
•
Information
Processing
Letters

ELSEVIER Infonnation Processing Letters 59 (1996) 245-250

A note on fairness in I/O automata 1

Judi Romijn 2• Frits Vaandrager *
CW/, P.O. Box 94079, 1090 GB Amsierdam, The Netherlands

Received 24 January 1996; revised 24 June 1996
Communicated by F.B. Schneider

Abstract

Notions of weak and strong fairness are studied in the setting of the I/O automaton model of Lynch and Tuttle. The
concept of a fair UO automaton is introduced and it is shown that a fair I/O automaton paired with the set of its fair
executions is a live I/O automaton provided that (1) in each reachable state at most countably many fairness sets are
enabled, and (2) input actions cannot disable strong fairness sets. This result, which generalizes previous results known
from the literature, was needed to solve a problem posed by Broy and Lamport for the Dagstuhl Workshop on Reactive
Systems.

Keywords: Concurrency; I/O automata; Weak fairness; Sttong fairness: Liveness

1. Introduction

Many specification formalisms for reactive systems
incorporate notions of weak and strong fairness (see,
for instance, [5-8]) . lnformall y, the requirement of
weak fairness disallows executions in which certain
sets of transitions are continually enabled but not taken
beyond a certain point, whereas the requirement of
strong fairness disallows executions in which certain
sets of transitions are enabled infinitely often but taken

• Corresponding author. Current address: Computing Science In­
stitute, University of Nijmegen, P.O. Box 9010, 6500 GL Nij­
megen, The Netherlands. Email: frits.vaandrager@cs.kun.nl. Sup­
potted by the HCM network EXPRESS.

I The results reported in this paper have been obtained as part
of the research project "Specification, Testing and Verification
of Software for Technical Applications", which is being carried
out by the Stichting Mathematisch Centrum for Philips Research
Laboratories under Contract RWC-061-PS-950006-ps.

2 Email: judi@cwi.nl.

only finitely many times. A natural criterion that any
acceptable notion of fairness should satisfy is that
it induces liveness properties in the sense of (2] : it
should be possible to extend every finite execution to a
fair one. Several authors have observed that weak and
strong fairness induce liveness properties if the num­
ber of fairness sets (sets of transitions for which fair­
ness is required) is countable [7, 1] . If this number is
uncountable then one does not obtain liveness proper­
ties in general: since in a transition system each exe­
cution contains at most a countable number of transi­
tions. it is impossible to give fair turns to uncountably
many fairness sets.

In most practical cases, the restriction to a countable
number of fairness sets is unproblematic. However,
there are classes of applications where this restriction
cannot be made. A nice example here is the RPC­
Memory specification problem proposed by Broy and
Lamport [3] for the Dagstuhl Workshop on Reac­
tive Systems. In this problem, there is a set of pro-

0020-0190/96/$12.00 Copyright© 1996 Elsevier Science 8.V. All rights reserved.
Pll S0020-0i90(96)00122-6

246 J. Romijn, F. Vaandrager/lnformation Processing Letten 59 (1996) 245-250

cesses that can concurrently issue procedure calls to
a memory component, which responds to these calls
by issuing returns. Because there are no constraints on
the number of processes and each call should eventu­
ally lead to a corresponding return, it is impossible to
specify the required liveness properties using only a
bounded number of fairness sets. Essentially, the main
result of this note is that liveness is also ensured if one
does not impose a global constraint on the number of
fairness sets, but instead assumes that in each reach­
able state only a countable number of fairness sets is
enabled. The latter restriction applies to the Dagstuhl
example since in each reachable state the number of
outstanding calls is finite. The key argument in our
proof is not difficult, but distinctly different from the
arguments used in the proofs of [1,7].

We have stated our results in terms of the I/ 0 au­
tomaton model [7,4] , since the first author needed this
for her I/O automata solution to the Dagstuhl prob­
lem [9 J. We propose a model of fair 110 automata,
which is a generalization of the original II 0 automa­
ton model of [7] . Our main result is that under cer­
tain assumptions fair I/O automata can be viewed as
a special case of the live UO automata of [4], another
generalization of the original model. Roughly speak­
ing, this result says that each finite execution can be
extended to a fair one independently of the inputs pro­
vided by the environment. The notion of a live I/ 0
automaton is very general but its definition is com­
plex and cumbersome to use: in order to prove that
a certain structure is a live I/O automaton one has
to exhibit a winning strategy in an infinite two-player
game. Since it appears that all liveness properties that
one needs in practice can be specified using weak and
strong fairness properties only [5,6,8] and since it is
usually trivial to check that a structure is a fair I/O
automaton, we think that there will be many situations
where, after one has described a system as a fair I/ 0
automaton, our result provides one with a live I/ 0 au­
tomaton description almost for free.

