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BOOLEAN FUNCTIONS, INVARIANCE GROUPS, AND 
PARALLEL COMPLEXITY* 

PETER CLOTEt AND EVANGELOS KRANAKIS:j: 

Abstract. This paper studies the invariance groups S(J) of boolean functions f E Bn (i.e., f: {O, 1}"..,. 
{ 0, 1}) on n variables, i.e., the set of all permutations on n elements which leave f invariant. After building 
intuition by presenting several examples that suggest relations between algebraic properties of groups and 

computational complexity of languages, necessary and sufficient conditions are given via P6lya's cycle index 

for an arbitrary finite permutation group to be of the form S(f), for some/ E B". It is shown that asymptotically 

'"almost all" boolean functions have trivial invariance groups. For cyclic groups G;::;; S,, a logs pace algorithm 

for determining whether the given group is of the form S(J), for some fE B,, is given. The applicability of 
group theoretic techniques in the study of the parallel complexity of languages is demonstrated. For any 

language L let L,, be the characteristic function of the set of all strings in L which have length exactly n 

and let S,,(L) be the invariance group of L,,. The index IS" :S,,(LJI are considered as a function of n and 
the class of languages whose index is polynomial in n is studied. Bochert's lower bound on the index of 

primitive permutation groups is used together with the O'Nan-Scott theorem, a deep result in the classification 
of finite simple groups, in order to show that any language with polynomial index is in (nonuniform) TC0 

and hence in (nonuniform) NC 1• As a corollary, an extension is given of a result of Fagin-Klawe-Pippenger­

Stockmeyer, giving necessary and sufficient conditions for a language with polynomial index to be computable 

by a constant depth polynomial size circuit family. As another corollary, it is shown that the problem of 
""weight-swapping" for a sequence of groups of polynomial index is in (nonuniform) NC 1• 

Key words. abelian group, boolean function, circuit, classification theory, cyclic-, dihedral-, hyperocta­
hedral-groups, index of a group, invariance group of boolean function, NC, parallel complexity, permutation 

group, P61ya cycle index, pumping lemma, representable group, regular language, symmetric boolean 
function, wreath product 
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1. Introduction. The aim of this paper is to study the invariance groups of boolean 
functions, provide efficient algorithms for determining the representability of a given 
group as the invariance group of a boolean function, and use group theoretic techniques 
in order to deduce results about the parallel complexity of formal languages. 

Given n input values, each of which can assume one of two possible states 0, 1, 
a "module" M outputs a value which assumes one of the states 0, l. The output of 
the module when the input values are x 1 , • • • , Xn depends in general on the order of 
the inputs. There are certain permutations of the input states which leave the output 
state invariant or unchanged. For example, it may be that the output is independent 
of any permutation of the input states, in which case the given module is called 
symmetric. In general, for a given module, the set of permutations which, when applied 
to any set of input states, leave the output invariant is easily seen to form a permutation 
group. 
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Formally, the operation performed by such an n-ary module M is usually repre­
sented by an n-ary boolean function 1 f:2n ~ 2. For fixed n, let the set of all such n-ary 
boolean functions be denoted by Bn. If the input states of the module are assigned 
the boolean values x 1 , • • • , Xn then by definition f(x 1 , • • • , xn) is the value of the 
output state of the module M on input x 1 , • • • , xn- Given such an n-ary boolean 
function f let S(f) be the set of all permutations on the n elements 1, 2, · · · , n such 
that for all input values (xl> · · ·, Xn) E 2n, f(x1> · · ·, Xn) = f(xcr(lh · · ·, Xa(n))- Clearly, 
the group S(f) equals the full symmetric group S,, exactly in the special case when 
the boolean function f is symmetric. 

By a counting argument Lupanov, Shannon, and Strassen have shown that almost 
all boolean functions have exponential size circuit complexity. Despite this result, very 
little is known concerning specific languages or families of boolean functions. Our 
interest in the present study arose from attempting to use group theoretic techniques 
in order to generalize the simple observation that any family Un: f,, E B", n EN} of 
symmetric boolean functions is computable by a logarithmic depth, polynomial size 
circuit family. Probabilistic techniques have been successfully used by several authors 
(Furst, Saxe, and Sipser [FSS84], Yao [Yao85], etc.) in order to obtain lower bounds 
on the size and/ or depth of circuit families which compute certain symmetric languages 
(families of symmetric boolean functions). However, there are few results giving tight 
upper bounds, apart from the above cited fact that any family of symmetric boolean 
functions is computable by a nonuniform circuit family of logarithmic depth and 
polynomial size (formula size bounds have been obtained by various authors in this 
case). In this paper we indicate the applicability of group theory in obtaining upper 
bounds for the parallel complexity of families of boolean functions. Our work is 
different from, but somewhat related to, studies on the automorphism groups of 
error-correcting codes (e.g., kth order Reed-Muller codes, which are specific k­
dimensional subspaces of 2" [MS78]), as well as to work in [Har64] where group 
theoretic methods are used to calculate the number ofnonequivalent boolean functions, 
where the equivalence relation is defined by f = g if and only if there exists u E Sn 
such that for all X1, • • ·, Xn E {0, 1} (f(Xi. · · ', Xn) = g(Xo-(1)> • • ·, Xo-(n))). 

In [FKL88] it was indicated how the classification theorem for finite simple groups 
could be applied to VLSI technology by giving an algorithm to minimize pin-count in 
a sequence of circuits. Here we consider the problem of placement of modules on a 
chip where permutation of input wires is allowed. It is expected that study of the 
invariance groups of boolean functions may lead to algorithms for optimizing space 
in VLSI design, e.g., knowledge that certain modules leading into a block can be 
permuted without changing the function computed. 

It is interesting to point out that invariance groups are also relevant to the 
computability problem for boolean functions in anonymous networks as used in 
distributed computing. For example, we are interested in computing n-ary boolean 
functions in an n-node anonymous network Jf. To compute the value of a given 
function fat the input (bi.···, b,.) the processors p 1 , • • • ,pn are initialized with 
the inputs b1 , • • • , b", respectively. By exchanging messages through the links all the 
processors must eventually compute the same bit b = f(bi. · · ·, b,.). It has been the 
focus of several papers to determine and study networks for which 

f is computable in Jf ~ S(f) 2 Aut(Jf), 

1 Throughout the paper we identify a positive integer n with the set {O, l, · · ·, n -1}, e.g., 2 = {O, l}; in 
general, however, we will prefer the set-notation when we want to emphasize the elements of the language 
under consideration. 
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where Aut(.N') denotes the group of automorphisms of .N'. In fact, this is the case for 
several types of networks, like directed and unlabeled rings [ASW85], labeled tori 
[BB89], and labeled hypercubes [KK89]. 

1.1. Results of the paper. Following is an outline of the main results and contents 
of the paper. We begin in § 2 by providing some preliminary results regarding the size 
of the index of a permutation group. We remind the reader of the essential parts of 
P6lya's beautiful enumeration theory that will be used in the present study. 

In§§ 3 and 4, to build intuition for the reader, we present a number of examples 
concerning the invariance groups of certain types of languages, such as palindromes, 
parentheses, and regular languages, and study the reverse problem of constructing 
languages realizing specific types of groups. We compute the invariance groups of 
Dyck palindrome languages and give an efficient algorithm for determining membership 
in the invariance group of regular languages. We show that each of the cyclic (for 
n >6 3, 4, 5), dihedral, and hyperoctahedral sequences of groups are representable by 
regular languages and construct groups which cannot be represented by regular 
languages. 

In § 5 we study the representation problem for general permutation groups. We 
define a subgroup G ~Sn to be strongly representable if G is the invariance group of 
an n-ary boolean function-Le., there exists f E Bn for which G = S(f). We distinguish 
between groups which are "strongly representable" and groups which are "isomorphic 
to strongly representable." In the latter case, we show that every permutation subgroup 
of Sn is isomorphic to a strongly representable group S(f), for some f:2"< 108 n+l)-? 2; 
but as stated, this isomorphism is at the expense of increasing the number of variables 
in the boolean function from n to n(log n + 1). The problem is more interesting in the 
former case, where we give a necessary and sufficient condition in terms of the P6lya 
index, for an arbitrary subgroup of Sn to be of the form S(f), for some n-ary boolean 
function f: 2n-? 2. Using the classification theorem for maximal permutation groups 
we show that "with few exceptions" (essentially, only the alternating group An, for 
n ~ 10) all maximal permutation groups on n letters are strongly representable. This 
contrasts with the fact that there are numerous nonrepresentable permutation groups. 
We also give a logspace algorithm which, on input of a cyclic group G ~Sn, decides 
whether G is strongly representable, in which case it outputs a boolean function 
f: 2n-? 2 such that G = S(f). Our last result in this section concerns asymptotics. For 
any sequence of nonidentity permutation groups ( Gn ~Sn: n ~ 1) we prove that 

It then immediately follows that asymptotically "almost all" boolean functions have 
a trivial invariance group; i.e., they are equal to the identity permutation group. 

Given a language L~ {O, 1}*, let Ln be the characteristic function of the set of 
words of L oflength exactly n. Section 6 is concerned with the complexity of languages 
of polynomial index, i.e., languages L for which there exists a polynomial p(n) such 
that !Sn:Sn(L)l~p(n), where Sn(L) denotes the invariance group of the boolean 
function Ln. We study the closure properties of the class of these languages and apply 
the NC algorithm for permutation group membership of [BLS87] in order to show 
that languages of polynomial index are in (nonuniform) NC. By using the O'Nan-Scott 
theorem, a deep result in classification theory of finite simple groups, we improve the 
last result to show that any language of polynomial index is in (nonuniform) TC0 and 
hence NC 1• 
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In [FKPS85], Fagin, Klawe, Pippenger, and Stockmeyer used group theoretic 
techniques together with the exponential size lower bound for constant depth circuits 
accepting parity [Yao85] to give a necessary and sufficient condition for a symmetric 
language Ls; {O, 1}* to belong to AC0; i.e., for L to be computable by a nonuniform 
circuit family of constant depth and polynomial size. Our characterization of languages 
of polynomial index allows an immediate extension of this result. Namely, for Ls; 

{O, l}* of polynomial index, L is in AC0 if and only if the least number of input bits 
which must be set to a constant in order for the resulting language L" = Ln {O, lt to 
be constant is polylogarithmic in n. 

As mentioned in the introduction, we believe that group theoretic considerations 
may possibly play a role in VLSI design. In particular, knowledge of the invariance 
group of "modules" might allow minimization of the surface area for automated circuit 
layout. Toward a mathematical formalization of this idea, we introduce some notation. 
For any sequence G = { Gn: Gn ~Sn, n EN} of permutation groups the problem 
SWAP ( G) is given by the following. 

Input. n EN, al, ... 'an positive rationals. 

Output. A permutation <I E G,. such that for all 1 ~ i < n, a,ru) + a,,.(i+i);;:; 2, if such 
a permutation exists, and the response "NO" otherwise. 

The intuition behind the problem SWAP ( G) is that the output wires of modules 
M 1 , • · ·, M,. are the inputs to module M, and that the invariance group of M is 0 11 • 

The "width" of module M; is the rational number a;. Modules Mi and Mj can be 
placed next to each other if they do not "overlap"; i.e., exactly when a;+ aj;;:; 2, where 
we imagine an average size of 1 per module. Thus, the output for SWAP ( G) indicates 
whether there exists a permutation of the input modules Mi which does not change 
the output of Mand which allows a layout of Mall)•···, M,,(n) without overlap. A 
simple application of our work yields an NC 1 algorithm for the problem SWAP ( G), 
where G = { Gn: Gn ~ S", n EN} is of polynomial index. 

Recall that the stipulation of the layout problem is to find an optimal layout given 
a number of modules together with their connections. A popular algorithm that attempts 
to solve the layout problem is due to Kernighan and Lin [KL82] and partitions the 
chip into an upper and a lower half, swapping modules on either side, trying to 
minimize a certain parameter, then recursively partitioning simultaneously the top and 
bottom into left and right parts, swapping modules between left and right parts to 
minimize a parameter, etc. Our problem stipulation in SWAP is quite different: instead 
of being given a list of modules and their connections (including which input port of 
a target module), we allow the input ports of the target module to be swapped, provided 
that the resultant function is not changed. 

Finally, in § 7, we discuss some open problems and give directions for further 
research. 

An acquaintance with the standard results on group theory and finite permutation 
groups, as presented for example in [Hal57] and [Wie64], will be essential for an 
adequate understanding of the results of the present paper. 

2. Preliminaries. Here we give some introductory definitions and results regarding 
permutation groups and complexity of circuits that will be used in our subsequent 
investigations. The three topics we will discuss are: 

• the size of the group index, 
• the size of the cycle index and its computation via P6lya's formula, and 
• complexity of boolean functions with respect to the size and/ or depth of boolean 

circuits computing them. 
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2.1. Index of a permutation group. In the sequel it will be convenient to think of 
permutations on the set {1, 2, · · ·, n} as bijective mappings on the set of all positive 
integers such that a( k) = k for all k > n. Part of this paper is primarily concerned with 
"large" permutation subgroups of the full symmetric group. Let Sn denote the group 
of all permutations of n elements, and An be the subgroup of even permutations (also 
known as the alternating group on n letters). In general, for any nonempty set n let 
Sn denote the set of all permutations of n. For any group G the symbol H ~ G means 
that H is a subgroup of G. Regarding the sizes of permutation groups the following 
theorem summarizes some known results on the sizes permutation groups. 

THEOREM 1. Let H ~Sn be a permutation group which does not contain An. 
(1) !Sn: Hj ~ n. 
(2) If the order of H is maximal then ISn: Hj = n. In fact, for n ;&: 6 the subgroups 

Hof Sn with !Sn: Hj = n are exactly the one point stabilizers of Sn. 
(3) If H is primitive then 

(Bochert) !Sn:Hl~[(n+l)/2]!. 
(Praeger and Sax!) IHI <4n. 
(Cameron) either His a "known" group or IHI< n iotoglogn. 

Proof. For all three parts and further information, consult [Wie64], [Tzu82], as 
well as the references in [KL88] (in particular, the proof of (3) is very hard). Part (1) 
follows from the following claim. 

CLAIM. If His a subgroup of G and I G: HI= n then there exists a normal subgroup 
N of G such that N ~ H and I G: NI divides n ! . 

Indeed, consider the set n ={Hg: g E G} of cosets of the quotient group G/ H. 
By assumption, this set has size n. Let Sn be the group of permutations on n. For 
each x E G consider the permutation ef>(x): 0' 0, where <P(x)(Hg) = Hgx. Clearly, 
<P: G' Sn is a group homomorphism. Moreover, it is easy to see that 

N:= Ker(ef>) = n Hg 
gEG 

is a normal subgroup of G, where Hg= g- 1 Hg. By the homomorphism theorem, the 
order of the quotient group G / N divides the order of the permutation group Sn. This 
proves the claim. 

