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Abstract 

The present report deals with one of the concrete aspects of the syntax of 

ALGOL 68, to wit, the parenthesis structure. Upon encountering an error in a 

piece of source text, good resynchronization of the parser is only then possi

ble if it is lmown beforehand which opening parentheses are, and which are not, 

accompanied by a matching closing parenthesis (and vice versa). This holds 

especially for some parentheses, such as the quote-symbol, that have one 

same representation for opening and closing parenthesis. 

In this report, two algorithms for repairing incorrect parenthesis skeletons 

are given. The first algorithm deals with "state switchers", i.e. , parenthe

ses enclosing sequences of symbols that lack syntactical structure (the in

side of comments, pragJTIB.ts and string-denotations). The second one deals 

with "braces", i.e. , parentheses that have to occur nested ( such as open 

and close-symbols). 
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o. Preface 

The degree in which compilers for languages like ALGOL 68 are able to 

recover from errors in the source text and to give meaningful error mes

sages, i.e.,error messages which are interpretable for the human programmer, 

varies considerably in practice. In the current effort undertaken at the 

Mathematical Centre to construct a machine-independent ALGOL 68 compiler, 

one of the design objectives is to reach a relatively high level of error

recoverability. This objective sprouts forth from the following two consi

derations: 

i. It is expected that a major application area for our compiler will 

be the processing of student programs, where the emphasis is on 

the correction of syntactical errors. We hope to minimize the 

number of runs required to make the program syntactically correct. 

11. The generality of ALGOL 68, both on the abstract and the concrete 

aspects of syntax, tends to give rise to error messages which are 

difficult to interpret, unless this tendency is counteracted by a 

conscious effort. 

The present report deals with one of the concrete aspects of the 

syntax of ALGOL 68*, to wit, the parenthesis structure. 

If, somewhere in a piece of source text which starts with an opening 

parenthesis, an error occurs which causes the parser to be derailed, one 

* 
At present, the definition of the Algorithmic Language ALGOL 68 is 
subject to a revision process, In this report, such changes as seem 
likely to be incorporated in the final revised Report have been taken 
into account, The main changes having a bearing on the subject of 
this report are the following: 

1. The corresponding brackets of one construct must have the 
same style of representation. E.g., !:.f. b Ii else j) is 
illegal. In fact, ( and :!:.f. are two different symbols. 

11. Corresponding comment-symbols must have the same represen
tation. E.g.,¢ k = 0 # is not a comment. On the other hand, 
comment-symbols with a different representation may be used 
as corrment-items, so¢ k = 0 #¢would be legal. In fact, 
¢and# are two different symbols. 
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may hope to use the closing parenthesis to bring it back in its track. 

Should, however, this closing parenthesis be missing (which might be the 

cause of derailment in the first place), then this strategy is not particu

larly helpful. It may appear that the solution would be to insert, as it 

were, the matching closing parenthesis in the source text when a different 

closing parenthesis is met, but then, if the source text contains an extra 

closing parenthesis, we are even worse off. The conclusion is that a good 

resynchronization of the parser is only then possible if it is known before

hand which opening parentheses are, and which are not, accompanied by a 

matching closing parenthesis (and vice versa). This holds especially for 

some parentheses, such as the quote-symbol, that have one same representa

tion for opening and closing parenthesis. Therefore, it was decided to 

tackle this point in a radical way: the design of the first scan has been 

extended with the task to repair incorrect parenthesis skeletons. 
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1 . Introduction 

In the sequel, the term "parenthesis" will be used to denote a wider 

class of symbols than is usual: we shall use this term to stand for the 

* following symbols, or rather, representations of symbols : 

"braces": $, (,),begin, end,[,],{/,/}, 

I, I:,~' in,~' out,~' 

if., then, elsf, else, fi, for, from, 

0d_, to, while, do, and 

"state switchers": " f, #, ~, corronent, P.E_, pragmat. 

The.role played by the state switchers is so special as to warrant a 

separate treatment. Not only does one same symbol serve both as "opener" 

and as "closer" of certain constructions (as is also the case with the 

formatter-symbol), but, which is more important, the "item sequences" which 

are embraced by these symbols (the inside of comments, pragmats and string

denotations)lack syntactical structure and may contain braces in an arbi

trary fashion that otherwise would have to occur "nested". Therefore, it is 

a hopeless task to treat the braces before it is known which parts of the 

program are, and which are not, item sequences, and, consequently, which 

braces have to be disregarded and which have to be taken into account. 

Moreover, such an item sequence may not contain another similar construc

tion. (E.g., a comnent may not contain another comment, although it may, 

possibly, contain the sequence of comment-items# a#, whereas format

denotations may contain other format-denotations.) 

* 
Since it is, at this stage, neither possible nor necessary to make a 
distinction between, e.g., an open-symbol and a brief-case-start-symbol 
or a brief-condition-start-symbol, we shall use the paranotion open
symbol to stand for any of those. Moreover, where no confusion can arise, 
"symbol" will be used to indicate both symbols (in the sense of the 
ALGOL 68 report), and representations of symbols, indiscriminately. 
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Apart from this, the treatment of both types of parentheses runs 

largely in parallel. In general, errors in the parenthesis skeleton are 

"repaired" by marking a number of parentheses such that, by deleting these 

parentheses, a correct skeleton is obtained. E.g., the parenthesis skeleton 

([]([())[)]) 

will be repaired by marking it thus: 

* * ([]([ ())[) ]) 

This is not meant to imply that such parentheses will be disregarded com

pletely in later stages, although they are bound to be handled differently 

from unmarked parentheses. Some additional means of reparation, based upon 

heuristic considerations, consist of adding or changing parentheses in the 

source text. 

A principle to which we have strictly adhered is: no co~rect program 

will be "repaired". In fact, an even stronger version of this principle, 

to be formulated later on, applies to our repairing algorithm. 
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2. The treatment of state switchers 

An ALGOL 68 program can be thought of as consisting of a sequence of 

(possibly empty) segments, separated by state switchers. To each of these 

segments a "state" may be assigned, which is either "neutral" or one of the 

state switchers. For a correct program, it is possible to assign these 

states in such a way that the first and the last segment are neutral and 

that at each state switcher we have a correct transition, i.e., the state 

switches to that state switcher if it was neutral and to neutral if the 

present state switcher is equal to the state, and otherwise the state is not 

affected. To give an example: 

segments: 

states neutral 

" --- " --- "------- 1 

" " neutral 

co 

neutral 

(Note that the segments which have a state switcher as state are precisely 

those segments which are, or are contained in, an item sequence.) Obviously, 

if such an assignment of states is not possible, the program is incorrect. 

However, the transition of the state at some state switcher may be (locally) 

correct. 

It is necessary to refine our definition of a correct transition 

slightly further. Although state switchers have one same representation for 

openers and closers, it is possible in some cases to derive from the context 

that a given state switcher, which then must be a quote-symbol, cannot be an 

opener or a closer. E.g., in the context of d "monday"; it can be shown 

that the first quote-symbol must be an opener and the second one a closer. 

Now, for a state switcher which has been shown to be a non-opener, the 

transition from the state neutral to the state " is not considered correct. 

A similar restriction applies to state switchers which have been shown to 

be non-closers. 

The task of the algorithm for correcting the state-switcher skeleton 

can be formulated approximately as follows: assign states to each of the 

segments in such a way that the number of incorrect transitions is kept, in 
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some sense, as low as possible. Before we are able to give a more accurate 

formulation, it is necessary to indicate what incorrect transitions and 

what interpretations, i.e., assignments of states to all of the segments, 

are admissible. 

2.1. Admissible incorrect transitions 

The elementary repairing actions consist of the marking of one state 

switcher, indicating that it should be disregarded in order to obtain a 

correct state-switcher skeleton. This implies that the state should not 

switch at such a state switcher. Therefore, for an incorrect transition to 

be admissible in such cases, it is necessary that the state does not change. 

Now, consider the following example with an obviously incorrect skeleton: 

" " ~~---. 

There exist three ways to repair this skeleton, each giving an interpreta

tion with one incorrect transition. 

" " "* ------- ~------ -~~~--- ; 

state: neutral " neutral neutral 

" "" " --~-~~~ ~~~~~~-

state: neutral " " neutral 

"* " " --~~~~~ ~------ ~~~~~~~ 

state: neutral neutral " neutral 

Not each of these interpretations is equally desirable, for the fol

lowing reason: The effect of assigning the state neutral to a segment is 

that it will be subject to syntactical analysis. If the corresponding 

segment in the "intended program" was neutral, this is obviously all right, 
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but if it was (part of) an item sequence, this will probably give rise to 

some extraneous error messages. On the other hand, if a state other than 

neutral is assigned to a segment which in the intended program was neutral, 

the syntactical analysis of this segment will be omitted, with the possible 

result that some syntactical errors which otherwise would have been detected, 

will pass unnoticed, thus necessitating an extra run to detect these errors. 

In our philosophy this latter eventuality is considered far more undesira

ble than to require the programmer to ignore some error messages. Conse

quently, both the first and the last interpretation in our example are pre

ferable to the middle one, where the states of both the left and the right 

segment in the incorrect transition are not neutral, and which, therefore, 

will not be admitted. 

