
REKENAFDEL I NG

L. MEERTENS

stichting

mathematisch

centrum

ON STATIC SCOPE CHECKING IN ALGOL 68

MR 135/72

RA

~
MC

AUGUST

2e boerhaavestraat 49 amsterdam

P.tunte.d a.t ;the, Ma.thema.,ti.c.ai. Ce.n.:th.e., 49, 2e. BoeJthaave.1.>.tM.a;t, Am.o;teJtdam.

The. Ma.thema.,ti.c.ai. Ce.ntlte., 6ou.nde.d :the. 11-:th 06 Fe,bll,uevz.y 1946, ,i,t:, a. n.on.
pll,o6U ino.tltu,t,i,on. cumin.g a.t :the. pll,omotion. 06 pMe. ma.thema.,ti.eo a.n.d U6
a.ppUc.a.,ti.ono. I:t ,i,t:, .oponooll,e,d by :the. Ne..the11Mn.d6 GoveJtn.me.nt :tMough :the.
Ne..the11Mn.d6 0.ll,ga.n,,i_za.,ti.on. 60/l, :the. Adva.n.c.eme.nt 06 PUll.e. Re.1.>e.evz.c.h (Z.W.O),
by :the. Mun,,i_upai.Uy 06 Am.o:teJtdam, by :the. Un.-<.veJtoUy 06 Am.6:teJtdam, by
:the. fll,e,e, Un.-<.veJtoUy a.t Am.o:teJtda.m, a.n.d by in.dU.6tlue!.>.

O. Introduction

o.o. Some remarks concerning code optimization.

Consider the following particular-program:

(fork to maxint do -- -- --
(booZ div:=false;

for pd from 2 to k-1 do div:=div v k+: pd = O;

if.1 div then print (k)fi_))

Its author has apparently laid the definition of a prime number to

heart. A sophisticated compiler might, however, produce code as though

the sieve of Eratosthenes had been implemented,-thus gaining much

efficiency. It is, hopefully, clear that a compiler which would go at

such lengths in optimizing the code produced, is likelier to raise the

complexity and, thereby, unreliability, than the overall efficiency.

This example goes to show convincingly, at least to the author, that

there is no such thing as "optimal code", not even as an unattainable

ideal that it is worth striving after.

To our mind, the attitude towards code optimization should be the

following: First, take care to find solid, general solut_ions to the

problems of run time organization. In doing this, state carefully and

clearly the sit~ations for which these solutions have to cater and the

conditions which a purported solution must satisfy in order that the

problem be solved. In this connection, it is of particular importance,

if the solution for problem A depends on some property of that for B,

that this property be noted as a condition pertaining to the solution

for B also. After all this has been achieved, it is time to think

about optimization. The following points have to be kept in mind then:

(i) The class of cases where the optimization should be applicable

must be substantial enough to be interesting. E.g., if the code

associated with the operator tis very inefficient, it might be

interesting to generate for xt2 the same code as for xxx. On the

other hand, it would be perverse to optimize x+1 to x, as this

would probably occur only in programs for testing this

optimization.

2

(ij) The test for applicability should be simple, not only as an

algorithm, but also conceptually. It should be derived as

straightforwardly as possible from the conditions for the

general solution combined with those for this particular

optimization. All too often programming errors are brought about

by an unquenchable want for shortcuts; there is little need for

automation of this procedure.

(iij) The intended simplification must yield an appreciable gain in

efficiency.

(iv) The case for optimization is especially strong when the

efficiency of the general solution is weighed down by some

feature that the "simple-minded" programmer would not (dare) use

or some situation that the honest one would shun. (cf. Bauer's

principle, which states that one should not pay for unused

(perhaps even unwanted) features. We do not adhere categorically

to this criterion: the ALGOL-60-programmer, e.g., who does not

use real numbers, should nevertheless accept that procedures

treat their "arithmetic" parameters as potentially real.)

In the following, we shall pay attention in particular to those

optimizations, whose legitimacy follows from the semantics of ALGOL 68

alone, and which, by virtue thereof, can be applied machine- (and even

implementation-) independently.

0.1. Static scope checking.

According to the semantics of .ALGOL 68 (8.3.1.2.c Step 1 of the

Report), the further elaboration is undefined, when a value is

3

assigned to a name whose scope is larger then that of the value. The

reason behind this restriction is the following: The designers of

ALGOL 68 have had in mind a practical memory organization, to wit a

stack, corresponding to the (dynamical) nesting of the elaboration of

ranges. Thus, elaboration of a range may be considered putting a cell,

or a number of cells, on top of the stack, all of which will be

removed when the elaboration of that range is completed or terminated.

