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Diffusion problems where the current state depends upon an earlier one give rise 
to parabolic equations with delay. The efficient numerical solution of classical 
parabolic equations can be accomplished via methods for stiff differential equa­
tions; one such class is predictor-corrector-type methods with extended real 
stability intervals and with reduced storage requirements. Analogous methods for 
equations with delay are proposed and analysed here. Our analysis will be based 
on the test equation Y(t)=q1y(t)+q2y(t-w), where, in view of the class of 
parabolic delay equations we want to consider, our main interest will be in the 
case \q 1 \ » \q2\. Implementational details of the methods developed are given and 
numerical results are presented. 

1. Introduction 

THERE rs an extensive literature on the theory and numerical solution of parabolic 
equations. The inclusion of a delay in the classical problems of mathematical 
physics leads to partial differential equations with delay only in time, t. As 
illustration, consider the generalized diffusion equation 

a a2 

-u(t,x)=a2 - 2 u(t,x)+f(u(t-w,x)) (O:s;;x:s;;l, t;;;i.w) (1.1) 
at ax 

with homogeneous Dirichlet conditions on x = 0 and x = 1 and the prescribed 
initial function 

u(t,x)=<(>(t,x) (O:s;;t:s;;w, O:s;;x:s;;l). (1.2) 

The existence and uniqueness theory for problems of this type has been discussed 
by Travis & Webb (1974), for example, in the case that f is a linear or nonlinear 
scalar-valued function. Cases where the term f is replaced by more general 
expressions involving the state u(t-w, x) also arise (for example see El'sgol'ts & 
Norkin, 1973, pp. 269-272): 

a a2 a2 

- u(t, x) = a 2~ u(t, x)+ /3 2~ u(t-w, x); (1.3) 
at ax ax 

the theory of a class of examples of general type is discussed by Artola (1967). 
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Wang (1963) provides an example of a realistic system (an automatically 
controlled furnace): the system is modelled by an equation which falls into the 
class of problems of the form 

a ( cil ) au ( ) au ( _ c2> ) ) atu(t,x)=Lu(t,x)+f t,x,u(t,x),u(t-(1) ,x •···•ax t,x 'ax t (I) ,x , ... 

(1.4) 

involving multiple delays (l)m, (1)<2>, etc. where L is a linear operator which is 
uniformly elliptic in x. 

Time delays can enter into diffusion systems in various ways. Wang (1975) 
considers realistic systems in which the delay term is absent from the differential 
equation but enters into the boundary conditions valid for x = 0, 1 and t~ 0. 

In the case f=O in (1.1), numerical methods for the approximation of u(t, x) 
can be derived, as is well known (see also e.g. Lambert, 1973, p. 249), by 
semidiscretization in the x-variable and the numerical solution of the resulting 
ordinary differential equations with respect to time. In the generalized equations 
considered above, the process of semidiscretization produces (in place of a system 
of ordinary differential equations) a system of retarded differential equations. 
Thus, the simplest discretization scheme yields for (1.1) the equations 

2 

y.(t) = ~2 [y1+1(t)-2y1(t) + y;-1(t)] + f(y1(t- (I)), ih) (1.5) 

and that for (1.3) yields 

• a2 ~2 
y;(t) = h 2 [y;+1(t)-2y;(t) + Y1-1(t) ]+ h 2 [y1+1(t- (I))- 2y1(t- (I))+ y1_1(t- (I))], (1.6) 

where y1(t) = u(t, ih), h = l/(N + 1), i = l, ... , N. 
In the case of a general linear problem, involving one delay, the semidiscretiza­

tion process yields a system of equations of the form 

(1.7) 

where y{t) = [y i(t), ... , y~tW. In the cases where the matrices 0 1 are simultane­
ously diagonalizable (which occurs for (1.5) where f{y1, ih) = y1, and for (1.6)) the 
study of scalar test equations of the form 

(1.8) 

provides insight concerning the behaviour as t .- oo of solutions of (1.7). If in (1.5) 
h is small and in (1.6) a 2 » {32 , then the corresponding equation (1.8) bas the 
property that lq1I » lq2l. In our discussion of stability such test equations will 
occupy our attention in particular. 

Retarded differential equations are derived here through semidiscretization but 
also arise directly in their own right in various applications; see Chosky (1966), 
Weiss (1959). It is well known that the efficient numerical solution of the ordinary 
differential equations obtained on semidiscretization of (1.1) with f=O requires 
numerical methods with large regions of stability. Generalized predictor-corrector 
methods with extended region of stability have been derived and studied by van 
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der Houwen & Sommeijer (1983b) with this application in mind. van der 
Houwen & Sommeijer (1983a) adapted their numerical methods to ordinary 
differential equations with delay, of the general form y(t) = f(t, y(t), y(t-w)) with 
w > 0. Since such methods are well-suited to the numerical solution of the 
retarded differential equations obtained on semidiscretization of generalized 
diffusion equations, we develop the results of van der Houwen & Sommeijer 
(1983b) with this application in mind. 

2. Predictor~rrector methods 

In this section we will discuss the construction of numerical methods by 
reference to a general nonlinear system of delay equations involving one delay, 
that is, 

y(t) = f(t, y{t), y(t-w)), (2.1) 

with y(t) prescribed at (and, if necessary, on an interval to the left of) the point t0 • 

In the present section we assume only such conditions as ensure smoothness of f 
and the existence of a unique (smooth) solution y(t). (Later, we assume that the 
Jacobian matrices of derivatives of f(t, u, v) with respect to u and to v have the 
same eigensystem and real eigenvalues.) 

The methods we describe are predictor-corrector methods for use with for­
mulae discussed by Cryer (1974); they reduce, in the case that the delay term is 
absent, to methods considered in van der Houwen_,& Sommeijer (1983b) for the 
initial-value problem 

y(t) = f(t, y(t)), (2.1') 

with y(t0) prescribed. 
We denote by {p, u} the implicit linear multistep formula (cf. Lambert, 1973, 

pp. 11-43) with first and second characteristic polynomials 

k k 

p(C) = L aick-i and um= L b;Ck-i. 
i=O i=O 

We shall call this formula the corrector formula. We assume that the corrector is 
zero-stable, consistent and of order p (Lambert, 1973, p. 23). We shall denote by 
{p, 6-} a corresponding explicit formula (the predictor formula, with b0 = 0), and its 
order by p. 