Another type of incorrect, but admissible, transition is found in those 

transitions which require a non-opener or a non-closer to be interpreted as 

an opener or closer, respectively. 

The following criterion is obtained: an incorrect transition is admis

sible if and only if either 

i. the state of both segments concerned is neutral, or 

ii. the state switcher is a non-opener and the state switches from 

neutral to 11
, or 

iii. the state switcher is a non-closer and the state switches from II to 

neutral. 

2.2. Admissible interpretations 

An interpretation I is "locally admissible" if: 

1. all transitions of I are either correct, or admissible incorrect 

transitions, and 

ii. I assigns the state neutral to the first and the last segment. 

An interpretation I is admissible if: 

1. it is locally admissible, and 

ii. there does not exist another locally admissible interpretation J, 

all of whose transitions are either correct, or are the same as the 

corresponding transition of I. 
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E.g., although the following interpretation 1s locally admissible, 

state: neutral neutral neutral neutral 

it is not admissible, because of the existence of the following two 

(admissible) interpretations: 

~~~~~~~ ¢ * ¢ ~~~~~~~ ¢ , and 

state: neutral neutral neutral 

* ~~~~~~~ ¢ ~~~~~~~ ¢ ¢ ~~~~~~~ 

state: neutral neutral neutral 

Clearly, there always exists at least one admissible interpretation. This 

can be shown, using the following argument: 

i. There exists at least one locally admissible interpretation, to wit, 

the one which assigns the state neutral to each segment. 

11. Some locally admissible interpretation not being admissible implies 

the existence of another locally admissible interpretation with a 

smaller number of incorrect transitions. Since this number can, 

obviously, not be less than zero, by Peductio ad absuPdwn our claim 

follows. 

If the state-switcher skeleton was correct to begin with, there is only one 

admissible interpretation, that in which each transitio'n is correct. 

2.3. Comparing admissible inte;r:pretations 

In the general case, there will be more than one admissible interpre

tation for a given se~uence of segments. The problem is, therefore, to give 

a criterion according to which one of these interpretations can be chosen 

as, hopefully, the best. A simple criterion would be to count the number of 
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incorrect transitions. We have chosen, however, for a more sophisticated 

criterion, mainly because all teo often the same number of errors will be 

found for different interpretations. For example, for the state switcher 

skeleton 

there are five admissible interpretations, each of which contains two errors: 

* * ~~~~~~~¢~~~~~~~¢~~~~~~~f~~~~~~~#~~~~~~~¢~~~~~~~#~~~~~~~¢~~~~~~~ , 

state: neutral neutral neutral neutral neutral 

* * ~~~~~~~¢~~~~~~~¢~~~~~~~¢~~~~~~~#~--~~~~¢~~~~~~~#~~~~~~~¢~~~~~~. , 

state: neutral ¢ neutral neutral # # neutral neutral 

* * ~~~~~~~¢~~~~~~~¢~~~~~~~¢~~~~~~~#~~~~~~~¢~~~~~~~#~~~~~~~¢~~~~~~~ , 

state: neutral neutral neutral neutral neutral 

state: neutral neutral neutral neutral neutral 

and 
* * ~~~~~~~¢~~~~~~~¢~~~~~~~¢~~~~~~~#~~~~~~~¢~~~~~~~#~~~~~~~¢~~~~~~~ 

state: neutral neutral ¢ neutral # # neutral neutral 

Rather than having all incorrect transitions weigh equally heavily, differ

ent "error values" have been assigned to the various types of incorrect 

transitions, based upon estimates of the likelihood of these transitions. 

Moreover, to some extent the symbols of which the segments consist are taken 

into account and compared with the state assigned to the segment, the idea 



-10-

being that, e.g., begin is more likely to occur in a neutral segment, than 

* in other segments. 

In order to obtain estimates of the likelihood, the following, admit

tedly oversimplified, model has been used: There exists a universe of in

tended programs, having certain statistical properties (such as the mean 

length of a neutral segment). A source text is obtained in two steps. 

First, an intended program is drawn from the universe. Second, this program 

is subjected to a perturbation process, consisting of omission of glyphs or 

of replacement by other glyphs, at random.** Given the a priori distribution 

of intended programs and the statistical properties of the perturbation 

process, Bayesian analysis makes it possible, for a given source text, to 

derive the a posteriori probability that the source text was obtained from 

a certain intended program. 

To illustrate the line of thought, a simple example, taken from natural 

language, may be useful. Take the following sentence: 

s 1: A Zold mehal was awarmed. 

Obviously, this is meaningless. We may assume something meaningful was in

tended, but that printing errors have garbled the message. What now was the 

intended message? There are several possible candidates. Suppose that, 

after having eliminated several of them, such as: 

* 

A bold metal was alarmed. , 

The introduction of this type of argument might open the door for the 
clearly undesirable situation where a correct but very unlikely piece 
of program is "repaired" into a more likely one. This is precluded, how
ever, by our definition of "admissible interpretation". The obvious ad
vantage is the possibility to resynchronize when, for in$tance, one corrnnent
symbol has disappeared in a piece of program richly supplied with comments. 

**"Glyphs" are the atomic elements from which representations are built 
up, for example, the characters of a given character set. 
The case of insertion of glyphs is not considered here, since the re
sulting symptoms can be ascribed to the (much more likely) replacement. 
E.g., the intended program corresponding to the source text (1¢) could 
have been (1), but could equally well have been (10), (11), etc. 
Likewise, the case of interchanging glyphs is not taken into consideration, 
Such errors rarely influence the parenthesis skeleton; also, they give 
rise to symptoms, if any, that can be explained in terms of replacement. 
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on the ground of their being ungrammatical or meaningless, we are left with 

two candidates: 

s2: A cotd meal was WaT'lTled. , and 

s3: A gotd medat was awarded. 

Now suppose that we know the a priori probability, presumably based on the 

context, that the intended message was s2 or, alternatively, s3. We shall 

denote these by P(s2) and P(s3), respectively. If we also know the proba

bilities P(s1ls2) and P(s1ls3) that, due to printing errors, s2 and s3, res

pectively; will be turned into s1, we can compute the a posteriori probabil

ities that s2 or s3 were intended, given the fact that we have received s1, 

by the formulae: 

P(s1 s2) P(s2) 
= P(s1 s2) P(s2) + P(s1 s3) P(s3) 'and 

P(s1 ls2) and P(s1ls3) can be determined by taking the product of the con

ditional probabilities for the individual printing errors (which are con

sidered independent). So 

P(s1js2) = P(c ➔ Z) P(+ h) P(+ a), and 

P(s1js3) = P(g ➔ Z) P(d ➔ h) P(d ➔ m). 

The latter probabilities may be estimated by collecting statistical data on 

printing errors. Observe that, typically, the formulae for P(s2ls1) and 

P(s3ls1) have their denominators in common, so that, in order to compare 

them, it suffices to compare their numerators. 
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In our situation, we have no a priori ground to consider one intended 

program more likely than another one. Therefore, we will assume a uniform 

* distribution of the intended programs • For the above example, this would 

imply P(s2) = P(s3). Again, as our goal is comparison only, we obtain a 

simplification: it now suffices to compare the product of the conditional 

probabilities for the individual phenomena observed. Rather than multi

plying probabilities and comparing products, we shall add error values, 

i.e., (scaled) logarithms of the probabilities and then compare the sum. 

2.4. Determination of error values 

As the model on which our algorithm is based is a gross simplification, 

no other significance should be attached to the error values obtained than 

that of a heuristic guide, obtained by making educated quesses. 

In the subsequent sections, the following will be used to stand for 

(estimates of) probabilities and other parameters: 

* 

N = size of the glyph set, 

L = size of the letter set, 

~- = probability that a given glyph is omitted in the perturbation 

process, 

~o = probability that a given glyph is replaced by some other 

glyph, 

Sr= the range over which the length of segments with stater 

may vary in practice, where r stands for some state switcher, 

~b = probability that one or more bold symbols occur in a segment 

other than neutral. 

This is not wholly true, as we want to consider a program containing, e.g., 
the string '1begin" less likely than the program with that string replaced 
by '1begin". By means of a trick, however, we can save the uniform distri
bution. This can be described in terms of our model by restricting the 
universe of intended programs to programs that do not contain such strings, 
and than having these strings appear in the perturbation process. 
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2.4.1. Error values for cornm.ent-S;Y!IlbOls 

Where in the sequel C is used, this should be understood as standing 

for any of the state switchers¢,#, E£_, comment, 12!. or pragmat. 

Consider two segments with states E1 and r2 , separated by C: 

In order that an interpretation which assigns E
1 

and r
2 

to these segments 

be admissible, it is necessary that at C we have either a correct or an 

admissible incorrect transition. So we must have one of the following 

(classes of) transitions: 

i. E1 = neutral, E2 = c. 

ii, E1 = C, E2 = neutral. 

iii, E1 = E2 = E, where E ~ C and E ~ neutral. 

iv, E1 = E2 = neutral. 