In this scheme, some values are meaningful only as long as a certain

number of these cells still remain on the stack. Examples of this are

presented by the names possessed by local-generators, which may be

represented by the address of a cell in the part of the stack

corresponding to the range in which they are contained. Other

examples are routines, which may give rise to the elaboration of

mode-identifiers or operators whose_value is to be found in the stack.

The reachability of such values outside their domain of meaningfulness

has to be prevented effectively (otherwise the further elaboration

might be undefined indeed). Therefore, care has been taken that such

values cease to exist as soon as one of the parts of the stack on

which their meaningfulness depends is removed. This is achieved by

ensuring that such values will appear only in parts of the stack which,

by the very nature of a stack, must of necessity have been removed

then also.

Now the scope of a value is the largest range during whose elaboration

the value is meaningful. The restriction that the scope of the name be

not larger than that of the value is therefore tantamount to saying

that the value may not be represented in a cell other than in the part

of the stack which has come to existence during the elaboration of the

range which is the domain of meaningfulness of that value. (The

implementor is, of course, free to depart from this scheme when he can

guarantee otherwise that such meaningless values will become

unreachable.) From thes~ considerations it follows, by the way, that

a scope may well be represented by the value of the pointer to the

top of the stack at the initiation of the elaboration of the range

which is that scope.

4

So, for reasons of security, each time a value is assigned to a name,

a scope check has to be performed. Now there is an interesting class

of cases where it can be detected "statically", i.e., at compile-time,

that scope checking is superfluous, as can be seen when one realizes

that nowhere in the implementation of all of ALGOL 60 the need for

scope checking arises.

The idea on which our suggested optimization, viz. the omission of a

check on the scopes, hinges, is the association of an "inner" and

"outer" scope to some external objects.

Let V be the destination and S the source of an assignation. If we

have determined an outer scope cr for V and an inner scope T for S,

i.e., scopes cr and -r such that

1.>c.ope ('D) :,; a and T :,; 1.>c.ope (S)

can be guaranteed both to hold, and it turns out that cr :,; T, then we

know that the test 111.>c.ope {V) :,; 1.>c.ope (S)" cannot possibly fail and

is, therefore, superfluous.

Before we elaborate further on this, we must first obtain some

insight into the relationship between such ranges as can be

discriminated statically, and the ranges and scopes that may arise

dynamically. That the numer of ranges can hardly be bounded

statically, is shown by the example

(proc r = (int n) ::!:.f. n > 0 then int i:=n; r(i-:=1) t!:;
r(begin int n; read (n); n end))

5

1. Analysis

1.0. Terminology.

In order to facilitate the sequel of this discussion, we shall first

develop some terminology.

a) A "prescription model" is a routine-denotation, a procedured

coercend, a procedure-jump or a format-denotation.

(This terminology stems from the fact that prescription models

serve as a model for prescriptions, i.e., routines or formats.)

b) An "invocable object" is a prescription model or an actual -declarer

which is the actual-declarer of some mode-declaration.

c) The "containing" range of an external object is the smallest range

in which that object is contained.

d) An "application" is an identifier (indication, operator) which is

an applied (indication-applied, operator-applied) occurrence.

e) The "definition" range of an application is the containing range of

the defining (indication-defining, operator-defining) occurrence

identified by that application. -

f) The scope of a prescription model Pis the smallest range, if any,

in which Pis contained and which is the definition range of some

application contained in P, and, otherwise, the program.

(Notice that the difference with 2.2.4.2.b of the Report lies in

the fact that here the term "scope" is not defined for a value, but

for an external object, the idea being that this scope is the scope

of the value the external object will possess upon elaboration.)

g) The "invocation" scope of an invocable object which is a

prescription model (an actual-declarer) is its scope (its

containing range).

h) An invocable object which is a routine-denotation, procedured

coercend or procedure-jump (a format-denotation, an actual-declarer)

is "invoked" by elaborating a closed-clause (the constituent

dynamic-replications of a format-denotation, an actual-declarer)

derived from it, albeit after some manipulation as described in

sections 5.4.2, 6.o.2.d, 7.1.2.b, c, d Step 1, 8.2.2.2, 8.2.3.2~

~.2.7.2.b, 8.4.2 and 8.6.2.2 of the Report.

1.1. The relationship between static and dynamic scopes.

First consider the case without invocable objects. As an example,

take

(a:(b:(a:(d:(e:~)); (f:(g:~); (h:(i:(j:~);

(k:~))))); ti:~); (m:~)))

We shall designate each range by a mark bearing resemblance to the

representation of its constituent letter-token. We can now draw the

following diagram

a.

m

6

where each range is connected at its right to its constituent ranges,

if any. At the initiation of the elaboration of range h, say, the

ranges which are "active", i.e., being elaborated, are a., b, c., o and

h: the path from a. to h in the diagram. This will be reflected by the

state of the stack at that time.