Now let us prove ( 1) by the above claim there exists a normal subgroup N of Sn 
such that N ~ H and !Sn: NI divides (n -1) !. It follows that N ~ 1. Since the only 
normal subgroups of Sn are An, Sn, and 1, the result is clear. D 

2.2. Cycle index of a permutation group. Let G be a permutation group on n 
elements. Define an equivalence relation i = j if and only if for some a E G, cr(i) = j. 
The equivalence classes under this equivalence relation are called orbits. Let Gi = 
{a E G: u(i) = i} be the stabilizer of i, and let i 0 be the orbit of i. An elementary 
theorem asserts that jG: G;j = ji0 j. Using this, we can obtain the well-known theorem 
of Burnside and Frobenius, which states that for any permutation group G on n 
elements, the number of orbits of G is equal to the average number of fixed points of 
a permutation er E G, 

(1) 

where wn( G) is the number of orbits of G [Com70]. Any permutation u ES,, can be 
identified with a permutation on 2n defined as follows: 

X = (X1,' ' ', Xn) 'X" = (Xcr(I), . ' ', Xcr(n)). 
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Hence, any permutation group G on n elements can also be thought of as a permutation 
group on the set 2n. It follows from (1) that 

1 
j{x0 : x e2n}I =fGI "~a l{x e2": xa- =x}I, 

where x 0 = {x"": u e G} is the orbit of x. We would like to find a more explicit formula 
for the right-hand side of the above equation. To do this, note that x"" = x if and only 
if x is invariant on the orbits of u. It follows that l{x E 2n: xa = x}I = 2°<a>, where o( u) 
is the number of orbits of (the group generated by) u. Using the fact that o(<7) = 
c1(<7)+· · ·+cn(<7), where c;(C7) is the number of i-cycles in CJ" {i.e., in the cycle 
decomposition of u), we obtain P6lya's formula: 

(2) l{xa:xe2"}1=-1- L 20(0-J=_l_ L 2"1<0->+·+<·.,<(T>. 
IGI o-EG IGI aeG 

The number l{x0 : x e 2"}1 is called the cycle index of the permutation group G and 
will be denoted by 0( G). If we want to stress that G is a permutation group on n 
letters, then we write 0.(G), instead of E>(G). For more information on P61ya's 
enumeration theory the reader should consult [Ber71] and [PR87]. 

Since the invariance group S(f) of a function f E Bn contains G if and only if it 
is invariant on each of the different orbits x 0 , x e 2", we obtain that 

j{f E Bn: S(f) ~ G}I = 2El(G)• 

It is also not difficult to compare the size of 0( G) and ISn: GI. Indeed, let H ~ G;;;; Sn. 
If 

Hg1 , Hg2 , • • ·, Hgk 

are the distinct right cosets of G modulo H then for any x E 2" we have that 

x0 = XHg, u XHg2 u ... u XHgk. 

It follows that 0n(H);;;;:E>n(G) · IG:HI. Using the fact that E>n(S,,)= n+l we obtain 
as a special case that en ( G);;;;: (n + l)IS 11 : Gj. In addition, using a simple argument 
concerning the size of the orbits of a permutation group we obtain that if A1 , • • • , Aw 
are different orbits of the group G;;;; Sn acting on {1, 2, · · · , n} then 

We summarize these results in the following useful theorem. 
THEOREM 2. For any permutation groups H;;;;: G;;;; S,, we have 
(1) E>n(G);;;;0,,(H);;;;0,,(G) · IG:HI. 
(2) E>,,{G);;;; (n+l) ·IS,,: GI. 
(3) 11+1;;;;:0 11 (G);;;;2". 
(4) If '11, · · -, llw are different orbits of G then (jA1I + 1) · · · (lllwl + 1);;;; 0 11 ( G). 
It is easy to see that in general IS.: GI and E>n ( G) can diverge widely. For example, 

letf(n) = n -log n and let G be the group {<7 ES,,: Vi> f(n)(u(i) = i)}. It is then clear 
that 0 11 ( G) = (f(n) + 1) · 2'0 gn is of order n2, while IS.: GI is of order 11 10&11 • Another 
simpler example is obtained when G is the identity subgroup of S,,. 

2.3. Circuits. An n-circuit a 11 is a labeled, directed acyclic graph whose nodes 
are labeled by x 1, • • • , x11 (input bits), 1, 11, v. The input nodes are of in-degree 0 and 
there is a unique output node whose out-degree is 0. The size c( a) of a,, is the number 
of internal (i.e., noninput) nodes, while the depth d (a) of an is the maximal length 
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of a path from an input node to the output node. A word x E {O, 1}" is accepted by an 
n-circuit an if each input node labeled by xi has as value the ith bit of x. An n-circuit 
a,, recognizes or computes a language L,, s {O, 1}" (respectively, boolean function/ E B,,) 
if and only if for all words x in {O, l}", 

x EL,, (respectively /(x) = 1) <=> a,, accepts x. 

A circuit family (an: a,, is an n-circuit, n EN) recognizes or computes a language 
Lt::; {O, l}* if and only if for all n (a,, accepts Ln{O, 1r). In this paper, we usually 
consider nonuniform circuit families as defined above-of course, such families can 
recognize nonrecursive languages. A circuit family (a,,: n E N) is logspace uniform if 
there is a logspace computable function F: 1" ~a,, for constructing the circuits. There 
are stronger and weaker uniformity notions. See [Coo85] for further discussion and 
for a survey of parallel complexity theory. The class SIZE-DEPTH(/, g) is the collection 
of languages accepted by a family (a,,: n EN) where c( a,,) -;;2/(n) and d (a,,)~ g( n ). 
The class ACk (respectively, NCk) is the collection of languages2 belonging to SIZE­
DEPTH(n0(1>, O(logk (n))) where the in-degree of nodes labeled by /\,vis arbitrary 
(respectively, 2). Of importance to this paper is the class AC0 of languages accepted 
by (nonuniform) circuit families of constant depth and polynomial size with arbitrary 
fanin, and the class NC 1 of languages accepted by (nonuniform) circuit families of 
logarithmic depth (and a fortiori polynomial size) withfanin 2. By unwinding a circuit 
into an equivalent boolean formula (circuit with fanout 1), NC1 is easily seen to be 
the class of languages computable by (non uniform) polynomial size boolean formulas. 
The class TC0 is the collection of languages computable by (nonuniform) circuit 
families with constant depth and polynomial size, whose gates are arbitrary fanin 
threshold gates. NC is defined to be u nEN NCk. Trivially, NCk s Ack, and by replacing 
an arbitrary fanin gate by a binary tree of fanin 2 gates, it is clear that ACk s NC k+i. 

A language Ls {O, 1}* is said to have (or be computable by) polynomial size circuits, 
denoted LE SIZE(n°( 11 ), if there is a circuit family (a,,: n EN) where a,, computes the 
characteristic function of L,,=Ln{O, I}" and c(a,,)~p(n) for some polynomial p. 
Note that SIZE(n°( 1 l) is the same class, whether one considers arbitrary fanin or fanin 
2 circuits. Since the out-degree of a node is arbitrary, partial computations may be 
reused; thus the circuit provides a model for parallel computation. Stockmeyer and 
Vishkin [SV84] have shown that ACk is the class of languages computed in O(Iogk (n)) 
time with a polynomial number of processors on a parallel random access machine 
(PRAM). 

For a boolean function f: 2" "'2, we define 

c(f) =min {c(a): a computes/} 

where a has fanin 2. The following results are well known (e.g., see [Sav76] or [Yab83]). 
In particular, we shall use the second fact in a later proof. 

(1) For any symmetric functionfEB,,, c(f)= O(n). 
(2) (Lupanov-Shannon-Strassen) J{f E Bn: c(f) < q}J = O(qq+1). 

(3) For any s>O, the ratio of fEB,, such that c(f)>(l-s)2n-i;n tends to 1 
as n "'co. 

3. Invariance groups of certain languages. The main objects of study in this paper 
are boolean functions and their invariance groups. Let Bn,k be the set of all k-valued 

2 Usually these classes are defined to be classes of functions rather than languages. Since we will not 
discuss function computations in this paper, we adopt the above definition. 
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functions f: 2" ~ k on n boolean variables. If k = 2 then we abbreviate Bn,2 by Bn. If 
Z 2 denotes the finite two-element field then it is clear that 

(x7- X;, i = 1, 2, · · · , n) · 

For x = (x1, · · ·, Xn) E 2" and <r E Sn, let x" = (xcr(l), · · ·, Xcr(n)). For any n-ary boolean 
function f E B" let fa be defined by 

The invariance group off is defined by 

S(J) = {<rE Sn:f = f"} 

= { O"E Sn: 'Vx E 2"f"(x1 , • • ·, Xn) = f(xa(JJ> · · · , Xa(n))}. 

If K £ {O, 1}" is a set of words of length n, then by abuse of notation we shall write 
S(K) for the invariance group of the characteristic function of the set K. If Li;;;; {O, 1}* 
is a set of finite words and n ~ 1 then Sn(L) denotes the invariance group of the n-ary 
boolean function Ln. Clearly, S(f), being nonempty and closed under multiplication, 
is a subgroup of Sn. 

Here we compute the invariance groups of well-known formal languages. We 
begin with the Dyck (or parenthesis) and palindrome languages and conclude with an 
"efficient" algorithm for computing the invariance group of regular languages. 

3.1. Dyck languages. The semiDyck language D [Harr78] is defined as the least 
set of strings in the alphabet 0, 1 such that A ED and (for all x, y ED) (xy ED and 
Oxl ED). The semiDyck language is not regular, as can be seen from the fact that the 
elements O" give rise to infinitely many distinct equivalence classes in the right 
congruence relation for D. The Dyck languages Dr, r ~ 1, are defined in the alphabet 
L, = {O;, l;: i = 1, · · ·, r} in a similar fashion: D' is the least set of strings in the 
alphabet L, such that A ED' and (for all x, y ED') (for all i ~ r) (xy E D' "O;xl; ED'). 
Clearly, D = D 1• Next we determine the invariance group of the Dyck languages. 

THEOREM 3. For the Dyck language D' defined above we have that 

S (D')={l ifnisoddorr~2 
" ((i, i+l): i<n is even) ifn is even and r= L 

Proof First, notice that D is a homomorphic image of D'. The homomorphism 
h,: L,' ~is defined by setting h,(b;) = b, where b E {O, 1}. It follows that for all strings 
x of length n, and all permutations <rES", h,(xa)=(h,(x))a, which in turn implies 
that Sn(D') £: Sn(D). Now, if n is odd, then trivially S(D) = 1 and so S(Dr) = L 
Suppose that n = 4, r = 2, and, respectively, write "(", "['', ") ", "]" in place of Oi. 02 , 

11' 12. Then ([])ED~, but(] [)~D~. Similar examples can be constructed to verify 
that S(D') = 1 for 2 ~ r. To prove the theorem, it is enough to show that, for n even, 

Sn(D)=((i, i+l): i< n is even). 

For any string x = x 1 • • • xk let l(x) = k be its length and s(x) its signature, where 

k 

s(x)= L (-lf', 
i=l 

Then we can prove the following claims. 
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CLAIM 1. For any string x, XE D~s(x) =O and for all i~ l(x)(s(x Ii) S;O). 

Proof of Claim 1. The direction from left to right is trivial by induction on the 

construction of x ED. To prove the other direction, assume the right-hand side is true. 

We use induction on the length of x. If for some k < l(x), s(x I k) = O then x = (x I k)y, 

for some y. Clearly, the induction hypothesis applies to x I k and y. Consequently, 

both x I k, y ED and hence also x ED. Otherwise, for all k < /(x), s(x I k) > O. Clearly, 

X1cxl = l (otherwise s(x) > 0). We also know that x1 =0. Hence, x = Oyl, for some y. 

Clearly, this y satisfies the induction hypothesis stated in the right-hand side of Claim 
1. Hence, y E D and consequently also x ED. 

As mentioned above, if n is odd the theorem is trivial. Hence, in all the proofs 
below we assume that n is even. 

CLAIM 2. For any b E {O, I} and any l < i < n there exists a string x E Dn such 
that X; =b. 

Proof of Claim 2. The proof is by induction on n. The claim is trivial if n = 2. So 

assume n > 2. If i = 2 then consider the strings Oly, 001 lz E Dn. If i = n -1, then consider 

the strings yOl, zOOl 1 E Dn. Hence, without loss of generality, we can assume that 

2 < i < n -1. But then consider strings of the form Oyl, where y ED" _2 , and use the 
induction hypothesis. 

CLAIM 3. aE Sn(D)~a(l) = 1, u(n)= n. 

Proof of Claim 3. Assume a(l) = i ?61. Consider an x E Dn such that X; = l (use 

Claim 2). Then note that x(J" = Iy e D", for some stringy, which is a contradiction. A 

similar proof shows that a( n) = n. 
CLAIM4. IfuESn(D) ando-[{I,···,i-1}]=[{1,···,i-1}] anda-(i)<i then 

(a) i is even, (b) a-(i)=i+l, (c) u(i+l)=i. 

Proof of Claim 4. To prove (a) assume on the contrary that i is odd. Consider an 

x ED" such that x = yO · · · 1 z, where X; = 0 and x"uJ = 1 and s(y) = 0. Applying a- to 

x we obtain that x" = y" 1 · · · . But then s(y" 1) = s(y") - 1 = s(y) - 1 = -1 0. Hence, 

x" ~ D,,, by Claim 1, a contradiction. 
To prove (b) assume on the contrary that a-( i) > i + 1. For simplicity, assume that 

lT( i) = i + 2 (a similar proof will work if a( i) ~ i + 2). We distinguish several cases. If 

a(i + 1) = i + l then consider the string x = yOOl l · · · E Dn, with l(y) = i - 2, X;-.i = X; = 0 

and X;+i = X;+ 2 = 1. Then it is clear that x" = y"Oll · · · e Dn, a contradiction. If 

a(i+l)=i+3 then consider the string x=yOOOlll · · ·EDn, with /(y)=i-2, X;_ 1 = 

X; = X;+ 1 =0 and X;+2 = X;+ 3 = X;+4 = 1. Then it is clear that x" = yu011 · · · e D,,, a contra­

diction. If a( i + 1) > i + 3 then consider the string x = yOOll · · · 1 · · · E Dn, with l(y) = 

i-2, X;_ 1 =X;=0 and X;+ 1 = X;+ 2 = Xau+ 11 = 1. Then it is clear that x" = y"Oll · ··ED,,, 

a contradiction. Thus, we obtain a contradiction in all cases considered above. Hence, 

<T(i) = i + 1. This completes the proof of (b ). 
To prove (c) use an argument similar to (b). Indeed, assume on the contrary, 

CT(i + 1) 7" i. It follows that a-(i + 1) ~ i + 2. If a(i + 1) = i + 2 then take x = yOOll · · · E 

Dn, with X;-i = X; = 0, X;+ 1 = X;+2 == l. Ifwe apply a to x then we obtain x" = y"Ol 1 · · ·~ 

Dn, which is a contradiction. If a-(i + 1) = i + 3 then take x = y00101 · · · E Dn, with 

x;_ 1 = x; = X;+ 2 = 0, xi+ 1 = X;+ 3 = 1. Ifwe apply u to x then we obtain x.,. = y"Oll · · ·ED,,, 

which is a contradiction. In general, a similar proof works if u( i + 1) s i + 3. This 

completes the proof of (c). 
Now we are ready to complete the proof of the theorem. Let a ED,,. We know 

that a(l) = 1. Let i1 be minimal such that u(i1) 7" i 1 and for all i < i1(a(i) < i1). By 

minimality a-(i1) > i 1 • It follows from Claim 4 that i 1 is even and a(i1) = i1+1 and 

O"( i 1 + 1) = i 1 • Let i2 be minimal i 1 such that a( i2) 7" i2 and for all i < i2( u( i) i2). By 

minimality a-( i2) i2. Hence, Claim 4 applies again to show that i2 is even and a( i2) = i2 + l 
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and a( i2 + l) = i2 . Proceeding in this fashion we show that Sn ( D) <;;::: ( ( i, i + 1): i n is 
even). It remains to show that, in fact, equality holds. Indeed, let i < n be even. There 
are four possibilities for X;X;+ 1 in the string x: 

X 1 = yOO · · ·, X 2 = yOl · · ·, 

where y is a string of odd length. But then it is easy to see that for all j = 1, 2, 3, 4, 

x. ED ~ x(i,i+I) ED 
J n J n' 

which completes the proof of the theorem. 0 

3.2. Palindrome language. The palindrome language is defined as the set of all 
strings (in the alphabet l, with at least two elements) u = u1 • • • un such that for all i 
( U; = Un-i+l ). 

