
AFDELING INFORMATICA

stichting

mathematisch

centrum

L.G.L.T. MEERTENS & J.C. VAN VLIET

PARSING ALGOL 68 WITH SYNTAX-DIRECTED ERROR
RECOVERY

~
MC

I W 54/75 DECEMBER

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEK MATHEMATISCH CENTRUM

__,,.,,,. AMSTERDAM --

~ , 9[[

Punted a:t :the Ma:the.ma.:Uc.ai. Ce.n:t:Jr.e, 49, 2e Boe11.haa.ve,.&.tJta.a;t, Arno.tell.dam.

The Ma:the.ma.:Uc.ai. C en:tlr.e, 6 o u.nded .the 11 -.th o 6 F eb1tuaJLy 1 9 4 6 , ,.u, a. n.o n.­
p1to 6U ino.tltati.on. a.,i.m,i,.n.g a:t .the pll.omotion. 06 pull.e ma:the.ma.:UC6 a.n.d w
a.pplic.a.:Uono. I.t ,.u, .6ponoo1ted by :t.he. Ne.:t.he.Jtla.n.do Gove11.n.me.n.:t :t.hJtough :the.
Ne.:t.he.Jtla.n.do 01tgan.,i,.za.:Uon 601t :t.he. Advanc.e.me.n.:t o 6 Pu/l.e. Rel> e.a1tc.h (Z. W. 0) ,
by :t.he. Mun,i,.upali:t.y 06 Aw.i:t.eJLdam, by :t.he. Un.,i,.veJLoUy 06 Arn.o:t.e11.dam, by
:t.he. F Jte.e. Un.,i,.veJLoUy a:t Arn.o:t.e11.dam, a.nd by .in.dM.tluel> •

AMS(MOS) subject classification scheme (1970): 68AIO, 68A30

ACM-Computing Reviews-categories: 5.23, 4.22

Parsing ALGOL 68 with syntax-directed error recovery

by

L.G.L.T. Meertens & J.C. van Vliet

ABSTRACT

The generality of ALGOL 68 makes it difficult to obtain good error re­

covery when the traditional top-down error-recovery method is applied. An

error-recovery technique is described for operator-precedence languages,

reLying on the existence of an algorithm for repairing incorrect parenthesis

skeletons. This technique was used to construct an LL(l) grammar for parsing

the prefix form of any source text with repaired parenthesis skeleton. The

number of places in the source text where "resynchronization" takes place

is considerably enlarged. In fact, resynchronization takes place for each

terminal symbol involved in the production rule currently applied.

In order to apply the technique to ALGOL-68 programs, the lexical scan

has to insert additional operators in the source text, such as a call/slice

operator between a primary and a following pack or bracket.

KEY WORDS & PHRASES: ALGOL 68, syntax-directed error recovery, operator

precedence, LL(l) grammar, prefix transduction.

l • INTRODUCTION

The primary _purpose of error recovery in the parsing of programs is

to minimize the number of runs required to obtain a syntactically correct

program. This goal is achieved by continuing the parsing in a "meaningful"

way after a syntactic error has been detected, so that pertinent information

may be given on errors occurring further on in the source text.

The generality of ALGOL 68 [1] makes good error recovery considerably

more difficult than it is, for instance, in ALGOL 60. Investigating this

problem, we concluded that the bottleneck for good resynchronization of the

parser was formed by the problem of unbalanced parentheses. Therefore, it

was decided that in the machine-independent ALGOL-68 compiler which is

currently being developed at the Mathematical Centre, incorrect parenthesis

skeletons will be repaired before the source text is parsed. This is treated

in detail in [2] and [3]. This decision now appears to pay off in a twofold

way:

(i} At an early stage it was decided to parse top-down. As a tool for writ­

ing our compiler we have at our disposal the language ALEPH [4,5],

which is particularly suited for top-down parsing according to a gram-

mar of type LL(l}[6]. The context-free grammar underlying [7] the ALGOL-68

syntax is not of type LL(l}, but it seems possible to construct an

LL(l} granunar for "context-free ALGOL 68". However~ in doing this, the

original syntactic structure is lost. Another possibility is to apply

beforehand a simple transduction scheme [8], operating from right to

left, which brings the source text in prefix form. In order to apply

this method, the parenthesis skeleton should be correct, for, if this

transduction scheme is applied bluntly to a source text with an incor­

rect parenthesis skeleton, the result is in general unacceptable.

(ii} The presumption that knowledge about errors in the parenthesis skeleton

would alleviate the problems of error recovery was confirmed in a

stronger way than we expected: The transduction scheme mentioned above

can be amended in such a way that all possible errors in the source

text are described syntactically. Error recovery then simply becomes a

side effect of syntax-directed parsing.

2

It is not surprising that the application of a right-to-left transduction

scheme opens possibilities for error recovery: it can be viewed as an un­

bounded lookahead from left to right.

The purpose of this paper is to sketch this error-recovery technique.

This is done by describing the technique in an informal way. Subsequently,

it is demonstrated on a small example. We conclude with a section on the

specific difficulties involved in applying the technique to ALGOL 68.

2. CONVENTIONS, TERMINOLOGY

We shall refrain from giving a formal definition of well-established

concepts, such as "context-free grammar", the "language described by" a

grammar, "parse tree", "productions", etc. Instead, we shall introduce our

conventions in an informal way. Following the ALGOL-68 terminology, non­

terminal symbols will be called notions, and terminal symbols will be called

symbols.

2.1. LL(k)-grammars and top-down parsing

In this paper, the concept of "LL(k) grammar" is used. For a definition

we refer to [6]. We shall only mention here those properties that are rele­

vant to the exposition.

If a grammar is of type LL(k), this means that it is possible to con­

struct a parse tree for a text described by that grammar in the following

way: Start with (i) a partial parse tree consisting of only one (top) node,

labeled with the start notion, and (ii) that text. The top node is said to

be "untreated". In a number of successive steps, the parse tree will be

developed by attaching to some bottom node which is labeled with a notion a

number of (untreated) descendants, one for each symbol or notion of one of

its productions. At the same time, the text will be accepted by deleting

from left to right successive symbols. Each step has the following form:

Take the leftmost untreated node in the partial parse tree (this is always

a bottom node). That node is then "treated" as follows: If that node is

labeled with a notion, select, on the basis of that notion and the first k

symbols of the text, a production for that notion and develop the parse tree

3

accordingly. (The selection is uniquely determined for an LL(k) grammar.)

If that node is labeled with a symbol, it is equal to the first symbol of

the remaining text (this is a property of the selection procedure for LL(k)

grammars), and that first symbol is deleted.

If the text was indeed produced by the given grammar, this parsing

process will terminate with a complete parse tree (all nodes treated) and an

empty remaining text. Otherwise, the process terminates with a nonempty re­

maining text or at· some stage in the process no selection is possible.

A parsing method as sketched above is known as a top-down method; the

fact that the selection is uniquely determined, so that no decisions have

ever to be undone, labels this method as deterrrrinistie. It may be easily

implemented by a system of mutually recursive routines, one for each notion.

