
AFDELING INFORMATICA 

stichting 

mathematisch 

centrum 

(DEPARTMENT OF COMPUTER SCIENCE) 

L.G.L.T. MEERTENS & J.C. VAN VLIET 

AN OPERATOR-PRIORITY GRAMMAR FOR ALGOL 68+ 

~ 
MC 

IW 173/81 AUGUSTUS 

kruislaan 413 1098 SJ amsterdam 



Pfvi.nted at .the Ma:themruc.al Ce.nttc.e, 413 K}(.U.,<,6£.a.a.n, Am!i.tvu:J.am. 

The Mathema.:tic.al Centlte , 6ounded .the 11-.th 06 FeblUUVl.y 1946, -U a. non
pll.o6U hi6:t1.:t.u,ti.on a,un,i.ng at .the p1r.omo:tlon 06 pUll.e mathemruc..& a.nd i.,t6 
a.ppUc.a.:tlon&. 1.t -U .6pon&oll.ed by .the Ne.thelll.a.n.d6 GoveJtnment .thMugh .the 
Ne.thellla.nd6 01tga.ru..zruon nail. .the Adva.nc.ement 06 PUll.e Ruea.ll.c.h (Z.W.O.). 

1980 Mathematics suoject classification: 68F05, 68F25, 68B20 

ACM-Computing Reviews-category: 5.23, 4.22, 4.12 



An operator-priority grammar for ALGOL 68+ 

by 

L.G.L.T. Meertens & J.C. van Vliet 

ABSTRACT 

If a grammar is of type LL(1), this easily leads to a parsing method 
for that grammar, implemented by a set of mutually recursive routines, 
one for each non-terminal of the grammar. ALGOL 68+ is a superlanguage of 
ALGOL 68 which is powerful enough to describe the standard-prelude. An 
operator-precedence grammar for ALGOL 68+ can, through a simple right
to-left transduction scheme, be made to be of type LL(1). If, in 
addition, the grammar is an "operator-priority" grammar, an easy and 
consistent error-recovery mechanism can be applied. In this report, such 
an operator-priority grammar for ALGOL 68+ is given. An account of the 
differences between the language generated by that grammar, and ALGOL 
68+, insofar as these are due to the transition to an operator-priority 
grammar, is given as well. These differences somehow have to be catered 
for during the parsing process. 

KEY WORDS & PHRASES: ALGOL 68+, operator-precedence grammar, top-down 
parsing 





1. INTRODUCTION 

If a grammar is of type LL(1), this easily leads to a parsing method 
for that grammar, implemented py a set of mutually recursive routines, 
one for each non-terminal of the grammar. Using such a parser, there is 
no need to back up, since it is decidable which rule to apply (i.e., 
which routine to call) by looking at most one symbol ahead. A more formal 
treatment of LL(1) grammars and parsers based on them can be found in 
[ 1 J • 

ALGOL 68+ is a superlanguage of ALGOL 68 [2] which is powerful 
enough to describe the standard-prelude. Besides this, ALGOL 68+ also 
encompasses the official IFIP modules and separate-compilation facility 
as given in [3]. The changes and additions to the language needed to be 
able to process a version of the standard-prelude are of a fairly simple 
nature; they are described in [4]. 

A contEixt-free grammar underlying the ALGOL 68+ syntax, such as the 
one given in [5], is not of type LL(1), but it seems possible to 
construct an LL(1) grammar for "context-free ALGOL 68+11 • However, in 
doing this, the original syntactic structure is lost. 

Another possibility is to apply beforehand a simple transduction 
scheme [6], operating from right to left, which brings the source text in 
prefix form .. For example, the assignation 

a:= b 

may be transformed into 

::: ab • 

It is now possible to decide on the first character that we are concerned 
with an assignation. In order to apply this method, the parenthesis 
skeleton should be correct, for, if this transduction scheme is applied 
bluntly to a source text with an incorrect parenthesis skeleton, the 
result is in general unacceptable. To this end, one can either try to 
repair the parenthesis skeleton during lexical analysis if it turns out 
to be incorrect (e.g., using the algorithm given in [7]), or decide to 
abort the parsing process altogether. 

For an operator-precedence grammar, at most one of three 
relationships (denoted by~, f, or~) may hold between each pair of 
terminal symbols. These relationships are called the precedence 
relations. (For a formal treatment of operator-precedence grammars, see 
[8] or [1].) For an operator-precedence grammar, it is possible to 
construct a transducer which brings the source texts in prefix form, only 
knowing the precedence relations between the symbols. (It is a 
straightforward variant of the operator-precedence parsing algorithm 
given in [9], pp. 170-171.) 



2 

In general, a number of entries in the table of precedence relations 
is empty, i.e., there is no precedence relation between certain pairs of 
terminal symbols. For correct input texts, this is no problem, since the 
transducer will never need them. For incorrect input texts, however, the 
transducer might well ask for them. In order to let the transducer work 
for all input texts, it is therefore necessary to define precedence 
relations for the empty spots as well. For an arbitrary operator
precedence grammar, it is not clear how to fill these empty spots in such 
a way that a reasonably consistent treatment of incorrect input texts is 
obtained. Therefore, some further restrictions on the grammar will be 
introduced, leading to the notion of an operator-priority grammar. 