It is necessary to adapt the formulae for (2.1') to permit the treatment of (2.1). 
Our objective, given a constant integration step ..1t > 0, is to approximate the 
solution y(t,.) of (2.1) at t,. = t0 + nA.t by Yn (n = 1, 2, 3, ... ); for this purpose we 
shall approximate y(t,.-wn), with wn = w(t,., y .. ), using polynomial interpolation 
on the values Yi, Yi-l• ... , YH where ~-1 < t,. -wn.;;;; ~ for j > 0. Usually, Hermite 
interpolation is employed; however, in view of the application to parabolic 
equations we have in mind, we shall use one of those backward differentiation 
formulae which are highly stable as corrector; consequently, no /-values are 
stored, preventing us from using Hermite interpolation. The interpolation formula 
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assumes the form 

(2.2) 

where t., - w,, = ti - 8n..1t with 0:,;;;; 8n < 1 and E is the forward shift operator 
E<f>n = <f>n+l· Here, T is a polynomial in E whose coefficients depend upon 8n and 
(2.2) is merely a symbolic form of Newton's backward formula. Concerning T we 
assume T(~, 0) = C1 and T(l, 8n) = 1; the order of accuracy of (2.2) is l + 1. We 
shall assume that the order of the interpolation formula (2.2) is at least that of the 
method {p, u} for (2.1'), i.e. l ~ p. 

The formulae which form the basis for the numerical method for (2.1) now 
comprise (2.2) and 

p(E)yn - Lltu(E)fn = 0 (n ~ O); 
fn = {f( tn, Ym y(t,, -wn)) (tn -wn >to), 

f( t,,, Ym y(tn - wn)) (t,, - Wn:,;;;; to); 

Wn = wn(tn, Yn). (2.3) 

We refer to (2.3) as the delay-corrector formula. 
Since b0 =fa 0 the formulae (2.3) are certainly implicit. At each integration step it 

is necessary to solve 

a0 =1, (2.4) 

coupled with (2.2), where Wn is computable in terms of values of Yk already 
computed. From now on we assume a0 = 1 and b0 >0. Observe that y(t,,-wn) 
will, when wn <Lit, depend on the as yet unknown approximation Yn to y(tn). 

In order to solve (2.4) we use the following predictor-corrector scheme: 

y~0l: =initial approximation to the exact solution "fin of (2.4), } 
to be provided by a predictor formula, 

(i)._ (j-1) - - (j-2) (j-1) Yn .-µjyn +(1 Ai µi)Yn +\bo.Atfn +AiWn (j=l, ... ,m), 

Yn := Y~ml, 

where A1 +µ, 1 =1 with Ai and µi (j> 1) to be determined later. Here 

f~-ll:= f(t,,, Y~-1i, y(t.i-wn(t,,, Y~-ll))). 

(2.5) 

In passing we observe that a conventional predictor-corrector method for (2.1), 
in P(EC)mE-mode, is obtained if we choose µi = 0 and Ai= 1 (j = 1, 2, ... , m). 
Another special case of (2.5) was considered by Stetter (1968). 

The general predictor-corrector method (2.5) will be called a GPC method; it 
falls into a still more general class of methods presented in van der Houwen & 
Sommeijer (1983b). For our purposes, (2.5) has sufficient degrees of freedom; our 
aim is the construction of GPC methods which permit the choice of large .1t when 
applied to (1.8) with [q1 [ » [q2 [, bearing in mind the applicability of such methods 
to the solution via semidiscretization of a class of parabolic equations with delay. 
Therefore, the parameters ,\i and ~, and the number of iterations m, will be 
chosen in such a way that a stable method results. Thus, the GPC method is, in 
the first place, an iteration scheme for approximating a stable method, rather than 
an iteration scheme for approximating the solution of (2.4). 



THE STABILITY OF PREDICTOR-CORRECTOR METHODS 5 

Remark. In practical computations, the choice of {A.i, µJ in (2.5) will be deter­
mined by local conditions, but we shall ignore this feature until Section 4. 

2.1 The Local Error 

In studying the accuracy of the GPC method (2.5) it is convenient to introduce 
the iteration polynomials Pi (z) generated by 

P 0(z)= 1, P1(z)= 1-A. 1 +A. 1b0 z, 

Pi(z) = (µi + A.ib0 z)Pi_1(z) + (1-A.i - µi)Pi_z(z) (j = 2, 3, ... , m). 
(2.6) 

Notice that Pi(l/b0) = 1 for all j. The polynomials Pi(z) are uniquely associated 
with the iteration scheme (2.5). 

Furthermore, we need the Jacobian matrix of the right-hand-side function fn­
Let g(t, u, Vi. v2 , ... , v1) be the function such that 

f ( t,,, Ym y(t,, -wn)) = g(t,., Ym Yn-1> · · .). 

Recalling that if wn =w(t,,, y,,) <At then y(t,, -w ... ) depends upon Ym we define the 
Jacobian matrix 

ag 
Zn :=At- (t,,, ...,..., Yn-1• ... ), au (2.7) 

where 'lln is the exact solution (assumed unique) of the delay-corrector formula 
(2.3). The local error of the GPC method can be expressed in terms of the 
corresponding errors of the corrector and predictor formula using the iteration 
polynomial Pm (z) and the matrix Z". 

THEOREM 2.1 If f(t, u, v) and the solution y(t) are sufficiently smooth, then, 
provided l ~ max {p, P}, 

Yn -y(t,,) =[I - pm (.Zn) ][Tin - y(t,,)] +Pm (Z,.)[y~O) -y(t,,)] + O(L1t2p+3 + .1t2P+3), 

where p and p are the orders of accuracy of the predictor formula for y~0l and the 

corrector formula for tfn, respectively, and where we assume Yi= y(ti) for j < n. 0 

The proof of this theorem is a slight elaboration of the proof of Theorem 3.1 
and Corollary 3.1 given in van der Houwen & Sommeijer (1983b), and is 
therefore omitted.t From this theorem we immediately conclude that the order of 
the GPC method is given by p* = min {p + r, p + r} where r is the multiplicity of 
the zero at z = 0 of 1-P m(z) and r the multiplicity of the zero at z = 0 of P m(z). 

In actual applications the local error "I),, -y(t,,) of the corrector is usually small 
in comparison with the local error y;?l-y(t,,) of the predictor. Therefore, we will 
only consider polynomials with r = 0 and choose Pm (z) such that Pm (Zn) de­
creases the magnitude of the predictor error. If At is small, that is, l!Znll is small, 
this can be achieved by choosing f as large as possible. For example, the 
conventional predictor-corrector method uses Pm(z) = (b 0zr so that r= m. How­
ever, we want to use relatively large integration steps and consequently (assuming 

t The complete proof of Theorem 2.1 can be found in the institute report (same title, same authors) 
NM-R8410, Centre for Mathematics and Computer Science, Kruislaan 413 1098 SJ Amsterdam. 
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that the order terms in the statement of Theorem 2.1 remain negligible) we 
should choose P,,,_(z) such that !Pm.(z)! is small in a sufficiently large neighbour­
hood of the origin on the negative z-axis. As we will see in the stability analysis of 
the GPC method, the stability condition also requires !Pm(z)I to be small on a 
negative interval, [-{3,0] say. Therefore, we postpone the choice of Pm(z) to 
Section 3.2. 

