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Abstract 

Notions of weak and strong fairness are studied in the setting of the I/O automaton model of Lynch and Tuttle. The 
concept of a fair UO automaton is introduced and it is shown that a fair I/O automaton paired with the set of its fair 
executions is a live I/O automaton provided that ( 1) in each reachable state at most countably many fairness sets are 
enabled, and (2) input actions cannot disable strong fairness sets. This result, which generalizes previous results known 
from the literature, was needed to solve a problem posed by Broy and Lamport for the Dagstuhl Workshop on Reactive 
Systems. 
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1. Introduction 

Many specification formalisms for reactive systems 
incorporate notions of weak and strong fairness (see, 
for instance, [ 5-8]) . lnformall y, the requirement of 
weak fairness disallows executions in which certain 
sets of transitions are continually enabled but not taken 
beyond a certain point, whereas the requirement of 
strong fairness disallows executions in which certain 
sets of transitions are enabled infinitely often but taken 
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only finitely many times. A natural criterion that any 
acceptable notion of fairness should satisfy is that 
it induces liveness properties in the sense of ( 2] : it 
should be possible to extend every finite execution to a 
fair one. Several authors have observed that weak and 
strong fairness induce liveness properties if the num­
ber of fairness sets (sets of transitions for which fair­
ness is required) is countable [ 7, 1 ] . If this number is 
uncountable then one does not obtain liveness proper­
ties in general: since in a transition system each exe­
cution contains at most a countable number of transi­
tions. it is impossible to give fair turns to uncountably 
many fairness sets. 

In most practical cases, the restriction to a countable 
number of fairness sets is unproblematic. However, 
there are classes of applications where this restriction 
cannot be made. A nice example here is the RPC­
Memory specification problem proposed by Broy and 
Lamport [ 3] for the Dagstuhl Workshop on Reac­
tive Systems. In this problem, there is a set of pro-
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cesses that can concurrently issue procedure calls to 
a memory component, which responds to these calls 
by issuing returns. Because there are no constraints on 
the number of processes and each call should eventu­
ally lead to a corresponding return, it is impossible to 
specify the required liveness properties using only a 
bounded number of fairness sets. Essentially, the main 
result of this note is that liveness is also ensured if one 
does not impose a global constraint on the number of 
fairness sets, but instead assumes that in each reach­
able state only a countable number of fairness sets is 
enabled. The latter restriction applies to the Dagstuhl 
example since in each reachable state the number of 
outstanding calls is finite. The key argument in our 
proof is not difficult, but distinctly different from the 
arguments used in the proofs of [ 1,7]. 

We have stated our results in terms of the I/ 0 au­
tomaton model [ 7,4] , since the first author needed this 
for her I/O automata solution to the Dagstuhl prob­
lem [ 9 J. We propose a model of fair 110 automata, 
which is a generalization of the original II 0 automa­
ton model of [ 7] . Our main result is that under cer­
tain assumptions fair I/O automata can be viewed as 
a special case of the live UO automata of [ 4], another 
generalization of the original model. Roughly speak­
ing, this result says that each finite execution can be 
extended to a fair one independently of the inputs pro­
vided by the environment. The notion of a live I/ 0 
automaton is very general but its definition is com­
plex and cumbersome to use: in order to prove that 
a certain structure is a live I/O automaton one has 
to exhibit a winning strategy in an infinite two-player 
game. Since it appears that all liveness properties that 
one needs in practice can be specified using weak and 
strong fairness properties only [5,6,8] and since it is 
usually trivial to check that a structure is a fair I/O 
automaton, we think that there will be many situations 
where, after one has described a system as a fair I/ 0 
automaton, our result provides one with a live I/ 0 au­
tomaton description almost for free. 

