] x b[2] + ••• a[10] x b[10]. 
The sum is printed.~ 

[ 1: 10] ~ a, b; 

proc([] int, [] ~) int innerproduct:= {[] ~ y,z) ~: 
begin Iiit answer:=o; · 
- f'or k ~ 1 ~ 10 ~ answer:= answer + y[i] x z[i]; 

answer 
end; 
read.(a); 
read(b); 
print( innerp:roduct( a, b)) 

end 

Figure 2-2.7. A program using a procedure. 

proc innerproduct ={[]int y,z) int: 
15'eg'Li int answer:= o; - -
- fork f'rom 1 to 10 ~ answer:= answer+ y[i] x z[i]; 

answer 
end 

Figure 2-2.8. The alternative f'om. f'or a procedure declaration. 

end 

~This program defines a procedure vectorad.d that adds together 
2 1 dimensional integer ~s with 10 elements. The use of' the 
procedure is demonstrated.~ 

mode vector = [ 1: 10] int; 
vector v1,v2,v3,v4.,v5.; -

procedure vectoradd = { vector a, b) vector: 
begin vector sum.; 
- f'or 1 f'rom 1 to 10 do sum[ i] : = a[ i] + b [ i]; - -sum 

~read in v1., v2, v31 and v4 and compute the sum v1 + v2 + v3 + v4 
and store it in v5•t: 

read(v1 ); 
read(v2); 
read( v3); 
read(v4); 
v5:= vectoradd(vectoradd(vectoradd.(v1,v2),v3),v4); 
print(v5) 

Figure 2-29. A program to read in and add 4 vectors using a procedure. ,. 



end 

~This program defines an operator + t.hat adds together 
2 1 dimensional. integer arrays, each with 10 elements. The use 
of' the operator is demonstrated.~ 

mode 
vector 

op+= 
begin 

vector= [1:10] int.; 
v1,v2,v3,v4,v5; -

( vector a, b) vector: 
vector sum; 
for i from 1 to 10 do sum[i]:= a[i] + b[i]; - - --- -sum 

~read in v1, v2, v3i and v4 and compute. The sum v1 + v2 + v3 + v4 
and store it in v5,1! 

read( V1); 
read(v2); 
read(v3); 
read(v4); 
v5:= v1 + v2 + v3 + v4; 
prlnt.(v5) 

Figure 2-30. A program to read in and add 4 vectors using an operator. 
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operators 
mode of 
operands 

mode of 
result meaning 

dyadic + - X : int a.dd,subtract,multiply,divide 

V 

+ 
+ 
+ 
+ 

int int 

int int 

bool bool 

bool bool 

bool bool 

char char --
string string 

string string 
char string 
string char 
char 'clia.r -

bool the usual meanings, e. g. i = j 
is true if and only if i and j 
have the same value 

int exponentiation, i.e. i 1' j = ij 

bool logical and 

bool 

bool 

bool 

bool 

~ 
string 
string 

logical or 

tests operands for (in) equality 

tests the ( implementation 
dependent) character codes 
for equality, less than etc 

test for onlering using the 
character codes. If the character 
codes a.re in alphabetical order 
as in ASCII, s1 < s2 means s1 is 
alphabetically before s2, etc. 

concatenation. Thus 
string s 1 : = "hot"; 
striiig s2 = "dog"; 
prI'iit(' s 1 + s2) will print hotdog 

monadic 7 
abs 

bool 
Int' 

bool 
Tr'rE""' 

logical not 
absolute value 

Figure 2-31 • Some of the built in operators. 

end 

~This program reads in the length of a list of integers, then 
reads the integers themselves. The operator biggest takes a 1 
dimensional integer array of arbitrary length as param9ter, 
and returns the largest element.~ 

op biggest=([] int a) int: 
begin int biggie:= a[lw'b'"a]; ~declare and initialize biggie to 
- first element~ -

for i f:rom lwb a + 1 to u;e~ a do 
if a[iT>bie;gie then75'igg e:=a[i] fi; 
biggie - -

end; 
int n; 
read(n); 
[1:n] ~ iH 

read{i1 ); 
' print(biggie i 1 ) 

ldecla.re n as integer variable~ 
read in n~ 
algol 68 declarations need not precede the 
executable statements~ 

tread in the entire array~ 
compute and print the biggest~ 

Figure 2-32. Use of the monadic operators ~ and u:eb. 



1 . Source and destination in an assignment 
2. Operands of' a dyadic operator 
3. Elements in a :row display 
4. Fields in a structure display 
5. Units in a collateral clause 
6 • Uni ts in an actual parameter list 
7. Integral uni ts a:f'ter :f'rom, to and by in a :f'or statement 
8. Subscripts in a slice - - - -
9. Upper and lower bounds in an array declaration 
10 • .Array to be sliced and its subscripts {in a slice) 
1 1 • Procedure to be called and its parall'leters ( in a call) 
12. Declarations separated by commas 

Figure 2-33. Constructions evaluated collaterally. 

1 • Bull t in l!Ddes: INT, BCOL, CH.AR, REAL, FORMAT ---------
2. Array llDdeS: 

[ ] M is a row of' M { 1 dimensional arrey) 
[, rM is a row row - of' M ( 2 dimensional array) 
[, , ]"14 is a row row row-of M ( 3 dimensional arrey) 
~c. - -

3. Structure modes: 
STRUCT(M1 id1, M2 id2, ••• ) is a mode 

The Hrst :f'ield has mode M1 and field selector id 1, etc. 