It now remains to be seen how these cases can arise by subjecting an intended 

program to the perturbation process. In transitions i, ii and iii the in

tended program was not affected, as the transition is correct there. Al

though the probability of this phenomenon is slightly less than 1, as there 

is a small, but finite, probability that some perturbation will occur, we 

shall equate this probability to 1. In case iv, an incorrect transition is 

involved, and there is a multitude of possibly intended programs that could 

result in this phenomenon. In order to restrict the analysis to local effects, 

we shall assume that this incorrect transition is the only one in the in

terpretation of the source text. The given source text could have resulted 

from the replacement of some glyph in the intended program by C, but in the 

light of the much likelier possibility that the corresponding C was omitted 

or mistyped, we shall disregard this possibility. So the class of possibly 

intended programs comprises those programs that can be transformed into the 

source text by deleting one occurrence of C, or replacing it by some other 
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glyph (more specifically, by the corresponding glyph in the source text). 
. . 'PO . . 

For each of these, we have: P = cp_ + """i• The number of possibly intended 

programs can be estimated roughly to be 2SC' one for each of the about SC 

places to the left and to the right of C in the source text where the deleted 

or replaced C could have stood. 

To summarize: 

P(i) = P(ii) = P(iii) = 1; 

'Po 
P (iv) = 2S C ( cp _ + N) . 

The corresponding error values are obtained by ta.king the logarithm to 

some base of these probabilities. 

2.4.2. Error values for guote-s~ols 

Previously, we have already mentioned the fact that it is sometimes 

possible to see whether a given quote-symbol is an opener or a closer. As we 

expect that in most cases string-denotations will consist of letters mainly, 

only the information provided by these symbols·is taken into account. String

denotations may only be followed and/or preceded by letters when they occur 

within fonnat-denotations. Note that at this stage it is not yet known 

whether a given string-denotation does or does not occur in a fonnat

denotation: this can only be checked when the brace skeleton is known, which 

in its turn has to await the treatment of the state switcher skeleton. 

The set of letters which may occur in format-denotations consists of: 

a, b, a, d, e, f, g, i, k, l, n, p, P, s, t, x, y and z. (Note that f and g 

do not occur in format-denotations as defined in the original Report. How

ever, it seems likely that they will be included in the revised version of 

the syntax for format-denotations.) In order to make the probability of 

recognizing quote-symbols as openers or closers as great as possible, we do 

not only consider one symbol, but a maximal sequence of letters, i.e., a 

sequence of letters preceded and followed by a non-letter. Let 6 stand for 

the set of letters mentioned above, and o for the set of remaining letters, 

h, j, m, o, q, u, v and w. Then a 6-sequence is a, possibly empty, maximal 

sequence of letters, each letter belonging to 6. A a-sequence 1s a maximal 

sequence of letters, at least one of which is an element of o.(So a sequence 
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of letters is either a 6-sequence or a a-sequence.) To give an example: 

asnaiZspace is a 6-sequence, whereas andromeda is not. (If a space-symbol 

has some representation, e.g.,~ , it should of course also be included in 

a.) In the sequel, A will stand for a a-sequence, and K for a 6-sequence. 

In this way, we can distinguish four cases, depending on the context of the 

quote-symbol: A,, A, A,, A, A,, A and A,, A. 

2.4.2.1. The case K " A 

As in section 2.4.1., we must have one of the four (classes of) 

transitions i to iv ( where C stands for "). 

Transition i and iii involve no errors, so P(i) = P(iii) = 1. 

Transition ii can arise by mutilation of an intended program where the 

context of the quote-symbol is K " K. The ti at the right must be an empty• 

sequence, except within format-denotations, but for the sake of simplicity 

we shall disregard the latter case. The change of ti to A can occur by: 

- replacing the glyph after the quote-symbol by the letter from a 
<Po 

(P = (N-L) N); 

omitting the glyph after the quote-symbol (P = (N-L) <P ). 

Taken together, P(ii) = (N-L)(cp_ + <P~). 

Transition iv can be treated as in 2.4.1., but now there are only 

abouts,, places where the original quote-symbol could have stood since, 

clearly, the quote-symbol at hand is an opener. 

To summarize: P(i) = P(iii) = 1; 

P(ii) 

P(iv) 

2.4.2.2. The case A" 21 

This case is the mirror image of the case K "A, considered in section 

2.4.2. 1. 

We obtain: P(ii) = P( iii) = 1 ; 

P(i) 
<Pa 

= (N-L) (cp_ + N); 

P(iv) 
<Pa 

= s,, (<P_ +N). 
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2.4.2.3. The case "K ""K 

This case 1s similar to the case treated 1n section 2.4.1., if we take 

C to stand for " 

We have: P(i) 

P(iv) 

= P(ii) = P(iii) = 1; 

cf>o 
= 2S,, ( cp_ + N) . 

2. 4. 2. 4. The case b. " b. 

This is only correct if transition 111 1s involved. For transition ii, 

the analysis of the case "K " b. applies, as does that of the case b. " z; for 

transition i. In the remaining case of transition iv, the intended program 

must have been one where instead 
1 symbol stood (P = Ncp

0 
N = cp

0
). 

Summarizing: P(i) = P(ii) = 

P(iii) = 1; 

2.4.3. Numerical results 

of the quote-symbol at hand some other 

cp 
(N-L) (cp_ + :); 

Guesstimates for the various parameters in this section were obtained 

independently from some colleagues and used to compute the various error 

values (where the negative logarithm to some base was taken). The results 

are listed on page 17. 

2.4.4. The algorithm 

The task of the algorithm can be stated thus: find among all admissible 

interpretations an optimal one, i.e., one with minimal total error value 

for the segments and transitions involved. Obviously, it is impractical to 

generate all admissible interpretations one by one, as their number will 

grow exponentially with the number of state switchers in the source text. 

By applying the principle of dynamic programming, however, it is possible 

to derive a practical algorithm. 



Estimates: 

N 

L 

<I>_ 

<I>+ 

SC 
s,, 

Error values 

C 

comment 

2i " I:!. 

I:!. " ti 

K ,, K 

I:!. " I:!. 

64 

27 

• 0001 

.0002 

20 

20 

transition 

i,ii,iii 0 

lV 11.3 

i,iii 0 

ll 11.5 

lV 12.7 

l 11. 5 

ii,iii 0 

lV 12.7 

...... 
0 1,11,111 

lV 11.3 

i,ii 11.5 

lll 0 

lV 17.6 

</lb 

i: neutral-+ C 
ii: C + neutral 
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64 

27 

.00163 

.00163 

50 

17 

0 

6.8 

0 

10.5 

13.4 

10.5 

0 

13.4 

0 

10.8 

10.5 

0 

24.2 

iii: C'-+ C' (C' f C or neutral) 

iv: neutral-+ neutral 

~4 

27 

.0003 

.0020 

100 

10 
I 

average 

0 0 

7.0 8 

0 0 

11.4 11 

14.8 14 

11. 4 11 

0 0 

14.8 14 

0 0 

13.0 12 

11. 4 11 

0 0 

16.2 19 

--- -

5 



2.4.4.1. Application of the dynamic progra.nmri.ng principle 

Let the segments of a 

admissible interpretations 

i-th segment. So we have 

I 1: (0) 
T1 

( 1 ) 

IO I1 

source text be numbered from 0 

I1 

... 

and I2 that assign the same 

(i-1) T. (i) 
T. 1 

(i+1) 

I. 1 
l 

L 
i+ 

Ei+1 l- l 

(i-1) I (i) I (i+1) 
T. T. 

1 I 

L1 l-

l l+ 
1 

I. 
l Ii+1 

. .. 

ton. Consider two 

state L to the l 

(n-1) T 
(n) 

and 
I n 

E n-1 n 

(n-1) T, (n) 
, n ~;~ , 

In-1 In 

where the T's stand for the transitions involved and the numbers of the seg

ments are given between parentheses. Then, clearly, both of the following 

interpretations are also admissible: 

... (i-1) (i) 1 (i+1) 
Ti Ti+1 

L1 l-
I. 

l 

I 

I. 1 i+ 

(i-1) I (i) (i+1) 
T. T. 

1 I 

L1 l-

l l+ 
L 

l 

(n-1) T, (n) and 
I 

E 
n-1 

n I 

I 
n 

(n-1) T (n) 
n 

E I n-1 n 

In words: it is admissible to cross over at the i-th segment. 

To give an example: from the two admissible interpretations 

(0) 

;;~t;;i ¢ 

and 

( 1 ) -------¢ 

(0) * (1) 
~~~~~~~ ¢ ~~~~~~~ ¢ 
neutral neutral 

(2) 
~~~~~~~ ¢ 

¢ 

(3) (4) (5) 

neutral 
# ~~~~~~~ 

# 
¢ ~~~~~~~ 

# 

(6) (7) 
# ~~~~~~~ 

¢ ¢ ~;;t;;i, 

(6) * (7) 
# ~~~~~~~ ¢ ~~~~~~~ , 

neutral neutral 

which both assign neutral to the third segment, we can derive yet two other 

admissible interpretations: 
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(0) ( 1 ) (2) * (3) (4) (5) ( 6) * (7) ------- ~ ------- ¢ ------- ¢ ------- # ------- ¢ ------- # ~~~.~~~~ ¢ -------, 
neutral ¢ neutral neutral # # neutral neutral 

and 

(0) * ( 1 ) (2) (3) * (4) ( 5) (6) (7) __ .., ____ 
¢ ------- ¢ ------- ¢ ------- # ------- ¢ ------- # ------- ¢ -------· 

neutral neutral ¢ neutral neutral ¢ ¢ neutral 

This is illustrated perhaps more vividly in the following diagram, in which 

the interpretations are given by the paths from left to right. This way of 

looking at interpretations had proved a powerful heuristic guide. 