During the parsing process, the untreated part of the tree is reflected in

the status of the link stack.

2.2. Transduetion sehemes

The well-known concepts of translator (translation, translation scheme)

and transducer (transduction, transduction scheme) are closely connected.

The essential difference between a transducer and a translator is that a

translator is guaranteed to work only on proper texts, described by a given

grammar, whereas a transducer works on a wider class of input texts: in

general, on the language f', where Lis the set of input symbols. For a

comprehensive description of these concepts and their applicability, we

refer to [8]. In our case, we are interested only in proper functioning of

the transducer on the subset of E* consisting of texts with a correct

parenthesis skeleton. Such transducers can easily be constructed for a par­

ticular class of operator-precedence grammars, which we have called "opera­

tor-parenthesis grammars".

3. TOP-DOWN ERROR RECOVERY AND ALGOL 68

One advantage of top-down parsing is mentioned by KNUTH: "when we are

fortunate enough to have an LL(l) grammar, we have more flexibility in

applying semantic rules, since we know what production is being used before

4

we actually process its components. This foreknowledge can be extremely im­

portant in practise." [6] (Although this remark specifically refers to LL(I)

grammars, it seems to hold for LL(k) grammars in general, provided that the

k-symbol lookahead is not considered "processing".)

It is not the purpose 9f this paper to justify our choice for a partic­

ular parsing method, but it should be clear that this choice has profound

bearings on the error-recovery techniques possible. GRIES: "The nice part

about top-down error recovery is that the partially constructed tree conveys

much usable information about what should appear next in the source program.

This information is not as readily available in the bottom-up method." [9]

A top-down error-recovery technique is sketched in [9]: If, in the

partial parse tree at some stage no step is possible (for a node labeled

with a notion: no selection is possible; for a node labeled with a symbol:

it is not equal to the first symbol of the remaining string), proceed then

upwards in the tree until a node is encountered, labeled with an "important"

notion, after which the whole tree descending from that node, including the

node itself, is considered treated. Delete, then, successive symbols from

the remaining string until a next step is possible. The parsing process may

now be resumed. For ALGOL 60, an important notion would be, e.g., "state­

ment". If the parsing process gets stuck in a statement, the effect of this

technique would be that the source text is skipped up to a semicolon, end or

else, whereupon the parsing continues. Due to the generality of ALGOL 68,

this technique is not straightforwardly applicable. The ALGOL-60 concepts

of statement and expression are unified in ALGOL 68 into the "unit". A typi­

cal example is given by

print(c:= begin real z = exp(x); (z + 1/z) *.5 end),

which in ALGOL 60 could be

begin real z; z:= exp(x); c:= (z + 1/z) *. 5 end; print(c).

The very least thing to do is not to skip to some resynchronizing symbol

such as a semicolon, end or else, but to make an effort to parse parenthe­

sized constructs encountered meanwhile. But even then, it may be expected

5

that the freedom of expression in ALGOL 68 will give rise to a style of

progrannning compared to which the ALGOL-6O way of cutting into statements

will seem short-breathed. It is therefore desirable to increase the number

of points where resynchronization may take place. But if this is done at all,

it should be done in a systematic fashion; perhaps no error recovery whatso­

ever is better than an unsurveyable collection of ad-hoc methods, the com­

bined effect of which may easily go beyond our limited ability to grasp com­

plicated processes~

4. RESYNCHRONIZATION AND PREFIX FORM

The essence of resynchronization is: if the parsing process gets stuck,

skip the source text in some way up to a symbol where parsing may be re­

sumed. For this to be fully effective, two things are required: knowledge

about which symbols allow resumption of the parsing process, and a guarantee

that such a symbol is indeed present. For, if the cause of the derailment of

the parser was the omission or mutilation of some symbol from the source

text, the remedy of trying to resynchronize on that symbol is, in general,

worse than the disease.

Consider a formula a+ a. (Here, and in the sequel, we loosely apply

such terms as "formula" to pieces of source text which superficially resemble

a proper formula, but which, on closer inspection, may turn out to be in­

correct.) If parsing gets stuck in the operand a, we want it to resume at

the operator+. For a top-down parser, the knowledge that a is an operand

and, therefore, may be followed by an operator, implies the knowledge that

it is to parse a formula at the start of a+ a. This information can be

supplied by bringing the source text in prefix form, so that the formula

reads+ a a. But now the symbol at which to resynchronize has disappeared

from the point of resynchronization! Fortunately, the right-to-left trans­

ducer, which picks up the operator to drop it again somewhere to the left,

can leave behind, at the point where it picked it up, a token that this is

the point at which to resynchronize. For this purpose we introduce a new

"synchronization symbol", or, for short, "synchro", which we denote by .1.

Using this, the prefix form of a+ a becomes+ a.La, and we may observe

6

that the occurrence of an operator, say+, in the source text implies that

it has been dropped there by the transducer, so it has been picked up some.­

where to the right. Therefore, the parser can be sure of the future presence

of a synchro. Likewise, a synchro can only be present if an operator has

been picked up at that place, and that operator must have been dropped

somewhere to the left. Since the transducer picks up and drops operators on

a "last in - first out" basis, the operators and the corresponding synchros

can be viewed as properly balanced and nested parentheses.

We want to have a grammatical treatment of the prefix-form output texts;

to this purpose, the transduction may, as it were, be performed on the

productions of the original grammar.

4.1. Operator-parenthesis and synchronized prefix grammars

Let G be an operator-precedence grammar (for a definition, see [10]).

This implies that each production is of the form a
0

Tl a 1 ••• an-I Tn an,

where each of the a. is either£ or a notion and where each of the T. is a
1 1

* symbol. For a production with n = I, Tl will be called an operator; if

n ~ 2, T 1 will be called an opener, Ti will be called a middler for

2 $ i $ n-1, and T will be called a closer. Together, openers, middlers and n
closers form the parentheses.

Between some pairs of symbols CJ and T, a precedence relation(❖,~ or

.::) is defined. We have cr-.> T. for all symbols CJ such that a.
1

-+* {3CJa',
1 1-

* -+ a'crf3, and Ti~ Ti+l (where a' is T. ~ CJ for all symbols CJ such that a.
1 1

again either£ or a notion).

An operator-parenthesis grammar is an operator-precedence grammar G
such that the operators, openers, middlers and closers of G form mutually

disjoint sets. For such a grammar it is possible to construct a translator

which brings source texts in prefix form, only knowing the precedence re­

lations between the symbols. This is in fact the technique used in the first

ALGOL-60 translator by DIJKSTRA and ZONNEVELD to translate ALGOL-60 programs

to reverse Polish notation(= postfix form) [II].

* Usually, the restriction is made that no notion produces£. Since this

plays a role only for parsers based on operator precedence, and not for

translators or transducers, this restriction is dropped here.