For terminal symbols a and b, we define a< bas: either a~ b or no 
precedence relation holds between a and b, and similarly for a= band 
a> b. This relation can be extended to sets of terminal symbols. If A 
and Bare sets of terminal symbols, we define A< Bas: 

A < B <=> Va E A, b E B: a < b. 

A= Band A> Bare defined in a similar way. 

The first restriction that is imposed can now be stated as follows: 

(1) The sets of terminal symbols can be partitioned into sets O, M, C and 
P satisfying: 

i) 0 < o, 0 = M, 0 = c, 0 < P; 
ii) M < o, M = M, M = c, M < P; 

iii) C > M, C > c, C > P; 
iv) p < o, p > M, p > c. 

Though this restriction looks rather complex, it is in fact quite 
easily satisfied. Suppose a production rule of the grammar contains 
terminal symbols a 1, ••• , a, in this order. For a production rule with 
n = 1, the one terminal symb81 it contains will be called an "operator". 
So, in the production rule 

assignation: destination, becomes token, source. 

the becomes-token(":=") is called an operator. For n > 2, a will be 
called an "opener", a. will be called a "middler" for 2 < i ~ n-1, and a 
will be called a 11 clo§er11 • This terminology is not surprising, since sucR 
production rules in general describe parenthesized constructs, like 
begin ••• end, or if ••• then ••• else ••• fi. 

If the grammar is made such that the openers, middlers, closers and 
operators form mutually disjoint sets, then restriction 1 is 
automatically fulfilled if we define o, M, C and P to be those sets, 
respectively. This can easily be verified from the definition of an 
operator-precedence grammar. 



The above observation allows us to partly fill in the empty entries 
in the table in a consistent way. The remaining empty spots concern the 
precedence relations between closers and openers, and mutually between 
operators. However, even for arbitrary (incorrect) input texts, the 
transducer need never ask for a relation between a closer and an opener 
(see [10] for further details). 

As for the operators, a further restriction is imposed: 

(2) The set of operators can be partitioned into sets A1, ••• , Am 
satisfying: 

3 

i) There exists a total linear order<< between the sets satisfying, 
for ii j: 

Ai<< Aj =>Ai< Aj A Aj > Ai. 

ii) For each of the sets Ai, 1< i < m: 

Ai< Ai v Ai> Ai. 

Intuitively, the total linear order<< implies that if A. << A., then 
elements from A. always occur at a higher node in the pafse tr~e than 
those from A., ~rovided no parenthesized constructs occur in between. 
(The operato~s with higher priorities tend to occur at lower nodes.) 

Restriction 2ii) above implies that operators from one and the same 
set are either all right-associative(<) or all left-associative(>) 
operators. It should be noted that the partitioning of the set of 
operators is not necessarily unique. If there is a proper subset of one 
of the A. such that no precedence relation holds between any pair of 
operator§ from the subset, then the partitioning may be refined. 
Arguments related to the error-recovery method envisaged (see [10]) may 
then be applied in order to choose the more desirable partitioning. 
A short survey of the partitioning we have decided on is given in 
Appendix C. 

If an operator-precedence grammar fulfills the requirements under 
(1) and (2) above, it will be called an operator-priority grammar. Such 
an operator-priority grammar for ALGOL 68+ is given in Appendix A. In 
Appendix B, the corresponding table of precedence relations is given. The 
terminal symbols have been listed and the sets A. have been delineated 
such that the fulfillment of the operator-prioriEy requirements can be 
readily verified. 

The test for the grammar being operator-precedence was performed 
mechanically. Various initial clashes came to light hereby. The measures 
taken to make the grammar operator precedence can be distinguished in 
three categories: 



4 

a. Trivial rearrangements of the syntax. This has mainly been done by 
considering some notions as macros, to be replaced (conceptually) in 
the productions in which they occur by their direct productions. 
Obviously, this trick can only be used for nonrecursive notions. In 
the grammar (see Appendix A), these notions are indicated by prefixing 
their production rules with an asterisk. 

b. Distinguishing symbols represented by the same mark. For instance, it 
was necessary to distinguish between the up-to-/label-token, the 
specification-token and the routine-token. For a complete list of this 
category, see section 2 below. 

c. Various symbols have been inserted between notions. For instance, a 
"dectag-insert" is placed between a declarer and the following TAG
token in an identifier-declaration. Again, section 2 contains a 
complete account of the modifications from this category. 

(The function of the changes in categories a and c is to separate any two 
notions in a production rule by at least one symbol, whereas category b 
serves to resolve clashes in the precedence relations.) 

The check for the further restrictions on the grammar was performed 
manually, by inspecting the table of precedence relations. A few 
iterations were needed before the final grammar was obtained. This 
grammar and the table of precedence relations are given in Appendix A and 
B, respectively. Appendix C gives a list of the priorities of the various 
operators and their left or right associativity. 