(0) ( 1 ) (2) (4) (5) (6) 
¢ ~~~~~~~ ¢ # ~~~~~~~ ¢ ~~~~~~~ # 

Now consider two partial interpretations 

P1: 
(0) 

T1 
( 1 ) ( i-1) 

T. 
(i) and ... 

l 

EO E1 L1 L 
l- l 

(0) ' ( 1 ) ( i-1) I ( i) P2: T1 T. 
I I ' 

l , 
EO E1 L1 E. 

l- l 

having their last states in common. Suppose that C1 is an optimal continuation 

of P1 resulting in an admissible interpretation, and, similarly, that C2 

an optimal continuation of P2. As stated above, C2 must be an admissible 

continuation of P1 also, and C1 of P2, so we have: 

error value (P1C1) < error value (P1C2) and 

error value (P2C2) < error value (P2C1). 

lS 

Since the error value is obtained by adding together the error values of the 

individual transitions and segments, it is possible to apply the principle 

of dynamic programming. The above inequalities can be written thus: 
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error value (P1) + error value ( C1) .::_ error value (P1) + error value ( C2) 

and 

error value (P2) + error value (C2) 2,. error value (P2) + error value (C1). 

From this, we derive: error value (C1) = error value (C2). Consequently, 

error value (P1C1) < error value (P2C2) ~ > error value (P1) < error value (P2). 

In words: a partial interpretation P1 can only then beat another partial 

interpretation P2, i.e., can only then be the initial part of an interpretation 

which is better than the best possible completion of P2, if its error value is 

less than that of P2. As a consequence, only one out of P1 and P2 needs to be 

retained. This means that the set of partial interpretations of the segments 

0 to i need contain at most one element for each of the (at most) eight pos

sible states r. for the i-th segment, to wit, an optimal partial interpretation. 
. . i. . . ( Q) . 

Initially, for i = o, this set contains only one element, ~~~~~~r~. Scanning neu1.,ra 
the state switcher skeleton from left to right, at each state switcher the 

set of partial interpretations is replaced by a new set. The transitions in

volved upon encountering a state switcher C can be depicted thus: 

(i-1) 

L.1 i-

C 
(i) 
L. 

i 

neutral><neutral 

C ---- ---------..c 
C' -----C' (C' 1' C) 

A decision has to be takenwhetherthe new partial interpretation corresponding 

to the state neutral is the continuation of the old partial interpretation 

corresponding to neutral (P1) or ofthat corresponding to C (P2). This can be 

decided by comparing the sum of the error values of the old partial inter

pretation and the transition, i.e., by comparing 
C 

error value (P1) + e~ror value (neutral ➔ neutral) and 
C 

error value (P2) + error value C ➔ neutral). 

After having processed the last segment of the source text, the (then 

complete) interpretation corresponding to the state neutral is an optimal 

interpretation. To give an example, which is slightly simplified in that 

only three states are involved, the state switcher skeleton which we already 
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encountered in section 2.3. is displayed below (we assume that in segments 

2, 3, 6 and 7 bold symbols occU1'), together with the correct or admissible 

incorrect transitions (drawn as arrows between states) and the corresponding 

error values. Where two transitions come together, one of them is drawn asan arrow 

with a white head, indicating that the partial interpretation corresponding to 

the other transition (drawn with a black head) is more profitable. The partiHl 

error values are displayed in italic font. By following the black-headed arrows 

back from the final state neutral, the optimal interpretation is obtained. 

( 1 ) (2) (3) (4) (5) ( 6) (7) 
¢ ------- ¢ ------- # ¢ ------- # ------- ¢ 

There is, however, one proviso. Although the interpretation obtained is 

certainly optimal among the locally admissible interpretations, there is no 

gµarantee at all that, as a whole, it is admissible. Therefore, it is ne

cessary to slightly amend the process sketched above. 

2.4.4.2. I-admissibility 

We define the notion "1:-admissible" for partial interpretations in the 

following way: 

Let P be a partial interpretation, assigning states to the segments Oto i. 

Pis I-admissible (for short: PE Adm.(I)) if 
i 

i. all transitions of Pare either correct, or admissible incorrect 

transitions, 
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ii. P assigns the state neutral to segment O and E to segment i, and 

111. there does not exist another partial interpretation Q satisfying 

(i) and (ii), all of whose transitions are either correct, or are 

the same as the corresponding transition of P. (We say that such 

a Q "rules out" P.) 

We can observe some facts, expressed in the form of a 

Lemma: 
(a) For a (total) interpretation I, the notions "admissible" and "neutral-

admissible" coincide. Consequently, Admn(neutral) f, ¢. 
(0) 

(b1) Adm0 (neutral) = {;;~t;;i}• 

(b2) For E :f, neutral, Adm
0

(E) = ¢. 
( i) 

( C) If Q(E') T. ~-~ E Adm.(E), then Q(E') 
i E 1 

E Adm . 1 ( E ' ) • 
1-

(d) If Pis ruled out from E-admissibility by some Q (not necessarily 

E-admissible itself), then there exists a E-admissible R ruling out P. 

(e) If P(E') E Admi_1(E') and Ti is a correct transition in the context of 

(i-1) (i) (i) 

Proof of (c): 

From any R 
(i) Q(E') T . .,. __ • 

i E 

Proof of (d): 

then P(E') T. 
1 

E Adm. ( E). 
1 

ruling out Q(E') we can construct RT. 
1 

(i) 
E, ruling out 

First, observe that "to rule out" is a transitive relationship. More

over, if Q rules out P, then the number of incorrect transitions in Q is 

less than that in P. Therefore, a sequence of partial interpretations 

P, Q, Q', Q'', ••• , each ruled out by the next, must have a finite length 

(in fact, cannot exceed the number of incorrect transitions in P by more 

than one). Consider such a sequence of maximal length P, Q, Q', Q'', ••• , Q(n) 

( . (n+1) . . (n)) Q(n) that is, no Q exists ruling out Q • Then, is such an Ras we 

were looking for. 
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Proof of ( e): 
( i) (i) 

Supp9se P(E') T ... __ ¢ Adm. (E), so that some Q(E") 
li) 1 E 1 

P(r') T. ~~~ • Now, assume T. ~ T!. From the definition 
1 E 1 1 

T. 
1 E 

of "ruling out" we 

rules out 

derive the correctness of T!. So we have T. ~ T!, T. is correct and T! is 1 1 1 1 1 
correct, simultaneously. However, for two different transitions to yield 

one and the same new state E, it is necessary that one of them be a transi

tion neutral ➔ neutral and therefore incorrect, which yields a contradiction. 

Evidently, the assumption was incorrect: T. = T!. But then, Q(E") alone 
1 1 

already rules out P(r'), contradicting P(E') E Adm. 
1
(r'). 

1-

2.4.4.3. The ComEanion Theorem 

Given a partial interpretation P.(r) and some stater*, we can infor-
1 

mally define the "companion interpretation" of P.(r) corresponding tor* 
1 

thus: follow, in a diagram in which P.(r) is given by a path and in which 
1 

the correct transitions are indicated, the correct transitions backwards 

starting from the stater* at the i-th segment, until P.(E) is met, and 
1 

then continue along P.(r). The partial interpretation thus obtained is the 
1 

companion interpretation sought for. For example, 1n the following diagram 

( 1 ) (3) ( 4) 
# ............... ~~ ¢ 

(5) 
-0!\IIN--l'\jl!N # 

(6) (7) 
¢ ~~~~~~~ 

1n which an interpretation P6 (¢) is indicated by a path of bold arrows, we 

can obtain its companion interpretations corresponding to neutral and#, as 

displayed in the following diagram: 
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(0) (1) (2) {3) (4) (5) (6) (7) 
------- ¢ ------- ¢ ------- ~ ------- # ------- ¢ ------- # ------- ¢ -------

_,_,,,/;,/'-,,, I _,,_,,_,,,1;~------+'i,X'•, ,, I 

/ ~, ' neutral neutral neutral-•-tneutr 1....,.neutral neutral nejtral neutral 
', ," ... , 

X "' ; ... ' ~ ', # # # ~#------+#~ .. # 

companion interpretation of P6 (/) corre!anding to# 

I 
companion interpretation of P6 (¢) corresponding to neutral 

# 

Such a companion interpretation need not always exist, since following the 

correct transitions backwards may either bring one to a point to which no 

correct transition leads, or the path thus obtained may never meet the given 

partial interpretation. 

Furthermore, it is possible to distinguish two types of companion in-

terpretations, in that one may or may not require that the last transition 

of the companion interpretation is a correct one. (This gives a distinction 

only if E = E* and the last transition of P.(E) is incorrect.) It is pos-
i 

sible to give a more formal definition, by means of mutual recursion: 

( i) 
if P.(E) = P. 