In order to construct a transducer for source texts with a correct

parenthesis skeleton, it is sufficient to extend the precedence relations

7

to all pairs of _symbols a, T between which no precedence relation is defined,

with the exception of those pairs where a is an opener or a middler and Tis

a middler or a closer. (A confrontation between such symbols with undefined

precedence relation can occur only in incorrectly parenthesized texts.) This

must be done by taking ❖ if a is an opener or a middler, and~ if Tis a

middler or closer.· In the other cases (a is a closer or operator and Tis

an opener or operator), we have a free choice between ❖ and~. For correct

input texts, this transducer is equivalent to the translator: only the

original precedence relations are used. The output texts are described by

the synchronized prefix grammar G obtained from G by replacing each produc-p
tion a0 Tl a 1 a 1 T a of G with n ~ 1 by a a0 ~ a 1 ••• a 1 ~ an, n- n n T1 ••• Tn n-

where crT T is a symbol uniquely determined by T ••• T •
1··· n .. 1 n

With some luck, this grammar G is of type LL(l) straightaway. Other-
p

wise, it may be necessary to "identify" some notions by replacing them by

one and the same notion and by unifying the corresponding productions (with

the same initial cr). The best way to do this is to modify the original

grammar G.

4.2. Resynchronization

The grammar G, in this form, may be used to implement the error-
p

recovery method described before. However, instead of simply skipping in

order to resynchronize at a synchro, we prefer an attempt to parse the piece

of source text concerned. This can be described by the addition of error­

production rules to G. It is, however, more easily described in an in-p
formal way: The first situation in which the parser can get stuck is that

the next input symbol is a synchro but is not yet expected. In this case,

a direct production "missing" is added to the node being treated, the node

is considered treated and parsing may continue. (Note that, in this case,

the node cannot be labeled with a symbol! For all symbols other than a

synchro occur only at the very start of a production, and if that symbol

were not present on the input text, then that production would not have been

selected.) In all other situations, some notion is chosen such that a selec-

8

tion of a producti~n would be possible (there is always at least one such a

notion), and an extra error node, 'labeled with that notion, is inserted in

the tree just in front of the node where failure occurred. Parsing is now

resumed, starting at that error node.

5. AN EXAMPLE

Before discussing the specific difficulties encountered when this tech­

nique is applied to ALGOL 68, it will be demonstrated on a simple example

which contains, in a nutshell, the essential problems. Two remarks, however,

must first be made:

(i) At those places where G is already "locally" LL(l), there is no need

to bring the productions in prefix form. The transducer may be in­

structed then to leave the corresponding symbols where they are. In

that case, the middlers and closers of these productions must be

explicitly used as synchronization points.

(ii) The freedom of choice, left by the undefined precedence relations,

should be used to obtain a completion which is as consistent as

possible with the relations already defined. If the operators can be

ordered according to priority, this gives a natural way to define the

completion.

Consider the following grammar, in which all symbols end with token

("basic token" stands for some recognizable basic item, e.g., an identifier

or a denotation, contracted by the lexical scan to one symbol):

unit: tertiary, becomes token, unit; tertiary.

tertiary: tertiary, plus token, term; term.

term: term, times token, factor; factor.

factor: plus token, factor; primary.

primary: primary, actual parameter pack;

open token, unit, close token; basic token.

actual parameter pack: open token, unit, close token.

9

The language described by this grannnar contains, in ascending order of

priority, constructions resembling assignations, formulas (with dyadic

operators+ and x and a monadic operator+), calls, closed clauses and some

basic item.

On inspection, it turns out that this_ g~annnar is not operator prece­

dence: there are clashes of precedence caused by the monadic and the dyadic+.

Therefore the lexical scan has to distinguish between these, and to replace

a monadic+ by a new symbol e ("monadic plus token"). This is possible,

since a monadic+ is either the first symbol of the source text or is pre­

ceded by ax,+, :~or(, whereas a dyadic+ is preceded by a) or some

basic item.

Also, a production "primary, actual parameter pack" may not occur in

an operator-precedence grannnar: two notions have to be separated by at least

one symbol.* Therefore, the lexical scan has to insert a call operator©

("call insert") between the primary and the actual-parameter-pack of a call.

This situation can be recognized by the occurrence of a) or basic item

followed by a (.

*

We now have the following grannnar:

unit: tertiary, becomes token, unit; tertiary.

tertiary: tertiary, plus token, term; term.

term: term, times token, factor; factor.

factor: monadic plus token, factor; primary.

primary: primary, call insert, actual parameter pack;

open token, unit, close token; basic token.

actual parameter pack: open token, unit, close token.

Note that the notion "actual parameter pack" may not be replaced by its

production: the prefix grannnar thus obtained would not be of type LL(l).

Of course, the difficulty can be circumvented by writing the first alter­

native of "primary" as "basic token, actual parameter pack sequence". But

then the structure, which might be needed for semantic purposes, is fully

lost.

This is an operator-parenthesis graDm1ar. The precedence relations are given

in the following table:

() := + X EB © I

(<, = ❖ <· <- <· ❖ ❖

) ,> ~ -> '> ->

:= <! -> <· <· <- <- <- <-

+ <: :> '> '> <- <: <- <!

X <- :> :> ·> ·> <! <· <!

EB <! ·> -> ·> -> ❖ <· <!

© <- :> -> -> -> ·>

I :> -> -> '> ·>

(I stands for "basic token")

The operators in this table are arranged in such a way as to show clearly

the fact that they can be ordered according to their priority: the lower

left triangle of the operator part of the table contains only relations'>

and the upper right only<-.

The prefix graDllilar corresponding to the above graDllilar (where only those

productions are brought in prefix form which are not already locally LL(l))

is given by

unit: becomes token, tertiary, synchro, unit; tertiary.

tertiary: plus token, tertiary, synchro, term; term.

term: times token, term, synchro, factor; factor.

factor: monadic plus token, factor; primary.

primary: call insert, primary, synchro, actual parameter pack;

open token, unit, close token; basic token.

actual parameter pack: open token, unit, close token.

6. APPLICATION TO ALGOL 68

6. I Making ALGOL 6 8 operator precedence

Our first step was the construction of a context-free grammar for

ALGOL 68. Such a grammar must, of necessity, describe more texts than are

proper ALGOL 68. For example, the rule

MODE NEST source: strong MODE NEST unit.

was simplified to

source: unit.

Apart from this type of departure from ALGOL 68, the main differences are:

- in a series, declarations are allowed even if label-definitions have al­

ready occurred;

after exit, no label-definition is required;

- an enquiry-clause is treated as a series;

- in choice-clauses, the CHOICE is disregarded;

- in case-clauses, units and united-case-parts may be mixed;

- identity- and variable-definitions are unified, so that int a 1~ b:= 2

is accepted;

11

- in routine- and operation-declarations without procedure-plan, the source

need not be a routine-text;

- in operation-declarations, an arbitrary number of parameters in the plan

or the routine-text is accepted;

- VICTAL is disregarded;

skips, nihils and jumps are treated as primaries;

- slices and calls are unified.

tonsequently, errors linked up with these departures have to be detected

separately. With the exception of the last case, and of the use of a goto-

1ess jump in a position where a-TERTIARY is required, this can be done

mode-independently.