When actually parsing ALGOL 68+ texts, the same modifications must 
be applied. The task of making the distinctions of category b above, and 
of placing the inserts of category c, can largely be delegated to the 
lexical pass. A precise description of how the input texts can be made to 
conform to the operator-priority grammar is given in [ 11] .i In section 2 
below, only a short summary of these modifications is given. 

The further differences between ALGOL 68+ and the language described 
by the operator-priority grammar are given in section 3. Some of the 
changes underlying these differences have been made to resolve clashes in 
the precedence relations, or to get a proper ordering between the 
operators. Others are the result of combining rules whose productions 
partly overlap, such as those for calls and slices. For instance, there 
is no way to decide whether "a(1)" is a slice or a call without knowing 
the mode of the identifier "a". In such cases, the syntax has been 
relaxed by combining the production rules, so as to make possible the 
top-down parsing method based on an LL(1) grammar. It is mainly the task 
of the syntax- and semantic-analysis phases of the compiler to take these 
differences into account. (The differences caused by the transition to a 
context-free grammar, as given in [5], must be added to the list.) 

In fact, the right-to-left transduction results in a linearized 
parse tree. Obviously, the same parse tree would have resulted from the 
standard operator-precedence parsing algorithm. This algorithm, however, 
offers rather poor possibilities to handle incorrect input texts. Care 



has been ta1cen to ensure that, when the right-to-left transduction is 
applied to the grammar, the resulting grammar is of type LL(1). This 
allows for a unique assignment of semantics to the nodes of the parse 
tree during the subsequent mode-independent analysis. This top-down 
parsing method is further discussed in [10]. 

2. ADJUSTMENTS TO BE MADE DURING LEXICAL ANALYSIS 

It is one of the duties of the lexical phase of the parser to cope 
with the differences listed in this section. 

• On the lowest level, a distinction is made between 
( as open-mark and as choice-start; 
I as choice-in and choice-out; 
) as close-mark and as choice-finish; 

5 

= as is--defined-as-token, egg-defined-as-token (i.e., the is-defined
as-token from the stuffing-definition) and operator; 
as colon-mark, specification-token and routine-token; 
as skip-token and as operator. 

• On the lowest level, a distinction is also made between defining 
occurrencE~s of operators (in priority- and operation-declarations) and 
applied occurrences (in formulas and Idec-sources). 

• Besides the and-also-token, which separates the individual elements of 
a list, there is a variant, the separate-and-also-token, which 
separates lists. 

• The grammar contains inserts: 
- the loop-insert marks the beginning of a loop; 
- the ssecca-insert marks the end of the revelation of an access-

clause; 
- the dectag-insert is placed between a declarer and the following 

TAG-token in an identifier-declaration; 
- the opdec-insert is placed between the operation-heading and the 

following operator in an operation-declaration; 
- the cast-insert is placed between the declarer and the ENCLOSED

clause of a cast; 
- the clice-insert is placed between the primary and the actual

parameters-pack or indexer-bracket of a call or slice; 
- the row--insert is placed between the ROWS-rower-bracket and the 

following declarer of a ROWS-of-MODE-declarer; 
- the formals-insert is placed between a PARAMETERS-joined-declarer

brief-pack or declarative-brief-pack and the following declarer of a 
procedure-plan or routine-text; 

- the invoke-insert is placed between the revelation and the following 
ENCLOSED-clause in an access-clause. 



6 

3. FURTHER DIFFERENCES 

e Closed-clauses and collateral-clauses are treated alike. This means 
that the following texts will also be accepted: 

par(); 
par (1); 
par ( 1; 2). 

This can easily be dealt with during syntax analysis. 

e After exit, no label-definition is required. Obviously, the mode
independent pass can easily catch this case. 

e In identifier-declarations and -definitions, identity and variable have 
been collapsed. As a consequence, the following texts are also 
accepted: 

loo int a= O; 
LJint-a:= (1, 2); 
[ 1: 2] int a = ( 1 , 2); 
int a= 1, b:= 2. 

The mode-independent pass can use a variable "idvar", with possible 
values "identity", "variable" and "unknown". The starting value is 
determined by the leapety-declarer: when a leap-token or apparent 
actual declarer is encountered, its value is variable, when an apparent 
formal declarer is encountered, its value is identity, and otherwise it 
is unknown. For each separate identifier-definition, its actual idvar 
can be determined. 

• For the same reason, 

bool b:= 'code "GENERATE" 

is also accepted. Here also, the mode-independent pass can easily check 
this, using the above-mentioned variable "idvar". 

e Skips, nihils and jumps are treated as primary, to improve error 
recovery. Because of this, the following is also accepted: 

This can easily be encompassed in the mode-independent pass by treating 
them as an erroneous alternative at their present occurrence in the 
grammar, and by incorporating them as proper occurrence at the original 
place - where, in recognizing a unit or tertiary, the respective 
alternatives tertiary and secondary should appear last (note that this 



7 

grammar is not of type LL(1) any more): 

~---..v __ _,..1 

ko 

The case of a wrongly placed goto-less jump, as in 1 + 1, cannot be 
detected in the mode-independent pass. All those cases will however pop 
up when doing the coercions: the forbidden jumps never occur in a 
strong position. Exception: a:=: 1 or 1 :/::a.This case can be 
treated separately in the mode-dependent pass. (Note that a:=: (1) is 
correct!) 