1
(E') T. ~ and there exist r** 

i i- i ~ 

and T! - wbich then are uniquely determined -
i {i-1) (i) 

such that~;**- T! -*- is(a correct transition, 
~ i E i) 

then comr**(P. 1(r')) T! ---, and, otherwise, 
. i- i E* 

undefined. 
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It is now possible to state the 

Companion Theorem: 

Proof: 

Let P. 1 ( E ' ) T. 
i- i 

( i) 

E 

( i) 
and P. 1 ( E ' ) T. 

i- i 
I. Adm. ( E). 

i 

is defined and rules out P. 1(E') T. 
i- i 

be written as 

(i-1) 

E.1 i-

(i) 
T. 

i E. 
i 

( i) 

and let the partial interpretation ruling out Pi_1(E') Ti 
(i) 

E 
be written as 

(0) ( 1 ) 
T"' ---

1 E* 
1 

(i-1) ( i) 

E* = E., but E! 1 # E. 1, since, otherwise, Pi._1(E') would be ruled out by 
i i i- i-

(0) 

E* 
0 

( 1 ) 
T* 

1 E* 
1 

( i-1 ) 

E! 1 
i-

Consequently, T! # T .• On the 
i i 

exist a maximal m, 0 .::_ m < i, 

other hand, E; = E0 (= neutral), so there must 

such that E* = E • From (e) we derive the 
m m 

according to the definition of ruling incorrectness of T .• On the other hand, 
* i . * . out, T. must be correct. Also, form< n < i, T must be correct, since, 
i n 

otherwise, we would have T* = T and, therefore, E* = E , contradicting 
n n n n 

the 

maximality of m. Therefore, the following partial interpretation 

(0) ( 1 ) (m-1) (m) (m+1) (i-1) (i) 

EO T1 E1 
... E T E =E* T:+1 E;+1 E~ 1 

T!' E! 
m-1 

m i m m i- i 

( i) 
serves equally well to rule out P. /E') T. 

E. 
. But this is exactly the i- i 

( i) i 
companion interpretation ComE(P. 1(E') T. -i;-), as is easily observed 

i- i 

by inspection of the definition of Com. 
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2.4.4~4~ Ensu.ring·adnrlssibility 

We are now in a position to describe the amendment to the process: 

When it has to be decided for so~e P.(E) which of two candidates 
(i) ti) ]. 

Pi_1(E') Ti ~E~ and Pi_1(E") TJ_ ~E~ is chosen, then, before their error 

values are compared, a test is made to see if one candidate,say C, is ruled 

out by Co~(C), in which case only the other candidate is retained. We shall 

show that, for each i from Oto n, the set of partial interpretations of the 

segments Oto i thus obtained contains for each state Ea partial interpre

tation P.(E) E Adm.(E), provided of course that Adm.(E) ¥ ¢. 
]. ]. ]. 

It has to be shown: 

(A) that, for i = O, the set of partial interpretations fulfils the above 

requirement and 

(B) that, for i .::_ 1, it is possible to construct from such a set {P. 
1

(E)} 
].-

a new set {P.(E)}, also fulfilling the requirement, such that all of 
]. 

its elements are continuations of some element of {P. 
1

(E)}, i.e., if 
(i) ].-

Adm.(E) ¥¢,then P. 
1
(E') T. ~~~ E Adm.(E} for some E' and some transition 

i i- i E i 

T. • 
]. 

From (A) 

follows. For 

one and only 

and (B), together with the Companion Theorem, the claim then 

suppose that P.(E) has been constructed by the process as the 
]. 

continuation of some P. 1(E') leading to the state E. According 
].-

to (B), some E-admissible continuation exists; so, as there is only one con

tinuation, it must be E-admissible. If, on the other hand, P.{E) has been 
]. 

chosen from two candidates, then these have been tested against their com-

panion interpretation ComE, so that, if they have been retained, they are, 

according to the Companion Theorem, E-admissible. 

Proof of (A): 

We have to show: if Adm
0

(E) ¥¢,then P0(E) E Adm0(E). This follows 

directly from the initial value of the set of partial interpretations, 
(0) 

{~~~~~~~} combined with the facts (b1) and (b2) observed above. 
neutral ' 

Proof of (B): 

Assume that, for some E, Adm.(E) ¥ ¢. Adm.(E) contains at least one 
]. ].{i) 

element, which can be written as Q(E') T. • From (c), we see that 
i E 
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Q(E') E Adm. 
1
(E'). Adm. 1(E') #¢,so there exists, by hypothesis, 

i- i- ( i) 

a P. 
1
(E') E Adm. 

1
(E'). If P. 

1
(E') T. ~;- E Adm.(E), we are done. 

i- i- i- i 6 i 

( ) (i) J ( ) { ) • . . Suppose therefore P. 
1 

E' T. -~- ~ Admi. E. By d, this implies the 
i- (i) i 6 (i) 

existence of a Q(E") T! " E Adm.(E), ruling out P. 
1
(E') T. ~;~. 

i 6 i i- i 6 

Now, clearly, T. and T! are two different transitions, since otherwise 
i i ( i) 

Q( E11
) alone would already rule out P. 

1 
( E'). Since Q( E") T! ~;~ rules 

(i) i- i 6 

out P. 
1
(E') T. ~;~, T! must be a correct transition, according to the 

i- i 6 i 
definition of 11ruling out". Now, again applying (c) and the hypothesis, 

we infer the existence of 
(i) 

construct P. 
1 

( E") T! ~;-

a P. (E") E Adm. 
1

(E"). Using (e), we can 
i-1 i-

i- i 6 
E Adm. ( E). 

i 

By ensuring the admissibility of the interpretation obtained, we have, 

at the same time, lost the guarantee that the result will be optimal. This 

loss, however, does not worry us: sub-optimality can be shown to occur only 

as a consequence of having a non-vanishing error value for bold symbols 

within item sequences; setting these values equal to zero restores the 

guaranteed optimality. Since the error value in question has been chosen 

small compared to the other error values, a sub-optimal result, if at all, 

can only be so by a relatively small amount. 

In order to be able to test the candidates against their companion 

interpretations, it is unnecessary to keep the ComE*(Pi(E)), which would be 

cumbersome, or even information allowing their reconstruction. Instead, 

it suffices to remember, for each pair (E*, E'), whether comE*(Pi_
1
(E')) is 

(i) 
defined (or, for short, whether def. 

1
(E~,E')). Then, P. 

1
(E') T. --~ E Adm.(E) 

i- i- i E i 
if and only if T. is a correct transition or def. 

1
(E~, E') does not hold 

i i-

where E* is the state, if any, such that T. is correct in the context 
(i-1) (i) i 

E * Ti E 0 

The proof of this is left to the reader. 
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2. 5. Art example 

The program given below is example 11.12 from the Report, in which 

three errors have been made: 

in line 16 an o has been inserted before the close-symbol; 

in line 25 a "has been inserted between the o and the :r>; 

in line 38 . "3 has been changed into o "o • 



1 'BEGIN' 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
l2 
l.S 
14 
15 
16 

-29,... 

•MOOE' 'RA'_: •REF' •AUTH', 'RB' 21 1 REF' •BOOK', 
•STRuCT• 1ALJTH' = ('STRING' NAME, 1 RA 1 NEXT, •Re• BOOK), 

'BOOK'= ( 1 STRING 1 TITLE, 'HB' NEXT)l 
1RA' AUTH,f'IRST AUTH:: 1NIL 1 ,LAST AU"i"Hl 'RB 1 BOOl<l 
•STRtNG 1 NAME,TITLE! 'INT' I l tFILE 1 !NPUT,OUTPUTI 
OPEN(INPuT,,REMOTE IN)l OPEN(oUTPUT,,REMOTE OUT); 
OUTF(OUTpUT,$P 

"TO ENTER A NEW AUTHER, TYPE ""AUTHOR""• A SPACE, ANO HIS 
NAME,"L 

"TO ENTER A NEW BOOK, TYPE ""~OOK""• A SPACE, THE NAME OF THE 
AUTHOR, A NEW LINE, ANO THE TITLE,"L 

"FOR A LISTING Of THE BOOKS BY AN AUTHOR, TYPE ""LIST""• A SPACE, 
AND HIS NAME,"L 

"To FIND THE AUTHOR OF A BOOK, TYPE ""FIND""• A NEW LINE, ANO THE 
TITLE,"L 

"TO ENO, TYPE ""ENO"""AL$,"," 

INCO~~ECT THANStTION: OLD STATE: " ; NEW STATE: NEUTRAL 

0) I 
17 •PROC 1 UPDATE• 
18 : •IF 1 ( 1 RA 11 FIRST AUTH)l:q 1 NIL' 
19 1 THEN' AUTH:: FIRST AUTHI: LAST AUTHI= 1 AUTH 11u (NAME,0,0) 
i:!O 'ELSC 1 AUTH:: FIRST AUTHI 'WHILE' (IRA 1 : AUTH):,: 'NIL' 100' 
i:!1 (NAME: NAME 1 0F 1 AUTHjKNOWNjAUTHlu NEXT •oF• AUTH)I 
i:!i:! LAST AUTH:= NEXT •OF 1 LAST AUTH:: AUTH:= 1 AUTH•l: 
23 (NAME,0,0)1 KNOWN: 1 SKIP 1 

i:!4 tFt 1 # END DECLARATION PRELUOE SEQUENCE #l 
25 CL.IENT: INF (INPuT,$C( 11 AUTH0 11 R" 

1NCO~HECT THANSITION: OLD STATE: NEUTRAL.; NEW STATE: NEUTRAL. 