These differences tend to simplify the context-free grammar. An impor-,.
tant consideration for incorporating them, however, was a psychological one:

12

we anticipate that certain errors will be perceived as belonging to the

realm of "static semantics", rather than to that of syntax. In such cases,

specialized error messages seem in order.

Other departures stem from the fact that the source text has already

been submitted to a lexical scan (so that comments are no longer present and

denoters are considered one symbol) and that, if necessary, the parenthesis

skeleton has been repaired (so that it is no longer necessary to require

that corresponding parentheses have matching STYLES). The lexical scan also

inserts a symbol loop-insert to mark the start of a loop-clause.

The grammar thus obtained is not operator precedence. By submitting it

to a mechanical operator-precedence checker, the trouble spots can be found.

The measures taken to make the grammar operator precedence can be distin­

guished in three categories:

a. Trivial rearrangements of the syntax. This has mainly been done by con­

sidering some notions as macros, to be replaced (conceptually) in the

productions in which they occur by their direct productions. Obviously,

this trick can only be used for nonrecursive notions. In the grammar

(see Appendix A), these notions are indicated by prefixing their pro­

duction rules with an asterisk.

b. Distinguishing symbols represented by the same mark. It was necessary

to distinguish between the equals-token and the is-defined-as-token,

between the up-to-/label-token, the specification-token and the routine­

token, and between the use of the and-also-token to separate COMMON­

declarations or FIELDS-portrayers or PARAMETERS-joined-declarers (the

"separate-and-also-token") and other uses.

c. Inserting symbols between notions. These inserts are:

dectag-insert, between a declarer and the following TAG-token in an

identifier-declaration;

opdec-insert, between the operation-heading and the following oper­

ator in an operation-declaration;

cast-insert, between the declarer and the ENCLOSED-clause of a cast;

clice-insert, between the primary and the actual-parameters-pack or

indexer-bracket of a call or slice;

row-insert, between the ROWS-rower-bracket and the following de­

~larer of a ROWS-of-MODE-declarator;

13

formals-insert, between a PARAMETERS-joined-declarer-brief-pack or

declarative-brief-pack and the following declarer of a procedure­

plan or routine-text.

(The function of the changes in categories a and c is to separate any two

notions in a production by at least one symbol, whereas category b serves to

resolve clashes in the precedence relations.) The grammar obtained in this

way is operator precedence. It is given in Appendix A. From the table of

precedence relations (Appendix B), it may be seen that the operators can be

ordered according to priority. This means that the prefix transducer need

not know the full table, but only the priorities of the operators and their

left or right associativity (as indicated by the diagonal). A short survey

of this is given in Appendix C.

The construction of the prefix version of the graxmnar was performed

mechanically. For this, no knowledge of priorities is needed, but only know­

ledge of which operators are moved left and which are left unmoved, which

is indicated in Appendix A by marking the operators to be moved with a<.

The result is given in Appendix D. A program [12] was used to check this

grammar for 11(1)-ness. After the first attempt, only three changes had to

be made - two rather trivial, and one nontrivial one: the unification of

identity- and variable-declarations.

6.2. Adjusting the source text accordingly

The task of making the distinctions of category b or of placing the in­

serts of category c is part of the duties of the lexical scan. We will not

thresh out all problems involved, but only touch upon some general ones.

Since the lexical scan is not yet able to parse the source text and has to

be able to cope with garbage as well, the decisions are made on the basis of

as local as possible information, similar to the way monadic and dyadic+

were distinguished and call-inserts were placed in the simple example of

Section 5. It is of the utmost importance that mechanical analysis of the

graxmnar (as in [13]) lies at the root of these decisions, since, otherwise,

some bizarre but perfectly legal case might easily be overlooked. In some

cases information has to be taken into account which is not of a purely

local nature. To this purpose, the lexical scan functions as a stack auto-

14

maton, where the depth of the stack corresponds to the depth of nesting of

parenthesized constructs. Within each level, this automaton is a finite-

* state one.

A complication is given by the fact that many decisions depend on the

distinction between the TAB-tokens which are mode-indications and those

which are operators. This distinction can only be made after the completion

of the lexical scan, which collects the relevant information from the

declarations. The ~elution to this problem is that the lexical scan, in such

cases, places provisional inserts in the output text, which contain a poin­

ter to the TAB-token which determines the actual insert. At the input side

of the "backward scan11
, which performs the prefix transduction, a preproces­

sor replaces the provisional inserts by actual ones or discards them, as the

case requires. This problem is the most complicated when a number of "packs"

(parenthesized constructions) follow each other iimllediately. Consider, e.g.,

the following text:

; (p a) (b) {c;) q d;
t t t-
a B y

Here, a, Bandy stand for inserts to be placed. Depending on whether p and

q are mode-indications or operators, we have the following possibilities:

- p and q are mode-indications: a= formals-insert,

B = y = row-insert;

- pis a mode-indication and q an operator: this situation is erroneous;

- l?.. is an operator and q_ a mode-indication: a= B = y = row-insert;

- p and q are operators: a= B = clice-insert, y = e.

It should be obvious from the above that arbitrarily difficult situations

may be constructed.

* As may be seen from the grammar in Appendix A, we treat a format-text
as a symbol. Actually, the grammar of format-texts has been submitted to
a similar process (we had, however, to violate the structure of format­
texts more seriously in order to make it meet the requirements). Upon en­
countering a formatter-symbol, we simply activate a finite-state auto­
maton which is different from the "normal" one.

15

In such cases, the (actual) inserts after subsequent packs depend on

the inserts after previous packs, as determined by some finite-state al­

gorithm. Since the lexical scan does not yet know the actual inserts, but

only provisional ones, it cannot perform this algorithm, and has to leave

this task to the preprocessor of the backward scan too. But this scan would

encounter the provisional inserts in the wrong order. Therefore, in the

case of a sequence of packs, the provisional inserts are placed, in reverse

order, after the last pack. The preprocessor, in performing the finite-state

algorithm, puts the actual inserts on a stack to drop them between the packs

as and when required.

There is yet another insert which may be placed by the lexical scan or

by the preprocessor of the backward scan. This insert serves to solve a

psychological problem which would otherwise arise with the error-recovery

technique described here. Consider a source text with a piece of garbage,

containing (accidentally) only high-priority operators, followed by a low­

priority operator. The prefix transducer will then put that low-priority

operator in front of the piece of garbage. So the top-down parser will take

a road, based on that operator, and give error messages accordingly. These

error messages may puzzle a human interpreter, who does not know why the

parser chose that road. Therefore, a gap-insert with relatively low priority

is placed in general between something which looks, roughly speaking, like

the end of a coherent chunk and something which looks like the start of one,

unless another insert has already been placed there (in fact, between any

two symbols for which originally no precedence relation was defined). After

these gap-inserts have played their role of blocking the leftward motion of

operators, they are discarded by the backward scan.

