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A Berry-Esseen bound of order n-~ is established for linear 

combinations of order statistics. The theorem extends pre­

vious results for the case of bounded weights to a class 

of L-statistics with unbounded weight functions. 

1. INTRODUCTION AND RESULT 

Let x1,x2, ... ,Xn be independent random variables (r.v.) with comnon distribution 

function (df) F and let Xl:n ~ ... ~ Xn:n be the corresponding order statistics. Let 

J be a fixed real-valued weight function on (0,1). We consider L-statistics (or 

1 i near combi nations of order s ta ti sti cs) of the form: 

n i /n 

(1.1) Tn J J J(s)ds Xi :n· 
1 =l i-1 

Let n 

( 1.2) F*n(x) P(T* ) n~x for - "' < x < "" 

where 

In the past decade there has been considerable interest into the asymptotic dis­

tribution theory for L-statistics. It is well-known that T~ is asymptotically 

normally distributed under quite general conditions. A survey of such results was 

given by Serfling (1980). We also refer to a recent paper of Mason (1981), which 

contains the best result so far obtained in this area. 

More recently attention has been paid to the problem of establishing Berry-Esseen 

bounds for L-statistics. We mention the work of Bjerve (1977), Helmers (1977,1981, 

1982), Serfling (1980) and van Zwet (1983). These authors obtained Berry-Esseen 

bounds for L-statistics for the case of bounded weights. The purpose of this paper 

is to derive a Berry-Esseen bound for L-statistics with unbounded weight functions. 

93 



94 

Let ~ denote the standard normal df and define F-l by 

F-1(s) = inf{x:F(x) ~ s} for O < s < 1. 

THEOREM 1. Suppose there exists numbers o > 0, E: > 0 and K > 0 such that 

(I) the function J satisfies a Lipschitz condition of order l on [E,1-£], whereas 

on neighbourhoods (D,E) and (1-£,1) of zero and one, J is twice differentiable 

with second derivative J", satisfying 

(1.4) jJ"(s) I 5 KCs(l-s)J-2 

(II) the inverse F-l satisfies 

(1.5) jF-1(s) I 5 K(s(l-s) fa+o for O < s < 

and 

(1.6) 
-~ +o _§ +cS 

IF-1(s 1)-F-1(s 2)1 5 Kjs 1-s2jc(s 1(1-s 1)) 4 +(s 2(1-s 2)) 4 J 

2 
for 0 < s1,s2 <£and 1-£ < s1,s2 < 1. Then a (J,F) > 0 where 

"' "' 
(1.7) a2(J,F) J f J(F(x))J(F(y))(F(min(x,y))-F(x)F(y))dxdy 

-co -co 

implies that 

(1.8) supJF~(x) - ~(x) I = D(n-~). as n ~ "'· 
x 

The theorem allows weight functions J tending to infinity in the neighbourhood 

of 0 and 1 at a logarithmic rate. An example is provided by the weight function 
-1 

~ , the normal quantile function. Then Tn is an asymptotically efficient L-

estimator of normal scale. 

Our method of proof resembles those of van Zwet (1977) and Does (1982) as these 

authors also combine smoothing techniques with appropriate conditioning arguments. 

In section 2 we prove the theorem. The proofs of a number of lemmas are omitted, 

but these may be found in Helmers & Hu~kova (1984). 

2. PROOF 

Let, for any n ~ 1, (Ul:n' ... ,Un :n) denote the order statistics corresponding 

to a sample of size n from the uniform distribution on (0,1). For any integer 

1 5 m 5 [£nJ, let V = (Vl:m-1•···,Vm-l:m-l), Z = (Zl:n-2m•···•Zn-2m:n-2m) and 
W = (Wl:m-l•···•Wm-l:m-l) be vectors of order statistics corresponding to samples 
of sizes m-1, n-2m, and m-1 from the uniform distribution on (0,1) and let 

V ,Zand W, Um:n' and Un-m+l:n be independent. Then the joint distribution of 

(U 1 :n' ... ,Un:nl is the same as that of 

<2·1) um:n vl:m-1•···•um:n vm-l:m-l'um:n' 
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(Un-m+l:n-Um:n)Zl:n-2m + Um:n•·· .,(Un-m+l:n-Um:n)Zn-2m:n-2m + 

+ Um:n' Un-m+l:n'(l-Un-m+l:n)Wl:m-1 + Un-m+l:n•···• 

(l-Un-m+l:n)Wm-l:m-1 + Un-m+l:n. 