3. Stability theory 

We mentioned previously, in Section l, that the scalar test equation (1.8) 
provides· insight concerning the behaviour as t ~ oo of solutions of (1.7); we 
consider (1.7) as a linearization of (2.1) with 0 1 and 0 2 being defined as the 
Jacobian matrices af/au and afJav of f(t, u, v), and assuming that Q1 and Q 2 share 
the same eigensystem. The region in the real (ql> q2)-plane where the test 
equation (1.8) has solutions y(t) such that y (t) ~ 0 as t ~ oo, for a given delay w, 
will be called the stability region corresponding to the delay w. It can be shown 
(see e.g. Bellman & Cooke, 1963, p. 444) that in the real (ql> q~-plane this open 
region is bounded by the curve 

q1 = q cotwq, q2 = -q/sin wq, (3.1) 

parametrized by q with 0.;;; q.;;; oo. 

In Fig. 1 these curves are plotted in the (ql> q2).dt-plane. To obtain the 
analytical stability region, which of course cannot have anything to do with .dt, the 
scaling factor At should be removed. However, this factor is included to facilitate 
comparisons with numerical stability regions, which are used to be plotted in the 
(q1.dt, q2.dt)-plane. 

z2 = -az 1 ,,_ 

~--;-~~~~~~~~~~~':':'l:'!l!c'-~-t-~~~~~~~...,.z 1 =q 1 At 
\ stable 

2w 

Flo. 1. Stability region of (1.8). 

· .. 
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In analogy with the definition of the 'analytical' stability region (3.1) we 
define the numerical stability region as the set of points (qi, q2)at = (zi. zi) for 
which the GPC method when applied to (1.8) yields solutions Yn such that Yn ~ 0 
as n ~oo. 

The GPC method is said to be absolutely stable for a given point (zi. z2) if this 
point lies in the stability region. (This terminology accords with the usage in e.g. 
Lambert (1973, p. 66), and is referred to as 'strict' in the writings of Baker 
(1977, p. 793) to distinguish it from the weaker definition sometimes encoun­
tered.) However, for brevity in what follows, we use 'stable at (zi. zi}'. If a 
method is stable at all points in the real infinite wedge {(zi,z2):z1<0,lz2/z11< 
a= tan l/I} then the method will be called P0(l/l)-stable (see Figure 1). If the 
method is P0(11'/4)-stable we will briefly refer to P0-stability (van der Houwen & 
Sommeijer, 1983a). In this connection it should be remarked that Barwell (1975) 
called a numerical method P-stable if the numerical stability region contains all 
complex points (zi. z2) with Re z1 <-lz21. The reader will note, on considering 
the case z2 = 0, that P0(1/1)-stable methods collapse in the case of equations with 
no delay to A 0-stable methods for pure differential equations. In consequence, 
P 0(l/l)-stable methods are necessarily implicit, whilst the GPC methods are 
explicit. It follows that the best we can expect is that the GPC methods have a 
region of stability which includes a truncated wedge {(z1,z2)elle:-{3<z1 <0, 
lzi/z1l<tanl/I}. Such methods, with (3 large, we will term almost-P0(l/I) stable. 

We will be particularly interested in almost-P0(1{!) stable methods with I/I small, 
because the semidiscrete parabolic delay equations discussed in Section 1 will lead 
to (zi. z2)-points located in a wedge lzi/z11 <tan I/I with small aperture 21/1. The 
relevant range [-(3, O) for z1 is determined by the Jacobian matrices correspond­
ing to the right-hand-side function and the discretization step ..1t. 

3 .1 Derivation of the Stability Polynomial 

Recall that the interpolating polynomial occm:tjng in (2.2) can be written 

j(t,. -wn) = j(~ - On..:it) = E-1T(E, On)Yi• 0:,;;; On< 1, (3.2) 

where T({;, On) is a polynomial of degree l in ' with coefficients depending on en. 
We assume (cf. Cryer, 1974) that 

T(,, O) = , 1, T(l, On)= 1. (3.3) 

Furthermore, we will always assume, in what follows, that wn;;;;.: .lit. 
Applying the GPC method to the test equation (1.8) and writing 

w = (n - j + 8).lit =: (v+ 8).lit, zi = w1.1:1t, (3.4) 

we obtain 
(j) - (j-1) (j-2) (j-1) -[ ( ) ) ( ) Yn-µiYn +(1-A.j-µj)yn +A.ibo(Z1Yn +z2E TE,6yn-v+AjWn· 3.5 

Suppose that the initial approximation y~0l is computed by an explicit linear 
multistep method {p, 0-}, then by repeatedly applying (3.5) we can express y~l in 
terms of the step vectors Yn-l• Yn-2, Yn-3, •••. In particular Yn := y~ml can be 
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expressed in terms of preceding step vectors to obtain a linear recurrence relation 
with constant coefficients. The corresponding characteristic polynomial or stability 
polynomial can be derived in a similar way as given in van der Houwen & 
Sommeijer (1983b) for the nondelay case. The result is summarized in the 
following theorem. 

THEOREM 3.1 Let the GPC method (2.5) be generated by the k-step predictor 
{p, u}, the k-step corrector {p, u}, and the l-step interpolation formula characterized 
by T (cf. (3.2)). Then applying this method to the test equation (1.8) leads to the 
stability polynomial 

Sv({; Zi. zz) := {t<.+t+vs({, z1) + 'Ym (z1){k+I+vs({, z1)-

z2T({, 8)[{1<<7({)+-ym{Z1){k6({)] (v;;::l), (3.6) 

where S and S are the stability polynomials of the corrector and the predictor 
(respectively given by S = p({)- z1u({) and S = p({)- z 1u({)), and 'Ym is defined by 

Pm(Z1) ( ) 
'Ym(z1) := (l-b0z1) l-Pm(zi)' 3.7 

Proof. Similar to the derivation of stability polynomials for ODEs (cf. van der 
Houwen & Sommeijer, 1983b), to which the result collapses on setting z2 = 0. D 

Evidently, the GPC method is stable at a point (z1' z~ for a given value of 6 if 
Sv({; z1, z~ is a Schur polynomial for all v El+ (we will also use the terminology 
that Sv(C; Zi. z2) is stable at (zi. z2)). 

A convenient tool in the analysis of (3.6) is the familiar theorem of Rouche: If 
f(z) and g(z) are regular on a closed region whose boundary is a closed rectifiable 
Jordan curve C and lg(z )I< lf(z )I on C, then f(z) and f(z) + g(z) have the same 
number of zeros inside C. Thus, two polynomials Q({) and R({) have the same 
number of zeros within the unit circle if IRW- Q({)j < IO(C)I on the unit circle. 