6.3. Actual parsing

As stated in the introduction, we use ALEPH as our implementation

language. Two important kinds of "procedures" (called "rules") in ALEPH are:

"predicates" and "actions". The difference between these is that a predicate

can "fail", while an action cannot. Both succeeding predicates and actions

have "side-effects". (In our case: they both read something from the input

text and, possibly, perform some semantic action.) Now, there is a trivial

way of transforming an 11(1) grammar (such as the one given in Appendix D) ,,

16

into an ALEPH program accepting the language described by that granunar:

- write, for each symbol, a predicate labeled with that symbol that suc­

ceeds if the next input symbol is equal to that symbol (and then advances

the input over one symbol), and fails otherwise;

- write, for each notion, a predicate labeled with that notion and whose

right-hand side consists of the direct productions of that notion. E.g.,

the first rule from our example simply becomes:

'predicate' unit: becomes token, tertiary, synchro, unit;

tertiary.

The ALEPH program thus obtained may be used to determine all places

where error productions must be added, since the ALEPH compiler has the

nice property that it tests for "backtrack". If, in some right-hand side of

a rule, two predicates follow each other, the first one may succeed while

the second one fails; in such a case the side-effects of the first (succeed­

ing) predicate would have to be undone. As this is likely to be impossible,

a warning is given. In such a ca~e, however, we want to add an error produc­

tion (for, the granunar being LL(l) and thus backtrack-free, the warning

indicates that we may somehow get stuck in this rule). In the above example:

if a becomes token is read and the rule for tertiary may somehow fail, we

want some error production to skip the garbage until the synchro is met,

upon which we are back on the track again. In this way, becomes token will

be followed by an action: either a tertiary is read, or an error production

takes care of the garbage. Thus, we are supplied with a clean mechanical

aid in adding a (minimal) number of error productions so as to complete our

granunar. As a side-effect of this, the framework of the mode-independent

scan results.

As has been stated before, we prefer an attempt to parse the piece of

source text which otherwise would be skipped to find the expected synchro.

Otherwise, very large pieces of source text, if not virtually the whole

program, might just be skipped. Worse yet, skipping a mode-declaration might

give rise to many undesirable error messages.

If the input symbol on which the parser gets stuck is a symbol which

17

may be the start of a unit, a declarer, or a declaration (these three

notions have disjoint sets of possible starting symbols), that notion is

chosen to label.the inserted error node. Other symbols, except, of course,

synchros, are skipped (and an error message is given).* If the unexpected

symbol is[, it may not be skipped, since this would upset the balance of

parentheses (this being the only possible case of an unexpected parenthesis).

For this special case, a special error production has been added for unit,

and the error message "primary of slice missing" is given.

REFERENCES

[1] WIJNGAARDEN, A. VAN, et al. (eds.) Revised Report on the AZgorithmic

Language ALGOL 68, Acta Informatica 5 (1975) 1-236.

[2] MEERTENS, L.G.L.T. and J.C. VAN VLIET, Repairing the State Switcher

SkeZeton of ALGOL 68 programs, Report IW 15/74, Mathematisch

Centrum, Amsterdam, 1974.

[3] MEERTENS, L.G.L.T. and J.C. VAN VLIET, Repairing the parenthesis

skeZeton of ALGOL 68 programs: Proof of correctness, Report

IW52/75, Mathematisch Centrum, Amsterdam, 1975.

[4] BOSCH, R. , D. GRUNE and L. G. L. T. MEERTENS, ALEPH, A Language En­

couraging Program Hierarchy, in A. Gunther et al. (eds.) Inter­

national Computing Symposium 1973, North-Holland Publ. Co.,

Amsterdam, 1974.

[5] GRUNE, D., R. BOSCH and L.G.L.T. MEERTENS, ALEPH ManuaZ, Report

IW 17/74, Mathematisch Centrum, Amsterdam, 1974.

* Care has to be taken if that symbol is an operator which has been moved
to a prefix position, as in begin y .- @ end, which has been changed to
begin@:= y ii end. Here, parsing gets stuck on the@, but to the
human reader, the parser is only at they. In such cases, the unexpected
symbol is stacked to be complained about at the position of its corres­
ponding synchro - but only, of course, if it was not inserted by the
lexical scan; in that case some other error message will demonstrably
be given already anyway.

'

18

[6] KNUTH, D.E., Top-down sy~ta.z analysis, Acta Informatic~, Vol.I, no.2

(1971) 79-110.

[7] KOSTER, C.H.A., Affix-grammars, in: J.E.L. Peck (ed.) ALGOL 68 Im­

plementation, North-Holland Puhl.Co., Amsterdam, 1971.

[8] LEWIS II, P.M. and R.E. STEARNS, Synta.z-directed transduction,

Journal of the ACM, Vol.IS, no.3 (1968) 465-488.

[9] GRIES, D., Compiler Construction for Digital Computers, John Wiley,

New York, 1971.

[IO] FLOYD, R.W., Syntactic analysis and operator precedence, Journal of

the ACM Vol.IO, no.3 (1963) 316-334.

[II] DIJKSTRA, E.W., Making a translator for ALGOL 60, in: R. Goodman (ed.)

Annual Review in Automatic Progranuning, 3, Pergamon Press,

Oxford, 1963. (First published in 1961.)

[12] VLIET, J .c. VAN, The Programs "Relations Concerning a CF-Grammar"

and "LL(l)-checker", Report IN 4/73, Mathematisch Centrum,

Amsterdam, 1973.

[13] GRUNE, D., L.G.L.T. MEERTENS and J.C. VAN VLIET, Grammar-handling

Tools Applied to ALGOL 68, Report IW 5/73, Mathematisch Centrum,

Amsterdam, 1973.

19

In Appendix A, the operator-precedence grannnar of ALGOL 68 is given.

D. Grune has done invaluable work in bringing the grammar into its present

form. First, a list of all symbols is given, separated by semicolons, the

last one followed by a period. If a symbol in this list is preceded by a<,

this means that it has to be moved to the left by the prefix transducer.

Then, for each notion, a production rule is given by writing, in order, that

notion, followed by ,a colon, followed by the various direct productions of

that notion, separated by semicolons, followed by a period. The members of

a direct production are separated by connnas. Optional parts are enclosed

between (and). If the rule for a notion is preceded by a*, it has to be

treated as a macro, to be replaced (virtually) in the productions in which

it occurs by its direct productions. The grammar is interspersed with com­

ments, written between the symbols [and].

Appendix B lists the precedence relations of the operator-precedence

grannnar.

Appendix C gives a short account of the proper operators and their

left/right associativity.

Appendix D contains the synchronized prefix grammar obtained from the

grammar in Appendix A.

20
APPENDIX A

[opgram, 18-11-75]
[9. tokens and symbols.]

[enclosure tokens]

open mark;
bold begin token;
big begin token;
choice start;
brief sub token;
loop insert;

choice in;
choice again;
choice out;
for token;
from token;
by token;
to token;
while token;
do token;

close mark;
bold end token;
big end token;
choice finish;
brief bus token;
od token;

[priority a tokens]
completion token;

[priority b tokens]
< go on token;

[priority c tokens]
separate and also token;

[priority d tokens]
priority token;
mode token;

[priority e tokens]
< dectag insert;
< opdec insert;

[priority f tokens]
< and also token;

[representation.alternatives are]
[separated by spaces. inserts start]
[with an apostrophe. three dots]
[indicate that only examples are given.]