Since the joint distribution of x1. ·n' i = 1, ... ,n is the same as that of 
-1 . 

F (Ui :nl' i = 1, ... ,nit follows directly from (2.1) that the distribution of 

Tn (cf.(1.1)) can be identified with that of 
m/n 

(2·2l 11n(Um:n) + J J(s)ds F-l(Um:nl + T2n(Um:n'Un-m+l:n) 

where 

(2. 3) 

(2. 4) 

and 

(2.5) 

m-1 
n-m+ 1 n 

n 

+ j J(s)ds F-l(Un-m+l:n) + 13n(Un-m+l:n) 

n-m 
n 

m-1 
I. 

i =1 

i 
n 

J 
i -1 

i+n-m+l 
m-1 n 

T3n(Un-m+l:nl = .l J 
l=l i+n-m 

n 

-1 
J(s)ds F (W; :m-1 (1-Un-m+l:n)+Un-m+l:nl. 

Clearly, the r.v. 's T1n(Um:n),T2n(Um:n'Un-m+l:nl and T3n(Un-m+l:n) are conditional­

ly independent, conditionally given Um:n = u and Un-m+l:n = v for any 

0 < u < v < 1. This fact will be crucial in what follows. 

Define, for~~ n 
n-m 

s ~ -n-· the function ljJn by 

n-m n-m 
n n 

(2.6) ljJn ( s) I J(y )dy -
(n-m s) 

J J (y) dy ::re -
n-2m 

s n m 
n 

and note that 1jJ (~) = 1jJ (.r:i-m) = 0. Let rn-2m denote the empirical df based on 
n n n n _1 (Z') 

zl .... ,Zn-2m; i.e. rn-2m(s) = (n-2m) I~:~m I(O~s) for 0 < s < 1, where 

z1, ... ,Z 2 are independent uniform (0,1) r.v.'s corresponding to the order 
n- m 
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statistics z1 2 , .•• ,Zn 2 2m. Here and elsewhere IA(·) denotes the indicator :n- m - m:n-
of a set A. For any r.v. X, with 0 < cr(X) < 00 , we write X for X-EX and x* for 

(X-EX)/cr(X). 

Similarly as in Helmers (1981;1982) we can write 

(2 •7l T2n<Um:n'Un-m+l:nl = 
1 

= ( ,,, (!!!. + n-2m r (s))d F-1cu +(u u )s) + J "'n n n n-2m m:n n-m+l:n- m:n 
0 n-m 

n _1 n-2m _1 ( 
+ (n-2m) L F (Um:n+(Un-m+l:n-Um:n)Zi)· J J(y)dy. 

i=l m 
n 

To proceed we note that, as J is Lipschitz of order 1 on [£,1-£) {cf. assumption 

(I)), we can approximate r2n from above and below for sufficiently large n by 

r.v.'s T2n+ and r2n- defined by 

(2 -8) T2n+(Um:n'Un-m+l:nl 

1 

= f {1/J (!!!. + n-2m s) + n-2m (r (s)-s)lfJ' (!!!. + n-2m s) 
n n n n n-2m n n n 

0 

-1 n-2m 2 2 
:!:. 2 L(-n-) (rn-2m(s)-s) I[E,1-d (s) 

+ 2-l(n-2m)2(r (s)-s)21/J"(!!.l. + n-2m s)I (s) 
n n-2m n n n (0,E)u(l-£,1) 

+ 6"."l(n~2m)3(r n-2m(s)-s) 3$,~(W + n~2m p.s+(l-;>..)r n-2m(s)). 