• For simplicity's sake the nine priority levels for dyadic operators are 
reduced to one in the operator-priority grammar. 

• Slices and calls have been collapsed. So a construction like sin[1:2] 
is also accepted. This kind of error can only be detected during mode
dependent analysis. 

REFERENCES 

[1] AHO, A.V. & J.D. ULLMAN, The Theory of Parsing, Translation and 
Compiling, Vol I: Parsing, Prentice-Hall, 1972. 

[2] VAN WIJNGAARDEN, A. et al, Revised Report on the Algorithmic 
Language ALGOL 68, Acta Informatica 2 (1975), pp 1-236. 

[3] LINDSEY, C.H. & H.J. BOOM, A modules and separate compilation 
facility for ALGOL 68, ALGOL Bulletin 43 (1978), pp 19-53. 

[4] MEERTENS, L.G.L.T. & J.C. VAN VLIET, ALGOL 68+, a superlanguage of 
ALGOL 68 for processing the standard-prelude, Report IW 168/81, 
Mathematical Centre, Amsterdam, 1981. 



8 

[5] MEERTENS, L.G.L.T. & J.C. VAN VLIET, An underlying context-free 
grammar of ALGOL 68+, Report IW 171/81, Mathematical Centre, 
Amsterdam, 1981. 

[6] LEWIS II, P.M. & R.E. STEARNS, Syntax-directed transduction, JACM 
12., 3 (1968), pp 465-488. 

[7] MEERTENS, L.G.L.T. & J.C. VAN VLIET, Repairing the parenthesis 
skeleton of ALGOL 68 programs: proof of correctness, in G.E. 
Hedrick (Ed.), Proceedings of the 1975 International Conference 
on ALGOL 68, Oklahoma State University, Stillwater, June 10-12, 
1975 (also registered as Mathematical Centre Report IW 52/75). 

[8] FLOYD, R.W., Syntactic analysis and operator precedence, JACM ..!Q., 3 
(1963), PP 316-334. 

[9] AHO, A.V. & J.D. ULLMAN, Principles of compiler design, Addison
Wesley, 1977. 

[10] MEERTENS, L.G.L.T. & J.C. VAN VLIET, On top-down parsing of ALGOL 
68+, Mathematical Centre, Amsterdam, to appear. 

[11] VAN VLIET, J.C., Making ALGOL-68+-texts conform to an operator
priority grammar, Mathematical Centre, Amsterdam, to appear. 



9 

APPENDIX A -- OPERATOR-PRIORITY GRAMMAR OF ALGOL 68+ 

In the grammar given below, comments are placed between style-ii
comment-symbols ("#"). The grammar starts with a list of the terminal 
symbols, separated by semicolons and terminated by a period. Production 
rules consist of a left-hand-side and a colon followed by one or more 
alternatives, separated by semicolons. The last alternative is followed 
by a period. An alternative consists of one or more members, separated by 
commas. A member is either a notion, or a list of notions separated by 
commas and enclosed between the syntactic marks"(" and")". In the 
latter case, the direct productions of that member are: empty, and the 
enclosed list of notions. Obviously, this mechanism does not enlarge the 
descriptive power, but is merely an expedient way to shorten the syntax. 

In the comments in the grammar below, the numbers refer to the 
corresponding section numbers in [2], as possibly modified by [3]. The 
representations of the various bold symbols are given in the point
stropping regime. Newly added symbols have a representation which con
tains the escape-character ( 11 ' 11 ). Symbols may have more than one 
representation; in that case, these are separated by spaces, and three 
dots indicate that only examples are given. 

In an operator-precedence grammar, one in general uses special mark
ers to indicate the start and end of the input text. These markers are 
then used to properly initialize and terminate the parsing process. In 
our grammar these are termed "begin of input token" and "end of input 
token", respectively, and a production rule 

input text: 
begin of input token, compilation input, end of input token. 

has been added. 



10 

# terminal symbols# 

II openers II 

open mark; 
bold begin token; 
begin of input token; 
choice start; 
brief sub token; 
loop insert; 
def token; 
access token; 

II middlers II 

choice in; 
choice again; 
choice out; 
for token; 
from token; 
by token; 
to token; 
while token; 
do token; 

II closers II 

close mark; 
bold end token; 
end of input token; 
choice finish; 
brief bus token; 
od token; 
fed token; 
ssecca insert; 

II ( II 
II .begin II 
II 'begin II 
II .if .case ( II 
II [ # 
II 'loop II 
II .def II 
II • access II 

II • then • in I II 
# .elif .ouse I: # 
II .else .out I II 
II .for II 
II .from II 
II • by fl 
II • to II 
II .while II 
II .do II 