[(]
[.begin]
['begin]
[.if .case (]
[[]
['loop]

[• then • in I]
[.elif .ouse I:]
[.else .out I]
[.for]
[.from]
[.by]
[.to]
[.while]
[.do]

[)]
[.end]
['end]
[.fi .esac)]
[]
[.od]

.exit]

[;]

'sep]

(.. prio]
[.. mode]

['dectag]
['opdec]

[,]

[priority g tokens]
< is defined as token;
< at token;

[priority h tokens]
< colon mark;
< specification token;

[priority i tokens]
< becomes token;
< identity relator;
< routine token;

[priority j tokens]
< dyadic operator;

[priority k tokens]
monadic operator;

[priority L tokens]
< of tokeni

[priority m tokens]
< cast insert;
< clice insert;

priority n tokens]
reference to token;
leap token;
structure token;
flexible token;
procedure token;
union of token;
operator token;
go to token;

< row insert;
< formals insert;

[operands]
digit token;
tag token;
parallel token;
format text;
string denoter;
other denoter;
defining operator;
mode indication;
skip token;
nil token.

[9.4.L ·representations of symbols.]

['idat]
[@ .at]

[: 1
["spec

[:=]
[:=: .is ::!=: :/=: .isnt]
['rout]

[+:=.over .xyz •••]

+ .not .xyz ••• 1

[.of]

['cast]
['clice]

[.ref]
[.loc .heap
[.struct]
[.flex]
[.proc]
[.union]
[.op]
[.goto .go.to

[' row]
['formals]

]

[1 2 3 4 5 6 7 8 9 l
[i 09 9]

[.par]
[$3zd$...]
[l'9 t • II] s ring •••
[3.14 .true .empty •••]
[+:=.over .xyz •••]
[.int •••]
[.skip #tilde]
[.nil #circle]

21

22

* brief begin token:
open mark. '

* brief end token:
close mark •.

* style i sub token:
open mark.

* style i bus token:
close mark.

* label token:
colon mark.

* up to token:
colon mark.

[10.1.1. program text.]

particular program:
big begin token, !enclosed clause, big end token.

!enclosed clause:
label definition, !enclosed clause; enclosed clause.

[3. clauses.]

enclosed clause:
closed or collateral clause; choice clause; loop clause.

[3.1. closed clauses.]

closed or collateral clause:
(parallel token), begin, inner clause, end.

* begin:
bold begin token; brief begin token.

* end:
bold end token; brief end token.

inner clause:
serial clause;
(joined portrait).

[3.2. serial clauses.]

serial clause:
series.

series:
train, (completion token, series).

train:
declun, go on token, train; lunit.

declun:
declaration; lunit.

lunit: '

label definition, lunit; unit.
* label definition:

identifier, label token.

[3.3. collateral clauses~] [see also 3.1.]

joined portrait:
unit or joined portrait, and also token, unit.

unit or joined portrait:
unit; joined portrait.

[3.4. choice clauses.]

choice clause:
choice start, chooser choice clause, choice finish.

* chooser choice clause:
enquiry clause, alternate choice clause.

enquiry clause:
series.

* alternate choice clause:
in choice clause, (out choice clause).

* in choice clause:
choice in, in part of choice.

* in part of choice:
serial clause; case part list proper; united case part.

case part list proper:
case part list, and also token, case part.

case part list:
(case part list, and also token), case part.

case part:
unit; united case part.

united case part:
specification, unit.

* specification:
single declaration brief pack, specification token.

single declaration brief pack:
brief begin token, single declaration, brief end token.

single declaration:
declarer, (dectag insert, identifier).

* out choice clause:
choice out, serial clause;
choice again, chooser choice clause.

[3.5. loop clauses.]

loop clause:
loop insert,
for part, (from part}, (by part), (to part), repeating part.

* for patt:

23

24

(for token, identifier).
* from part:

from token, unit.
* by part:

by token, unit.
* to part:

to token, unit.
* repeating part:

(while part), do part.
* while part:

while token, ·enquiry clause.
* do part:

do token, serial clause, od token.

(4. declarations.]

declaration:
common declaration, (separate and also token, declaration).

common declaration:
mode declaration; priority declaration~
identifier declaration; operation declaration.

(4.2. mode declarations.]

mode declaration:
mode token, mode joined definition.

mode joined definition:
(mode joined definition, and also token), mode definition.

mode definition:
defined mode indication, is defined as token, declarer.

defined mode indication:
mode indication.

[4.3. priority declarations.]

priority declaration:
priority token, priority joined definition.

priority joined definition:
(priority joined definition, and also token), priority definition.

priority definition:
operator, is defined as token, priority unit.

priority unit:
digit token.

[4.4. identifier declarations.]

identifier declaration:
leapety declarer, dectag insert, identifier joined definition.

leapety declarer:
(leap token), modine declarer.

modine declarer:

nonproc declarer; modine procedure declarator.
modine procedure declarator:

procedure token, (formal procedure plan).
identifier joined definition:

(identifier joined definition, and also token),
identifier definition.

identifier definition:
identity definition; variable definition.

identity definition: ,
identifier, is defined as token, unit.

variable definition:
identifier, (becomes token, unit).

[4.5. operation declarations.]

operation declaration:
operation heading, opdec insert,

operation joined definition.
operation heading:

operator token, (formal procedure plan).
operation joined definition:

(operation joined definition, and also token),
operation definition.

operation definition:
operator, is defined as token, unit.

operator:
defining operator.

[4.6. declarers.]

declarer:
nonproc declarer; procedure declarator.

nonproc declarer:
reference to declarator; structured with declarator;
flexible rows of declarator; rows of declarator;
union of declarator; mode indication.

reference to declarator:
reference to token, declarer.

structured with declarator:
structure token, portrayer pack.

portrayer pack:
brief begin token, portrayer, brief end token.

portrayer:
common portrayer, (separate and also token, portrayer).

common portrayer:
declarer, dectag insert, joined definition of fields.

joined definition of fields:
(joined definition of fields, and also token), field selector.

flexible rows of declarator:
fleiible token, declarer.

25

26

rows of declarator:
rower bracket, row insert, declarer.

rower bracket:
brief sub token, rower, brief bus token;
style i sub token, rower, style i bus token.

rower:
(rower, and also token), row rower.

row rower:
(lower part), (unit).

* lower part:
(unit), up to token.

procedure declarator:
procedure token, formal procedure plan.

formal procedure plan:
(joined declarer pack, formals insert), declarer.

joined declarer pack:
brief begin token, joined declarer, brief end token.

joined declarer:
(joined declarer, and also token), declarer.

union of declarator:
union of token, joined declarer pack.

[4.8. indicators and field selectors.]

identifier:
tag token.

field selector:
tag token.