-1 
1 (0,~)u{l-2,l)(s)}d F (Um:n+(Un-m+l:n-Um:n)s) 

n-m 

n-2m n 
+ (n-2m)-l iL F-l(Um:n+{Un-m+l:n~Um:n)Z;) J J(y)dy 

m 
n 

where Lis the Lipschitz constant and;>.. a random point in [0,lJ; i.e. 

Defi ne ( cf. ( 2 • 2) ) 

(2.10} 
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In the following lemma we relate T~ with T~+ and T~- (cf. Helmers{l981);{1982) 
for a similar approach). 

LEMMA 2 .1. If the assumptions of Theorem 1 are satisfied, then 

(2 .11) 

and 

(2.12) 

for appropriate sequences xn+' n = 1,2, ... and xn-' n 1,2, ... satisfyin{J 

(2.13) 

uniformly in x. 

PROOF. See Helmers & Hu~kova (1984). O 

In view of Lemma 2.1 it obviously suffices to show 

(2 .14) suplP{T*+~x)-~(x)I= O(n-~) 
x n_ 

instead of (1.8). To prove (2.14) we show that for some sufficiently small y > 0 

(2 .15) 

and 

J ltl-llP~+(t)ldt = O{n-~), 
nY<ltl~ni 

(2 .16) 

where P~+ denotes the characteristic function (ch.f) of T~+· An application of 
Esseen's-smoothing lemma (see, e.g., Feller {1971), p.538)-will then complete 
the proof of (2 .14). 

We first prove {2.15). To start with we note that (2.1)-(2.5) and the remark 
following (2.5) directly yields 

(2.17) 

2 2 where on+ = a (Tn+l and, for any r.v. X with EIXI < 00 , 
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( 2 .18) 

Note that the expression within square brackets in (2.17) is precisely equal to 

the condi ti ona l eh. f. of r* , where the condi ti oni ng is on U and U 1 . 
n+ m:n n-m+ :n 

The expectation operator Cin {2.17) refers to the expected value taken w.r.t. 

(Um:n'Un-m+l :nl · 

We continue with the analysis of P~+(t). In the next lemma we derive asymptotic 

approximations for the first and thTrd factor within square brackets in (2.17); 

i.e. for it;ln(u){t) and q,; 3n(v)(t) for 0 < u < E and 1-E < v < 1 

LEMMA 2.2. If the asswrrptions of Theorem 1 are satisfied, then for any real 

t and 0 < u < s 

(2.19) 

Q,nd 

(2.20) 

l<P;ln(u)(t) - 1 + ~t2 a~~ a 2{T1n(u)) I 

= O{n-3/2{logn)31tl3 u-3/4+3om3/2) 

2 -2 2 -~+26 
a (T ln(u)) = O(n (logn) u m). 

The r>elations (2.19) and (2.20) r>emain valid if we replace T1n(u) by T3n(v) 

and u by 1-v. 

PROOF. See Helmers & Huskova (1984). O 

We also need an asymptotic approximation for 1*T (u )(t) for O<U<E,l-E<v<l. 
2n+ ,v 

Note that r.v. Sn(u,v) appearing in the following-lemma corresponds to the 

leading term in the stochastic expansion (2.8), conditional on U = u and 
m:n 

un-m+l:n = v. 

LEMMA 2.3. If the assumptions of Theorem 1 ar>e satisfied, then for any 

I t I <;; n ~ and 0 < li < E, 1-s < v < 1. 

(2.21) * 2 -2 2 
l<Pr (u v)(t) - exp(-~t o +a (Sn(u,v))) I 

2n+ ' n_ 

-~ 2 3 1 2 -2 2 
=O(n (t+ltl )exp(- 4 tan+a (Sn(u,v))) 

wher>e 
1 

(2.22) n-2m J m n-2m -1 
\(u,v) - (--n-) J(n + -n- s)(rn- 2m(s)-s)dF (u+(v-u)s). 