The outline of this article is as follows. In Section 2,
we introduce fair I/ 0 automata. In Section 3 we prove
that a fair I/O automaton paired with the set of its
fair executions is a live I/ 0 automaton provided that
(1) in each reachable state at most countably many
fairness sets are enabled. and (2) input actions cannot
disable strong fairness sets. In Section 4, we define a
composition operation on fair I/ 0 automata and show

that this operation is compatible with the composition
operation on live I/ 0 automata defined in [4 J. The
Appendix recalls the basic notions of safe and live I/ 0
automata as defined in (7 ,4].

2. Definitions

In this section we define the model of fair UO au­
tomata, which is a generalization of the original I/O
automaton model of [7] : whereas the II 0 automata
of [7] only allow for weak fairness, fairI/O automata
pennit both weak and strong fairness.

Fair I/O automata. Afair 110 automaton A is a triple
consisting of
• a safe I/O automaton safe(A), and
• two subsets of local(safe(A)), sets wfair(A) and

sf air(A), called the weak fairness sets and strong
fairness sets, respectively.

In the rest of this note we write local(A) for
local(safe(A)), steps(A) for steps(safe(A)), etc.
Also, we fix a fair I/O automaton A.

Enabling. Let U be a set of actions of A. Then U is
enabled in a state s if and only if an action from U is
enabled in s. Set U is input resistant if and only if, for
each pair of reachable states s, s' and for each input
action a,

s enables U /\ s ~ s' => s' enables U.

So once U is enabled, it can only be disabled by the
occurrence of a locally controlled action.

Fair executions. An execution a of A is weakly
fair iff the following conditions hold for each W E
wfair(A):
(I) If a is finite then W is not enabled in the last state

of a.
(2) If a is infinite then either a contains infinitely

many occurrences of actions from W, or a con­
tains infinitely many occurrences of states in
which W is not enabled.

Execution a is strongly fair iff the following condi­
tions hold for each SE sfair(A):
(1) If a is finite then S is not enabled in the last state

ofa.

J. Romijn. F. Vaandragerllnformation Processing letters 59 (1996) 245-250 247

s.....,___o __ ...,. s'
input action: i
output action: o
strong fairness set: { o}

Fig. 1. A fair I/O automaton that is not live.

(2) If a is infinite then either a contains infinitely
many occurrences of actions from S, or a con­
tains only finitely many occurrences of states in
which S is enabled.

Execution a is fair iff it is both weakly and strongly
fair. In a fair execution each weak fairness set gets
turns if enabled continuously, and each strong fairness
set gets turns if enabled infinitely many times. We
write fairexecs (A) for the set of fair executions of A.

3. Main result

In [4] , live II 0 automata are introduced as a
generalization of the I/O automata of (7] with gen­
eral liveness properties (see also the Appendix).
Our main result, stated below, says that, if fair I/O
automata A satisfies two conditions then the pair
(safe(A).fairexecs(A)) is a live I/O automaton. The
first condition states that in each reachable state at
most countably many weak and strong fairness sets
are enabled. This cardinality assumption allows us to
define, via a diagonalization construction, a strategy
for the I/O automaton that gives fair turns to each
fairness set. The second condition states that all strong
fairness sets are input resistant. This technical as­
sumption excludes situations where the environment
gives turns to the system only when some str~ng fair­
ness set is not enabled. As an example, consider the
fair I/O automaton of Fig. l. In this II 0 automaton
the strong fairness set { o} is not input resistant. As a
result the II O automaton is not live: for each strategy
p, the outcome 0 P (s, A ii .A i i A · · ·) equals the unfair
execution s i s' i s i s' · · ·.

Theorem 1. Suppose that fair 110 automaton A
satisfies the following conditions: (1) each reach­
able state of A enables at most countably many

sets in \efair(A) U sfair(A), and (2) each set
in sfair(A) is input resistant. Then live(A) '1

(safe(A),fairexecs(A)) is a live 110 automaton.