(5. units.]

unit:
assignation; identity relationi routine text; tertiary.

tertiary:
formula; secondary.

secondary:
leap generator; selection; primary.

primary:
primary one; other denoter; format text; skip token; nil token.

primary one:
slice call; cast; string denoter; identifier; [go to] jump;
enclosed clause.

(5.2.1. assignations.]

assignation:
tertiary, becomes token, unit.

[5.2.2: identity relations.]

identity relation:
.tertiary, identity relator, tertiary.

(5.2.3. generators.]

leap generator:
leap token, declarer.

(5.3.1. selections.]

selection: .
field selector, of token, secondary.

(5.3.2. slices.]

slice call:
primary one, clice insert, indexer bracket.

indexer bracket:
brief sub token, indexer, brief bus token;
style i sub token, indexer, style i bus token.

indexer:
(indexer, and also token), trimscript.

trimscript:
unit~
(bound pair), (revised lower bound).

bound pair:
(unit), up to token, {unit).

* revised lower bound:
at token, unit.

[5.4.1. routine texts.]

routine text:
routine heading, routine token, unit.

routine heading:
(declarative pack, formals insert), declarer.

declarative pack:
brief begin token, declarative, brief end token.

declarative:
common declarative, (separate and also token, declarative).

common declarative:
declarer, dectag insert, parameter joined definition.

parameter joined definition:
(parameter joined definition, and also token), identifier.

[5.4.2. formulas.]

formula:
dyadic formula; monadic formula.

dyadic formula:
operand, dyadic operator, monadic operand.

monadic formula:
monadic operator, monadic operand.

27

28

operand:
formula; secondary.

monadic operand:
monadic formula; secondary.

[5.4.3. calls.]

[5.4.4. jumps.]

jump:

[see 5.3.2.]

[(]go to token[)], identifier.

[5.5.1. casts.]

cast:
declarer, cast insert, enclosed clause.

APPENDIX B

1 open mark
2 bold begin token
3 big begin token
4 choice start
5 brief sub token
6 loop insert
7 choice in
8 choice again
9 choice out

10 for token
11 from token
12 by token
13 to token
14 while token
15 do token
16 close mark
17 bold end token
18 big end token
19 choice finish
20 brief bus token
21 od token
22 completion token
23 go on token
24 separate and also token
25 priority token
26 mode token
27 dectag insert
28 opdec insert
29 and also token
30 is defined as token
31 at token
32 colon mark
33 specification token
34 becomes token
35 identity relator
36 routine token
37 dyadic operator
38 monadic operator
39 of token
40 cast insert
41 clice insert
42 reference to token
43 leap token
44 structure token
45 flexible token
46 procedure token
47 union of token
48 operator token
49 go to token
50 row insert
51 formals insert
52 digit token
53 tag token
54 parallel token
55 format text
56 string denoter
57 other denoter
58 defining operator
59 mode indication
60 skip token
61 nil token

29

1111111111222222222233333333334444444444555555555566
12345678901234567890 2345678901234567890123456789012345678901
<< << <<<<<<<< << <<<<<<<<<<<<<<<<< <<<<< <<<
<< << - <<<<<<<< < <<<<<<<<<<<<<<<<< <<<<< <<<
<< < = < <<
<< << = <<<<<<< . < <<<<<<<<<<<<<<<<< <<<<< <<<
<< << = < << <<<<<<<<<<<<<< << <<<<< <<<

« «
« «
« «

« «
« «
« «
« «
« «

« «
« «
< <

« « »
« «
« «
« « »
« «< »
« « »
« « »
« « »>
« « »
« «< »
« « »>
« < »
< < »
< < »
< < »
< »
< »
< »
< >»
< <

»>
< < »>
< < »>

»

»>
»>
»>

»>
»>
»>

= «««« <<<<<<<<<<<<<<<<<<<
= ««<« < <<<<<<<<<<<<<<<<<
= «««< < <<<<<<<<<<<<<<<<<

<<<<<<<<<<<<<< <<
<<<<<<<<<<<<<< <<
<<<<<<<<<<<<<< <<

< <<<<<<<<<<<<<<<<<
< <<<<<<<<<<<<<<<<<

»> »>»» » >
> » » > >

>>> >>>>> > >> >> > >
>>> >> >> >>> > >> >> > >
>>> >>>>> >>> > >> >> > >

>

>> > < <<<<< < <<<<<<<<<<<<<<<<<
>> > > <<<< < <<<<<<<<<<<<<<<<<
> > <<< <<<<<<< <

» «
» «

«<« <«
«<« «<
««< <«
<
««< <«
«<« <«
«<« «<
««< <«
««< «<

«<« <«
<«« <«

<
<
<

> >> << < <
>> << <

>> >> >> <<<<<<<<<<<<<<<<<< << <<<<<<<<<
>> <<<<<<<<<<<<<< << <<<<<< <<<

> >
>

»> »
»> »
»> »
»> »
»> »
»> »
»> »
»> »
»> »
>» »
»> »
»> »
»> »
»> »

»
»

<<<<<<<<<<<<<< << <<<<< <<<
<<<<<<<<<<<<<< << <<<<< <<<

> <<<<<<<<<<<<<< << <<<<< <<<
> >> << <<<<<<<<<< << <<<<< <<<
> >> <<<<<<<<<< << <<<<< <<<
> >> << <<<<<<<<<< << <<<<< <<<
> >> >> <<<<<<<<< << <<<<< <<<
> >> >> < <<<<<<<< << <<<<< <<<
> >> >> > <<<<<<< << <<<<< <<<
> >> >> > > <
>»»> > .__. ___ __

>>> >> >>>> > <<<< <
> > >> >> > <<<< <
»> » »» >
>>> >> >>>> > <<<< <
>>> >> >>>> > <<<< <
»> » »» >
>
>»»>

»> » »»
>» » »»

>
»» » > > >

>»»>
> » » > >
>»»>
>

»»» »» >
>»»>
>»»>

«« <

«« <
«« <

<

<
<

<
<

<

<
<

30

APPENDIX C

Proper operators

Type: M = rronadic, L = left associative, R = right associative.

* indicates "no prefix transduction".

Type prio operator

R 140 rCM insert; fonnals insert.

M 130 reference to token; leap token; structure token;

flexible token; procedure token; union of token;

operator token; go to token.

L 120 cast insert; clice insert.

R 110 of token.

M 100 rronadic operator.

L 091:099 dyadic operator.

R 080 becomes token; identity relater; routine token.

R 070 colon mark; specification token.

R 060 is defined as token; at token.

L 050 and also token.

R 040 dectag insert; opdec insert.

M 030 priority token; rrode token.

R* 020 separate and also token.

R 010 go on token.

R* 000 canpletion token.