, 11 BOOK 11 ,"L.IST","f'IND 11 ,"ENO",""),XJOAL, 
t.!6 80AL$, I ) l _ 
27 'CASE' I 1 tN• AUTHOR,PUBL.,LIST,f'INO,~NO,ERROR 9 ESAC 1 ; 

.!8 AUTHOR: tN (1NPUT,NAMEll UPDATE! CL.IENTi 
i:9 PW61.I IN (lnPUT, (NAMt 1 T!'l'l.e))I UPDATtl 
SI; 1 If!'• ('F-18 1 1 BOOK 101"• AUTH)::1 'NIL.' 
.Sl 'THEN• BOOK •oF• AUTH:= 'BOOK•:: (TITLE,0) 
.S2 _'ELSE• BOOK:= BOOK 'OF• AUTH; "ll"i1LE 1 ( 1 R8 1 l NEXT 1 0F' 1 BOOK) :+1 
,53 

.S4 

.S5 
,56 
,5 I L. I ST: 
.So 

1 NIL 1 1 00 1 

(TITLE: TITL.E 'OF' BOOK1CLIENTjBOOK:: NEXT 'OF' BOOK); 
(TITLE* TITLE 10F 1 S00KINEXT 1 0F 1 BOOK:= 'BOOK•:• (TtTLE,0)) 

•Ft•; CLIENT; 
IN C1NPUT,NAME); UPDATE; 
OUTF(OUTpUT,$P"AUTHOR:O" 

:NCO~RECT TRANSITION; OLD STATE: 11 I NEW STATE: NEUTRAL 

.S9 
4il 
41 
42 
43 
44 

45 
46 
47 
4b 
49 FI Ni.l: 
,u 
':>1 
::>2 
::,3 
::,4 
:,? 
::,6 

bl t:RROR: 
IJ2 
();) •EN0 1 

04 

00ALL$,NAME); 
'IF 1 (1RB 1 : BOOK 1 0F 1 AUTH):=: 'NIL' 

•THEN' PuT(OUTPUT,"NO PUBLICATIONS") 
'ELSE' 'WHILE' ( 1 RB 1 :BOOK) :*: 'NIL.• •oo• 

•BEGIN' 1 tF 1 LINENUMBER(OUTPUT) a MAX LINE[REMOTE OUT] 
1THEN 1 OUTF(OUTPUT,$41K"CONTINUED ON NEXT PAGE"P 

"AUTHOR: "30A4lK"CONTINUED"LL$,NAME) 

1Fl'l OU'l'F(OUTPUT,$80AL$,TITL.E •OF• BOOK>l 
BOOK:;, NEXT t OF I BOOK 
•ENO• 

1 1"1 1 J CL1ENT; 
IN (1NPUT, (•1,.oc• 'STRING',TITLE))J AUTHh1 FIRST AUTHJ 
1\1/HILE' <'RAt: AUTH) :+: 1NIL.t 1 D0 1 

'8tGIN1 BOOK:= BOOK 1 0F 1 AUTHI 
•\I/HILE' ( 1 RB 1 : BOOK) :*: 'Nit.• 1 00 1 

1 IF' TITLE: TITLE 'OF' BOOK 
•THEN' OUTF (OUTPUT,$L"AUTHORl "30A$,NAME •OF• AUTH)l CLIENT 
•ELSE' BOOKl: NEXT 'OF' BOOK 

'Fl'I AUTH:: NEXT 10F 1 AUTH 
1 EN0tl 
OUTF(OUTpUT,$L"UNKNOWN"L$,li CLIENT! 
PUT(oUTPuT,(NEWPAGE,"SIGNEO OfF",CLOSE))l 
CLOSC(tNpUT), 
PUT(oUTPuT,(NEW LINE,"MISTAKE, TRY AGAIN,"))j 
NEW LINE(INPUT)l CLIENT 
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After, as a result of the treatment of the state. switchers, states have 

been assigned to all of the segments, it 1s known which parts of the pro

gram are item sequences and, consequently, which braces have to be disre

garded. The remaining braces constitute the brace skeleton. It is the task 

of the algorithm for repairing the brace skeleton to try to match as much 

as possible the braces and to mark the remaining ones. The criterion for 

comparing two alternatives will simply be: which one has the smaller number 

of marked braces. 

First, it 1s necessary to define more precisely when two braces match. 

To begin with, the following pairs of braces match: 

$and$, 

( and J , 

begin.and end, 

[ and J • 

(/ and /J , 

if. and ti , 
case and esaa. 

In the case of, e.g., the brace I, the potential for matching is much higher: 

this brace is able to match simultaneously to the left with either of the 

braces (, I and I:, and to the right with I, I: and J. In spite of this 

seeming complication, a satisfactory and yet simple treatment is given by 

systematically replacing I by JI( and I: by JI:(, and then to require the 

matching of ( and J, after which I and I: are no longer considered braces. 

To give an example, (I l:IJ would be replaced by ( JI( JI:( JI( J, thus 

g1v1ng a perfect matching of braces. Similarly, then is replaced by fi 

then :ft., and so on. Obviously incorrect skeletons, such as ( I [ I J or :ft. 
else ti, are not indicated as such by this algorithm; this task is delegated 

to a later scan. 

Still another complication is presented by the braces for from 01.. to 

while do. Here, the brace Ell., e.g., may match to the left with.for or from 

or may not have a matching left brace at all. To the right it may match 

with to, while and do. This case is handled by the introduction of a 

virtual brace, matching tor, which we shall denote here as rot. Using this, 

E2_, e.g., is either replaced by to tor (as in the context l:to) or by rof 

to for (as in the context for i to). The first possibility has to be chosen 
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when to-is the first - symbol of a loop, the second one when it is not 

first symbol (and is, therefore, preceded by a unit). From a context 

version of the Syntax it was possible to derive mechanically the set 

symbols that may immediately precede a loop: 

·- : = ( be0:_in .- , 

@* I: case in ouse 

then elsf else * "EJ/_* . from , 

and the set of symbols that may be the last symbol of a unit: 

o ••• 9 true false 

esac ti 

mode-indication. 

$ void 

* 

) 

* 0 

c* 

out 

to * 

end 

" 

the 

free 

of 

(/* 

it. 

while 1£, 

J /) 

a ••• z 

As these sets are disjoint, it is always possible to decide if to should be re

placed by to for or by rof to for, by inspecting one symbol immediately pre

ceding to. Using these rules, 

for i to 10 while to 3 do while b do s; c d.o t is replaced by 

for i !Et "PE. fo~~-~::f while for -PE_ for 3 ££i. do while f¥,. b-{. d.o s; c rof do t. 

Formatter-symbols are somewhat special among the braces, in that they 

share with state switchers that opening brace and closing brace have one same 

representation. Similar to quote-symbols, it is sometimes possible to deter

mine from the context whether a given formatter-symbol is an opening brace or 

a closing brace. In fact, there are only three contexts in which it is not 

possible to determine the nature of the formatter-symbol:,$, , ,$+and,$-. 

This is due to the fact that a collection may be empty; if this were not the 

case, the decision could always be made. 

* These symbols appear here due to the fact that the context free version 

encompasses a somewhat larger language. 
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Let~ stand for the set of symbols that may be the beginning of a collection

list, .but with the exception of the comma-, plus-, minus-symbol, since these 

may also immediately follow a format-denotation. So 

~={a, b, c, d, f, g, k, Z., n, p, s, t, x, y, z, 0 ••• 9, ., (, "}. 

Let v stand for the set of symbols that may be the end of a collection-list, 

but with the exception of the comma-symbol, which may also immediately 

precede a format-denotation. So 

) d ~i, "}. v = {a, b, d, g, k, Z., p, t, x, y, z, •, , ~, ~, c 

Let A stand for the set of syID.bols that may not be the beginning, andY 

for the set of syID.bols that may not be the end of a collection-list. 

So ~ u A u {,, +, - } = V u f u {, } = the set of ALGOL 68 symbols. If we have 

$ ~ or f $ (e.g. , $Z. or =$), then $ must be an opening brace. If we have 

V $or$ A (e.g.,)$ or$;), then$ must be a closing brace. If neither 

holds, then we must have one of the three undeterminable cases mentioned 

above; if, on the other hand, both possibilities hold (as in )$Z.), then 

the source text contains an error. 

3,1. The algorithm 

A correct brace skeleton, i.e., one in which all braces match proper

ly, can be characterized algorithmically: 

Start with an empty stack. Scan the braces from left to right. Upon meeting 

an opening brace, it is put on the stack. When a closing brace is met, it 

matches the brace on top of the stack (otherwise the brace skeleton was 

incorrect) and that brace is "matched away", i.e., removed from the stack 

top. After having processed all braces, the stack is again empty. To give 

an example (where the dotted line indicates a match): 

1 
( 

le 
J ( ~ ~ end 
~ Lr ~ _! I . 