0 
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PROOF. Taylor expanding the ch.f. of T2n+(u,v) yields for any t and 0 < u < v < 1 

* -1 -1 -(2.23) <Pr (u,v)(t) = E[exp{iton+ Sn(u,v)}(l+iton+ Q0 (u,v))J+ 
2n+ - -
2--2 2 -1 

+~t onto (Qn(u,v)+ltlon+ EiR0 (u,v)l 

Here Sn is defined in (2.22), whereas Qn and Rn are the quadratic and third order 

terms in (2.8). Exploiting the von-t1ises statistic structure of Qn(u,v) and 
employing a bound for large deviation probabilities for the empirical df, due to 

Lai (1975), p.827, for the estimation of EJR 0 (u,v)i we arrive at (2.21). For 

details of the proof see Helmers & Hu¥kova (1984). O 

To deal with the fourth factor within square brackets in (2 .17) it will be con­

venient to have 

LEMMA 2.4. If the assumptions of Theorem 1 ure satisfied, then 

(2 .24) 3 
E[E(Tn.:!:_lUm:n'Un-m+l:n)-ETn.:!:_l 1(0,E)(Um:n) 1(1-s,l)(Un-m+l:n) 

= O(n-3/2(~)3/4+3o(logn)3). 

PROOF. See Helmers & Hu¥kova (1984). D 

We are now in a position to complete the proof of (2.15). Take m = Cn 1/ 3J. 

Application of an exponential bound for uniform order statistics (see, e.g., 

Lemma A2.l of Albers, Bickel and van Zwet (1976)) yields 

I 1 itr\ 
I It[- IP~+(t) - Ee n_I(0,E)(Um:n) 1(1-s,l)(Un-m+l:n)ldt 

[t[~nY -
( 2. 25) 

= O(n-~). 

Also we obtain with the aid of Theorem 1 of Mason (1981) that 

( 2. 26) 0 < lim no~+ = o2(J,F) < ~. 
n-

Using (2.17), (2.26) and the Lemma's 2.2, 2.3 and 2.4 we find after some elemen­

tary computations for all ftl ~ rrY for some sufficiently small y > O 
. tT* 2 
, n+ -~t I 

(2.27) \Ee - I(O,s) (Um:n)I(l-£,1) (Un-m+l:nl - e 

2 -2 2 2 -2 
~ \EC(l-2t on.:!:_o (T 1n(Um:n)\Um:n))(l-~t on.:!:_ 

o2(T3n(Un-m+l:n)\Un-m+l:n)Xexp(-~t2o~~o2(Sn(Um:n'Un-m+l:n)))\ 

Um:n'Un-m+l:n) (l+it(E(T~.:!:.[Um:n'Un-m+l:n) - ~t2 

(E(T~+1Um:n'Un-m+l:n)) 2 ) 1 {0,£)(Um:n)I(l-£,l)(Un-m+l:n)J 
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_it2 - 1 2 3 1 2 ~ 1 0 -e 2 l+O(n 2 (t +It! )exp(- 5 t )) + O(n- -2 ). 

Combining now (2.25) through (2.27) we arrive after some calculations involving 
conditional moments (cf. Helmers & Hu~kova (1984)) at (2.15). 

Next we prove (2.16). Take m = [aEnJ. Using (2.17) once more we find for all 
It\ s n~ 

(2.28) IP~+(t)I s El<P~ (U u )(t)I. 
2n+ m:n' n-m+l:n 

Clearly T2 (u,v) is the sum of a non-degenerate Li-statistic of degree 2 with a n+ -1 -1 kernel, whiCh is bounded by C( IF (u) l+IF (v) I) for some constant C > 0, and a 
remainder term satisfying EIR (u,v)I= O(n- 312(1F- 1(u)l+IF- 1(v)I)). Hence the n 
argument given in Helmers and van Zwet (1982), p.504-505, cf. their relation (3.10), 
can essentially be repeated to find that for some sufficiently small y > 0 

(2.29) I ltl-llP~+(t)ldt s 
nY<ltlsn~ 

J -1 * ( ) < ltl El<PT (U U ) t ldt 
- y i 2n+ m:n' n-m+l:n n <ltlsn 2 

+ (F-l(Um:n))2 + (F-l(Un-m+l:n))2 + (IF-l(Um:n)I + 

+ IF-l(Un-m+l:n) I )J) 

= O(n-~) 

which proves (2.16). This completes the proof of Theorem 1. 
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