Proof. With each finite execution a we associate an
infinite two-dimensional array .Aa of weak and strong
fairness sets. The array contains all the weak or strong
fairness sets that are enabled at some point in execu­
tion a but from which no action has been executed
in the subsequent part of a. We will use array .Aa to
define a strategy that treats each fairness set in a fair
manner and thus establishes that live(A) is a live I/O
automaton. The array is defined by induction on the
length of a:
• If a consists of a single state s, then .Aa is con­

structed by filling the first row with the sets in
wfair(A) and sfair(A) that are enabled in s.
While filling, the sets are altematingly taken from
wfair(A) and sf air(A) . Remaining positions are
filled with the symbol a
If s enables 6 weak fairness sets and 2 strong
fairness sets, then .Aa might look like this:

1
2

12345 6 7 8 9
W1 1 S1 1 wh S12 W13 W14 W1s W16 •
• • • • • • • • • . . .

...

. ..

.

Note that by Condition (1) we are able to squeeze
all the enabled sets in a single row.

• If a contains n > 1 states and is of the form a' as,
then .Aa is constructed from .A.,1 by replacing each
fairness set that contains action a by •, and filling
the nth row with the sets in Mifair(A) and sfair(A)
that are enabled in s, as in the previous case.
The array for an execution a with 4 states might
look like this:

1
2
3
4
5

W1i

•
S31

W41

•

2 3 4 5 6 7 g ...

Si. • S12 • • W1, • ...

Si1 W22 Si2 W23 Si, • • . ..
• • S3,. S3, S36 • • . ..

S41 W42 S+i W43 S43 W44 S44
...

• • • • • • • . ..
.

I

248 J. Romijn, F. Vaandragerl/nformation Processing Le.tters 59 (1996) 245-250

Let p = (g, f) be any strategy defined on safe(A)
that satisfies the following conditions:
(1) If f (a) = .L then the last state of a enables no

set in wf air(A) U .if air(A) .
(2) If f(a) = (a,s) then the last state of a enables

a set in 'Kifair(A) Usfair(A), and a is member of
the first set U that is enabled in the last state of
a and that occurs in the sequence

n(a) 4: .A.. [1, 1 J
.A,.[1,2) .A,.[2, 1)

.A,.[1,3] A,[2,2) .A,.[3,1]

.Aa[l,4] A,[2,3) A.,(3,2] A,(4, l)

Note that a strategy p satisfying these properties exists
since by construction the array A. contains at least
all the weak and strong fairness sets that are enabled
in the last state of a, and sequence il(a) enumerates
all elements of Aa.

We show that live(A) is a live I/O automaton
by proving that the outcome a' = Op(a,I) is fair
for each finite execution a and each environment
sequence I.

Assume that a' is a finite execution. Then I contains
only finitely many input actions and, for s the last state
of a', f (a') =.L. Therefore, by the first assumption
about strategy p, the last state of a' enables no set in
'Kif air(A) or sf air(A). Hence a' is fair.

Thus we may assume that cl is infinite. We prove
that a' is fair by contradiction. Suppose a' is not fair.
We distinguish between two cases:
(1) a' is not strongly fair.

Then some strong fairness set S is enabled in an
infinite number of states of a' and a' contains
only finitely many occurrences of actions in S.
Since S is input resistant, it is enabled in an in­
finite number of states in which a system move
is allowed by I. From the definition of strategy
p it follows that S is enabled in an infinite num­
ber of states in which a locally controlled action
occurs. Since there are only finitely many occur­
rences of actions in S, there is a state in a' after
which no action in S occurs. Nevertheless, there
is a subsequent state of a', say the ith state, in
which S is enabled. Therefore, there is a posi-

tion [i,j] such that, if «t is the finite prefix of
a' with k states, .A.at [i, j] = S, for all k ~ i. Let
l = i + j - I. Then, for each n ~ l, each position
preceding [i,j] in the strategy's sequence that is
filled with• in the array .A..., is also filled with•
in any array A.m with m > n. Each locally con­
trolled action that occurs after the Ith state from a
state that enables S causes a fairness set at a po­
sition preceding [i,j] in the strategy's sequence
to be replaced by • in the array. This happens
infinitely many times. But this is a contradiction
since the number of preceding positions is finite .