Of course, this theorem provides sufficient but not necessary conditions for 
stability, so that the stability regions obtained may be smaller than the true 
stability regions (to consider a simple, if artificial, case: let Q({) = -R({), then 
Q({) and R({) have common roots but the inequality given above is not satisfied). 
However, as we shall see in Example 3.1, in an actual situation the true stability 
regions are only marginally larger than what we shall call the 'Roucbe-stability 
regions'. 

3.2 Stability of the GPC Method 

Stability plots for the GPC method employing iteration polynomials of the form 

( c+l ) Pm(z)=8Tm c+{3z, {3:= c+l 

bo[ cosh (! arccosh ~)- c] ' 

c~ 1 (3.8) 

have been given in van der Houwen & Sommeijer (1983a); here, Tm denotes the 
Chebyshev polynomial of the first kind and 8 and c are suitably chosen parame-
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ters which determine the aperture and the length of stability wedge in the 
(zi, z2)-plane. The choice of the polynomials (3.8) is motivated by the large 
stability intervals (-(3, O) which such polynomials generate for GPC methods 
without delay (cf. van der Houwen & Sommeijer, 1983b). 

Since the case lq2\ « lq1\ models an interesting class of problems associated with 
parabolic equations with delay, we are interested in methods with a long, narrow 
stability wedge along the negative z1-axis (z 1 = q1Llt). Therefore, the polynomials 
(3.8) seem to be a good starting point for constructing efficient GPC methods. For 
suitable values of m and 8 we refer to Section 4.1 (implementational details) 
where also explicit expressions for the parameters /Li and Ai are given. 

The largest stability region, for given 8, is obtained if c = 1, and in this paper 
we only consider this case. It should be observed, however, that choosing 
c =cos ( -rr/2m) yields an iteration polynomial which vanishes at z = 0 giving rise to 
an extra damping of the predictor error if Llt is small (see the discussion in Section 
2.1). In fact, the stability plots presented in van der Houwen & Sommeijer 
(1983a) correspond to c =cos (-rr/2m). These plots were obtained by applying the 
boundary locus method to the stability polynomial Sv defined in Theorem 3.1. A 
disadvantage of this direct approach is (i) we do not know a priori how to choose 
(8, m) in order to get a stability wedge of prescribed aperture and length; (ii) we 
are never sure what is the effect of the delay parameter v on the stability wedge. 

In this section we propose a 'computable' approach in obtaining values for 
(8, m) which more or less guarantees a stability wedge of prescribed aperture and 
length for all values of v. 

3.2.1 Rouche-stability Regions The first step is the formulation of a stability 
condition independent of the delay parameter v. 

THEOREM 3.2 The GPC method (2.4) is stable at the point (zi, z2) if it is stable at 
the point (z1, 0) and if 

k k-
. \ S(,, Z1)+ 'Ym(Z1)?: - S(?;', Z1) I 

lz21 <Am (z1, 8): = 1 ~f:,f1 T(?;', 8)[ a(?;)+ 'Ym (zi)?:k-k6'(?;')] · 

Proof. Applying Roucbe's theorem with 

QW = {;'l+v[S({;', Z1)?;'k + 'Ym(Z1)S({;', Z1)?;'k], 

the theorem follows immediately. 0 

In order to obtain a region of stable points (z 1, z2) we shall determine the 
stability interval on the zcaxis for the GPC method, that is the stability interval in 
the case of a vanishing delay. This special case was studied in van der Houwen & 
Sommeijer (1983b). For a GPC method generated by an extrapolation predictor 
and a backward differentiation corrector (EP-BD pair), 8-values for the polyno­
mial Pm (z) were derived such that the GPC method is stable in the interval 
-(3<z 1 < O with {3 defined in (3.8) (we denote stable 8-values for the nondelay 
case by 8*). For future reference these values are listed in Table 1. 
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TABLE 1 
Stable 8*-values for GPC methods without delay generated by EPi< - BDk pairs 

k k=l k=2 k=3 k=4 k=5 k=6 k=7 

2 1 1/3 1/7 
3 1 1/3 1/7 1/15 
4 0·75 1/3 1/7 1/15 1/31 
5 0·44. 0·33 1/7 1/15 1/31 1/63 
6 0·13 0·07 0·07 1/15 0·0289 0·0147 1/127 

Using larger 8-values gives rise to the development of instabilities but not in a 
severe way. In the numerical experiments reported in Section 4, it will be 
demonstrated that using larger values will still produce useful results. The reason 
is that the stability polynomial does not rapidly increase in magnitude if 8 
increases beyond the nondelay value 8*. (In contrast, violating the stability 
condition z 1 =q1J.t>-{3, i.e. J.t</3/lq1l leads to a rapid increase of the mag­
nitude of Pm (z) for z < -{3.) Therefore, the values of 5* listed in Table 1 should 
be used as an indication of the acceptable upper bound for 8 in using EP-BD 
methods; in actual computation, one may often use much larger values. 

In the following example we give the values of the 'effective' length L(8, m)/m 
and the aperture angle o/(8, m) of the wedge contained in the stability region for a 
fourth-order EP-BD method (see Fig. 2). We limit ourselves by, from all wedges 
contained in the stability region, the one with maximal aperture 21/1. The factor 
1/m is applied to L(8, m) because O(m) operations are employed within each 
step. 

EXAMPLE 3.1 By virtue of Theorem 3.2 we can compute estimates of the stability 
wedge {L(8, m)Jm, 1/1(3, m)} for any given predictor-corrector pair. For the pair 
EP5 - BD4 some results are listed in Table 2; the value of c occurring in (3.8) 
was set to 1 and T(f;, 8) was chosen of degree l = 4. The values of L are slightly 
smaller than /3(8, m) given by (3.8). To get some idea about the pessimism due to 

Fro. 2. Stability wedge defined by L(8, m) and <{!(8, m). 
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TABLE 2 
EPs-BD4 method: (Lim, t/1)-values derived from Theorem 3.2 (l/1 is given in degrees) 

e=O e = 0·5 
8 m =2 m=8 m =64 m=2 m=8 ITT =64 

0·01 (0·34,45) (2·3,42) (19,35) (0·34,45) (2·2,35) (19,23) 
8* = 1/31 (0·69,45) (3·8,16) (31,0·25) (0·69,45) (3·8,10) (31,0· 16) 

0·10 (1·4,40) (7·3,0· 12) (59,0·09) (1 ·4,29) (7·3,0·08) (59,0·06) 

the estimates obtained through use of Rouche's Theorem we calculated in 
addition the true stability regions for the parameters given in Table 2. Since 
these regions depend on the value of v (cf. (3.6)), we made plots for several 
v-values and determined the length and aperture of the stability wedge contained 
in all these stability regions. It turned out that these values (i) hardly depend on 
the value of v and (ii) are only slightly larger than those listed in Table 2. 