II ) II 
II .end II 
II 'end II 
II .fi .esac II 
II ] II 
II .od II 
II .fed II 
II 'ssecca II 

# proper operators, in ascending order of priority# 

# priority a tokens# 
egg token; 

# priority b tokens# 
egg defined as token; 

# priority c tokens# 
postlude token; 
completion token; 

# priority d tokens# 
go on token; 

II .egg II 

II 'edat II 

II .postlude II 
II .exit II 

II 



# priority e tokens# 
· separate and also token; 

# priority f tokens# 
public token; 

# priority g tokens# 
priority token; 
mode token; 
ldec token; 
module token; 

# priority h tokens# 
dectag insert; 
opdec insert; 

# priority i tokens# 
and also token; 

# priority j tokens# 
is defined as token; 
at token; 

# priority k tokens# 
colon mark; 
specification token; 

# priority 1 tokens# 
becomes token; 
identity relator; 
routine token; 
code token; 

# priority m tokens# 
dyadic operator; 

# priority n tokens# 
monadic operator; 

# priority o tokens# 
of token; 

# priority p tokens# 
cast insert; 
clice insert; 

# 'sep # 

fl .pub fl 

# .prio fl 
fl .mode fl 
fl • 'ldec fl 
fl .module fl 

fl 'dectag fl 
# 'opdec fl 

fl , fl 

fl 'idat fl 
# @ .at fl 

fl . fl . 
fl 

, 
spec fl 

n ·- fl ·-
fl . -. .is . -. 
fl 

, 
rout fl 

# • 'code 

: ': 
# 

:/:: .isnt fl 

# +:= .over .xyz ... # 

#+.not .xyz ... # 

fl .of fl 

# 'cast fl 
fl 'cl ice fl 

11 



12 

# priority q tokens# 
reference to token; 
leap token; 
structure token; 
flexible token; 
procedure token; 
union of token; 
operator token; 
go to token; 
row insert; 
formals insert; 
invoke insert; 
formal nest token; 
language indication; 

fl operands fl 
digit token; 
tag token; 
format text; 
string denoter; 
other denoter; 
parallel token; 
choice token; 
defining operator; 
mode indication; 
module indication; 
skip token; 
nil token. 

#9.4.1. representations of symbols.# 

* brief begin token: 
open mark. 

* brief end token: 
close mark. 

* style i sub token: 
open mark. 

* style i bus token: 
close mark. 

* label token: 
colon mark. 

* up to token: 
colon mark. 

hole indication: 
string denoter. 

fl .ref fl 
# .loc .heap fl 
fl .struct fl 
fl .flex fl 
fl .proc fl 
fl .union# 
fl .op fl 
fl .goto .go.to fl 
# 

, 
row fl 

# 'formals fl 
fl 'invoke fl 
fl .nest fl 
fl .fortran ••• fl 

# 1 2 3 4 5 6 7 8 9 # 
fli ••• fl 
fl $3zd$ • • • # 
fl "string" • • • fl 
# 3.14 .true .empty ••• # 
fl .par fl 
fl • 'choice fl 
# +:= .over .xyz ••• # 
fl .int ••• fl 
fl .matrix • • • fl 
fl .skip - fl 
# .nil O fl 



/110. 7. 1. compilation inputs/I 

input text: 
begin of input token, compilation input, end of input token. 

compilation input: 
lenclosed clause; 
prelude packet; 
stuffing or definition module packet. 

lenclosed clause: 
label definition, lenclosed clause; enclosed clause. 

prelude paclrnt: 
module declaration. 

stuffing or definition module packet: 
egg token, stuffing definition. 

stuffing definition: 
hole indication, egg defined as token, 

actual hole or module declaration. 
actual hole or module declaration: 

actual hole; 
module declaration. 

113. clauses .. fl 

enclosed clause: 
closed or collateral clause; parallel clause; choice clause; 
loop clause; access clause. 

113.1. closed clauses.fl 

closed or collateral clause: 
begin, inner clause, end. 

* begin: 
bold begin token; brief begin token. 

* end: 
bold end token; brief end token. 

inner clause: 
serial elause; 
(joined portrait). 

parallel clause: 
parallel token, closed or collateral clause. 

13 



14 

#3.2. serial clauses.# 

serial clause: 
series. 

series: 
train, (completion token, series). 

train: 
declun, go on token, train; lunit. 

declun: 
declaration; lunit. 

lunit: 
label definition, lunit; unit. 

* label definition: 
identifier, label token. 

#3.3. collateral clauses; see also 3.1.# 

joined portrait: 
unit or joined portrait, and also token, unit. 

unit or joined portrait: 
unit; joined portrait. 

#3.4. choice clauses.# 

choice clause: 
choice start, chooser choice clause, choice finish. 

* chooser choice clause: 
enquiry clause, alternate choice clause. 

enquiry clause: 
series. 

* alternate choice clause: 
in choice clause, (out choice clause). 

* in choice clause: 
choice in, in part of choice. 