(2) a' is not weakly fair.
Then some weak fairness set W is enabled in all
states of an infinite suffix of a' with only finitely
many occurrences of actions from W.
By an argument that is almost identical to the one
used in the previous case we arrive at a contra­
diction.

Hence al is fair and we may conclude that live(A) is
a live I/ 0 automaton. 0

4. Composition

Building on the work of [7 ,4], there is an obvious
way to define composition of fair I/O automata.

We say that two fair I/O automata A1 and A1 are
compatible if safe(A 1) and safe(A1) are compatible.
Suppose that A1 and A2 are compatible fair I/O au­
tomata. Then the composition A1 llA2 is the fair I/O
automaton A given by
• safe(A) = safe(A1) i1sa/e(A2),
• wfair(A) = wfair(A1) Uwfair(A2) and sfair(A) =

.ifair(A1) U sfair(A2).
Thus we simply compose the underlying safe I/O au­
tomata and take the unions of the weak and strong
fairness sets. The following theorem, which is easy to
prove, states that the above composition operation for
fair I/O automata is compatible with the composition
operation for live I/O automata of [4].

Theorem 2. Suppose that A 1 and A1 are compatible
fair 110 automata. Then

/. Romijn, F. Vaandro.gerllnformation Processing Letters 59 (1996) 245-250 249

Acknowledgements

We thank Ed Brinksma. Leslie Lamport, Roberto
Segala and Jan Springintveld for useful comments on
this paper.

Appendix. Safe and live I/O automata

In this appendix we review some basic definitions
from (7,4].

Safe I/O automata. A safe UO automaton B consists
of the following components:
• A set states(B) of states (possibly infinite).
• A nonempty set start(B) ~ states(B) of start

states.
• A set acts(B) of actions, partitioned into three sets

in(B), int(B) and out(B) of input, internal and

output actions, respectively. Actions in local(B) ~
out(B) U int(B) are called locally controlled.

• A set steps(B) ~ states(B) x acts(B) x states(B)
of transitions, with the property that for every state
s and input action a E in(B) there is a transition
(s, a, s') E steps(B).

We let s, s', ... range over states, and a, ... over
actions. We write s~ ss', or just s ~ s' if B is
clear from the context, as a shorthand for (s, a, s') E
steps(B).

Enabling. An action a is enabled in a state s iff
s ~ s' for some s'. Since every input action is en­
abled in every state, safe II 0 automata are said to be
input enabled. The intuition behind the input-enabling
condition is that input actions are under control of the
environment and that a system that is modeled by a
safe I/O automaton cannot prevent its environment
from doing these actions.

Executions. An execution fragment of a safe I/ 0 au­
tomaton B is a finite or infinite alternating sequence
s0a1s1a2s2 · · · of states and actions of B, beginning
with a state, and if it is finite also ending with a state,
such that for all i, s; a;+i s;+ I· An execution is an exe­
cution fragment that begins with a start state. We write
execs*(B) for the set of finite executions of B, and
execs(B) for the set of all executions of B. A states

of B is reachable iff it is the last state of some finite
execution of B.

Live I/O automata. Intuitively, a live UO automaton
is a pair of a safe I/ 0 automaton B and a set L of
executions of B such that B can always generate an
execution in L independently of the input provided by
its environment. Formally, live I/O automata can be
defined in terms of a two person game between a sys­
tem player and an environment player. The goal of the
system player is to construct an execution in L. and
the goal of the environment player is to prevent this.
The pair (B, L) is a live I/O automaton iff there ex­
ists a strategy by which the system player can always
win the game, irrespective of the behavior of the en­
vironment player.

A strategy defined on a safe II 0 automaton B is
a pair of functions (g,f) where g : execs*(B) x
in(B) -+ states(B) and f: execs'"(B) -+ (local(B)
x states(B)) U {.l} such that
(1) g(a,a) =s::} aas E execs*(B),
(2) f(a) = (a,s) :::::> aas E execs*(B).

An environment sequence for B is an infinite se­
quence of symbols from in(B) U {A} with infinitely
many occurrences of A. The symbol A represents the
points at which the system is allowed to move. The
occurrence of infinitely many A symbols in an envi­
ronment sequence guarantees that each environment
move consists of only finitely many input actions.