3.2.2 Choice of the Predictor-corrector Pair It is of interest to observe that we 
are more or less forced to use extrapolation predictors if large (3-values are desired. 
To see this we apply Rouche's theorem to the polynomial S.,(?;; z1, 0) with 
Q(?;) = S(?;, z1) and R(?;) = Sv(?:; z1, O) to obtain the stability condition 

I ( )I< . f \S(?;, z1) \- . f Ip(?;)- z1cr(?;) \ 'Ym Z1 10 - - 10 _ _ . 
l'\=1 S(?;, Z1) 1,1=1 p(?;)-Z1CT(?;) 

Since \'Ym(z 1)\ is proportional to \z1\ for \z 1\ large we should choose cr=O in order 
to get a large stability interval (-{3, O). Predictor formulas with a vanishi~g 
polynomial iJ are just the extrapolation predictors characterized by {>(?;) = (?;- l)k. 

In order to choose a suitable corrector {p, er} we consider the stability wedge 
({3,1/F) as 5-+0. (Notice that 5=0 implies Pm(z)=O (cf. (3.8)), that is the 
delay-corrector equation is iterated to convergence.) From Theorem 3.2 the 
following corollary follows: 

COROLLARY 3.1. Let the corrector formula {p,a} be A(a)-stable. Then the delay­
corrector formula (2.3) is P0(1.{1)-stable and 

sin a 
I.{! ;;:. arctan T 1 (fJ) , 

T1(8) :=sup \T(?;, 8)\. 
ICl=l 

(3.9) 

Proof. We have to show that the stability region of the GPC method with ~ = 0 
(i.e. 'Ym (z) == O) contains the real infinite wedge \z2/ z1\ <tan I.{! where o/ satisfies 
(3.9). From Theorem 3.2 with 8 = O and by virtue of the A(a)-stability of the 
generating {p, er} formula we derive the stability region 

\z2\<Am(Z1,8)= inf I(; n)(E..m-z1)\, z1.;;;0. 
ll:l=l 7' !:» v u 

Furthermore, it is easily verified that an A(a)-stable LM formula satisfies 

inf \E..m-z\;;=.\z\sina 
1c1=1 er 
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Pm. 3. 

for all z ,s:; 0. Thus, 

1 . \P I lz1lsina Am(Zi. 8):;a.;-( ) mf -(C)-z1 ;a.; (8) · 
7"1 fJ IC\=1 <T T1 

The stability region of the delay-corrector formula therefore (see Fig. 3) satisfies 
lz2 \<(lz11 sin a)/7"1 (8) with z 1 <0, and certainly contains the infinite wedge 
lz2/z1\<tan I/I for all I/I satisfying (3.9). D 

This corollary shows the strong relation between P 0(1/1)-stability of the delay­
corrector equation and the A(a)-stability of the generating LM method. For 
parabolic equations with delay (excluding delay equations of type (1.3)), we only 
need stability wedges with relatively small apertures I/I; therefore we can limit our 
considerations to generating LM methods {p, er} that are A(a)-stable where a is 
allowed to be small. Such LM methods are provided by the backward differentia­
tion formulae for which a varies from 90° fork= 2 to 18° fork= 6 (cf. Lambert, 
1973). 

A second conclusion from Corollary 3.1 is the strong dependency of I/I on 
T((, 8). The following example presents values of the lower bound on I/I for 
various values of fJ. 

EXAMPLE 3.2. Consider the delay-corrector formulae generated by the backward 
differentiation formulas BDk and by interpolation polynomials T of degree l = k. 
Then the lower bounds in (3.9) are given in Table 3 for a few values of 0. From 
this table we see that it is advantageous to select the step size in such a way that 
t,.-wn coincides with a step point (i.e. () = O); however, if interpolation is per­
formed, at least ~ of the maximal I/I-value is obtained. 

TABLE 3 
BDk methods: If! lower bounds derived from Corollary 

3 .1 (If! is given in degrees) 

() k=2 k=3 k =4 k=5 k=6 

0 45·0 45·0 43·7 37·9 17·2 
0·25 39·2 39·2 37·9 32·3 14·1 
0·5 31·6 31·6 30·5 25·6 10·8 
0·75 33·0 33·0 31·9 26·8 11·4 
1 45·0 45·0 43·7 37·9 17·2 
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It would be convenient to have the analogue of Corollary 3.1 for the GPC 
method itself. It is not difficult to find such an analogue for large lz11 and small 
values of &; however, if & increases, the resulting lower bounds become rather 
pessimistic. Therefore, we also considered upper bounds for t/J. The following 
corollary of Theorem 3.2 presents these results. 

CoROILARY 3.2 Let 80 be the maximal stable &-value of the GPC method for 
nondelay equations, let (3 = (3(&, m) be defined by (3.8) and let {p, o-} be A(a)­
stable. Then for -(3 (&0 , m) ~ z 1 « -1 the stability region of the GPC method 
employing an extrapolation predictor EPk is bounded by \z 2/z 1\ <tan t/J where 
t/I = lfi(&, m) satisfies the inequality 

- 1-(sin a -2k bo& sup - 1-) ~tan t/J~ 1 (1-2k bo& --1-) (3.10) 
T1(8) l-&1,1=1io-W\ \T(-1,8)\ 1-&jo-(-l)I 

with T 1(8) defined in (3.9), provided that & is sufficiently small and that the right­
and left-hand side in (3.10) are positive. 

Proof. For extrapolation predictors we have jj({) = U;-1);.; and u(() = 0 so that 
the function Am(z1, 8) can be written as 

Am(z1, 8) = 1H:!1 \7(;, 8) (; (t)-z1 + Ym(z1)?;k-k (~~;t) \.. (3.11) 

First we derive the lower bound for t/J. Similar to the derivation of the lower 
bound (3.9) we obtain 

1 . (\p I I ({;-l)k\) Am(z1,8)~ 71(8 ) 1:~f1 ;W-z1 - 'YmCz1) o-W 

1 ( - 1 ) ~-(-) jz11 sin a -2k\ 'Ym(z1)\ sup -1 (Y)\ · 
'T1 8 IC\=l 0- \> 

The stability region therefore satisfies 

lz1I (· k\'Ym(z1)\ 1) \z2\<-(-) sma-2 -- sup-1 (Y)\ 
'T1 8 Z1 ICl=l O" \> 

provided that the right-hand side is positive, that is, \ym/z 11 is sufficiently small; 
this is achieved by choosing & sufficiently small as can be seen from the result 

\'Ym(z1)\ = 1~-bo\ I Pm(z1) \~ \I.-bo\-1) . 
z1 z1 l-Pm(z1) Z1 1-8 

Using this upper bound on \ymf z1\ and assuming \z1\ large we arrive at the 
left-hand inequality in (3.10). 