THEOREM 4. If L is the palindrome then 

uESn(L) ~ ('v'i~n)(a(n=n-a(i)+l)). 

Moreover, S"(L) is isomorphic to S[n/Zl x (Z2)["/ 2l. 
Proof. (=>) Let aE Sn(L). Suppose that a(i) = j. Consider the string u = u 1 • • • un 

such that u; = un-;+ 1 =0, and uk = 1, for all k ¥- i, n - j-1. Clearly, u E Lm. Hence, also 
ua E Ln. It follows that Uaui = u1 =0 and consequently ua(n-i+I) = 0. But this is true 
only if a(n - i+ 1) = n -j+ 1, as desired. 

(~) This direction is obvious from the very definition of the palindrome. 
To determine the group Sn(L), notice that by the previous result, a permutation 

uES"(L), is determined by the values u(l), · · ·, a([n/2]). Furthermore, note that if 
n is odd then a((n + 1)/2) = (n + 1)/2. Now consider the permutation a 0 such that for 
all i~n, a 0(i)=n+l-i and put Gn={aa0aa01 : aES[n;2i}. It is easy to see that G" 
is isomorphic to S(n/zJ, moreover the group Hn generated by G" and the transpositions 
( i, n - i + 1) is exactly the group 

Gn X (1, n) x (2, n -1) x · · · X ([n/2], n -[n/2]-1). 

Moreover, H" = Sn(L). This completes the proof of the theorem. 0 

3.3. An algorithm for the invariance group of regular languages. Here we are 
interested in studying the complexity of membership in the invariance group of a 
regular language. To this end consider a term t(x, y) built up from the variables x, y 
by concatenation. For example, t(x, y) = xyx, t(x, y) = x 2yx5y 3, etc. are such terms. The 
number of occurrences of x and y in the term t(x, y) is called the length of t and is 
denoted by I tl, e.g., I tl = 3 and I tl = 11, in the two previous examples. For any permuta­
tions u, r let the permutation t( a, T) be obtained from the term t(x, y) by substituting 
each occurrence of x, y by a, r, respectively, and interpreting concatenation as the 
product of permutations. We know that the symmetry group S" is generated by the 
cyclic permutation en= (1, 2, · · ·, n) and the transposition T = (1, 2) (in fact any trans­
position will do) [Wie64]. A sequence a-= (an: n ~ 1> of permutations is term-generated 
by the permutations en, T if there is a term t(x, y) such that for all n ~ 2, an = t( en, T ). 

We have the following theorem. 
THEOREM 5. (1) Let a-= (O"n: n;;;: 1) be a sequence of permutations which is term­

generated by the permutations Cn = (1, 2, · · · , n), T = (1, 2). Then for any regular language 
L, La is also regular. 

(2) For any term t of length I tl the problem of testing whether, for a regular language 
L, L = L ", where a= {un: n;;;: 1) is a sequence of permutations generated by the term t 
via the permutations c" = (1, 2, · · ·, n), T = (1, 2), is decidable; in fact it has com­
plexity 0(21'1). 
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Proof Part (2) is an immediate consequence of the proof of part (1) and the 
solvability of the equality problem for regular languages [Harr 78]. So we concentrate 
only on the proof of (1). To prove the theorem we need the following claim, whose 
proof is easy and left to the reader. 

CLAIM. 

LE REG~{x: Ox EL} E REG. 

LE REG~{x: xl EL} E REG. 

LEREG~{x: Oxl E L}eREG. 

LEREG~{x: lxOEL}EREG. 

First we show how to prove the theorem when un = (1, n). Indeed, 

and this last set is the union of the following four sets: 

{x E 2": Ox2 • • • Xn- 10 EL}, 

{x E 2n: Ox2 • • • Xn-11 EL}, 

{xe2": lx2 • • • Xn- 1 1 EL}, 

{xE2": lx2 • • • Xn-10E L}. 

This completes the proof in view of the above claim. A similar proof will yield the 
result when each un = (1, 2). Next we use the above result for the transpositions (1, n) 

to prove the result for the n-cycles, un =en. Indeed, 

LE REG~{x1 • • • Xn: xl E L}E REG 

~{X1 · · · Xn: X1 · · · Xnl E L}EREG 

~{X1 · · · x,,: 1X2 · · · XnX1 E L}E REG 

~{X1 · • · Xn: X2 • • • XnXI EL} E REG. 

Finally, the theorem follows by using the following product formula, which is valid 
for any permutations T 1 , r 2 E Sn, 

This completes the proof of the theorem. 0 
The assumption on term generation of the sequence (un: n >- 1) of permutations, 

made in the last theorem, is necessary as the following example shows. 
Example 6. Let R be a recursively enumerable but nonrecursive set. Consider the 

permutation un, which is equal to (1, n), if n ER, and is equal to id,,, if n e R, where 
idn is the identity permutation on n letters. Consider the regular language defined by 
L= 10*. Then it is easy to see that L~={lO": n+le R}U{O"l: n + 1 ER}. It follows 
that n ER <:?0"- 11 E Lcr. Hence, La is not even a recursive language, although L is 
regular. 

4. Constructing languages with given invariance groups. This section is concerned 
with the problem of realizing specific sequences of finite permutation groups by 
languages Ls; {O, l}*. A language L is said to realize a sequence G = < Gn: n ~ 1) of 
permutation groups Gn ~Sn if it is true that Sn(L) = Gn, for all n. We consider the 
following types of groups and determine regular as well as nonregular languages 
realizing them. 
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Reflection. Rn= (p), where p(i) = n + 1- i is the reflection permutation, 

Cyclic. Cn = ((1, 2, · · ·, n)). 

Dihedral. Dn = Cn X Rn. 

Hyperoctahedral. 0 n = (( i, i + 1): i is even ~ n). 

THEOREM 7. (1) Each of the identity, reflection, cyclic (for n i' 3, 4, 5), dihedral, 
and hyperoctahedral groups can be realized by regular languages. 

(2) Each of the identity, cyclic, and dihedral groups can be realized by languages L 
such that Le SIZE(n°0 >). 

Proof ( 1) For each of the above-mentioned types of groups we provide a regular 
language realizing it. 

Identity. This case is simple: take L = O*l*. 

Dihedral. Let L = O* 1 *O* U 1*O*1 *. It is clear that Dn s;;; S,, ( L). Let p be the reflec­
tion permutation defined by p( i) = n + 1- i and let u = (1, 2, · · · , n ). It is easy to check 
that upu=p. It follows that Dn={ukp 1: k~n, l=O, 1}. Next we prove the following 
claim. 

CLAIM. For all TE Sn, if addition is modulo n, 

or 

Vi~ n( T(i) = T(i + 1) + 1). 

Proof of the claim. From left to right the equivalence is easily verified for the 
permutations ukp 1 (l~k~n, l=0,1). For example, u(i+l)=u(i)+l and p(i)= 
p( i + 1) + 1. To prove the other direction, assume that T satisfies the right-hand side. 
Say, T( 1) = k It is then easy to see that either T = uk-t or T = ukp. This completes the 
proof of the claim. 

It remains to show that Sn(L) s;;; Dn. If n ~3 the result is trivial. So assume that 
n 6 4. Let Te Dn. There exists an i ~ n -1 such that \T( i + 1) - T( i)l 6 2. Let us suppose 
that 1 ~ T( i) + 1 < T( i + 1) ~ n. Then we have that 

Reflection. Let L=O*l*O*. It is clear that Rns;;;Sn(L). We want to show that 
Sn(L) s;;; Rn. By the proof given in the case of dihedral groups we have that Sn(Ln) s;;; Dn. 
Assume on the contrary that TE S,,(L), but TED,, - Rn- It follows that T = u;p, for 
some i 61. Since p E S,,(L) we obtain that u; E Sn(L), which is a contradiction. 

Cyclic. First assume that n = 2. Then consider the regular language 

L=(OlU 10)0*1* 

and notice that Sn(L) = (1, 2). 

Next assume that n 6 6. Consider the regular language L= L1 n L2 where L 1 is 
the language 

1 *O*l * U O*l *O* U 101000*1U0*1101000* U 0*011010 

u 0*001101u10*00110 u 010*0011 

and L2 is the language 

10*00101. 
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Clearly, C,, £ S,,(L). In view of the result on dihedral groups we have that S,,(L) £ D,,. 
Let x = 101000"-61 EL,,. Then xP = 10"-600101 ~ L,,, where p(i) = n + 1- i. Hence, C,, = 
S,,(L), for n ~ 6. 

It is interesting to note that for 3 ~ n ~ 5 the groups C,, are not representable. This 
is obvious for n = 3, since C3 = A3 • For n = 4, 5, one can show directly that for any 
boolean function f E B,,, if C,, £ S(f) £ D,, then S(f) = D,,. 

Hyperoctahedral. Consider the language L consisting of the set of all finite strings 
x = (x1, · · ·, xk) such that for some i ~ k/2, x2i-I = x2 ;. The regularity of the language 
follows from the obvious equality 

For any set I= { i,j} of indices, let f 1 be the n-ary boolean function defined by 

f,(x) = {~ if x; =xj 

if X; ,C. X;. 

Put m = [n/2]. For each i = 1, · · ·, m consider the two-element sets I;= {2i -1, 2i} 
and the functions f,; defined above. Consider the boolean function 

f = f,, v ... v f,..,. 

It is then clear that S,,(L) = S(f). It is also easy to see that this last group consists of 
all permutations a-ES,, which permute the blocks I;, i = 1, · · · , m. In fact this last 
group has exactly 2["121 • [n/2]! elements. 

To prove part (2) of the theorem we use Lupanov's theorem (see § 2.3), i.e., 

j{f E B": c(f) < q}I = O(q 4 + 1). 

Identity. By Lupanov's theorem we have that 

J{f E B,,: c(f) ~ nlog11}J = 2 01n"'""ClogII1' I« 22" 

- l{f E B,,: S(f) = l}J. 

It follows that for all but a finite number of n there exists f,, E B,, such that L(f,,) ~ n 10s" 
and S(f,,) = 1. If we define a language L such that for all n, L,, = f,,, then the proof is 
complete. 

Cyclic. The result will follow by a proof similar to the above if we could prove that 

(3) 

Indeed, the left part of the above inequality is true because one may independently 
assign a value of 0, 1 to each orbit, except for orbits of words having 2 or 3 occurrences 
of the symbol 1. Let a-= ( 1, 2, · · · , n) be the n-cycle and let p be the reflection on n 
letters. We agree to have f( v) ~ f( w ), where J vJ 1 =Iwl 1 = 2 and 

This removes n. Choose 2 independent choices while adding one choice of 0 or 1. We 
agree to havef(v);t.f(w), where lvl 1 =lwl1=3 and 

v E {(101000"-6 1)'": 0 ~ i ~ n -1}, w E {(10"-600101)'": 0 ~ i ~ n -1}. 

Again, this removes n. Choose 2 independent choices while adding one choice of O 
or 1. Hence, the proof of the desired lower bound ( 1) is complete. 
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Dihedral. By [Ber71, p.171], 6(D11 )~r- 1 /n. An argument similar to the one for 
cyclic groups used above shows that 

I{/ E Bn: S(/) = D,,}I ~ 22"-'/n-nl n-1)/2 » 2 O(nlog"/ n(logn)2). 

This completes the proof of the theorem. 0 
There is another interesting way for realizing the cyclic groups C 11 , for n ~ 4. For 

any groups G, H,put[G, HJ ={g. 1h- 1gh: g E G, h E H}.Let G, H~S11 be two permuta­
tion groups. Consider the set of words in G* defined by 

Lo,H = { w E G*: w EH}. 

(The reader should be warned of the different interpretation of w in the expressions 
w E G* and w EH; the former is a word in G* and the latter is an element of a group.) 

THEOREM 8. For any permutation groups G, H ;;£Sn, if [ G, G] is not a subset of 
the normal subgroup H of G, then Sn ( L 0 , H) = C,,, for n ~ 4. 

Proof First we show that Cn s S7,(Lo,H ). Indeed, consider the cyclic permutation 
Cn = (1, 2, · · ·, n) and notice that for w = u 1 • · • lTn E G*, 

It follows from the normality of Hin G that en E S7,(Lo,H ). This completes the proof 
of en s s;(Lo,H)· Next we prove that Sn(Lc;,H) s en. Indeed, let p be a permutation 
in S 11 - Dn. It follows from the proof of Theorem 7 that either (A) there exists an i 
such that lp(i+l)-p(i)lmodn>l, or (B) lp(n)-p(l)lmodn>l. We show that 
p E S 11 (Lc;,H ). First we consider case (A) and distinguish four sub cases. 

Case 1. l~p(i)<p(i+l)n. 
Let u, 7 be given such that [cr,7]=cr7cr- 1T- 1 eH. Let j=p- 1(p(i)+l), k= 

p- 1(p(i+l)+l). Consider w = cr1 • • • cr11 E G", where lT; = u, lT;+ 1 = u-1, u1 =7, crk = T-· 1, 

and all other u/s are equal to 1. Then we have that w = uu - 1 TT -l or uu - 1 T · 17 depending, 
respectively, on whether or not}< k or k <j. In either case w = 1, but wP = lTTlT- 17- 1 e H. 