Now suppose that we have a program containing an invocable object,

where the diagram of the program, apart from that invocable object, is

e.

g

The range-nesting structure of the invocable object itself may also

be depicted this way, e.g.:

.t

~
Suppose that the invocation scope of the invocable object is e. We

shall indicate this in the diagram as follows:

7

Notice that the containing range of the invocable object may well bee,

say.

Now the invocable object may be invoked in e, and in any range

contained in e. A diagram, showing potentially realizable range-nesting

through a ~roper use of invoking, is

.t"

.t' IC'

b
1111

d
,u,

Notice that this diagram presents an example of "recursion": while

one invocation (ate) is still active, the same invocable object is

invoked again (at .t') and once again (at .6 "). It should be stressed

8

once more, that at any time only such ranges will be concurrently

active as can be found on a path in the diagram from a to some range.

Now suppose that this invocable object contains a prescription model.

Then there are two possibilities:

(i) The scope of the prescription model is larger than the invocable

object (itself, not its scope!). Notice that in this case the

prescription model might as well have occurred outside the

invocable object.

(ij) Its scope is not larger. In this case, this prescription model

may give rise to different routines or formats, whose scopes

depend on the invocation of the embracing invocable object. E.g.,

the diagram

tr. .6 X.
a b .,, ---------..
.... ---~._..c,__ __ ...,.q

where tr.. designates an invocable-object with invocation scope b,

and x. a prescription model with scope .6, gives potentially rise

to the following realizations:

a

.6"' X."' --.-----1"------

In this example, for each of the invocations at b, c. and .6" ,

the value possessed by the prescription model will have a

different scope, to wit .6', .6" and .6"' resp.

So, in general, the scope of the value of an external object will

depend on the invocation of the invocable object in which it occurs.

However, there is some connection between this scope and the scope

9

of that object (which has been defined above for prescription models).

Consider, as an example, the last two diagrams for the case where we

leave the scope of X, for the moment, unspecified. This scope might

be any of the ranges a., b, IL and .6. We can then construct a table of

the scope of the value, depending on which invocation it is determined

in, and on the scope of the prescription model from which it

originated:

scope of the prescription model X

a. b IL .6

invocation of IL at b a. b IL' .6'

C. a. b IL" .6"

.6" a. b It'" .6'"

Now the important thing to notice is the following: the "dynamic"

scopes have, in each invocation, retained the order of the "static 11

scopes. It follows that, in order to compare the (dynamic) scopes of

the values of two prescription models contained in .6, it suffices to

compare the (static) scopes of those prescription models. We claim

that this result extends to cases of arbitrary complexity, as can be

shown using the following argument:

In order that a prescription model be elaborated, to yield a value,

the invocable objects in which it is contained must have been invoked

one by one. We shall demonstrate that each invocation leaves the order

of the definition ranges of the applications contained in the

invocable object unchanged. From this, together with the definition

of scope of a prescription model and the definition of the scope of a

routine or format given in 2.2.4.2.b of the Report, our claim follows.

Now, consider an invocable object Q with invocation scope cr, two

applications contained in Q, and an invocation of Q at some range T,

We have, obviously, T ~ cr. Now we can distinguish three cases:

(i) The definition ranges of both applications are larger than cr.

From the semantics of "protecting", it follows that their

10

definition ranges ar€ not altered by the invocation(*).

(ij) The definition range of one application is larger than o and

the other application has a definition range that is at most

equal to a. Now, the invocation leaves the larger definition

range unaltered, whilst the other one becomes,: at most, which

in turn is at most o.

(iij) The definition ranges of both applications are a or are smaller.

Due to the systematic character of possible replacements of

identifiers and indications, protection will alter the order

of the definition ranges no more than the fact that the modified

copy of Q is inserted in the range -r.

(*) This is not wholly true, because of a snag in section 6.0.2.d

step 4 of the Report. We shall, however, disregard this.

11

1,2. Inner and outer scope.

It may be noticed that the ranges of a program constitute a lattice,

provided that we introduce a "null scope" £ which is empty, under the

two operations

cr n T = the smaller range of cr and T if one of these is, or is

contained in, the other, and, otherwise,£

and cr u -r = the smallest range which is , or contains , both cr and T

(where, by convention, each range other than £

contains£, whereas£ contains no range).

In this terminology, the inner and outer scope of an external object

are a lower and upper bound of the scopes of the future values the

external object will come to possess. We shall denote them as a
11 . • 111 [J scope interva ainneJt' aout.e~.
The scope which is the program will be denoted by "n 11 and the

containing range of the external object under consideration will be

denoted by "p".