Next we derive the upper bound on t/J. From (3.11) it follows that for \z1\« 1 

1 \p (-l)k2k\ 
Am(z1, 8)~,.(-l, 8) ;C-l)-z1+Ym(Z1) a-(-l) 

= \z1\ \1- 'Ym(z1) (-l)k2k\. 
\7(-l, 8)\ Z1 a-(-1) 
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Thus, for i'Y.J z11 sufficiently small the stability region satisfies 

lz1I ( l'Ym(Z1)1 2k ) 
lz2l~li-(-l, 8)1 1-~ lu(-1)1 

,,;:: lz1I (l- bo8 2i< ) 
"""IT(-1, 8)1 1-8 iu(-l)I 

which leads to the right-hand inequality in (3.10). D 

EXAMPLE 3.3 For EP;c - BDk methods Corollary 3.2 yields 

1( ;c8) 1 ( ;c8) 
T1(8) sina-2 1-8 ~tanl{!~IT(-1,0)I 1-2 1-8' (3.12) 

where it is assumed that 8 is sufficiently small to provide positive right- and 
left-hand sides. Evidently, 8 should satisfy the inequality 

8~sin a/(2i<-sin a). 

For the predictor-corrector pair mentioned in Example 3.1, we find for 
8=0·01, and respectively 0=0 and 0=0·5 the I/I-ranges 32·3°~1/1~34·1° and 
21.3°~1{!~22.6°. For large values of m, these !/!-bounds are in good agreement 
with the t{!-values given in Table 2. (We emphasize that (3.12) has been derived 
under the assumption that z1 « -1.) 

4. Numerical illustrations 

A most important aspect of the numerical integration of parabolic equations 
with delay is the storage requirements. As any algorithm needs an (interpolated) 
approximation of the delay term, we have to store at least v arrays of y-vectors 
(notice that v = w.J ..:1t may change from step to step). Moreover, the dimension of 
these y-vectors is usually very large and their storage requires a tremendous 
computer memory capacity. Therefore, in order to reduce the value of v, it is of 
vital importance to be able to integrate with large time steps. However, the use of 
large time steps demands good stability properties. Of course, one possibility is to 
select an implicit method; for an extensive survey of such methods we refer to 
Cryer (1972) (see also Tavemini, 1973). However, implicit methods require, in 
each time step, the solution of large systems of equations. Apart from the 
computational effort involved in solving these systems, this aspect implies again 
that a considerable amount of storage is required, especially in the case of 
higher-dimensional parabolic equations. 

An alternative to circumvent this huge algebraic problem is the use of splitting 
methods such as ADI (for a description, see below) in which case the Jacobians 
usually possess a tridiagonal structure; hence, storage requirements are modest. 
However, a disadvantage of this type of method is the low order of accuracy. 
Moreover, an important aspect of using large time steps in fully implicit methods 
as well as in partially implicit (splitting) methods, is the problem of constructing a 
sufficiently accurate initial approximation in order to let the Newton process be 
convergent when solving nonlinear problems. For a detailed discussion concerning 
the implementational aspects of implicit methods we refer to Lambert (1973). 
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Taking all these considerations into account, we think that the EP-BD methods, 
by which a high order, good stability behaviour, and minimal storage require­
ments are combined, are a useful tool for integrating parabolic equations with 
delay. 

To illustrate its performance we will separately test two different features of the 
GPC method, viz. its accuracy (or efficiency) and its stability. 

(i) The accuracy is shown in Sections 4.2 and 4.3; here we give results obtained 
by EPP - BDP methods for several values of p as well as the results obtained by 
the ADI method. Fully implicit methods are not implemented because of their 
enormous storage requirements. 

The test examples are constructed by choosing an exact solution, a (nonlinear) 
differential operator and a delay term. As these terms usually do not match, we 
have to add an inhomogeneous term. However, the above terms are chosen in 
such a way as to avoid a dominant influence of this inhomogeneous term in the 
whole interval of integration. This procedure is motivated by our wish to have a 
solution which does not converge to a steady state as is the tendency of solutions 
of parabolic (delay) equations without a source term. Both test examples have an 
initial «(>-function (cf. (1.2)) which coincides with the exact solution, hence no 
discontinuities in higher derivatives of the solution will occur. This enables us to 
use the exact solution, which is convenient for measuring the accuracies. 
Moreover, since in these accuracy tests the emphasis is on time-integration 
aspects, we took care that the space-dependent part of the solution has a smooth 
behaviour; more precisely, they are chosen in such a way that the space discretiza­
tion does not introduce an error, i.e. the solution of the system of ODEs with 
delay equals the solution of the PDE, restricted to the grid points. This spatial 
discretization is achieved using standard 5-point molecules on a uniform mesh 
with mesh size h = 2~. To measure the accuracy of the various methods we define 

acd: = -log10 llabsolute error at the endpointll.., (4.1) 

denoting the number of correct decimals in the answer. 
(ii) The stability behaviour of the GPC methods is illustrated in Section 4.4, 

where we choose an initial cf>-function which is wildly varying both in space and 
time. 

4.1 Implementational Details 

4.1.1 EP-BD Schemes In constructing an EP-BD scheme our starting point is 
the iteration polynomial Pm(z) as given in (3.8). By choosing c = 1 the length of 
the stability wedge is maximized but, as a consequence, Pm(z) does not vanish at 
z = 0. Therefore, we combined a p-step BD corrector with a (p + 1)-step EP 
predictor (which are both of order p ), resulting in a pth order EP-BD method (see 
Theorem 2.1 and the discussion thereafter). The choice c = 1 yields 

(3 = ( 1 1) . 
cosh m arccosh 8 - 1 

2/b0 (4.2) 
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Now m should be chosen sufficiently large to satisfy the stability condition 
\q 1\ dt<{3. Here, lq1\ stands for the spectral radius of the Jacobian matrix and will 
depend on the problem (see also Sections 4.2 and 4.3). It should be obs~rved that 
this condition is a condition on m rather than a condition on the time step; 
consequently, L1t may be chosen merely on the basis of accuracy con~iderations. 
In the actual application of these methods the values of m and l/o will be large; 
therefore the following asymptotic expression will be useful: 

4m 2/bo f3 - (m ~ oo 8« 1). 
[ln (2/8) ]2 ' 

Note that the stability boundary {3 shows an O(m 2) behaviour. 
Once we have determined an m-value that ensures stability, we will derive 

expressions for the parameters µi and Ai. Let us define the iteration polynomials 

Pi(z)=oiTi(1+~z) (j=O, ... ,m-1), (4.3) 

where 8i = 1/Ti(l + 2/b0 (3) in order to satisfy Pi(l/b0) = 1 (cf. (2.6)). By virtue of 
the well known three-term Chebyshev recursion the polynomials Pi satisfy 

P0(z) = 1, 

(4.4) 

where we have set 8m = 8. Now, identification of (2.6) and (4.4) yields the 
parameters of the scheme (2.5) 

4 l). 
Ai= b {3-1 (j = 2, ... , m). 

o oi-1 

(4.5) 