Case 2. p(i)<p(i+l);;£n. 
Let cr,T be given such that [cr,7]=uw- 1T- 1eH. Letj=p- 1(p(i)-1) and k= 

p- 1(p(i) + 1). Choose w such that w = cr1 · · · lTn E G", where u1 = cr, lT;+ 1 = 7- 1, lT; = 7, 
fh = u - 1 and all other a/s are equal to 1. Then it is clear that w = 1, while wP e H. 

Case 3. 1~p(i+1) < p(i) < n. This is similar to case 1. 
Case 4. l < p( i + 1) < p( i) ~ n. This is similar to case 1. 
Case (B) is handled exactly as before. Hence, we have proved that S 11 (Lo,H) s Dn. 

It remains to show that in fact S 11 (Lc;,H) = Cn. Since [ G, G] is not a subset of H, G / H 
cannot be abelian. Therefore, there exist elements g1 , g2 , g3 , g4 E G such that 

gig2g3g4E H, but g4g3g2g1E H. 

It follows that the reflection permutation does not belong to S11 (Lo,H ), which completes 
the proof of the theorem. 0 

Given a language Ls 2.* over the alphabet 2. the syntactic semigroup GL of L is 
defined as follows. Define w = w' mod L if for all u, v E 2.*, uwv EL<.;;> uw' v E L. Then 
let GL be the quotient of 2.* modulo the equivalence relation= mod L. Recall that the 
Krohn-Rhodes theorem [Arb69] states that the syntactic semigroup GL of any given 
regular language L is the homomorphic image of a wreath product of cyclic simple 
groups, noncyclic simple groups, and three particular nongroup semigroups called 
"units." If G is abelian and H = 1, then it is clear that S" (Lo,H) = Sw If G is a 
nonabelian group and H = 1, then Theorem 8 yields that S 11 (Lo,H) = Cn. We have seen 
families of these groups as invariance groups of regular languages. However, we have 
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examples of representable groups whose homomorphic image is not representable, 
(e.g., (1, 2, 3) is the homomorphic image of (1, 2, 3 )( 4, 5, 6) ), thus indicating that it is 
unlikely that the Krohn-Rhodes theorem can be used to characterize those families 
of invariance groups of regular languages. Similarly, from the examples given in the 
paper, there is no invariance group structure preserved when taking regular operations: 
from Sn(L) and Sn(L'), we cannot say anything in general about Sn(M), where 
M = L* L' and * is a boolean operation or language concatenation or where M = L * 
(Kleene star). This blocks a natural attempt to inductively define the families of 
invariance groups of regular languages. 

It is not known whether there is a characterization of those sequences of groups 
which can be realized by regular languages. However, it is interesting to note that for 
regular languages L the invariance group S2n(L) can never be equal to the {1, 2, · · ·, n} 
point-stabilizer of S2 n. 

THEOREM 9. (1) There is no regular language L such that for all but a.finite number 
of n we have that 

(2) There is a regular language L such that for all n we have that 

S2n(L) = (S2n){2i;i,,;;n/2}· 

Proof ( 1) By the pumping lemma for regular languages [Harr78] there exist words 
a;, b;, i < m and iiJ, ~, j < m and languages L;, ij such that 

L= U a;bf L;, 
im 

where 1L = {O, 1}* - L is the complement of L. Let r be the least common multiple of 
the lengths of all the above words. Put i = r + 1, j = i + r, and n0 = 3 r. Consider the 
transposition r = (i,j) and let n ~ n0 • Then for any word w of length n we consider 
the following two cases. 

Case l. w E Ln. 
Then for some i0 < m and some s we have that w must be of the form a; 0 b:0 c; 0 • 

The ith position in the word w falls within the block b;0 • Since the length of b; 0 divides 
r the jth position of the word w falls in exactly the same position with respect to the 
block b; 0 • It follows that W; = w1 and hence wr = w. 

Case 2. w i. Ln. 
This is similar to the proof of Case 1. 
It follows from the above that TE Sn(L), as desired. This completes the proof of 

part (1 ). 
(2) Consider the languages L'=O* and L"= l*O*. It is clear that for all n, Sn(L') = 

S 11 , and S,,(L") = 1. Let L be the set of all words w of even length 2n such that 

Clearly, L is a regular language and S 2,, (L) ;:;;:> (S2n ){2i: i"2n/2l. It remains to show that 
in fact S211 (L)s;:; (S2 ,,) 12 i,;""n;2}· Indeed, let U'ES2n(L) and decompose U' as a product 
of the disjoint cycles a 1 • • • U'k· Assume on the contrary that there exists an io such 
that U';o = (a1' . .. 'ar) and 

(i) either there exists a 1 ~}0 < r such that a10 is even and aj0+1 is odd, 
(ii) or ar is even and a 1 is odd. 
We treat only case (ii), the other case being entirely similar. Consider a word w 

defined as follows. Let w1 = w3 = · · · = w2n-i = 0 and w2 = W4 = · · · = Wa, = 1 and the 
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remaining W; 's equal to 0. Then w EL. However, ( wu)a, = 1, where a1 is odd, and so 

(w")1(w"h · · · (w.,.hn-1e L'. 

It follows that Wu e L. Hence, (}" e S2n(L), a contradiction. 0 

5. Representations of permutation groups. The aim of this section is to give general 
results on permutation groups G ~Sn which can be represented as the invariance 
groups of boolean functions, i.e., G = S(f) for some f E Bn. It will be seen in the sequel 
that there is a rich class of permutation groups which are representable in this way. 

The main motivation for the results of the present section is the simple observation 
that the alternating group A" is not the invariance group of any boolean function 
f E Bn, provided that n ~ 3. Although this will follow directly from our representation 
theorem it will be instructive to give a direct proof. Suppose that the invariance group 
off E Bn contains An. Given x E 2n, for 3 ~ n, there exist 1 ~ i <j ~ n such that X; = Xj. 

It follows that the alternating group An and a transposition fix f on x, and hence Sn 
does as well. As this holds for every x E 2n, it follows that S(f) =Sn. In fact it is clear, 
using part (1) of Theorem 1, that An is not isomorphic to the invariance group S(f) 
of any f E Bn. However, An is isomorphic to the invariance group S(f) for some boolean 
function f E B,,00gn+o (see Theorem 11 below). 

One can generalize the notion of invariance group for any language Ls;; 
{O, 1, · · ·, k}* by setting Ln = L n {O, · · ·, kf and S(Ln) to be 

We leave the details of the proof of the following fact as an exercise for the reader. 
FACT. For all n, there exist groups Gn ~Sn which are strongly representable as 

Gn = S(Ln) for some Ls;; {O, 1, · · ·, n -1}" but which are not so representable for any 
language L' s;; {O, 1, · · · , n -2}". 

Proof The alternating group A,,= S(L,, ), where L,, = { w E {O, · · ·, n -1r: u..,,. EA,,}, 
where u"': i ~ w( i -1) + 1. By a variant of the previous argument, A,, is not so represent-
able by any language L' s;; {O, 1, · · · , n - 2}". 0 

Compared to the difficulties regarding the question of representing permutation 
groups G ~ S,, in the form G = S(f ), for some f E B,., it is interesting to note that a 
similar representation theorem for the groups S(x) = {u E Sn: xu = x}, where x E 2", is 
relatively easy. It turns out that these last groups are exactly the permutation groups 
which are isomorphic to sk x s,,_k for some k. Indeed, given x E 2n let 

X={i: 1~i~n and X;=O}, Y={i: l~i~n and X;=l}. 

It is then easy to see that S(x) is isomorphic to Sx x SY· In fact, u E S(x) if and only 
if Xu= X and Y" = Y. 

5.1. Elementary properties. Before we proceed with the general results we will 
prove several simple observations that will be used frequently in the sequel. We begin 
with a few useful definitions. For any f E B", let s+ (f) = { u E Sn: for all x E 
2"(f(x) = 0=? f(x") = O)}. For any permutation group G ~Sn and any~ s;; {l, 2, · · ·, n} 
let G:.. be the set of permutations u E G such that (for all i E ~)( u(i) = i). G.:;. is called 
the pointwise stabilizer of G on~. Notice that (S,,){k+t.··-,nl= Sk. fork~ n. For any 
permutation u and permutation group G let G" = u- 1Gu, also called a conjugate of 
G by u. For any f E 8 11 let lE8f E B,, be defined by (1E8f)(x) = lEBJ(x), for x E 2". 
If f 1 ,···,fk.EB,, and fEBk then g=f(fi,···,fk)EB,, is defined by g(x)= 
f(f;(x), · · · ,fk.(x)). The following theorem contains several useful observations that 
will be used frequently in the sequel. 
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THEOREM 10. ( 1) If f E Bn is symmetric then S(f) =Sn. 
(2) S(f) = S(l EBJ), for all f E Bn-
(3) For any permutation er, S(fu) = S(f)u. 
(4) ForeachfEBn, S(f)=S+(f). 
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(5) If Ii. ... ,fk E Bn and f E Bk and g = f(fi, ... ,fk) E Bn then SCf1) n ... n 
S(fk) c;; S(g). 

(6) (For all k;:£n)(3fEBn)S(f)=Sk. 
Proof. The proofs of (1)-(3), (5) are easy and are left as an exercise to the reader. 

To prove (4), notice that S+(f) is a group and trivially S(J) s:; S+(f). Now let er E S+(f) 
and suppose thatf(x(T) = 0 holds. Since, o-- 1 E s+(f) we have thatf(x) = f((x")lT- 1) = 0. 
It follows that s+(f) <;; S(f), as desired. To prove (6) we consider two cases. If k+ 22 n, 
define f by 

f(x)={l ifxk+1~Xk+ 2 ;:£· · ·2xn 

0 otherwise. 

Let aES(f). First notice that for all i> k(cr(i)> k). Next, it is easy to show that if er 
is a nontrivial permutation then there can be no k ~ i <j ~ n such that cr(j) < cr(i). 
This proves the desired result. If k = n - 1, then the function! must be defined as follows. 

f(x)={l ifx1,·: · ,Xn-1~Xn 
0 otherwise. 

A similar proof will show that S(f) = Sn-i · This completes the proof of the 
theorem. D 

We define a permutation group G ;::£Sn to be representable (respectively, strongly 
representable) if there exists an integer k and a function f E Bn,k (respectively, with 
k = 2) such that G = S(f). G ~Sn is called weakly representable if there exists an integer 
k, an integer m < n, and a function f: mn-? k such that G = S(f). It will be seen in 
the sequel (representability theorem) that the distinction between representable and 
strongly representable is superfluous since these two notions coincide. 

Notice the importance of assuming m < n in the above definition of weak rep­
resentability. If m = n were allowed, then every permutation group would be weakly 
representable. Indeed, given any permutation group G ~Sn define the function f as 
follows: 

(here, we think of (x1 , • • ·, Xn) as the function i ~ xi in n") and notice that for all 
er E Sn, er E S(J) if and only if for all TE Sn (TE G~ rcr E G). Hence G = S(f), as 
desired. 

Another issue concerns the number of variables allowed in a boolean function in 
order to represent a permutation group G 2 Sn. We can also consider representing 
functions by using additional variables, but as the following theorem shows, every 
group becomes representable if enough variables are allowed. 

THEOREM 11 (Isomorphism Theorem). Every finite permutation group G ;::£Sn is 
isomorphic to the invariance group of a boolean function f E Bnoogn+I>. 

Proof. First, let us give some notation. Let w be a word in {O, l}*. lwl 1 is the 
number of occurrences of 1 in w, and wi is the ith symbol in w, where 1 2 i ;::£I wl =length 
of w. The word w is monotone iffor all 12 i <J2 lwl, w; = l==>wj = 1. The complement 
of w, denoted by w is the word which is obtained from w by "flipping" each bit wi, 
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i.e., \w\ = \w\ and W; = 1 EB W;, for all l ;;:;ii ;;:;i \ w\. Fix n and let s =log n + 1. View each 
word w E {O, 1 ys (of length ns) as consisting of n-many blocks, each of length s, and 
let w(i) = w(i-JJs+i · • · W;s denote the ith such block. For a given permutation group 
G ;;:;i Sn let L 0 be the set of all words w E {O, l}"s such that 
• either (i) I w\ 1 = s, and if the word w is divided into n-many blocks 

w(l), w(2), · · · , w(n), each of lengths, then exactly one of these blocks consists of 
l 's, while the rest of the blocks consist only of O's, 

• or (ii) \ w\ 1 ;;:;is -1 and for each 1 ;;:;ii ;;:;in, the complement w of the ith block of w is 
monotone (this implies that each w( i) consists of a sequence of l 's concatenated 
with a sequence of O's), 

• or (iii) lw\ 1 6 n and for each 1 ~ i~ n, w(i) 1 =0 (i.e., the first bit of w(i) is O) and 
the binary representations of the words w(i), say bin( w, i), are mutually distinct 
integers and <Tw E G, where aw: {l, · · ·, n}~ {l, · · ·, n} is the permutation defined by 

<Tw(i) = bin(w, i). 

The intuition for items (i) and (ii) above is the following. The words with exactly 
s-many l 's have all these l 'sin exactly one block. This guarantees that any permutation 
"respecting" the language L0 must map blocks to blocks. By considering words with 
a single 1 (which by monotonicity must be located at the first position of a block) we 
guarantee that each permutation "respecting" L0 must map the first bit of a block to 
the first bit of some other block. Inductively, by considering the word with exactly 
( r - 1 )-many l 's, all located at the beginning of a single block, while all other bits of 
the word are O's, we guarantee that each permutation "respecting" La must map the 
( r- l )st bit of each block to the ( r -1 )st bit of some other block. It follows that any 
permutation respecting L 0 must respect blocks as well as the order of elements in the 
blocks; i.e., for every permutation TE S 11s(L0 ), 

('v'O;;:;i k< n)(30~ m < n)('v'l ~ i~ n)'T(ks+ i) =ms+ i. 

Call such a permutation "s-block invariant." Given a permutation TE Sn,(La) let 7 E Sn 
be the induced permutation defined by 

i(k) = m ~ ('v'l ;;:;ii~ n)T(ks+ i) =ms+ i. 

We claim that G={7: TES7.s(L0 )}. Indeed, to prove(<;) notice that every element 7 
of G gives rise to a unique "s-block invariant" permutation T. If w E L0 and I wl 1 ~ s, 
then bys-block invariance of T, W 7 E La. This proves(<;). If w E L0 and <Tw E G, then 
a-< w • 1 = <T ,,.i E G (composition is from the right). To prove ( 2) let w E L 0 be such that 
<Tw is the identity on S". Then for any TES 11s(Lo), W 7 ELa, so <T<w'J=awi'=i'EG, 

which proves the above claim. This completes the proof of the theorem. 0 
Clearly, the idea of the proof of the previous theorem can also be used to show 

that for any alphabet l, if L r;;. l", then Sn (L) (the set of permutations in Sn "respecting" 
the language L) is isomorphic to Sn,(L'), for some L' !;:; {O, iys, where s = l +log Ill. 