* in part of choice: 
serial clause; case part list proper; united case part. 

case part list proper: 
case part list, and also token, case part. 

case part list: 
(case part list, and also token), case part. 

case part: 
unit; united case part. 

united case part: 
specification, unit. 

* specification: 
single declaration brief pack, specification token. 



single declaration brief pack: 
brief begin token, single declaration, brief end token. 

single declaration: 
declarer, (dectag insert, identifier). 

* out choice clause: 
choice out, serial clause; 
choice again, chooser choice clause. 

#3.5. loop clauses.# 

loop clause: 
loop insert, 
for part, (from part), (by part), (to part), repeating part. 

* for part: 
(for token, identifier). 

* from part: 
from token, unit. 

* by part: 
by token, unit. 

* to part: 
to token, unit. 

* repeating part: 
(while part), do part. 

* while part: 
while token, enquiry clause. 

* do part: 
do token, serial clause, od token. 

#3.6. access clauses.# 

access clause: 
revelation, invoke insert, enclosed clause. 

revelation: 
access token, joined module call, ssecca insert. 

joined module call: 
module call, (separate and also token, joined module call). 

module call: 
(public token), invocation. 

invocation: 
module indication. 

15 



16 

#4. declarations.# 

declaration: 
publety ldecety declaration, 

(separate and also token, declaration). 
publety ldecety declaration: 

(public token), ldecety declaration. 
ldecety declaration: 

(ldec token), common declaration. 
common declaration: 

mode declaration; priority declaration; 
identifier declaration; operation declaration; 
module declaration. 

#4.2. mode declarations.# 

mode declaration: 
mode token, mode joined definition. 

mode joined definition: 
(mode joined definition, and also token), mode definition. 

mode definition: 
defined mode indication, is defined as token, declarer or code. 

defined mode indication: 
mode indication. 

declarer or code: 
declarer; 
code. 

#4.3. priority declarations.# 

priority declaration: 
priority token, priority joined definition. 

priority joined definition: 
(priority joined definition, and also token), priority definition. 

priority definition: 
operator, is defined as token, priority unit. 

priority unit: 
digit token. 



#4.4. identifier declarations.# 

identifier declaration: 
leapety declarer, dectag insert, identifier joined definition. 

leapety declarer: 
(leap token), modine declarer. 

modine declarer: 
nonproc declarer; modine procedure declarator. 

modine procedure declarator: 
procedure token, (formal procedure plan). 

identifier joined definition: 
(identifier joined definition, and also token), 

identifier definition. 
identifier definition: 

identity definition; variable definition. 
identity definition: 

identifier, is defined as token, ldecety source. 
ldecety source: 

unit or code; 
choice token, Idec source choice list brief pack. 

unit or code: 
unit; code. 

code: 
code token, code string. 

code string: 
string denoter. 

Idec source choice list brief pack: 
brief begin token, Idec source choice list, 

brief end token. 
Idec source choice list: 

(Idec source choice list, and also token), 
Idec source choice. 

Idec source choice: 
choice, up to token, unit or code. 

choice: 
dyadic operator, length denoter. 

length denoter: 
minus token option, integral denoter. 

* minus token option: 
(monadic operator). 

integral denoter: 
other denoter. 

variable definition: 
identifier, (becomes token, unit). 

17 



18 

#4.5. operation declarations.# 

operation declaration: 
operation heading, opdec insert, 

operation joined definition. 
operation heading: 

operator token, (formal procedure plan). 
operation joined definition: 

(operation joined definition, and also token), 
operation definition. 

operation definition: 
operator displayety, is defined as token, ldecety source. 

operator displayety: 
operator; operator display. 

operator display: 
choice token, operator list brief pack. 

operator list brief pack: 
brief begin token, operator list, brief end token. 

operator list: 
(operator list, and also token), operator. 

operator: 
defining operator. 

#4.9. module declarations.# 

module declaration: 
module token, module joined definition. 

module joined definition: 
(module joined definition, and also token), 

module definition. 
module definition: 

defining indication, is defined as token, module text. 
defining indication: 

module indication. 
module text: 

(revelation), module series pack. 
module series pack: 

def token, module series, fed token. 

module series: 
module prelude, (module postlude). 

module prelude: 
decl or unit, (go on token, module prelude). 

decl or unit: 
declaration; 
unit. 



* module postlude: 
postlude token, postlude series. 

postlude series: 
unit, (go on token, postlude series). 

#4.6. declarers.# 

declarer: 
nonproc declarer; procedure declarator. 

nonproc declarer: 
reference to declarator; structured with declarator; 
flexible rows of declarator; rows of declarator; 
union of declarator; mode indication. 

reference to declarator: 
reference to token, declarer. 

structured with declarator: 
structure token, portrayer pack. 

portrayer pack: 
brief begin token, portrayer, brief end token. 

portrayer: 
common portrayer, (separate and also token, portrayer). 

common portrayer: 
declarer, dectag insert, joined definition of fields. 

joined definition of fields: 
(joined definition of fields, and also token), field selector. 

flexible rows of declarator: 
flexible token, declarer. 

rows of declarator: 
rower bracket , row insert, declarer. 

rower bracket: 
brief sub token, rower, brief bus token; 
style i sub token, rower, style i bus token. 

rower: 
(rower, and also token), row rower. 

row rower: 
(lower part), (unit). 