4.1.2 Nonlinear ADI Scheme A well-known method for parabolic equations 
without delay is the ADI method of Peaceman and Rachford (Peaceman & 
Rachford, 1955 and van der Houwen & Verwer, 1979). As this method combines 
modest storage requirements with good stability properties we implemented, for 
the sake of comparison, an adjusted form of this method to make it suitable to 
integrate delay equations. The ADI method requires a splitting of the function 
f(t, y(t), y(t-w)) in (2.1). We assume that f can be written as f(t, y(t), y(t- w )) = 
fi(t, y(t), y(t-w))+fh, y(t), y(t-w)), where the functions f 1 and / 2 correspond 
to the one-dimensional differential operators in the x1 and x2 directions, respec­
tively. Now, the (nonlinear) ADI method is defined by 

y* = Yn-1+!Lltf1 Ctn-1 +!.1t, y*' Yn-~) +!.1tf zCtn-l• Yn-1• Y (t,,_l -wn-1)), 
Yn = 2y* -yn-1+!.1tf2( t,., Yn, y(t,. -w,,))-!"1tf 2(t,,_1' Yn-1' y(t,._l -w,,_1)), 

(4.6) 
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where 

Yn-!= y(tn-l +~.::lt-w(t.i-1 +~.::lt)). 

The inhomogeneous term, if any, is equally distributed over f 1 and f2 • 

4.2 A Mildly Nonlinear Example 

As a first example consider the parabolic equation, defined on the unit square 
in the (xi, x2)-plane 

a ( )_ 1 l+x1+x2(a2 a2 ) 3( ) u3(t-l,xl>x2)} -a u t, xl> x2 -3 1 -"2+-2 u t, xl> x2 -4 + 
t + t ax 1 ax 2 1 + t 

i'1T(l + X1 + X2) cos 2'1Tt (0 :o;;; t :o;;; 2), (4 .7) 

<f>(t, X1, X2) = 1(1 + X1 + X2) sin 2'1Tt (t:o;;; 0). 

The solution u(t, x1, x2) equals the function <f> for all t. The Dirichlet boundary 
conditions are taken from the solution u. 

In order to get a stability wedge of sufficient length, that is to have an m-value 
which is sufficiently large, we must have an estimate of the spectral radius B of 
the Jacobian matrix af/ay. We used 

72 sin2 2'1Tt 
Bn_1 =[B(af/ay)]t=i,._,= 1·1 h2 max 1 , 

te[t,.-1 , t,.) + t 

where the factor 1 · 1 is added to obtain a safe upper-bound. 
In Tables 4, 5, and 6 we give the results of the second-, fourth-, and sixth-order 

TABLE 4 
(accJN)-values for the second-order EP-BD method; the total 

number of arrays equals 1/.'1t+4 

8 .dt= 1/10 .dt = 1/20 At= 1/40 

0·1 1·4/824 1·8/1059 2·4/1418 
8* = 1/7 1·4/725 1·8/935 2·5/1256 

0·2 1·2/632 1·8/819 2·5/1094 
0·4 * * 2·2/759 

TABLE 5 
(acd/N)-values for the fourth-order EP-BD method; the total 

number of arrays equals 1/ .dt + 4 

8 At= 1/10 At= 1/20 ..1t = 1/40 

0·01 2·0/1231 3·2/1585 4·3/2115 
8* = 1/31 1·9/960 3·2/1238 4·3/1658 

0·1 1·6/700 3·0/903 4·2/1217 
0·15 * 1·8/779 2·6/1053 
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TABLE 6 
(a00/N)-values for the sixth-order EP-BD method; the total 

number of arrays equals 11tlt+4 

l) .tlt= 1/10 .tlt = 1/20 .tlt = 1/40 

0·005 2·2/1284 4·4/1649 6·1/2202 
3* = 1/127 2·2/1186 4·4/1527 6·1/2039 

0·02 2·0/989 4·4/1275 6·1/1706 
0·04 1·2/842 3·6/1087 5·5/1458 

TABLE 7 
acd-values for the ADI method; the total number of arrays equals 1/tlt + 10 
(including both tridiagonal Jacobian matrices). The total number of iterations to 

solve the implicit relations equals 4 x NEWT/ tlt. 

NEWT 

1 
2 
5 

.tlt = 1/40 

* 
* 
* 

.tlt = 1/60 

* 
2·4 
3·9 

.tlt = 1/80 

1·9 
2·8 
4·2 

tlt = 1/120 

2·2 
3·5 
4·5 

EP-BD method, respectively, for several values of the time step .dt. In these tables 
acct is defined in (4.1) and N denotes the total number of iterations, summed over 
all time steps. Note that the number of iterations per time step is not constant 
because the spectral radius Bn varies in time. An '*' denotes unstable behaviour. A 
mutual comparison of the EP-BD methods reveals that the higher-order formulae 
are the more efficient ones. 

Furthermore, concerning the value of 8 we see that a larger value is allowed 
than indicated by Table 1, but the methods gradually lose accuracy as 8 
increases. This is due to a mild form of instability. 

The results obtained by the second-order ADI method are listed in Table 7. 
We applied the method for several values of NEWT, being the number of Newton 
iterations performed to 'solve' each implicit relation in (4.6). Note that for the 
EP-BD methods an iteration is simply an /-evaluation; for the ADI method, 
however, an iteration is of quite a different nature and usually much more 
expensive (i.e. one evaluation of f and the solution of a tridiagonal system of 
equations). Moreover, the Jacobian matrices have to be evaluated (in this experi­
ment we updated the Jacobians every step). Hence, a comparison of both methods 
in terms of efficiency is not feasible. 

However, as the ADI method needs a relatively small time step for stability 
reasons, its storage requirements tend to become excessive, whereas the EP-BD 
methods can take rather large time steps, thus reducing the number of y-vectors 
to be kept in store. 

4.3 A Strongly Nonlinear Example 

To construct our second test problem we employ the 'porous-medium operator' 

K;;;.:2, 
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and specify the analytic solution as 

u(t, X1, xz) = :hx1 + x2)2'K[ e-z<t-ll' + e-z<t-3l2 + 1]. (4.8) 

The initial function <f>(t, x1, x2) and the Dirichlet boundary conditions are pre­
scribed by (4.8). By setting K = 5 and introducing a delay term and an in­
homogeneous term g(t, Xi. x2) we arrive at 

a (;P a2
) } - u(t, Xi. x2) = - 2 +-2 u5 (t, x 1, x2) + 4u(t-2, Xi. x2)-4u(t, Xi. x2)+ 

at ax1 ilXz 
g(t,X1,X2) (1.;;;t,,;;;7), (4.9) 

<f> (t, Xi. X2) = ~(X1 + X2)~[ e-Z(t-l)2 + e-2(•-3l2 + 1] ( t :$; 1) 

defined on the unit square in the (xi. x2)-plane. 
For this problem, a safe upper bound for the spectral radius B of af/ay is 

obtained by 

120 1 [B(a[/a )],= = 1 · l --- max (e-2(1-1i2+e-2<•-3)'+1)4. 
y 1,,-l h Z 44 !Effn-1• fn J 

Similar to the previous example we tested the second-, fourth-, and sixth-order 
EP-BD method as well as the ADI method. The results are given in the Tables 
8-11. 