4. Reference to modes: 
REF M is of' mode re:f'erence to M. An object of' mode ,!!!'.: ~ is called 
an M-variable. 

5. Procedure mdes: 
PROC M 
PROC '(M1) M 
~ (Mi,~) M 
~ (Mi,~,M3) M 
PROC (Mi,~,J:13, .-:. ) M 
a.re'" air :trodes.' -

Figure 2-34. Summary of' ALGOL 68 modes. Ml, M2, ~ and !;! are aJ.l arbitrary 
modes, and id 1, id2 a.re arbitrary identifiers." 
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Statements and examples 

IF statement: IF i<O THEN i:= 0 ELSE i:= i+1 FI 

FOR statement: FOR i FROM 1 TO 10 BY 3 WHIIE j<O DO S - --- ---- -
assignment statement: i : = j 

CASE statement: CASE i+j m i:= o.,read(j) OUT print(i+j) ESAC 
.....,._ _.......,. - -
input statement(really a procedure call): read(n) 
output statement(:really a procedure call): print(n) 

GOI'O statement: GOTO jail - -
Declarations and examples 

variable declaration: BOOL imbibes 

procedure declaration: PIDC and = (BOOL p.,q) BOOL: IF p TEEN q ELSE FALSE FI - - - - - __ .........._ __ 
mode declaration: MODE INTEGER = mT 

onerat-or declaration: ~ x = (1!£ i.,j) 1!£: ixj 

priority declaration: PRIORITY,+= 5 

Figure 2-35 • Summary of .ALGOL 68 statements and declarations. 



kind 

denotation: 

variable: 

slice: 

selection: 

formula: 

procedure call: 

assignation: 

closed clause: 

examples 

2,~, "c", (3. 14) 

i,x,bouse 

a[2],a[4:5] 

name ~ john, f'il thy ~ erie 

a+b, 7 p /\ g_ 

sin(x); sqrt(3.14) 

i:= j, filthy~ erie:= ~ 

(!Q!l i TON~ a[i]:= o; a).,(4) 

conditional clause: IF i < 0 TEEN ELSE 2 FI 

Figure 2-36. Types of' units. 
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1000 

1001 

1002 

1003 

1004 

1005 

1006 

1007 

1008 

boolean location at address 1000 

character location at address 1001 

character location at address 1002 

character location at address 1003 

integer location at address 1004 

boolean location at address 1008 

Figure 2-37. A memory organization in which boolean locations occupy less than 
one byte, character locations occupy exactly one byte, and integer locations 
occupy four bytes. A byte is 8 bits. 

identifiers 
number of girlfriends - 400 

pelican count = 404 

405 

406 

407 

l byte 

~integer 
3 object 

integer 

106 
~ object 

integer 
location 

integer 
location 

f c'. 

grade expected in this course= 408 

voted in last election = 409 

character 
location 

bool:aafcitation 

likes mustard = 410 boolean location 

object 

Figure 2-38. Th0 relation between identifiers, addresses, objects, locations, 
and variables. Five variables are shown. Each variable has a numerical address 
(400,404,400,4□g, or 410) and an identifier which is equivalent to that address, 
as well as a location (a region in memory) in 'uhich an object can be kepto For 
example, the integer variable "pelican count'' is at address 404 and occupies 4 bytes. 
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.!?.£91:_ wife is liberated 

wife is 

boolean location 

libsrated:602 ~ ~d½:m 
T <boolean 

\ object · 

address 

identifier 

figure 2-39. Declaration of a boolean variable. The identifier wife is liberated 
is equivalent to the address 602. It is .!:illI equivalent to the boolean object at 
that location (in this case, true). We will often refer to "the boolean whose 
address is 'wife is liberated'" instead of the clumsy expression "the boolean ih 
the location whose address is equivalent to 'wife is liberated'"• 

number = 400 
of 
girlfriends 

number= 400 
of 
girlfriends 

before 
assignment 

3 

a) no dereferencing 

before 
assionment 

3 

b) dereferencing 

number= 400 
of 
girlfriends 

number= 400 
of 
girlfriends 

after 
assignment 

399 

after 
assignment 

2 

Figure 2-40. The assignment number of girlfriends := number of girlfriends - 1 
with and without dereferencing. a) If no dereferbncing took place, the 
expression "number of girlfriends-!'' would have the value 400-1, which is 399. 
b) With dereferencing, the value of the integer at location 400 is used instead 
of 400, thus giving 3-1 as the source of the assignment. 
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closed clause 

i ·- ( read(j) ; j ·- j+3 ; .ll. j<.O~j ·- 0 .ll ; j+l ) •- ·- ·-
~ 

_,) ' ~ \ J '-r" 'C 
statlment 

~tatement 
statement un~ 

l" 
serial clause 

Figure 2-41. Relation between serial clause, unit, and closed clause. A serial 
clause is a series of Dor more declarations and/or statements followed by a unit. 
In this figure, the serial clause consists of 3 statemonts followed by the unit 
j+l. A closed clause is a serial clause enclosed by parentheses or begin and~• 
The entire right hand side of the above assignment is a closed clause. A closed 
clause is itself a unit, but a serial clause is not a unit. 

assignment statement: "reference to some mode" unit, 
becomes symbol, 
"some mode" unit 

conditional statement: if, boolean serial clause, 
then, serial clause, 

for statement: 

case statement: 

go to statement: 

{~, serial clause,) 

li 

l .f.2£., identifier,\ 

l .f..£9.!!, integer unit,) 

{ ,iE_, intP.ger unit,) 

l .!ll'., integer unit1 

{~,boolean serial Elause,} 

£!.Q., statement (inclusing a compound statement or range) 

~, integer serial clause, 
l!J., list of statements 

l ~,statement) 

~ 

goto, label 

Figure 2-42. Definitions of statements. l-l means optional. 