Let p = (g,f) be a strategy defined on B, I=
a1a2a3 ·: · an environment sequence for B, and a a
finite execution of B. Then the outcome 0 P (a, I) is
the limit of the sequence {a;) i;?J:O of finite executions
defined inductively by
• ao =a.
• Ifi>Othen

(1) ai=A/\f(a;-i)=(a,s) :::::> a;=«;-1as,
(2) ai=A/\f(a;-1) =.l => a;=«i-J.
(3) a; E in(B)/\g(a;-1,ai) = s :::::> ai = «;-1a;s.
A live l/O automaton is a pair (B, L) with B a

safe II 0 automaton and L ~ execs (B) such that there
exists a strategy p defined on B with for any finite
execution a of B and any environment sequence I for
B, Op(a,I) E L.

Composition. Two safe I/ 0 automata B1 and B2 are
compatible iff out(B1) n out(B2) = 0, int(B1) n
acts(B2) = 0. and int(B2) nacts(B1) = 0. The com-

250 J. Romijn, F. Vaandrager/lnformation Processing Letters 59 (1996) 245-250

position B1 llB2 of compatible safe I/O automata B1

and B2 is the safe I/ 0 automaton B defined by
• states(B) = states(B1) x states(B2).
• start(B) =start(Bi) x start(B2),
• acts(B) = in(B) Uout(B) u int(B). where

in(B) = (in(B1) U in(B2))

- (out(Bi) Uout(B2)),

out(B) =out(Bi) Uout(B2).

int(B) = int(Bi) U int(B2),

• steps(B) is the set of triples ((si. s2), a, (s~, lz))
in states(B) x acts(B) x states(B) such that, for
i E {1.2}. if a E acts(Bi) then sr-~-+s;s~ else s; =
s:.
Let Bi. B2 be safe I/O automata, L1 ~ ~ecs(Bi)

and~ f; execs(B2). Thepairs(Bi.Li) and(B2,L2)
are compatibleiff B1 and B2 are compatible. The com­
position (Bi. Li) II (B2. L2) of two compatible pairs
(Bi. Li) and (B2 , ~) is the pair (B, L) defined by

• B = B1llB2.
• L ={a E execs(B) I arB1 E L1 and arB2 E L2}.

Here af B; is obtained by projecting each state in a
on the ith component and by removing each action
that is not in acts(B;) together with the state that
follows it.

A major result of [4] is that the class of live I/O
automata is closed under composition.

Theorem 3. Let (Bi. Li) and (82, ~) be compat­
ible live 110 automata. Then (B1, Li) II (B2, Li) is a
live 110 automaton.

References

I l J M. Abadi and L. Lamport, An old-fashioned recipe for real
time. ACM Trans. Programming Languages Systems 16 (5)
(1994) 1543-1571.

[2] B. Alpern and F.B. Schneider, Defining liveness, lnfonn.
Process. Lett. 21 (1985) 181-185.

(3] M. Broy and L. Lamport, Specification problem. in: Proc.
Dagstuhl-Seminaron the RPC-Mernory Specification Problem,
Lecture Notes in Computer Science (Springer, Berlin, 1996),
to appear.

[4] R. Gawliclc, R. Segala, J.F. Sflgaard-Andersen and N. Lynch,
Liveness in timed and untimed systems, in: S. Abitcboul
and E. Shamir, eds., Proc. 2lth JCAIJ>, Lecture Notes in
Computer Science 820 (Springer, Berlin, 1994); a full version
is available as MIT Tech. Rept. MIT/LCS/TR-587.

I 51 B. Jonsson, Compositional specification and verification of
distributed systems, ACM 1>-ans. Programming Languages
Systems 16 (2) (19940 259-303.

[6] L. Lamport, The temporal logic of actions, ACM Trans.
Programming ~nguages Systems 16 (3) (1994) 872-923.

[7) N.A. Lynch and M.R. Tuttle, Hierarchical com:ctness proofs
for distributed algorithms, in: Proc. 6th Ann. ACM Symp. on
Principles of Distributed Computing (1987) 137-151; A full
version is available as MIT Tech. Rept. MIT/LCS/TR-387.

[8] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems: Specification (Springer, Berlin, 1992).

[9] J.M.T. Romijn, Tuclding the RPC-Memory specification
problem with I/O automata, in: Proc. Dagstuhl-Seminar on
the RPC-Memory Specification Problem., Lecture Notes in
Computer Science (Springer, Berlin, 1996), to appear.