We conclude by comparing the different definitions of representability given above. 
THEOREM 12. For any permutation group G~Sn the following statements are 

equivalent: 
(1) G is representable. 
(2) G is the intersection of a finite family of strongly representable permutation groups. 
(3) For some m, G is a pointwise stabilizer of a strongly representable group over 

Sn+m, i.e., G = (Sn+m(f)){n+!,···,n+m), for some f E Bn+m and m ~ n. 
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Proof First we prove that (1)=>(2). Indeed, let fe Bn,k such that G=S(f). For 
each b < k define as follows a 2-valued function fb: 2" ~ {b, k}: 

h(x)={~ if f(x) = b 

if f(x) ;t. b. 

It is straightforward to show that 

S(f) = S(fo) n · · · n S(fk-1). 

But also, conversely, we can prove that (2) => ( 1 ). Indeed, assume that .fi, E Bn, b < k, 
is a given family of boolean valued functions such that G is the intersection of the 
strongly representable groups S(fb). Define f E Bn,2k as follows: 

f(x) = <fo(x), · · · ,fk-1(x)), 

where for any integers n 0 , • • ·, nk-i. the symbol (n0, • · ·, nk_ 1) represents a standard 
coding of the k-tuple (n0 , • • ·, nk_1). It is then clear that S(f) = S(f0 ) n · · · n S(fk_ 1), 

as desired. 
To prove that (3) is equivalent to statements (1) and (2) it is enough to show that 

(i) for any family {f;: 0 ;a; i ~ k} of boolean functions f; E B" there exists an integer 
0 ~ m ;a; log k and a boolean function f E Bn+m such that 

(4) (S(f)){n+l,-·-,n+m} = SU1) n . .. n S(fk), 

and (ii) also conversely, for any integer m;;; 0, and any boolean function f E Bn+m 
there exist boolean functions {f;: 0 ;a; i ;a; k}, with k ~ zm such that equation (1) holds. 

Indeed, part (i) of the above statement follows by repeated application of part 
(6) of Theorem 10 and the case k = 2 of the above statement. To prove the case k = 2, 
define f(x 1 , • • • , Xn, i) = f;(x 1 , • • • , Xn ). The desired equality is now easily proved. To 
prove the converse part (ii), let m, f be as in the hypothesis and define the desired 
family of functions fb,,-·-,b,,. as follows. 

h,,. . .,bJX1, · · ·, Xn) = f(X1, · · ·, Xn, b1, · · ·, bm). 

It is now easy to see that equation ( 1) is satisfied. This completes the proof of the 
theorem. D 

5.2. Representation theorems for general permutation groups. Here we study the 
representability problem for general permutation groups, give a necessary and sufficient 
condition via P6lya's cycle index for a permutation group to be representable, and 
show that the notions of representable and strongly representable coincide. In order 
to state the first general representation theorem we define, for any n + 1 ~ 0 ;a; 2" and 
any permutation group G~S", the set G~"> = {M;;a; G: ®"(M) = O}. Also, for any 
H s; S", and any g E Sn, the notation (H, g) denotes the least subgroup ofS" containing 
the set HU {g}. 

THEOREM 13 (Representation Theorem). The following statements are equivalent 
for any permutation groups H < G~Sn. 

( 1) H = G n K, for some strongly representable permutation group K ;a; Sn. 
(2) H = G n K, for some representable permutation group K ~S,.. 
(3) (for all g E 0-H)(@n((H, g)) < 0,.(H)). 
(4) His maximal in G~"\ where <E>n(H) = 0. 
Proof. We prove the equivalence of the above statements by showing the following 

sequence of implications: (1)=>(2)=>(3)=>(1) and (4)=>(3)=>(4). The proof of (1)=> 
(2) is trivial. First, we prove (2)=>(3). By Theorem 12, K is the intersection of a family 
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of strongly representable groups. Hence, by assumption let S(/;), where {/;} s;; Bn, be 
a finite family of invariance groups such that 

H = n s(_t;) n a. 

Assume on the contrary that there exists an HK~ G such that 0(K) = @(H). This 
last statement is equivalent to the statement 

'Vx E 2n (xK = xH). 

We show that in fact 

K s;; n S(f;) n G, 

which is a contradiction, since the right-hand side of the above inequality is equal 
to H. Indeed, let u E K and x E 2n. Then we know that 

XK = (x")K = (x")H. 

It follows that x = (x'T, for some TE H. Consequently, f;(x) = /;((x"f) = f;(x,,.), as 
desired. 

Next we prove that (3)~(1). Let Pn(X) be the property of subgroups stated by 
X ~Sn i\ (for all L > X)(0n(L) < 0n(X)). (When n and X ~Sn are clear from context, 
we say simply that X satisfies property P.) 

CLAIM. For all n and subgroups X of Sn, 

Pn(X) ~ X is strongly representable. 

Proof As the direction from right to left is obvious, we only consider the direction 
from left to right. Suppose, in order to obtain a contradiction, that this direction fails. 
Let X ~Sn be of maximal size such that Pn(X) holds, but that X is not strongly 
representable. It follows that 

(V L > X)(L satisfies P=::?) Lis strongly representable). 

Since the full symmetric group Sn is strongly representable we can assume, without 
loss of generality, that X <Sn- In particular, there is a strongly representable group 
L > X of minimal size. Leth E Bn be such that L = S(h). Thus, 

(*) V M(X < M < L=::?) M does not satisfy P). 

Since P,,(X) holds, we have that 0,,(L)<0,,(K). It follows that there exist x,yE2" 
such that 

x= ymod L, x#ymodX, 

where for H ~ S,, and x, y E 2" the symbol x = y mod H means that y = xo-, for some 
u E H. Define a boolean function g E B,, as follows, for w E 2n, 

{
h(w) ifw#xmodX, 

g( w) = 0 if w = x mod X 
1 if w = y mod X. 

w#ymodX 

It follows from the definition of g that X ~ S(g) < S( h) = L. Since every strongly 
representable group satisfies property P, an immediate consequence of ( *) is that 
X = S(g ). This completes the proof of the claim. D 
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Now returning to the proof of (3)~(1), by assumption, for all gE G-H, 
2® .. «H.z>l < 2® .. <H>. In particular, for all g E G- H, there exists a boolean functionfg E Bn 
such that H ~ S" (.fg ), but (H, g) is not a subset of Sn(fg ). Consider the representable 
group K defined by 

K = n S(fg). 
gEG-H 

It is now trivial to check that H =Kn G. Moreover, as in the implication (2)~(3) 
above, it follows that the permutation group K satisfies property P. By the above claim, 
K is strongly representable. This concludes the proof (3)~(1). 

It remains to prove the equivalence of the last statement of the theorem. First we 
prove (4)~(3). Assume that H is a maximal element of G\:l, but that for some 
g E G-H, we have that 0n((H, g)) = 0"(H). But then H < (H, g) ~ G, contradicting 
the maximality of H. Finally, we prove (3)~(4). Assume on the contrary that (3) is 
true but that His not maximal in G~"l. This means there exists H < K ~ G such that 
0n(K) = 0,,(H). Take any g EK - H and notice that 

0"((H, g)) ~ 0,,(K) = 8 = 0,,(H) ~ 0,,((H, g)). 

Hence, 0,,(H) = 0,,((H, g)), contradicting (3). 0 
A "naive" algorithm for testing the representability of a general permutation group 

G ~ S,, is to test all boolean functions f E B,, to see if G = S,, (f).Clearly, this requires 
time 22". An immediate consequence of the representation theorem is the following 
algorithm whose running time is O((n!)2)=2°<niognl. 

Algorithm for Deciding the Representability of Permutation Groups Input 
A permutation group G ~ S 11 • 

for each uE S,, -G do 
if 0,,((G, u)) =0,,(G) 
then output G is not representable. 

od 
else output G is representable. 
end 

The well-known graph nonisomorphism problem (NGIP) is related to the above 
group representation problem. Indeed, let 

G = ({v1 , • • ·, v,,}, Ea), 

be two graphs on n vertices each. Consider the permutation group ISO( G, H) ~ S,,+3 

whose generators u satisfy: 

'v'l ~ i, 

and in addition the permutation n + i ~ u(n + i), i = 1, 2, 3, belongs to the group 
C3 =(n+1, n + 2, n + 3). It is easy to show that if G, H are isomorphic, then there 
exists a group K ~ S,, such that ISO( G, H) = K x C3 • On the other hand, if G, H are 
not isomorphic, then ISO( G, H) = (id,,+3). As a consequence of the nonrepresentability 
of C3 , and the representability theorem of direct products, it follows that G, H are 
not isomorphic if and only if ISO( G, H) = (id,,d. 

Remark. An idea similar to that used in the proof of the representation theorem 
can also be used to show that for any representable permutation groups G < H ~ S,,, 

2· l{heB,,: H=S(h)}l~j{geB,,: G=S(g)}I. 
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Indeed, assume that G, H are as above. Without loss of generality we may assume 
that there is no representable group K such that G < K < H. As in the proof of the 
representation theorem there exist x, y E 2" such that x = y mod H, x ¥ y mod G. Define 
two boolean functions hh E B", b = 0, 1, as follows from w E 2", 

{
h(w) ifw ¥ x mod G, 

hh(w)= ~ ifw=xmodG 

b if w = y mod G. 

w¥ymod G 

Since G ~ S(hb) < S(h ), it follows from the above definition that each h E Bn with 
H = S(h) gives rise to two distinct hb E Bn, b = 0, 1, such that G = S(hb). Moreover, it 
is not difficult to check that the mapping h ~ {h0 , h1}, where H = S(h), is 1-1. It is 
now easy to complete the proof of the assertion. 

An immediate consequence of the representation theorem is that all cycle indices 
0"( G) can in fact be realized by representable permutation groups. The previous 
theorem also has a consequence concerning the representatjon of "maximal" permuta­
tion groups. 

THEOREM 14 (Maximality Theorem). (1) If His a maximal proper subgroup of 
G~Sn then 

(2) All maximal subgroups of Sn are strongly representable, the only exceptions 
being: (a) the alternating group A", for all n ~ 3; (b) the I-dimensional, linear, affine 
group AGL1 (5) over the.field of five elements, for n = 5; (c) the group of linear transforma­
tions PGL2(5) of the projective line over the field of five elements, for n = 6; ( d) the group 
of semilinear transformations Pf L2(8) of the projective line of the field of eight elements, 
forn=9. 

Proof To prove ( 1) let H be a maximal proper subgroup of G such that 0" ( G) < 
E>n(H). Put () = E>n(H). Since condition (4) of the representation theorem is satisfied, 
H is of the form S(f), for some f E Bn. This completes the proof of(=:;>). To prove 
the other direction, assume that E>n( G) = 0n(H). Then for all g E G- H, E>n((H, g)) = 

0" ( H). Hence, again by the representation theorem, there is no f E B" such that 
H = G n S(f). This completes the proof of (1 ). 

To prove (2) let M be a maximal subgroup of Sn. We distinguish two cases. 
Case 1. E>n(M)>n+l. 
In this case, part (1) of this theorem implies that M is strongly representable, 

since E>n(S") = n + 1. (Note that by Theorem 2(4), the condition of Case 1 is satisfied 
by all intransitive groups M, i.e., groups with wn(M) ~ 2.) 

Case 2. 0n(M) = n+ 1. 
In this case we know from the main theorem of [BP55] that M is of one of the 

forms in the statement of the theorem. D 
As noted above, all maximal permutation groups with the exception of An are of 

the form S(f ), provided that n ~ 10. Such maximal permutation groups include: the 
cartesian products SkxSn-k (k~n/2), the wreath products SdS1 (n=kl, k,l>l), 
the affine groups AGLd ( p ), for n =pd, etc. The interested reader will find a complete 
survey of classification results for maximal permutation groups in [KL88]. It should 
also be pointed out that there are plenty of nonmaximal permutation groups which 
are not representable. In fact, it can be verified that examples of such groups are the 
wreath products G l An. In general we can prove the following theorem. For any 
permutation groups G~Sm, H~Sn. 
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THEOREM 15. Let G~Sm, H~Sn. Then 
(1) G and H representable==}G I His representable. 
(2) G l His representable==:} H is representable. 
(3) G I His representable and 2n < m==} G is weakly representable. 
( 4) For p prime, a p-Sylow subgroup P of Sn is representable~ p ,c 3, 4, 5. 
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Proof ( 1) Suppose we are given two representable groups G = S(L0 ) ~Sm, H = 
S(LH) ~Sn, where Lo£ {O, l}m, LH £ {O, lf. We want to show that the wreath product 
G ! H ~ Smn is representable. The wreath product G l H consists of all permutations 
p = [CT; Ti,···, Tm], where CTE G and Ti.···, Tm EH, such that 

p((k- l)n + i) = CT(k)n + Ta-(kJ(i), 

for 1 ~ k ~ m, 1 ~ i ~ n. (Intuitively speaking, p acts on m x n matrices in such a way 
that T; acts only on the ith row and <r permutes rows.) Without loss of generality we 
can assume that om, 1 m E La and on, l" E LH. Define a set L £ {O, l}mn of words w by 
the disjunctoin of the following three clauses: 

(a) lw/1 = n, and for Some 0~ k < m, Wkn+I = ... = Wkn+n = 1 (i.e., the (k+ l)st row 
consists only of 1 's). 

(b) I wl 1 > n, and w is of the form e~ e; · · · e;:,, where the word e1 e2 • • • em e La. 
(c) lwl 1>n and w is not of the form e~e; · · · e::,, but wkn+I • • • Wkn+nELH, for 

all o~ k< m. 
We claim that Sm11 (L) = G I H. Indeed, the inequality G I H £ Smn(L) is clear. To 

prove the other direction assume that p E Smn(L). By clause (a), p respects then-blocks 
of words of length mn. Hence, p is of the form p = [ u; T 1 , • • • , Tm], and T; E Sn, u E G, 
where i = 1, · · · , m. If <re G, then there is a word v of length m, with v E La and 
v,,. e La. Then (using clause (b) above) we have that w = v~ v; · · · v;:, EL, but wP t L, 
which is a contradiction. If for some i, T; e H, then there is a word v of length n such 
that v E LH and v 7 ' e LH. It follows (by clause ( c) above) that the word w = v · · · v e L, 
but wP e L, a contradiction. This completes the proof of (1). 

(2) By assumption, GIH=Smn(f), for somefEBmn· Hence, 

G I H = {[ u; T1,. •. ' T mJ E Sm I Sn: (V Xi. ... , Xm )f(X~(l)' .. ., x;;m)) 
= f(Xi. · · ·, X"')}. 