I I 
I 

( 
~! lb•qi+-: . begin - -
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An alternative way of viewing this can bring the notion of "correct 

brace skeleton" in a framework quite similar to that employed for dealing 

with state switchers: The stacks are states that are assigned to the seg

ments between the braces. For a correct program, it is possible to assign 

these states in such a way that the first and the last segment are neutral 

(i.e., have an empty ~tack) and that at each brace we have a correct tran

sition, i.e., if the brace is an opening brace the new state consists of 

the old state with that brace put on top, and if it is a closing brace, the 

old state consists of the new state with the matching opening brace put on 

top. 

The definition, derived from that of "repairing" as given in the intro

duction, is: an admissible incorrect transition is one in which the old and 

the new states are equal. In this way, the example given there would be 

treated as follows: 

* * ( [ J., ( [ 

[ 
t ~ 

[ ) J ) ,. 
~ 

' I 
I i I 
' l l . l . . I ( .., ' I I 
I ' ' I 

I i : ; 
I Ht Ht[ j 

' [ ..! ( -Gt ( 

GJ-. ·GJ_. ( -- ( 
( _, w~ ( ( w.-1 

3.1.1. Growin£ a tree 

It is possible to derive from this definition a repairing algoritbm in 

an obvious, straightforward way: the algoritbm must grow, while scanning the 

brace skeleton from left to right, a tree whose n.odes are states (i.e. , 

stacks), such that each path from the root of the tree to a terminal node is 

a partial interpretation. But then, upon meeting an opening brace, the al

gorithm would have to grow from each terminal node two branches: one where the 

opening brace is put on top of the last state, and one where it is dis

regarded. The following example shows the doubling of the number of states 

that would thus occur at each opening brace: 
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begin ( [ 

[ 

( 

( begin 

begin 

·~ begin 
begin 

I ~egin I 
begin 

I begin I 

[ ( fB 

This is very impractical since, in striking contrast to the state switcher 

case, the number of potential states is unlimited (instead of being eight), 

so there is no hope of applying here the simple dynamic programming approach. 

Therefore, opening braces will always be put on top of the stack. A stack 

with three braces, say, represents eight states at once, one for each of the 

possible combinations obtainable by deleting none up to all of the cells. In 

the above example, the tree to be grown becomes linear: 
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( [ 

but its meaning, in terms of states, is still the same as that of the forked 

tree above. The task of discovering that one or more cells of a stack should 

be deleted, is postponed and delegated to transitions involving closing 

braces. Consider, e.g., the following situation: 

) 

[ 

( ? 

begin 

Remember that the stack at left represents, among other possibilities, the 

. [CJ 
statel=J • Clearly, at this transition it is allowed to delete the 

top-cell in order to match away the underlying brace • .Another possibility is 

to disregard the closing brace, so that we have two possible new stacks: 

) 

I begin! 

[ 

( 

begin 

Using this approach, there would no longer exist an admissible interpreta

tion for the brace skeleton([], since no closing brace would remove the 
* 

( from the stack. Therefore, each brace skeleton is enclosed between two 

unique matching braces, denoted by"§,_ and"!!!_, before it is submitted to the 
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algorithm. 

In the example from the introduction, we can obtain the following in

terpretation, where marked braces are indicated with an asterisk: 

B ( [ J ( 

- ~t~l 
[ l l 

I 
I 
I 

] 
f 
I 
I 

) 
• I 
I 
I 

E .. 
I 

I 
I 

... 
A formatter-symbol which cannot be classified as opening or closing 

brace and which matches some cell of the stack, is treated as a closing 

brace; moreover, if it does not match the top, it is treated also as an 

opening brace. However, in that case, it may not be disregarded in the 

treatment as a closing brace, since that would give in fact the same inter

pretation as that in which it is eventually deleted as an opening brace. 

3.1.2. Restrictions on the tree 

Even now, the algorithm is rather impractical: it has the tendency to 

generate a large number of inadmissible interpretations (where the defini

tion of "admissible" is the same as that given in 2.2., with the understand

ing that two transitions are the same if they have the same effect on the 

top of the stack ). For, to each locally admissible interpretation in which 

some pair of braces match each other, there also exists a locally admissi

ble interpretation in which both braces are marked, i.e., disregarded. In 

an example: 
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* [ ( ) - J 

lQ1.._____Lffi=:tB-·J 
This interpretation is inadmissible. Clearly, if a closing brace matches 

the top of the stack, then it may not be disregarded, unless that top will 

be matched away later on. But even in the last case, the interpretation 

found cannot be better than the one obtained by honouring the present clos

ing brace. Even if the closing brace does not match the top cell, but some 

cell lower down the stack, it is dangerous to disregard it. For, if all of 

the cells down to the one containing the matching opening brace would come 

to be deleted, an inadmissible interpretation would result too: 

[ ( it 

L 
[D------EB= 

if 
( 

[ 

* 
) 

. 
~ 

J 
f 

I 
I 
I 
I 

* : 
i 
; 

-- ____ J 

Therefore, in such a case, it will be required that at least one of the 

opening braces on top of the matching one will be matched away later on, 

i.e., a transition deleting the last of these braces, if none has been 

matched away yet, will not be admitted. Note that the requirement that the 

top cell is matched away whenever possible, is a special case of this gener

al requirement. 

The tree, grown from left to right, does not fork at opening braces, 

but may fork at closing braces, where out of four possible.types of branches 

only two are actually use~each consisting of at most one branch: 

(i) the closing brace matches away the topmost matching opening brace 

(and the cells on top of that one, if any, are deleted), and 

(ii) the closing brace is disregarded, but at least one of the opening 
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braces on top of the topmost matching opening brace, if any, will be 

matched away later on. 

The two types which are not used, and which may contain several branche~ are: 

(iii) the closing brace matches away an opening brace below the topmost 

matching one and deletes all cells on top, and, 

(iv) the closing brace is disregarded, and all of the opening braces on 

top of the topmost matching opening brace will eventually be deleted. 

We shall now show that the interpretations obtained in this way are 

admissible. For, suppose that some interpretation I1 is ruled out by an

other interpretation I2. In the "extended" tree, obtained by admitting the 

types (iii) and (iv) also, I1 and I2 are paths from the root of the tree, 

and so must have a last common,node,from which they diverge, i.e., take 

different branches. Since I1 has been obtained ~rom the original, not ex

tended tree, it must take either a branch of type (i) or one of type (ii). 

I2 may take a branch of either of the types ( i_), (ii) , (iii) or (iv), but 

of a type different from that of I1, since (i) and (ii) consist of one 

branch only and I2 takes a different branch. For each combination we shall 

derive a contradiction. It is sufficient to show that I2 marks some brace 

(disregards a closing brace or deletes an opening brace) accepted by I1. 

I1 

(i) 

I2 

(iii) The opening brace matched away by I1 is deleted by I2. 

(i) (ii) or (iv) The closing brace honoured by I1 is disregarded by I2. 

(ii) (i), (iii) or (iv) I1 matches away at least one of the opening braces 

on top of the topmost matching opening brace later 

on, whereas I2 deletes all of these. 

3.1.3. Further pruning 

Even the thus restricted tree, growing at most two branches and then 

only at closing braces that cannot match away directly an opening brace, 

may eventually grow so many branches that pruning is necessary. It is obvi

ously not possible to give an absolute guarantee that at that stage the par-
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tial interpretation that would give rise to the optimal total interpreta

tion will be retained, but a satisfying solution is obtained by using the 

following estimate (in fact, lower bound) of the final number of unmatched 

braces: the number of marked braces thus far, augmented by the absolute 

value of the difference between the number of cells in the stack, and the 

net number of closing braces yet to be encountered (where the "net number" 

is the number of closing braces in the remainder of the brace skeleton minus 

the number of opening braces). In order to be able to obtain this estimate, 

it is necessary to'have scanned beforehand all braces. 

As to the actual implementation of this algorithm, it may be remarked 

that rather than having complete stacks at the nodes of the tree, it is 

possiQle to represent the stacks as the paths in a tree themselves, where 

the nodes contain one cell. Similarly, the information about marked braces 

can be kept in a tree which only grows at points where a brace is marked. 

In this way, the original tree disappears completely, but for a list, cor

responding to the nodes of the partial interpretations retained at some 

stage, containing entries to the other two trees. 
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4. Ways of correctirig'the·skeleton 

Consider the state switcher skeleton from 2.3., in which two state 

switchers are marked: 

* # ¢ 

This skeleton can be made correct by deleting the marked state switchers. 

We have chosen another possibility, that of doubling the marked state 

switchers, and this state switcher skeleton will be repaired thus: 

# # ¢¢ . 

In the case of the braces, however, some additional actions are possi

ble. Suppose that in the brace skeleton the unmatched braces are marked. 