* lower part: 
(unit), up to token. 

19 



20 

procedure declarator: 
procedure token, formal procedure plan. 

formal procedure plan: 
(joined declarer pack, formals insert), declarer. 

joined declarer pack: 
brief begin token, joined declarer, brief end token. 

joined declarer: 
(joined declarer, and also token), declarer. 

union of declarator: 
union of token, joined declarer pack. 

#4.8. indicators and field selectors.# 

identifier: 
tag token. 

field selector: 
tag token. 

ff5. units.ff 

unit: 
assignation; identity relation; routine text; formal hole; 
tertiary. 

tertiary: 
formula; secondary. 

secondary: 
leap generator; selection; primary. 

primary: 
primary one; other denoter; format text; skip token; nil token. 

primary one: 
slice call; cast; string denoter; identifier; #go to# jump; 
enclosed clause. 

#5.2.1. assignations.# 

assignation: 
tertiary, becomes token, unit. 

#5.2.2. identity relations.# 

identity relation: 
tertiary, identity relater, tertiary. 

#5.2.3. generators.# 

leap generator: 
leap token, declarer. 



#5.3.1. selections.# 

selection: 
field selector, of token, ·secondary. 

#5.3.2. slices.# 

slice call: 
primary one, clice insert, indexer bracket. 

indexer bracket: 
brief sub token, indexer, brief bus token; 
style i sub token, indexer, style i bus token. 

indexer: 
(indexer, and also token), trimscript. 

trimscript: 
unit; 
(bound pair), (revised lower bound). 

bound pair: 
(unit), up to token, (unit). 

* revised lower bound: 
at token, unit. 

#5.4.1. routine texts.# 

routine text: 
routine heading, routine token, unit. 

routine heading: 
(declarative pack, formals insert), declarer. 

declarative pack: 
brief begin token, declarative, brief end token. 

declarative: 
common declarative, (separate and also token, declarative). 

common declarative: 
declarer, dectag insert, parameter joined definition. 

parameter joined definition: 
(parameter joined definition, and also token), identifier. 

#5.4.2. formulas.# 

formula: 
dyadic formula; monadic formula. 

dyadic formula: 
operand, dyadic operator, monadic operand. 

monadic formula: 
monadic operator, monadic operand. 

operand: 
formula; secondary. 

monadic operand: 
monadic formula; secondary. 

21 



22 

/15. 4. 3. calls. /I 

115. 4. 4. jumps. fl 

· jump: 

flsee 5. 3. 2. fl 

/!(/Igo to token/I)/!, identifier. 

/15. 5. 1. casts. fl 

cast: 
declarer, cast insert, enclosed clause. 

115. 6. holes. fl 

formal hole: 
formal nest token, nest tail. 

actual hole: 
enclosed clause. 

nest tail: 
(language indication), hole indication. 



APPENDIX B - TABLE OF PRECEDENCE RELATIONS 

1 open mark 
2 bold begin token 
3 big begin token 
4 choice start 
5 brief sub token 
6 loop inse;rt 
7 def token 
8 access tolken 
9 choice in 

10 choice again 
11 choice out 
12 for token 
13 from token 
14 by token 
15 to token 
16 while tok,en 
17 do token 
18 close marl< 
19 bold end token 
20 big end token 
21 choice finish 
22 brief bus token 
23 od token 
24 fed token 
25 ssecca in:9ert 
26 egg token 
27 egg defin,ed as token 
28 postlude token 
29 completion token 
30 go on tok,en 
31 separate and also token 
32 public tol<en 
33 priority token 
34 mode token 
35 ldec token 
36 module tol<en 
37 dectag in:sert 
38 opdec insert 
39 and also token 
40 is define,j as token 
41 at token 
42 colon marl< 
4 3 specification token 
44 becomes token 
45 identity :relator 
46 routine token 
47 code token 
48 dyadic op,erator 
49 monadic O]Perator 
50 of token 
51 cast inse1rt 
52 clice insert 
53 reference to token 
54 leap token 
55 structure token 
56 flexible token 
57 procedure token 
58 union of token 
59 operator token 
60 go to token 
61 row insert 
62 formals insert 
63 invoke in:aert 
64 formal ne:st token 
65 language indication 
66 digit tok,en 
67 tag token 
68 format text 
69 string denoter 
70 other denoter 
71 parallel token 
72 choice tolken 
73 defining operator 
74 mode indieation 
75 module indication 
76 skip token 
77 nil token 

~ 
111111111122222 

1234567 90123456 8901234 
« <« == 
« «< ~ 
« < < < 
« <« <= 
« <« 

« «< < 

« <« 
« «< 
« «< 

« «< 
« <« 
« <« 
« «< 
« <« 

« < < 
« «< 
« «< 
« <« 
< < 

« «< < » 
« «<« 
« «< < 
« «< <»> 
« «< < » 
<< <<< <>>> >>> 
<< <<< <>>> >>> 
<< <<< >>> >>> 