In particular, we have that 

TE H ~ [ idm; T, idn, · · · , idn] E G ! H 

~ 'VX1['VX2, · · ·, X,,,(fx2 , •••• xJX~) =fx2 •••.• xJX1))] 

~ TE n .. S(fx2 .... ,xJ, 
X2.···,XmE2 

as desired. 
The proof of (3) is similar and uses the simple observation that for any permu­

tation uESm, 

[u; idn, . .. 'idn] E G 11 ~ (V Xi. ... 'Xrn)f(Xu(l)' ... , Xu(m)) = f(Xi. . .. 'Xm). 

( 4) Let p be a prime p ~ n. By Sylow's theorem, all the p-Sylow subgroups of Sn 

are conjugates of one another. Moreover, by [ Pas66, pp. 8-11 ], if C is the cyclic group 
(1, 2, · · · , p ), then there exists an integer r such if we iterate the wreath product r 
times on C then the group CIC · · · I C obtained is a p-Sylow subgroup of Sn. 
Combining this with the previous assertions of the theorem, as well as part (3) of 
Theorem 10, we obtain the desired result. 0 
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The converse of part (1) of the above theorem is not necessarily true. This is easy 
to see from the following example. We show that the wreath product A3 1 S2 is 
representable, but that A3 is not. Indeed, consider the language 

L = {001101, 010011, 110100, 001110, 100011, 111000} s 26 • 

We already proved that A3 is not representable. We claim that A3 1 S 2 = S6(L). Consider 
the three-cycle 7=({1,2}, {3,4}, {5,6}). It is easy to see A3 1S2 consists of the 24 
permutations()" in s6 which permute the two-element sets {l, 2}, {3, 4}, {5, 6} as in the 
three-cycles 7, 72 , 73 • A straightforward (but tedious) computation shows that S6(L) 
also consists of exactly the above 24 permutations. 

Another class of examples of nonrepresentable groups is given by the direct 
products of the form A"' x G, G x A,,,, where G is any permutation group acting on a 
set which is disjoint from {1, 2, · · ·, m}, m;:::;; 3 (for a proof of this, see the next 
subsection). 

We conclude this section by showing the representability of the normalizers of 
groups G generated by a family of "disjoint" transpositions. Let G be a subgroup of 
Sn and let H = (H (x): x E 2") be a family of normal subgroups of N( G) (the normalizer 
of Gin S,,) such that for all uE N( G), x E 2", H(x) = H(u(x)). (This last condition 
is satisfied if, for example, each H(x) = 1 or each H(x) =G.) For any x E 2" let 
Gx = { u E G: x" = x} be the stabilizer of G at x. Define the function f o,H : 2" _,,. 2 as 
follows: 

{ l ifG,=H(x) 
fo,H(x) = 0 if G, .,c. H(x). 

Normalizers of certain permutation groups can be written in the form S(f). To see 
this observe the following two claims. 

(1) N(G)~S(fo,H). 
(2) If(forall uES,,) [(for all XE2") (Gx=H(x)<=>Gv-(xl=H(x))~G"=G] 

then there exists an f E B,, such that N( G) = S(f). 
For convenience, let a-(x) denote xa-. To prove (1) let uE N(G). This means that 

G" =G. We want to show that 

VxE2"(G,=H(x) <::> Gcr(x 1=H(x)). 

To prove the implication (~)notice that 

H(x) = G, = ( G")x = ( Ga(x,)" = H(x)". 

Hence, H (x) = G.,(xl, as desired. The converse ( ~) is similar. 
The proof of assertion (2) is immediate. The hypothesis is simply a restatement 

of the condition SUo.H) ~ N ( G). 

5.3. A logspace algorithm for the representability of cyclic groups. This section is 
devoted to the proof of the existence and correctness of a logspace algorithm which, 
when given as input a cyclic group G ~S,,, decides whether the group is representable, 
in which case it outputs a boolean function f E B,,,k such that G = S(f). The algorithm 
is as follows. 

Algorithm for Representing Cyclic Groups 
Input 
G = (u) cyclic group. 
Step 1 
Decompose u = 0-1 u 2 · · · uk. where 0-1 , o-2 , · · · , uk are disjoint cycles of lengths 
/1, !2, · · · , lk s:; 2, respectively. 
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Step 2 
if for all 1 ;a! i ;a! k, 

l; = 3=>(3j ;I= i)(3 I li) and 
l; = 4=>(3j 7'= i)(gcd (4, ~);I= 1) and 
l; = 5=>(3j ;1= i)(S I~) 
then output G is representable. 

else output G is not representable. 
end 
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At the present time, we do not know how to efficiently test the representability of 
arbitrary abelian groups (or other natural classes of groups such as solvable, nilpotent, 
etc.). If a given abelian group K can be decomposed into disjoint cyclic factors, then 
we have the following NC algorithm for testing representability: (1) use an NC 
algorithm [LM85], [MC85], [Mul86] to "factor" K into its cyclic factors and then (2) 
apply the "cyclic-group" algorithm to each of the cyclic factors of K. In view of the 
lemma below, the group K is representable exactly when each of its disjoint, cyclic 
factors is. 

LEMMA 16. Let G ;a! Sm, H ;a! Sn be permutation groups. Then G x H is represent­
able<=> both G, H are representable. 

Proof (==>) By the representability of the groups G, H there exist boolean functions 
f E Bm and g E Bn such that G x H = S(f) x S(g ). By the maximality theorem there 
exists a function h : 2 m+n "'2 such that S( h) =Sm x Sn. Hence, if we put F(x, y) = 
(f(x ), g(y )), then it is easy to see that 

S(f) xS(g) = S(h) ns(F). 

This implies that G x H is representable, and hence also strongly representable. 
To prove (~) assume that G x H = S(f), for some f: 2m+n"' k. It is then easy to 

see that 

G={aE Sm: (a, idn)E Gx H} 

={aESm: ('v'x,y)(f(xa,y)=f(x,y))} 

={a E Sm: ('v'y)(f'; = J;,)} 

= n S(J;,). 
ye2" 

A similar proof works for the group H. D 
The main result of the present section is the following theorem. 
THEOREM 17 (Cyclic Group Representability Theorem). There is a logspace 

algorithm which, when given as input a cyclic group G ;a! Sn. decides whether the group 
is representable, in which case it outputs a function f E Bn such that G = S(f). 

The rest of this section is dedicated to the proof (sketch) of correctness of the 
above algorithm. The proof is in a series of lemmas. For technical reasons, we intro­
duce two definitions. A boolean function f E B" is called special if for all words w of 
length n, 

Let u 1 , • • ·, ak be a collection of cycles. We say that the group G = a 1 , • • • , uk> 

generated by the permutations a 1 , • • ·, uk, is specially representable if there exists a 
special boolean functionf:2°"'2 (where n is the union of the supports of the a;'s) 
such that G = S(f). The support of a permutation u, denoted by Supp(u), is the set 
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of i such that cr(i) ¥i. The support of a permutation group G, denoted Supp( G), is 
the union of the supports of the elements of G. 

5.4. Main ideas of the proof. Before proceeding with the details; it will be instruc­
tive to give an outline of the main ideas needed for the corectness proof. We are given 
a cyclic group G generated by a permutation er. Decompose er into disjoint cycles 
er i. cr2 , • · • , erk of lengths l 1, 12, · · · , lk ~ 2, respectively. 

If k = 1 then we know that G is specially representable exactly when 11 ¥ 3, 4, 5. 
(The representability of the cyclic group C., for s ¥ 3, 4, 5 is proved in§ 4; for s = 3, 4, 5 
observe that for any f E B., if c. s; S(f) then Ds s; S(f), where D. is the dihedral 
group. We refrain from repeating the proof and refer the reader to § 4 for the details.) 

If k = 2 then the result will follow by considering several possibilities for the 
pairs U 1 , 12): 
• if gcd (/i. 12 ) = 1, then G=<u1)x(cr2) is the direct product of cr1 and u2 • Hence, G 

is specially representable exactly when both factors are specially representable, 
• if (!1 , 12) = (3, 3) or (4, 4) or (5, 5) then G is specially representable, 
•if Ui. 12) = (3, m) (with 31 m) or (4, m) (with gcd (4, m) ¥ 1) or (5, m) (with 51 m), 

then G is specially representable. 
This will take care of deciding the representability of G for all possible pairs (/i. 12). 

A similar argument will work for k ~ 3. This concludes the outline of the proof of 
correctness. 

5.4.1. Sketch of proof. The details of the above constructions are rather tedious 
but a sufficient indication is given in the sequel. 

LEMMA 18. Suppose that cr1 , • • • , crn+i is a collection of cycles such that both 
(cr1, • • · , crn) and (crn+i) are specially representable and have disjoint supports. Then 
(cr1 , • • • , O"n+ 1) is specially representable. 

Proof. 
Put 

n 

0 0 = U Supp(cr;), 
i=l 

and let IOol = m, I01I = k. Suppose that Jo: 2°0 ...,.. 2 and fi: 2°1 ...,.. 2 are special boolean 
functions representing the groups (cri. · · ·, crn) and <crn+ 1), respectively. Without loss 
of generality, we may assume that 1 = fo(Om) ¥ fi(Ok) = 0. Let 0 = 0 0 U 0 1 and define 
the function f: 2°...,.. 2 by 

Clearly, (o-1 , • • • , O"n+ 1) s; S0 (j). Hence, it remains to prove that 

Sn(/) s; (u1, · · · , O"n+1). 

Assume on the contrary that TE S0(f)-<cri. · · ·, D"n+1). We distinguish two cases. 
Case 1. (3i E 0 0 )(3j E 0 1)( -r(i) = j). 
Let w E {O, 1}0 be defined by w ~ 0 0 = om, and 

(w~01 )(l)={~ ~~:~. 
for I E 0 1 • Since f is a special boolean function and using the fact that f 0(0m) ¥ f 1(0k) 
we obtain that f( w) = 1 ¥ f( w T) = 0, which is a contradiction. 

Case 2. (For all i E 0 0)(-r(i) E 0 0). 
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Put To= (TI flo) E S00 and T1 = (TI 0 1) E S0 ,. By hypothesis, for all w E 2'1, we have 
that 

which implies To E S7i0 (fo) and T1 E S7iJf1). This completes the proof of the lemma. 
An immediate consequence of the previous lemma is the following. 
LEMMA 19. If G, H have disjoint support and are specially representable then G x H 

is specially representable. 
Next we will be concerned with the problem of representing cyclic groups. In 

view of Theorem 7 in§ 4, we know that the cyclic group ((1, 2, · · · , n)) is representable 
exactly when n #- 3, 4, 5. In particular, the groups ((1, 2, 3)), ((1, 2, 3, 4)), ((1, 2, 3, 4, 5)) 
are not representable. The following lemma may be somewhat surprising, since 
it implies that the group ((1,2,3)(4,5,6)), though isomorphic to ((1,2,3)), is 
representable. 

LEMMA 20. Let the cyclic group G be generated by a permutation er which is the 
product of two disjoint cycles of lengths 11 , 12 , respectively. Then G is specially representable 
exactly when the following conditions are satisfied: ( 11 = 3 :=;, 3 I 12 ) and ( 12 = 3 :=;, 3 I 11), 
U1=4=;>gcd (4, 12) #- 1) and U2 = 4:=;,gcd (4, 11 ) >6 1), (/1=5:=;,5I12) and (12=5:=;,5I11). 

Sketch of proof It is clear that the assertion of the lemma will follow if we can 
prove that the three assertions below are true. 

(1) The groups ((1, 2, · · ·, n)(n + 1, n + 2, · · ·,kn)> are specially representable 
when n = 3, 4, 5. 

(2) The groups ((1,2,3,4)(5,· .. ,m+4)) are specially representable when 
gcd ( 4, rn) #- 1. 

(3) Let m, n be given integers such that either rn = n = 2 or m = 2 and n ~ 6 or 
n =2 and rn ~6 or m, n ~6. Then ((1, 2, · · ·, m)(m+l, m+2, · · ·, m+n)) is specially 
representable. 

Proof of ( 1 ). We give the proof only for the case n = 5 and k = 2. The other cases 
n = 3, n = 4, and k ~ 3 are treated similarly. Details of these constructions are left to 
the reader. Let er= cr0 0'1, where u 0 = (1, 2, 3, 4, 5) and cr1 = (6, 7, 8, 9, 10). From the 
proof of Theorem 7 in § 4 we know that 

D 5 = S5(L') = Ss(L"), 

where L'= O*l*O*U l*O*l* and L"= {w E L':1wl 0 ~ l}. Let L consist of all words w of 
length 10 such that 
-either lwl1=1 
-or lwl 1 =2 and (31 ~ i~5) (w; = Ws+; and ('Vj~ i, 5+ i) (w1 =O)) . 
-or lwl 1 =3 and (30~i~4) (w=(lOOOOllOOO)<T' or w=(llOOOlOOOO)<T') 
-or lwl 1 3 and w1 • • · w5 E L' and w6 • • • w1oE L". 

We want to show that in fact ((1, 2, 3, 4, 5)(6, 7, 8, 9, 10)) = S10(L). It is clear that 

((1, 2, 3, 4, 5)(6, 7, 8, 9, 10)) £;; S 10(L). 

Conversely, suppose that TE S 10(L). Assume on the contrary there exists an 1~i~5 
and a 6 ~j ~ 10 such that T(i) = j. Let the word w be defined such that w1 = 0, if l = j, 
and = 1 otherwise. It follows from the last clause in the definition of L and the fact 
that 05 .e L" that w .e L and wr EL, contradicting the assumption TE S 10(L). It follows 
that r is the product of two disjoint permutations To and T 1 acting on 1, 2, · · · , 5 and 
6, 7, · · · , 10, respectively. It follows from the last clause in the definition of L that 
r0 E D 5 and T 1 E1T- 1D51T, where 7r(i) = 5+ i, for i = 1, · · ·, 5. Let p0 = (1, 5)(2, 4) and 
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p1 =(6,10)(7, 9) be the reflection permutations on 1, 2, · · ·, 5 and 6, 7, · · ·, 10, respec­
tively. To complete the proof of (1), it is enough to show that none of the permutations 

Po, Pi. PoPi. PoaL u~pi, u~u{, 
for i "'j, belong to S10(L). To see this, let x = 1000011000 EL. Then for the permutations 
T = p0 , p 1 , p0p 1 , p0cr\ for i = 1, 2, 3, 5, and T = u~p 1 for i = 1, 2, 4, 5 it is easy to check 
that xT e L. Let x = 110001000. Then for T = p0ui and T = a~p1 it is easy to check that 
X 7 e L. Finally, for x = 1000010000 EL and u~u{, where i ~ j, we have that X 7 e L. This 
completes the proof of part ( 1) of the lemma. 