Now we can assign level numbers to each of the segments between the braces 

in the following way: the initial level nu.rriber is 0; to each segment, as 

encountered from left to right, the current level nu.rriber is assigned, and, 

moreover, if the brace following that segment is an unmarked opening 

(closing) brace, then the current level number is increased (decreased) by 

one; the final level number is zero again. The following example shows the 

level numbers that would be assigned to the segments between the braces of 

a skeleton: 

* * 
0(1[2]1(2[ 2(3)2)1[2) 2]1)0. 

Furthermore, we define the notion "connected" for two braces in the follow

ing way: two braces are connected if the level number, say a, of the seg

ment immediately following the first brace is equal to the level number of 

the segment immediately preceding the second brace, and nowhere in between 

those two braces the level number drops below a. For example, in the brace 

skeleton given above, the connections may be depicted thus: 
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* * 0 ( 1 [ 2 J 1 ·( 2 [ _ ~ ( 3) ·2) 1 [ 2) 2] 1 J 0 
(____JL--.J L--.J l--J .______. L---J L---l L---J l...__.J I I 1..---1 

Now, if in a given brace skeleton a connected series of opening braces oc

curs, i.e., a series in which each brace is connected to the next, and one 

of these braces is marked, it is the first one. (This follows directly from 

our algorithm for the treatment of braces.) In such a case, each of the 

other opening braces of the connected series is an acceptable alternative 

for being marked. Therefore, we may look for a better candidate to be mark

ed. Consider the connected series of closing braces, the first one of which 

is connected with the last opening brace of the connected series of opening 

braces of which the first one is marked. If we assume that the probability 

that the missing closing brace should have stood in one of the segments of 

the connected series of closing braces is equally high for each of the seg

ments, the best place to insert the closing brace is somewhere in a maximal 

sequence of adjacent closing braces (in the source text) in the connected 

series of closing braces. If such a maximal sequence exists and has a 

length which is greater than one, a closing brace is inserted somewhere in 

this maximal sequence. Consider for example the following brace skeleton, 

in which one opening brace is marked: 

* begin ( ( ( [ J ( ( [ J J J ) [ ] J end 
'-----y--J 

adjacent 

After the above sketched repairing action, the brace skeleton will be: 

begin ( ( ( [ J ( ( [ J ) ) ) ) [ J J end 
~ 
adjacent 

This action is performed in the cases where the marked opening brace is an 

open-symbol, sub-symbol, begin-symbol or if-symbol. The closing braces 
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close-symbol, bus-symbol, end-symbol and fi-symbol are treated in a similar 

way. 

Another possibility to correct the brace skeleton occurs when, e.g., 

two braces ( and J are both marked, and also connected. In this case, the 

bus-symbol is changed into a close-symbol. As a last step, two marked and 

connected formatter-symbols are matched. 

4. 1. An example 

The program given below is example 11.12 from the Report, in which the 

following errors have been made: 

in line 

in line 

in line 

29 

39 
58 

3 open-symbols and 2 close-symbols have been inserted; 

the if-symbol has been omitted; 

the close-symbol has been replaced by a bus-symbol. 



1 'BEGIN• 
2 
J 
4 
5 
b 
7 
B 
9 

10 
11 
J.ii! 
1.5 
1.4 
:i.5 
lb 
1/ 
18 
lY 
~o 
21 
<!2 
23 
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1 MODE 1 'RA' :: •REP'' tAUTH', 1 RB' • 1 REf' 1 •BOOK•, 
•STRUCT' 'AUTH• : (!STRING' NAME, IRA• NEXT, 1 RB 1 BOOK), 

'BOOK• ,: (tSTRING 1 TITI.E, 1 RB' NEXT)J 
•RA• AUTH,FIRST AUTH:: 1 NIL 1 ,l.AST AUTHl 'RS' BOOKI 
•STRING' NAME,TITLEI 'INT' I; 'FILE' INPUT,OUTPUT; 
OPEN C INPUT, 1 REMOTE IN) I OPEN (OUTPUT,, REMOTE OUT) I 
OUTF(OUTpUT,$P 

"TO ENTER A_NEW AUTHER, TYPE ""AUTHOR"", A SPACE, ANO HIS 
NAME,"L 

"TO ENTER A NEW BOOK, TYPE ""~OD~""• A SPACE, THE NAME OP' THE 
AUTHOR, A NEW LINE, ANO THE T•TLE,"L 

"FOR A LISTING OF THE BOOKS BV AN AUTHOR, TYPE ""LIST"", A SPACE, 
AND HIS NAME,"L 

_ "To FINO THE AUTHOR Of A BOOK, TYPE ""FINO"", A NEW LINE, ANO THE 
TITLE,"L 

"TO,END,,TVPE,""ENO"""AL$,","JJ 
1 PROC' UpOATE: 

: •IF 1 C 1,RA 1 : FIRST AUTH)::: 'Nll. 1 

'THEN 1 AUTH:: FIRST AUTHI: I.AST AUTHI• 1 AUTH 1 1: (NAME,0,0) 
1 Et.SE 1 AUTH::: FIRST AUTHJ 1 WHII.EI (tRA'l AUTH):t: •N1I.• •00 1 

(NAME: NAME '0ft AUTHIKNOWNIAUTHl• NEXT 1 0f' AUTH)I 
LAST AUTH:: NEXT •Of 1 LAST AUTHI: AUTH:i, •AUTHtl: 
(NAME,0,0)l KNOWN: 1 SKIP• 

~4 •Fl' # ENO DECLARATION PRELUUE SEQUENCE #l 
25 CLIENT: INF (INPuT,$c("AUTHOR","B00K","LIST","P'INO","END",""),X30AL, 
d.6 80AL$, I ) J 
d.7 •CASE' I 'IN• AUTHOR,PUBL,LIST,flND,~ND,ERROR •ESAC•; 
~8 AUTHOR: IN <:NPUT,NAME)l UPDATE! CLIENTl 
d.9 PU6L:(·(!N(( 1 MPUT, (NAME,TITLE)))) 

•~CO~~ECT T~ANSITION:BRACE ADDED 

.Su 
Jl 
.52 
.53 
.S4 
j5 
J6 
J7 1.IST: 
J8 
,5 9 
40 

l UPDATE; 
1 1P' 1 ( 1 RB 1 : BOOK 'OF• AUTH)::l 'NIL' 

1 THEN 1 BOOK 'OF"' AUTH:: 'BOOK•:= (TITLE,0) 
'ELSE' BOOK:: BOOK 'OF• AUTH; •WHILE' ( 1 RB 1 1 NEXT 'Of'' BOOK) : ♦ 1 

IN IL' •oo' 
(TITLE• TITLE 'OF' aoOK1CLIENTIBOOK1• NEXT 1 0~• BOOK)! 

(TITLE$ TITLE iQF 1 BOOKINEXT 1 0F 1 BOOK:a 1 BOOK 1 1a (T1TL!,0)) 
•Fl' l CLIENT; 

IN ( 1NPUT,NAME)l UPDATEJ 
OUTF(OUTpUT,$P"AUTHORl,"30ALLf,NAME): 

( 1 RB' I BOOK 'OF'• AUTH) al 1 Nll. 1 

•THEN' 

NCO~RfCT T~ANSITION:coRRESPONOING BRACE IS M1SS1NG 

41 
4;,,> 
4i 
44 
45 
46 
'17 
'IB 
49 FIND: 

PUT(OUTPUT,"NO PUBLICATIONS") 
1 ELSE' 'WHILE' ('RB':BOOK) ::j,: 'NIL• •00 1 

•BEGIN' • IF 1 LINENUMBER(OUTPUT) : MAX l.lNE[REMOTE OUT] 
'THEN' OUTF'(0UTPUT,$~1K"CONTINUE0 ON NEXT PAGE"P 

"AUTHOR: "30A41K"C0NTINUE0"LL$,NAME) 
1 FI I l OUTF' (OUTPUT, $80ALl!i, TITLE I Of• BOOK )I 

BOOK::: NEXT 1 0F 1 BOOK 
•END• 

'FI I l CL I ENT l 
IN (1NPUT, ( 1 LOC 1 'STRING',TITLE)); i.UTHl:i FIRST AUTH; 

•WHILE' ( 1 RA 1 : AUTH) lfl 'NII.• 1 00 1 

'BEGIN• BOOKl: BOOK 1 0F' AUTHJ 

1 ENO•; 

•WH!LE 1 ( 1 RB 1 : BOOK):+: 'NII.• 1 00 1 

• IF' TITLE : TITLE 'OF' BOOK 
rTHEN• OUTP' (OUTPUT 1 $L"AUTHOMI "30A.,NAME 1 0F 1 AUTH); CLIENT 
•ELSE' BooK:: NEXT 1 0F 1 BOOK 

'FI I l AUTH:: NEXT I Of"' AUTH 

OUTF(OUTpUT,$L"UNKNOWN"L$,l 

INCORRECT T~ANSITION:BRACE CHANGED INTO: ) 

!:>9 
oCJ 
61 
62 
6.3 
t4 

ENDI , 

ERROR: 

1 END 1 

I CLIENT; 
PUT(OUTPUT,(NEWPAGE,ttSIGNEO OFF",CLOSE))J 
CL.CSE ( I Np UT), 
PUT(oUTPuT,(NEW LINE,"MISTAKE, TRY AGAIN,")); 
NEW LINE(INPUT)l CLIENT 