Furthermore, we define the term "prescope interval" as follows:

if an external object P and an external object Qare one same sequence

of symbols, and the original of Q is a direct descendant of that of P,
then the prescope interval of Pis the scope interval of Q.

We can now give a number of rules to determine a scope interval for

an external object P. That the interval given yields indeed safe

bounds for the scope of the value of P follows each time from 2.2.4.2

of the Report, the semantics of the Report pertaining to the

elaboration of P and the observation of the scope restrictions

formulated in 6.1.2.e and 8.3.1.2.c step 1 of the Report, together

with the considerations given above. The verification of this is left

to the reader as an exercise.

As the rules are listed below in order of their 11strength" (where a

smaller scope interval is stronger than a larger one), the first rule

applicable should be chosen.

(i) If the mode enveloped by the original of Pis a terminal

production of the metanotion 'l.VDDE' after rule 1.2.1.c

"TYPE: ~LAIN; format; PROCEDURE; reference to l.VDDE."

has been replaced by the rule

"TYPE: PLAIN. II

12

then the scope interval of Pis [TI,TI] (or, in words, the scope

of any value possessed by P is bound to be the program).

(ij) The scope interval of a global-generator (base-vacuum, skip.,

nihil) is [TI,TI]. (If skips and nihils yields a value to which

assignment is impossible, and if at run time a test is

performed to detect this case, then the scope interval may be

a pseudo-scope-interval; see case xi.)

(iij) The scope interval of a local-generator is [p ,p].

(iv) The scope interval of a prescription model is [cr,cr], where cr

stands for its scope.

(v) The scope interval of a mode-identifier (an operator) which

identifies the mode-identifier of an identity-declaration (the

operator of a caption of an ope-ration-declaration) is that of

the actual-parameter of that declaration.

(vi) The scope interval of a dereferenced- (deprocedured-) coercend

is [cr,TI], where cr stands for the inner scope of its prescope

interval. (If a dereferenced-coercend Vis an assignation

which is a constituent of V, then as the scope interval of V
may be taken the scope interval of its constituent source.)

(vij) The scope interval of a call (formula) is [cr,TI], where cr

stands for the greatest lower bound of the inner scopes of its

primary (operator) and of those of its constituent actual

parameters (its operands) which are not local -generators .

(viij) When the value of an external object is said to be that of

another external object, either explicitly (see, e.g.,

8.3.1.2.d step 3 of the Report), or implicitly through 1.1.6.i,

then its scope interval is that of the other external object

(which, if 1.1.6.i applies, is its prescope interval).

(Notice that rule (v) may be derived by iterated application

13

of this rule). This rule applies to closed-clauses, united

coercends, assignations, casts and numerous other objects.

(ix) The scope interval of a selection (slice) is that of its

secondary (primary).

(x) The scope interval of a rowed-coercend is its prescope

interval.

(xi) A jump which is not a procedure-jump has a pseudo-scope

interval, viz. [IT,€]. (The meaning of this pseudo-interval may

be grasped by observing that such jumps, when elaborated, will

terminate the elaboration of the unitary-clause which they

constitute, so that, semantically speaking, no scope violation

may occur. Also, the following rule is likely to shed some

light on its significance.)

(xij) The scope interval of a serial- (collateral-, conditional-)

clause is [cr,,J, where cr(,) stands for the greatest lower

bound of the inner scopes (the least upper bound of the outer

scopes) of the units of its constituent clause-trains (its

constituent units, the then-clause and the else-clause of its

choice-clause). (This rule may be considered "balancing" of

scopes.)

(xiij) The scope interval of an external object (when all other rules

fail} is [p, IT] •

The static scope check for a serial-clause now reads: Determine its

inner scope. If that inner scope is larger than that serial-clause,
then the dynamic scope check (6.1.2.e of the Report) may safely be

omitted.

The static scope check for an assignation now reads: Determine the

outer scope of its destination, and the inner scope of its source.

If that outer scope is not larger than that inner scope, then the

dynamic scope check(8.3.1.2.c Step 1 of the Report) may safely be

omitted.

14

2. Concluding remarks.

From a number of relatively simple rules static scope checks can be

derived, which in the large majority of cases in ordinary run-of-the

mill programs will make dynamic scope checking superfluous. It should

be noted, however, that the security offered by the scope restrictions

will only then be fully effective, when it cannot be invalidated by the

result of elaborating a mode-identifier or a formula having an operator

whose corresponding declaration has not yet been elaborated. Therefore,

as a part of the implementation, the initiation of a serial-clause

should entail making all mode-identifiers and operators of which it is

the definition range, possess a value whose scope is in accordance with

the scope interval determined for those mode-identifiers and operators.