Proof of (2). Put u 0 =(1,2,3,4), u 1 =(5,6,- · -,m+4), u=cr0 cr1 • Let L be the 
set of words of length m + 4 such that 

either lwl1=1 
or lwl1=2 and (30~ i ~ lcm (4, m)-1)( w = (lOOOlOm-t)"') 
or Jwl 1=3 and (30 ~ i ~ lcm (4, m)-1)( w = (110010m-i)"') 
or Jwl 1 =3 and w1 · · · w4 E L' and w5 • • • Wm+sE L", 

where L' = O*l *O* U 1 *O*l * and L" are as in Theorem 7 of§ 4 satisfying Sm(L") =Cm 
and moreover for all i ~ 1, O; e L". Clearly, <(1, 2, 3, 4)(5, 6, · · ·, m +4)> s;; Sm+4 (L). It 
remains to prove that 

Sm+iL) £;; ((1, 2, 3, 4)(5, 6, · · · , m +4)). 

Let TE (( 1, 2, 3, 4)(5, 6, · · · , m + 4)). As before, T = T 0T 1 , where To E D 4 and 
T 1 E 7T-1 Dm1T, where 7T(i) = 4+ i for i = 1, 2, · · ·, m. Let p = (1, 4)(2, 3) be the reflection 
on 1, 2, 3, 4. It suffices to show that none of the permutations 

j ; j 
PCT1, CToa1, 

for i 1': j mod 4 are in Sm+4 (L). Indeed, if T = u~u{, then let x = 100010m-l. So it is 
clear that x EL, but X 7 e L. Next assume that T = pu\. We distinguish the following 
two cases. 

Case 1. m = 4k, i.e., a multiple of 4. 
Let x = 100010m-l. Then x EL, but X 7 e L unless xT = x"; for some j. In this case 

j=3mod4 and j=imod4k. So it follows that i=3,7,11, .. -,4k-l. Now let 
y = 110010m-i. Then y EL, but y 7 e L for the above values of i, unless y 7 = y" 1 for 
some I. In that case we have that l = 2 mod 4 and l = i mod 4k. So it follows that 
i = 2, 6, 10, ... '4k- 2. Consequently, Te Sm+iL). 

Case 2. gcd (4, m) = 2. 
Let x = 100010m-l. Then x EL, but X 7 e L unless X 7 = xcr' for some j. In this case 

j = 3 mod 4 and j = i mod 4k. So it follows that for even values of i, Te Sm+4 (L). Let 
y = 110010m-i. Then y EL, but y' ~ L unless yT = y"1 for some 1. In that case we have 
that l = 2 mod 4 and l = i mod m. So it follows that for odd values of i, Te Sm+4(L). 
This completes the proof of (2). 

Proof of (3). A similar technique can be used to generalize the representability 
result to more general types of cycles. Details are left as an exercise to the reader. 

A straightforward generalization of Lemma 20 is given in the next lemma. 
LEMMA 21. Let G be a permutation group generated by a permutation a which can 

be decomposed into k-many disjoint cycles of lengths 11 , / 2 , • • • , lk> respectively. The group 
G is specially representable exactly when the following conditions are satisfied for all 
l;;ii~k, 

l; = 3~(3j 1': i)(3 \ l) and 

l; = 4~(3j 1': i)(gcd (4, 1) ,<: 1) and 

l; = 5~(3j 1': i)(S \ lj). 
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Now the correctness of the algorithm is an immediate consequence of Lemmas 
1-5. This completes the proof of Theorem 17. 0 

5.5. Asymptotic behavior. Finally, for any sequence (On 2 Sn: n s 1) of permuta­
tion groups we consider the value of the limit 

We have the following theorem. 
THEOREM 22. (Almost all boolean functions have trivial invariance groups.) For 

any family (On: n s 1) of permutation groups such that each On 2 S,,, we have that 

Moreover, if lim inf I On I> 1 then 

lim l{f E Bn: S~,(H:;: On}I = lim j{f E Bn: S
1
\() = On}I = O. 

n-oc 2- n-w 2-

Proof During the course of this proof we use the abbreviation 0( m) := 
0m(((l, 2, · · ·, m))). First we prove the second part of the theorem. By assumption 
there exists an n0 such that for all n s n0 , I On I> 1. Hence, for each n s n0 , On contains 
a permutation of order k( n) s 2, say <Tn. Without loss of generality we can assume that 
each k(n) is a prime number. Since k(n) is prime, <Tn is a product of k(n)-cycles. If 
(i,, · · · , ik(n 1) is the first k(n )-cycle in this product then it is easy to see that 

It follows that 

Recall from [Ber71] that the formula 

0(m)=__!__· I <jJ(k) · 2m/k 
m klm 

gives the P6lya cycle index of the group ((1, 2, · · ·, m)) acting on {1, 2, · · ·, m}, where 
<f;(k) is Euler's totient function. However, it is easy to see that fork prime 

0(k) 1 2 2 ----+---
2k - k 2k k2k. 

In fact the function in the right-hand side of the above equation is decreasing in k. 
Hence, for k prime, 

0(k) 0(2) 3 
--:$--=-

2k - 22 4· 
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It follows that 

Since the right-hand side of the above inequality converges to 0 the proof of the second 
part of the theorem is complete. To prove the first part notice that 

{fEBn:S(f)~idn}s;:; U {feBn:ueS(f)}, 
u7"idn 

where a ranges over cyclic permutations of order a prime number ~ n. Since there are 
at most n t permutations on n letters we obtain from the last inequality that 

l{fEBn:S(f)~{idn}}I< 1.r2"-2= 2o(nlogn), 2-2•-2 O 
22" = n. ~ , 

as desired. 0 
As a consequence of the above theorem we obtain that asymptotically almost all 

boolean functions have trivial invariance group. 

6. Invariance groups of languages and circuits. In this section we classify languages 
according to the size of their invariance groups. Furthermore, we consider questions 
concerning their structural properties and complexity. Recall that for each Ls;:; {O, 1}* 
and n, Ln is the set of strings in L of length exactly n. By abuse of notation we also 
denote the characteristic function of Ln with the same symbol. Let Sn(L) denote the 
invariance group of the n-ary boolean function Ln. For any language L and any 
sequence a= (an: n ~ 1) of permutations such that each <Fn E Sn we define the language 

L: = {x E 2n: Xu" E Ln}. 

For each n let Gn ~Sn and put G = (Gn: n ~ 1). Define 

LG= u L'::·. 

For each 1 ~ k ~ oo, let F k be the class of functions n clog< kl n, c > 0, where log< I) n = 
log n, log<k+lJ n =log log<kl n, and log«'°l n = 1. Clearly, F00 is the class P of polynomial 
functions. We also define F0 as the class of functions 2cn, c > 0. Let L(F d be the set 
languages Ls;:; {O, 1}* such that there exists a function f E F k satisfying 

'v'n(ISn: Sn(L)I ~f(n)). 

We will also use the notation L(EXP) and L(P) for the classes L(F0) and L(F00), 

respectively. Occasionally, a language LE L(P) will also be called a language which 
has polynomial index or is even almost symmetric. 

6.1. Structural properties. The following theorem gives some of the structural 
properties of the classes of languages L(F k). 

THEOREM 23. For any 0 ~ k ~ oo and any language LE L(F k), 
( 1) L(F k) is closed under boolean operations and homomorphisms, 
(2) (L · ~) E L(Fd, 
(3) La E L(F k), where a= (an: n ~ 1), with each Un E Sn, 

(4) if ISn: Ns.( Gn)I ~f(n) andf EFk then LG E L(Fk), where G = (Gn: n ~ 1). 
Proof We use extensively (even without explicit mention) the results of Theorem 

10. To prove (1) notice first that Sn(-iL) =Sn(L). To prove that L(Fk) is closed under 
union and intersection use the following inequality from group theory: for K, K' ~ G, 

IG:KnK'l~IG:KI · IG:K'I· 
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For example, for closure under intersection we have that Sn ( L) n S,, ( L') £Sn ( L n L'), 
which implies that 

To prove closure under a homomorphism h: L--'> L' note that Sn(L) £ S,,(h(L)). Hence, 

IS,,: S,, (L')I =IS,,: S,,( h(L) )I 2i !Sn : S., (L )I. 

To prove (2) let L' = L · L = {xa: xE L, a EL} and note that 

IS,, :S,,(L')I ~ n · IS,,_1 :S,,-1(L)I. 

To prove (3) note that S,,(L)'rn = S,,(L°.). To prove (4), note that we have Ns,, ( Gn) n 
Sn(L)£S,,(Lc). Indeed, for rENs,,(G,,)nS,,(L) we have that G,,r=rG,,, which in 
turn implies that 

L~n7 = L~G" = LJ L~O"" = LJ L~11 = L';!11 • 

0'11 ECiu UnEGn 

Hence, 

as desired. 0 
The classes L(P) and L(EXP) enjoy the closure properties mentioned below. 
THEOREM 24. 

LE L(P) and p E P:;>!Sp(n): sp(niCL)I = n°(1>. 

Proof. The proof is obvious, since the class of polynomials is closed under 
composition. 0 

THEOREM 25. 

L1, L 2 E L(EXP):;> L = {xy: x EL 1, y E L2, l(x) = l(y)} E L(EXP). 

Proof. It is clear that S,,(L1) xS,,(L2)s; S2 ,,(L). It follows from Stirling's formula 
that 

(2n) ! 
IS2,, :S2,,(L)I;:;;; /S,,(L)I · IS,,(L)I 

= (2 n)! ·IS,,:S,,(L)i2 
n! · n ! 

2i (2n)! ·20(nl=20(n). 
n! · n! 

Let REG denote the class of regular languages. 
THEOREM 26. The following properties hold for any 1 ~ k < cx:i, 

( 1) L(F<X,) = L(P) c · · · c L(Fk+i) c L(Fd c · · · c L(EXP) = L(F0 ), 

(2) REG n L(P) ~ 0, REG-L(EXP) ~0, L(P)-REGr= 0. 

Proof. To prove L(Fk+i) c L(Fk),forl ~ k<ro, putf(n) = n -log<kl n and consid 
the language 

0 
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IS . S (L)I =~= no(1og('ln) 
n. n J(n) ! . 

It follows that L(F k+i) c L(F k). (Note that by the pumping lemma for regular languages 
L cannot be regular.) The proof of L(F k) c L(F0 ) is more delicate. The group S,, x S,, 
is maximal in S 2n. It follows from our representation theorem for maximal groups that 
there exists a language L such that for all n, 

S2n(L) =Sn x Sn. 

It follows from Stirling's formula that IS2": S2 " (L)I = 2 Otn \ as desired. The proof of 
L(F00 ) c L(F d, k ~ l, follows from the above remarks. This completes the proof of ( 1 ). 
To prove REG n L(P)"" 0, consider the trivial language L = {O, I}*. To prove REG -
L(EXP)"" 0, consider the language L = O*l *.To prove L(P)- REG"" 0. For any set 
S of positive integers let L 5 ={On: n ES}. Clearly, L~(x) = 1 if n ES and x = O", and 
=0 otherwise. It is easy to see that for all S, Ls E L(P), and hence L(P) is uncoutable. 
(In fact, Sn(L5 ) = S,,, for all n and S.) In particular, the nonregular language L ={OP: p 
is a prime number} E L(P). D 

A few useful and illuminating examples are now in order. 
Examples. (1) Let Lk={xE{O, 1}*: l(x)~k, x1 ~· • ·~xd. Then S,,(Lk)=Sn-k 

and therefore IS": Sn (L)I = n !/ (n - k) ! = O(nk). Hence, for all k, L k E L(P). 
(2) For each wordx =x 1 • • • Xn letxT = x,, · · · x 1 and LT ={xT: XE L}. Puter,,(i) = 

n - i + 1. Then Lcr =LT, where er= (er11 : n ~ 1). 
(3) There exist languages L0 , L 1 E L(P) such that L 0 • L 1 E L(EXP). Indeed, put 

L 0 = {O}*, L 1 = {l}*. Then L = L 0 • L 1 ={O"1 m: n, m ~ O}. It is easy to see that 
IS:S,,(L)l=n!. 

(4) There exists a language LEL(P) such that L*EL(P). Indeed, put L={Ol}. 
Then for n even, er ES if and only if for all i ~ n ( i is even if and only if er( i) is even). 
It follows that ISn: S 11 (L)I = n !/ (n/2) !(n/2) !. Hence, L * E L(EXP) - L(P). 

(5) L(P) is not closed under inverse homomorphism. Indeed, let D be the Dyck 
language on one parenthesis and h: D-'> L be the homomorphism h(O) = h(l) = 0. In 
view of the results of§ 3, DE L(P). 

( 6) For each function f: N--" N such that for all n ~ 1, f( n) ~ n, we define the 
language 

n 

Using the pumping lemma for regular languages we can show that Lf E REG=? 
sup11 f(n) «:X:l. 

Similar classes of languages corresponding to the cycle index can be defined as 
follows. Let L0 (F k) be the set of languages L such that there exists a function f E F k 

satisfying 

\in( ®(S( 1 11 )) ~f( n )). 

Since, 0(Sn(L))~(n+l) · ISn:Sn(L)I, it is clear that L(Fk)~ L 0 (Fk)· In fact we can 
show that L(Fk) c L 0 (Fk)· To see this takef(n) = n -logCkl n. Define xE L 11 if and only 
if x1 ~x1 ~· • ·~xf(n)· Then it is easy to see that Sn(L)=Sf(n)· Hence, ISn:S 11 (L)I= 
O(n 10g"), while E>(S 11 (L)) = (f(n)+ l)iogl'l" = O(n2). 

6.2. Circuit complexity of formal languages. In this section, we study the com­
plexity of languages LE L(P). The following result is proved by applying the intricate 
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NC algorithm of [BLS87] for permutation group membership. By delving into a deep 
result in classification theory of finite simple groups, we improve the conclusion to 
that of Theorem 29. For clarity however, we present the following. 

THEOREM 27. For any language L£ {O, 1}*, if LE L(P) then Lis nonuniform NC. 
Proof. As a first step in the proof we will need the following claim. 
CLAIM. There is an NC 1 algorithm which, when given xE{O, ir, outputs crES" 

such that x<T = 1 mon-m' for some m. 

Proof of the claim. Before giving the proof of the claim, we illustrate the idea by 
citing an example. Suppose that x = 101100111. By simultaneously going from left to 
right and from right to left, we swap an "out-of-place" 0 with an "out-of-place" 1, 
keeping track of the respective positions.3 This gives rise to the desired permutation 
cr. In the case at hand we find a-= (2, 9)(5, 8)( 6, 7) and xcr = 1603 . 