APPENDIX D

[LLl--grammar, 18-11-75]

open mark;
bold begin token;
big begin token;
choice start;
brief sub token;
loop insert;
choice in;
choice again;
choice out;
for token;
from token;
by token;
to token;
while token~
do token;
close mark;
bold end token;
big end token;
choice finish;
brief bus token;
od token;
completion token;
go on token;
separate and also token;
priority token;
mode token;
dectag insert;
opdec insert;
and also token;
is defined as token;
at token:
colon mark;
specification token;
becomes token;
identity relator;
routine token;
dyadic operator;
monadic operator;
of token;
cast insert;
clice insert;
reference to token;
leap token;
structure token;
flexible token;
procedure token;
union of token;
operator token;
go to token;
row insert;

31

32

formals insert;
digit token;
tag token;
parallel token~
format text;
string denoter;
other denoter;
defining operator;
mode indication;
skip token;
nil token;
synchro.

brief begin token:
open mark.

brief end token:
close mark.

style i sub token:
open mark.

style i bus token:
close mark.

particular program:
big begin token, lenclosed clause, big end token.

lenclosed clause:
colon mark, identifier, synchro, lenclosed clause;
enclosed clause.

enclosed clause:
closed or collateral clause;
choice clause;
loop clause.

closed or collateral clause:
(parallel token), begin, inner clause, end.

begin:
bold begin token;
brief begin token.

end:
bold end token;
brief end token.

inner clause:
serial clause;
(joined portrait).

serial clause:
series.

series:
train, (completion token, series).

train:
go on token, declun, synchro, train;
lunit.

declun:
declaration;
lunit.

lunit:

colon mark, identifier, synchro, lunit;
unit.

joined portrait:
and also token, unit or joined portrait, synchro, unit.

unit or joined portrait:
unit;
joined portrait.

choice clause:
choice start, chooser choice clause, choice finish.

chooser choice clause:
enquiry clause, alternate choice clause.

enquiry clause:
series.

alternate choice clause:
in choice clause, (out choice clause).

in choice clause:
choice in, in part of choice.

in part of choice:
serial clause;
case part list proper;
united case part.

case part list proper:
and also token, case part list, synchro, case part.

case part list:
and also token, case part list, synchro, case part;
case part.

case part:
unit;
united case part.

united case part:
specification token, single declaration brief pack,

synchro, unit ..
single declaration brief pack:

brief begin token, single declaration, brief end token.
single declaration:

dectag insert, declarer, synchro, identifier;
declarer.

out choice clause:
choice out, serial clausei
choice again, chooser choice clause.

loop clause:
loop insert, for part, (from part), (by part), (to part),

repeating part.
for part:

(for token, identifier).
from part:

from token, unit.
by part:

by token, unit.
to part:

to token, unit.
repeating part:

33

34

(while part), do part.
while part:

while token, enquiry clause.
do part:

do token, serial clause, od token.
declaration:

common declaration, (separate and also token, declaration).
common declaration:

mode declaration;
priority declarationi
identifier declaration1
operation declaration.

mode declaration:
mode token, mode joined definition.

mode joined definition:
and also token, mode joined definition, synchro,

mode definition;
mode definition.

mode definition:
is defined as token, defined mode indication, synchro,

declarer.
defined mode indication:

mode indication.
priority declaration:

priority token, priority joined definition.
priority joined definition:

and also token, priority joined definition, synchro,
priority definition,

priority definition.
priority definition:

is defined as token, operator, synchro, priority unit.
priority unit:

digit token.
identifier declaration:

dectag insert, leapety declarer, synchro,
identifier joined definition.

leapety declarer:
(leap token), modine declarer.

modine declarer:
nonproc declarer;
modine procedure declarator.

modine procedure declarator:
procedure token, (formal procedure plan).

identifier joined definition:
and also token, identifier joined definition, synchro,

identifier definition;
identifier definition.

identifier definition:
identity definitioni
variable definition.

identity definition:
is defined as token, identifier, synchro, unit. ,.

variable definition:
becomes token, identifier, synchro, unit;
identifier.

operation declaration:
opdec insert, operation heading, synchro,

operation joined definition.
operation heading:

operator token, (formal procedure plan).
operation joined definition:

and also token, operation joined definition, synchro,
operation definition;

operation definition.
operation definition:

is defined as token, operator, synchro, unit.
operator:

defining operator.
declarer:

nonproc declarer;
procedure declarator.

nonproc declarer:
reference to declarator;
structured with declarator;
flexible rows of declarator;
rows of declarator~
union of declarator;
mode indication.

reference to declarator:
reference to token, declarer.

structured with d-:clarator:
structure tok•,=n, portrayer pack.

portrayer pack:
brief begin token, portrayer, brief end token.

portrayer:
common portra:,er, (separate and also token, portrayer).

common portrayer:
dectag insert, declarer, synchro, joined definition of fields.

joined definition of fields:
and also token, joined definition of fields, synchro,

field selector;
field selector.

flexible rows of declarator:
flexible token, declarer.

rows of declarator:
row insert, rower bracket, synchro, declarer.

rower bracket:
brief sub token, rower, brief bus token;
style i sub token, rower, style i bus token.

rower:
and also token, rower, synchro, row rower;
row rower ..

row rower:
co\on mark, (unit), synchro, (unit);

35

36

(unit).
procedure declarator:

procedure token, for~.al procedure plan.
formal procedure plan:

formals insert, joined declarer pack, synchro, declarer;
declarer.

joined declarer pack:
brief begin token, joined declarer, brief end token.

joined declarer:
and also token, joined declarer, synchro, declarer;
declarer.

union of declarator:
union of token, joined declarer pack.

identifier:
tag token.

field selector:
tag token.

unit:
assignation;
identity relation;
routine text;
tertiary.

tertiary:
formula;
secondary.

secndary:
leap generator;
selection;
primary.

primary:
primary one;
other denoter;
format text;
skip token;
nil token.

primary one:
slice call;
casti
string denoter;
identifier;
jump;
enclosed clause.

assignation:
becomes token, tertiary, synchro, unit.

identity relation:
identity relator, tertiary, synchro, tertiary.

leap generator:
leap token, declarer.

selection:
of token, field selector, synchro, secondary.

slice call:
clice insert, primary one, synchro, indexer bracket.

indexer bracket:
brief sub token, indexer, brief bus token;
style i sub token, indexer, style i bus token.

indexer:
and also token, indexer, synchro, trimscript;
trimscript.

trimscript:
unit;
at token, (bound pair) , synchro, unit;
(bound pair) •

bound pair:
colon mark, (unit), synchro, (unit).

routine text:
routine token, routine heading, synchro, unit.

routine heading:
formals insert, declarative pack, synchro, declarer;
declarer.

declarative pack:
brief begin token, declarative, brief end token.

declarative:
common declarative, (separate and also token, declarative).

common declarative:
dectag insert, declarer, synchro, parameter joined definition.

parameter joined definition:
and also token, parameter joined definition, synchro,

identifier;
identifier.

formula:
dyadic formula;
monadic formula.

dyadic formula:
dyadic operator, operand, synchro, monadic operand.

monadic formula:
monadic operator, monadic operand.

operand:
formula;
secondary ..

monadic operand:
monadic formula;
secondary.

jump:
go to token, identifier.

cast:
cast insert, declarer, synchro, enclosed clause.

37

-,,,,_.,,
;';]