<< <<< <>>> >>> 
<< <<< >>> >>> 
<< <<< >>> >>> 
<< < < >>> >>> 

»> »> 
»> »> 
»> »> 
»> 
»> 
»> 
»> 

>» »> 
>» »> 
»> »> 

<< < < <>>> >>> 
»> »> 

>» 

»»> > 

> > 
»»» 

»» 
»» 
»» 

»» 
»» 
»» 
»» 
»» 
»» 
»» 
»» 
»» 
»» 
>»> 

»» 
»» 
»» 

»» 
»» 

« 
< 

»»>I» » » 
»>~» >»> 
>»j» »» 
»> » »» 
>»y»»» 

I > 
i> 

» »I» » » 
I 

» »I» » » 
>»>I» » » 

2222333333333344444444445555555555666666666677777777 
6789012345678901234567890123456789012345678901234567 

<<<<<<<<<<< << <<< <<<<<<<<<<<<<<<<< <<<<< << << 
«««««< <<< <<<<<<<<<<<<<<<<< 

< < 
««< 
< < 

< « 

««««« < <<< <<<<<<<<<<<<<<<<< <<<<< < << 
< << <<< <<<<<<<<<<< <<<<< <<<<< < << 

< ««<«« 
« 

««««<« 
««««« 
<«<««« 

<<< <<<<<<<<<<<<<<<<< <<<<< 

<<<<< <<<<<<<<<<<<<<<<< 
< <<< <<<<<<<<<<<<<<<<< 
< <<< <<<<<<<<<<<<<<<<< 

<«« 
<«« 
<«« 
< 

« 
< 

< « 
< « 
< « 

<<< <<<<<<<<<<< <<<<< <<<<< < << 
<<< <<<<<<<<<<< <<<<< <<<<< < << 

««««« 
««««« 

<<< <<<<<<<<<<< <<<<< <<<<< 
< <<< <<<<<<<<<<<<<<<<< <<<<< 
< <<< <<<<<<<<<<<<<<<<< <<<<< 

>»> >>>>>>>>>> > >> 
»» > » » > 

»» 
»» 

>»» > 
>»» > 

»» > » » > 
> » 

» 

< 
< < 

< « 
< « 
< « 

<<< <<<<<<<<<<< <<<<< <<<<< < << 
<<< <<<<<<<<<<<<<<<<< <<<<< < << 
<<< <<<<<<<<<<<<<<<<< <<<<< < << 

«««< < « 

>»« « 
> » 
> » 

« 

« 

«««< < 

<««« < 

« 
< 
< 
< 

> » 
> » 
> » 

« 
<<<<<<<<<<< <<<<< <<<<<<<<<<< 

<<<<<<<<<<<<<<< <<<<< <<<<<<< < << 
<<< <<<<<<<<<<< <<<<< <<<<< < << 

» 

»» 
»» 

<<<<<<<<<<<<<<< <<<<< 
<<< <<<<<<<<<<< <<<<< 

> >> <<< <<<<<<<<<<< <<<<< 
> » <<<<<<<<<<< << < 

««< 
««< 
««< 
<«« 

< « 
< « 
< « 

« 
>>>> > >> <<< <<<<<<<<<<< <<<<< <<<<< < << 
> » 
»» 
»» 
>»> 
»» 
»» 
»» 
»» 

> » 
» 

> » 
» 
» 

»> » 
> > » 

»» »> » 
»» 
»» 

»> » 
»> » 

»» >» » 
> 

>»> > » 
»» 
»» 
»» 
»» 
»» 

»> » 
»> » 

> » 
> » 
> » 

> » > 
»» » 
> » » 
> » » 
> » » 

> > > 
> 
> > 
> 

»» 
>»> 

»»> 
>»> 
>»> » » > 
> » » 

» 
>>>> >>>>>> >>> > > 

»» > » » 
»» > » » > 

« < 
« < 
« < 

<«< < 
«« < 

<«< < 
«« « 

<«< « 

«« < 
«« < 

< 

< 
< 

< 
<«« « 
<«« < « 
««< < « 

< 
< 

< 

23 



24 

APPENDIX C 

Below, a short survey of the various sets of operators is given, in 
descending order of priority. The set of operators with the highest 
priority, also termed "operands", is not included in the list below. For 
each set of operators, it is indicated whether they are left-associative 
("L") or right-associative ("R"). 

R reference to token; leap token; structure token; flexible token; 
procedure token; union of token; operator token; go to token; 
row insert; formals insert; invoke insert; formal nest token; 
language indication. 

L cast insert; clice insert. 

R of token. 

R monadic operator. 

L dyadic operator. 

R becomes token; identity relator; routine token; code token. 

R colon mark; specification token. 

R is defined as token; at token. 

L and also token. 

R dectag insert; opdec insert. 

R priority token; mode token; ldec token; module token. 

R public token. 

R separate and also token. 

R go on token. 

R postlude token; completion token. 

R egg is defined as token. 

R egg token. 