Now we proceed with the proof of the main claim. Define the predicates Ek b ( u ), 
to hold when there are exactly k occurrences of b in the word u ( b = 0, 1) are in, N C 1• 

The predicates Ek.b are obviously computable in constant depth, polynomial size 
threshold circuits, i.e., in TC0 . By the work of Ajtai, Komlos, and Szemeredi [AKS83] 
TC0 £ NC 1• Fork= 1, · · ·, [n/2] and 1 ~ i <j;:;; n, let a:;,1,k be a log depth circuit which 
outputs l exactly when the kth "out-of-place" 0 is in position i and the kth "out-of­
place" 1 is in position j. It follows that o:;,J,k(x) = 1 if and only if "there exist k-1 
zeros to the left of position i, the ith bit of x is zero, and there exist k ones to the 
right of position i" and "there exist k - 1 ones to the right of position j, the jth bit of 
x is one, and there exist k zeros to the left of position j." This in tum is equivalent to 

Ek-1,o(x1,···,X;-1) andx;=O andE1<,1(X;+ 1,···,x") and 

Ek-1,l(XJ+i. · · ·, x") and x1 = l and Ek,o(X 1 • • • xJ_ 1). 

This implies that the required permutation can be defined by 

{ 
[n/2] } 

a-=fl (i,j): i<j and V O\;.k . 
k~I 

Converting the fanin, [n/2]-v-gate into a log ([n/2]) depth tree of fanin, 2-v-gates, 
we have an NC 1 procedure for computing er. This completes the proof of the claim. 

Next we continue with the proof of the main theorem. Put G" = S,,(L) and let 
Rn= {h 1 , • • • , hq} be a complete set of representatives for the left cosets of G"' where 
q~p(n) and p(n) is a polynomial such that ISn:Gnl~p(n). Fix xE{O, 1r. By the 
previous claim there is a permutation er which is the product of disjoint transpositions 
and an integer O;;;k~n such that x"=Ikon-k. So x=(lkon-k)u. In parallel for 
i= 1, · · ·, q test whether hj 1erE Gn by using the principal result of [BLS87], thus 
determining i such that a= h;g, for some g E Gn. Then we obtain that 

Ln(x) = Ln((l kon-k)o-) = Ln((l kon·-k)h,g) = Ln((lkon-k)h•). 

By hardwiring the polynomially many values L 11 ((lko"-k)h 1 ) for O~ k~ n and 1 ~ i~ q, 

we produce a polynomial size polylogarithmic depth circuit family for L. 0 
Theorem 27 involves a straightforward application of the beautiful NC algorithm 

of Babai, Luks, and Seress [BLS87] for testing membership in a finite permutation 
group. By using the deep structure consequences of the O'Nan-Scott theorem below, 
together with Bochert's result on the size of the index of primitive permutation groups 

3 This is a well-known trick for improving the efficiency of the "'partition" or "split" algorithm used in 

quick-sort. 
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(see Theorem 1(3) in § 2), we can improve the NC algorithm of Theorem 27 to an 
optimal TC0 algorithm (and hence Nc1). First, we take the following discussion and 
statement of the O'Nan-Scott theorem from [KL88, p. 376). 

Let I= {l, 2, · · ·, n} and let Sn act naturally on I. Consider all subgroups of the 
following five classes of subgroups of Sn. 

a 1 : Sk xSn-k, where 1 ~ k~ n/2, 
a 2 : Sal Sb, where either (n = ab and a, b 1) or (n = ab and a~ 5, b ~ 2), 
a 3 : the affine groups AG La ( p ), where n =pa, 
a4 : Tk · (Out( T) x Sk), where Tisa nonabelian simple group, k s;;; 2 and n =I TI k-i, 

as well as all groups in the class, 
a 5 : almost simple groups acting primitively on I. 
THEOREM 28 (O'Nan-Scott). Every subgroup of Sn not containing An is a member 

ofa1U · · ·U a5. 
Now we can improve the result of Theorem 27 in the following way. 
THEOREM 29 (Parallel complexity of Languages of Polynomial Index). For any 

language L £; {O, 1}*, if LE L(P) then Lis in 9-nonuniform TC0 and hence in (nonuniform) 
NC 1• 

Proof. The proof requires the following consequence of the O'Nan-Scott theorem. 
CLAIM. Suppose that ( Gn ~Sn: n s;;; 1) is a family of permutation groups such that 

for all n, !Sn: Gnl ~ n\ for some k. Then for sufficiently large N, there exists an in~ kfor 
which Gn = U" x Vn with the supports of Un, Vn disjoint and Un~ Sin• Vn =Sn-in. 

Before proving the claim we complete the details of the proof of Theorem 29. 
Apply the claim to Gn = Sn(L) and notice that given x E 2", the question of whether x 
belongs to Lis decided completely by the number of 1 's in the support of Kn= Sn-i.,, 
together with information about the action of a finite group Hn ~Sin• for i,, ~ k. Using 
the counting predicates as in the proof of Theorem 27, it is clear that this is a TC0 

and hence NC 1 algorithm. Thus, the proof of the theorem is complete, assuming the 
claim. 

Proof of the claim. We have already observed at the beginning of§ 5 that G" -;t An. 
By the O'Nan-Scotttheorem, Gn is a member of £¥ 1 U · · · U a 5 • Using Bochert's theorem 
on the size of the index of primitive permutation groups (§ 2, Theorem 1(3)), the 
observations of [LPS88] concerning the primitivity of the maximal groups in a 3 U a 4 U 
a 5 and the fact that G" has polynomial index with respect to Sn, we conclude that the 
subgroup Gn cannot be a member of the class a 3 U a 4 U a5 • It follows that G" E a 1 U a 2 • 

We show that in fact Gn e a 2• Assume on the contrary that G" ~ Hn =Sal Sb. It follows 
that IHnl =a !(b !t. We distinguish the following two cases. 

Case 1. n = ab, for a, b > 1. 
In this case it is easy to verify using Stirling's interpolation formula 

(n/ e)nvn < n! < (n/ e)n3vn 

that 
n! an-a 

ISn: Hnl =a !(b !t 3ba/2(3/ at.Ja.' 
Moreover, it is clear that the right-hand side of this last inequality cannot be asymptoti­
cally polynomial in n, since a~ n is a proper divisor of n, which is a contradiction. 

Case 2. n =ab, for a6;;;5, b6;;;2. 
A similar calculation shows that asymptotically 

n! n! 
JS": Hnl =a !(b !)a= a !(b'!)a, 
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where b' = ab-i. It follows from the argument of Case 1 that this last quantity cannot 
be asymptotically polynomial in n, which is a contradiction. It follows that G" E a 1 • 

Let Gn ~ S; x Sn-i• for some I~ in n/2. We claim that, in fact, i" ~ k for all but a finite 
number of n's. Indeed, put in= i and notice that 

I n ! · k 
ISn:S;XSn-i =. ( ") .G(n')~ISn:Gnl~n, 

1! n-1 ! 

which proves that i~ k. It follows that Gn =Un x Vn, where Un ~Si and Vn ~Sn-i . 
Since in~ k and IS,.: G,.I ~ nk it follows that for n large enough" Vn =Sn-in. This 
completes the proof of the claim. Now let L£ {O, 1}* have polynomial index. Given 
a word x E {O, lt, in TC0 one can test whether the number of 1 's occurring in the n - in 
positions (where V,. = Sn-;J is equal to a fixed value, hardwired into the nth circuit. 
This, together with a finite look-up table corresponding to the U,. part, furnishes a 
TC0 algorithm for testing membership in L. D 

6.3. Applications. An immediate consequence of our analysis is that if ( G,. ~ 
S,.: n;?; 1) is a family of transitive permutation groups such that IS,.: Gnl = n°0 l then 
Gn =Sn, for all but a finite number of n's (this answers a conjecture of Perrin). It is 
also possible to give a more algebraic formulation of the main consequence of Theorem 
29. For Pn a polynomial in the variables x 1 , • • • , x" and with coefficients from the two 
element field Z2 , let 

S(pn) ={a E Sn: 'v'xi, ... 'Xn(p,.(xi, . .. 'Xn) = Pn(Xcr(I)> ... 'Xu(n)) mod 2)}. 

A family (pn: n;?; 1) of multivariate polynomials in Z 2[x1 , • • ·, Xn] is of polynomial 
index if ISn :S(pn)I = n°0 l. 

THEOREM 30. If (pn: n ~ 1) is family of multivariate polynomials (in 
Z2[Xi. · · ·, xn]) of polynomial index then there is a family (q,,: n;?; 1} of multivariate 
polynomials (in Z2[x1 , • • • , x,.]) of polynomial length such that p,, = q,,. 

Because of the limitations of families of groups of polynomial index proved in 
the claim above, we obtain a generalization of the principal results of [FKPS85]. 
Namely, for Le;; {O, 1}* let µdn) be the least number of input bits which must be set 
to a constant in order for the resulting language Ln = L n {O, 1}" to be constant (see 
[FKPS85] for more details). Then we can prove the following theorem. 

THEOREM 31. If LE L(P) (i.e., L is a language of polynomial index) then 

µ.L(n)~(logn) 00 l ~ LEAC0 • 

Our characterization of permutation groups of polynomial index given during the 
proof of Theorem 29 can also be used to determine the parallel complexity of the 
following problem concerning "weight-swapping." Let G = ( Gn: n EN) denote a 
sequence of permutation groups such that G,, ~Sn, for all n. By SWAP ( G) we 
understand the following problem: 

Input. n EN, a1 , • • ·,a,. positive rationals, each of whose (binary) representations 
is of length at most n. 

Output. A permutation a E Gn such that for all 1 ~ i n, aa(i) + au(i+I) ~ 2, if such 
a permutation exists, and the response "NO" otherwise. 

THEOREM 32. For any sequence G of permutation groups of polynomial index, the 
problem SWAP (G) is in nonuniform NC1 • 

Proof By the characterization of sequences of groups of polynomial index, there 
exist integers k, N such that for all n;?; N, G" = H,, x Kn, where Hn ~Si" and Kn= Sn-in, 
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with in ;:;2 k. Given n ~ N, and n positive rational weights a1 , • • • , a,, test whether there 
exist permutations u EH,, and TE K,, such that for 1 ;:;2 i ;:;2 n, aco-x-r)(il + a(<T+-r)(i+ll ;:;2 2, 
as follows. For T, sort the set of weights { ai: i E Supp( K,,)} in decreasing order. Assume 
wlog that Supp(K,,) = {l, · · ·, n - i,,}. Let p EK,, be a "sorting" permutation such that 
aP0 i ~ ap( 2 ) ~ • • • ~ ap(n-i.,l. Test in parallel whether 

aµ(l) + ap(n-i.,) ;:;2 2, apc2l + ap(n-i.,-I) ;:;2 2, · · ·,etc. 

If so, then let T be the appropriate permutation such that 

( n -i ) i - p(l), 2- p(n - i,,), · · ·, n- i,, -1- p ~-1 , ( n- i) n - in 1--7 p ~ , 

if n - i,, is even, and a variant of this, if n - i,, is odd. Since sorting n many n-bit 
numbers is in NC 1, computing T is in NC 1• Since H,, ;:;2S;,,, where i,, ;:;2 k, there are only 
a finite number of possibilities to test for u. These are hard wired (by non uniformity) 
into the circuit. D 

The following conjecture would relate the cycle index of a sequence G = ( G,,: n ~ 1 > 
of groups with the circuit complexity of the language L. 

CONJECTURE 33. For any language Le:; {O, 1}*, if LE L0 (P) then Lis nonuniform 
NC. 

This conjecture appears somewhat plausible, since it follows from the next theorem 
that if G=(G,, ;:;2S,,: nsl) is a sequence of groups whose cycle index 0,,(G,,), as a 
function of n, majorizes all polynomials, then there is a language L with S,,(L) 2 G,, 
and Le SIZE(n°0 l). 

THEOREM 34. For any sequence G = ( G,,: n s 1) of permutation groups G,, ;:;2 S,, it 
is possible to find a language L such that 

Lit SIZE(.JE>( G,,)), and Yn(S(L,,) 2 G,,). 

Proof. By Lupanov's theorem i{f E B,,: c(f) ;:;2 q }j = O(qq+i) = 2 O(qlogq>_ Hence, if 
q,, -HX) then i{f E B,,: c(f) ;:;2 q,,}i < 2q;" In particular, setting q,, = .JE>( G,,) we obtain 

IU E B,,: c(f) ;:;2 .J0( G,,)}I < 26 (G.,l = i{f E B,,: S(f) 2 G,,}i. 

It follows that for n big enough there exists an f,, E B,, such that S(f,,) 2 G,, and 
c(f,,) > .J@( G,,). This completes the proof of the theorem. D 

7. Discussion and open problems. Three of the main questions we have tried to 
answer in the present paper are ( l) which permutation groups arise as (or are isomorphic 
to) the invariance groups of boolean functions, (2) determining the complexity of 
deciding the representability of a permutation group, (3) determining the relation 
between the family of invariance groups of a formal language L and the parallel 
complexity of L. 

Concerning question (1), we saw that most (i.e., with a few exceptions) maximal 
permutation subgroups ofS,, are representable. We have shown that every permutation 
group GS,, is isomorphic to the invariance group of a boolean function f E Bn(Jogn+u. 

However, we do not know if this last "upper bound" can be improved to f E B""' for 
some constant c independent of n. In the case of question (2), we gave a logspace 
algorithm for deciding the representability of cyclic groups. In general however, we 
do not know of any efficient algorithm for deciding the representability of any other 
natural classes of permutation groups (e.g., abelian, nilpotent, solvable, etc.). The 
existence of a polynomial time algorithm for testing representability of an arbitrary 
permutation group is related to the question of whether graph nonisomorphism is in 
polynomial time. 
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Concerning question (3), we have shown a relation between the size of the index 
of the invariance group of a formal language and its complexity. We showed that any 
language of "polynomial size index" is in (nonuniform) TC0• It is possible that a finer 
analysis of the structure results for maximal permutation groups will yield a similar 
result for other classes of languages, like the ones with subexponential or even 
exponential size index. We conjecture that a similar result is true for any language of 
"polynomial size P6lya index." We believe as well that there should be a relation 
between the algebraic structure of the syntactic monoid of a regular language L £ {O, 1}* 
(Krohn-Rhodes theorem) and the family of invariance groups of Ln. As indicated by 
our preliminary work, straightforward approaches to such an investigation are not 
likely-the property of a group being representable is not preserved under homomorph­
ism. Our parallel complexity results concern nonuniform families of boolean circuits. 
A natural sequel to our work might investigate uniform versions of some of our results. 
For instance, if L£ {O, 1}* is a regular (or context free, or logspace computable, etc.) 
language \.\'.ith polynomial index (or polynomial size P6lya index) then is Lin logspace 
uniform TC0 ? 

Another interesting question concerns the problem of giving an efficient algorithm 
A which on input a formal language L, a permutation o- ES", and an integer n, 
determines whether or not o- E Sn(L), i.e., 

A( ) ={1 ifo-ESn(L) 
L, n, o-

0 otherwise. 

We investigated this question in the present paper for regular languages. The obvious 
algorithm has complexity 0(2") (to check membership of a permutation u in Sn(L) 
test whether for all x E 2", x E Ln ~ xa E Ln ). A similar question applies to right-quotient 
representatives of S"(L). It would also be interesting to investigate these questions for 
other types of languages, such as CFL, etc. 
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