Again, an * denotes unstable behaviour of the integration process and the 
quantities a00 , N, and NEWT have the same meaning as defined in Section 4.2. 
The results of this example give rise to conclusions similar to those of the previous 
example: to obtain a stable result, the ADI method needs a smaller time step .1t 
than the GPC method does. Again, the higher order of the GPC methods are 
more efficient unless only moderate accuracy is required (acct :s; 2.5, say). 

TABLE 8 
(a 00/N)-values for the second-order EP-BD method; the total 

number of arrays equals 2/ Llt + 4 

0 Llt = 1/4 Llt = 1/8 Llt = 1/16 

0·1 2·3/436 2·7/610 3·4/852 
o* = 117 2·2/382 2·7/532 3·5/739 

0·2 2·2/332 2·7/463 3·6/665 
0·3 1·4/278 1·5/381 1-5/539 

TABLE 9 
(a00/N)-values for the fourth-order EP-BD method; the total 

number of arrays equals 2/Llt+4 

0·01 
o* = 1131 

0·1 

Llt = 1/4 

2·7 /652 
2·7 /513 

* 

Llt = 1/8 

4·1/895 
4·0/704 
1·9/517 

Llt = 1/16 

5·1/1247 
5·1/1000 
5·1/716 
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4.4 

TABLE 10 
(a 00/N)-values for the sixth-order EP-BD method; the total 

number of arrays equals 2/ Llt + 4 

0 Lit= 1/4 Lit= 1/8 L1t = 1/16 

0·005 2·0/677 4·7/924 7·1/1327 
0*1;121 2·0/625 4·7/864 7·1/1214 

0·02 2·0/522 4·7 /720 7·0/1017 
0·03 2·0/478 4·1/654 4·7 /920 

TABLE 11 
a00-values for the ADI method; the total number of arrays equals 2/L1t + 10; 

the total number of Newton iterations equals 12 x NEWT/ Lit 

NEWT L1t = 1/4 L1t = 1/8 L1t = 1/16 Lit= 1/32 

1 * * 2·6 3·0 
2 * 3·1 3·8 4·4 
5 2·8 3·6 4·3 5·0 

Stability Test 

To perform a stability test we employ the same differential operator as 
discussed in the previous section but now an initial <!>-function is closed which is 
wildly varying both in space and time: 

As a consequence of this choice, we have no analytical solution available. 
To obtain insight into the robustness of the methods with respect to stability we 

perform the following test: first we semidiscretize (4.10) where the Dirichlet 
boundary conditions are taken from </> if t,,,:; 1 and are fixed in time for t > 1 and 
given by </>(l,•,•). Now, the resulting system of ODEs is integrated in time, 
resulting in a numerical solution, say, v1 att=7. Next, a solution v2 is determined 
by solving the same equation but now the function <f> is (relatively) disturbed by 
an amount rnx 10-2 , where rn is randomly chosen from (-1, 1) and being 
different for each component of the system and for each value of t. 

At t = 7 we compare both numerical solutions to see to what extent the 
methods have damped or amplified the initial perturbations; to measure the 
amplification factors we define 

(4.11) 

In Tables 12-15 we tabulated these factors for the GPC methods of orders 2, 4, 
and 6 and for the ADI method, respectively. As can be seen from these tables the 
robustness of the GPC methods decreases as the order increases, a phenomenon 
which is commonly encountered in using linear multistep methods. However, in 
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TABLE 12 
F-values for the second-order EP-BD method 

B At= 1/2 .::it= 1/4 At= 1/8 At= 1/16 

0·1 2·310-3 3·310-4 6·510-4 3·210-4 
B* =~ 0·4 3·910-4 7·510-4 3·210-4 

0·2 0·4 3·410-3 4·110-2 14·9 
0·3 * * * * 

TABLE 13 
F-values for the fourth-order EP-BD method 

& .dt = 1/4 At= 1/8 .dt = 1/16 

0·01 * 1·010-3 2·310-4 
&* = 1/31 * 1·110-3 1·810-4 

0·05 * 1·510-2 1·1 
0·1 * * * 

TABLE 14 
F-values for the sixth-order EP-BD method 

8 

0·005 
&* = 1/127 

0·01 
0·02 

.dt = 1/8 At= 1/16 

* 5·810-4 
* 8·910-4 
* 1·310-3 

* * 

TABLE 15 
F-values for the ADI method 

At= 1/32 

4·410-4 
4·510-4 

* 
* 

NEWT .dt = 1/16 .dt = 1/32 

1 
2 
5 

* 
* 
* 
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comparison with the ADI method, all GPC methods tested can deal with a larger 
time step as far as stability is concerned, thus reducing the number of vectors to 
be stored. 

5. Conclusion 

We have indicated how a class of methods for certain parabolic equations with 
delay can be derived by extending the GPC methods for semidiscretized parabolic 
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equations. The resulting methods have the following properties: 
(i) The GPC method consists of an (explicit) linear multistep predictor, an 

(implicit) linear multistep corrector and an (unconventional) iteration 
scheme. 

(ii) In order to relax the stability conditions for this method the predictor 
should be based on extrapolation of preceding Yn -values and the corrector 
should be A(a)-stable where a is allowed to be relatively small. 

(iii) The integration step may be freely chosen because the number of 
iterations is automatically adapted to ensure stability; therefore, the inte­
gration step is determined only by accuracy considerations and not limited 
by stability. 

(iv) By choosing a high-order corrector the method can take large integration 
steps (as far as accuracy is concerned) thereby limiting the number of back 
values which should be stored to compute the delay term; the reduction in 
storage is considerable when compared with conventional methods, such as 
fully or partially implicit methods. However, if the problem is extremely 
nonlinear it may happen that a lower-order method is more stable (see the 
example in Section 4.4). 

(v) For several test examples we compared the GPC methods with an adjusted 
form of the ADI method. The storage reduction factors are roughly 5 and 
2 for these problems (in favour of the GPC methods). Moreover, in terms 
of CP seconds (measured on a CDC 750 computer) the GPC methods are 
more efficient. 

(vi) Finally, because of its explicit character, the GPC method can also be 
applied to non-5-point space discretizations which allows us to integrate 
problems with mixed derivatives, or to employ high-order space molecules; 
in the latter case, the magnitude of the spatial meshes can be increased 
resulting in a smaller spectral radius B(af/ay) and as a consequence a 
smaller number of stages per step. This is in sharp contrast with the fully or 
partially implicit methods where these high-order molecules will consider­
ably increase the computational effort to solve the implicit relations. 
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