The outline of this article is as follows. In Section 2, 
we introduce fair I/ 0 automata. In Section 3 we prove 
that a fair I/O automaton paired with the set of its 
fair executions is a live I/ 0 automaton provided that 
( 1 ) in each reachable state at most countably many 
fairness sets are enabled. and (2) input actions cannot 
disable strong fairness sets. In Section 4, we define a 
composition operation on fair I/ 0 automata and show 

that this operation is compatible with the composition 
operation on live I/ 0 automata defined in [ 4 J. The 
Appendix recalls the basic notions of safe and live I/ 0 
automata as defined in (7 ,4]. 

2. Definitions 

In this section we define the model of fair UO au­
tomata, which is a generalization of the original I/O 
automaton model of [7] : whereas the II 0 automata 
of [7] only allow for weak fairness, fairI/O automata 
pennit both weak and strong fairness. 

Fair I/O automata. Afair 110 automaton A is a triple 
consisting of 
• a safe I/O automaton safe(A), and 
• two subsets of local( safe( A)), sets wfair(A) and 

sf air( A), called the weak fairness sets and strong 
fairness sets, respectively. 

In the rest of this note we write local(A) for 
local( safe( A)), steps( A) for steps( safe( A)), etc. 
Also, we fix a fair I/O automaton A. 

Enabling. Let U be a set of actions of A. Then U is 
enabled in a state s if and only if an action from U is 
enabled in s. Set U is input resistant if and only if, for 
each pair of reachable states s, s' and for each input 
action a, 

s enables U /\ s ~ s' => s' enables U. 

So once U is enabled, it can only be disabled by the 
occurrence of a locally controlled action. 

Fair executions. An execution a of A is weakly 
fair iff the following conditions hold for each W E 
wfair(A): 
( I ) If a is finite then W is not enabled in the last state 

of a. 
(2) If a is infinite then either a contains infinitely 

many occurrences of actions from W, or a con­
tains infinitely many occurrences of states in 
which W is not enabled. 

Execution a is strongly fair iff the following condi­
tions hold for each SE sfair(A): 
( 1) If a is finite then S is not enabled in the last state 

ofa. 
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_s....._,___o __ ...,. s' 
input action: i 
output action: o 
strong fairness set: { o} 

Fig. 1. A fair I/O automaton that is not live. 

(2) If a is infinite then either a contains infinitely 
many occurrences of actions from S, or a con­
tains only finitely many occurrences of states in 
which S is enabled. 

Execution a is fair iff it is both weakly and strongly 
fair. In a fair execution each weak fairness set gets 
turns if enabled continuously, and each strong fairness 
set gets turns if enabled infinitely many times. We 
write fairexecs (A) for the set of fair executions of A. 

3. Main result 

In [ 4] , live II 0 automata are introduced as a 
generalization of the I/O automata of (7] with gen­
eral liveness properties (see also the Appendix). 
Our main result, stated below, says that, if fair I/O 
automata A satisfies two conditions then the pair 
(safe(A).fairexecs(A)) is a live I/O automaton. The 
first condition states that in each reachable state at 
most countably many weak and strong fairness sets 
are enabled. This cardinality assumption allows us to 
define, via a diagonalization construction, a strategy 
for the I/O automaton that gives fair turns to each 
fairness set. The second condition states that all strong 
fairness sets are input resistant. This technical as­
sumption excludes situations where the environment 
gives turns to the system only when some str~ng fair­
ness set is not enabled. As an example, consider the 
fair I/O automaton of Fig. l. In this II 0 automaton 
the strong fairness set { o} is not input resistant. As a 
result the II O automaton is not live: for each strategy 
p, the outcome 0 P ( s, A ii .A i i A · · ·) equals the unfair 
execution s i s' i s i s' · · ·. 

Theorem 1. Suppose that fair 110 automaton A 
satisfies the following conditions: ( 1 ) each reach­
able state of A enables at most countably many 

sets in \efair(A) U sfair(A), and (2) each set 
in sfair(A) is input resistant. Then live(A) '1 

(safe(A),fairexecs(A)) is a live 110 automaton. 

Proof. With each finite execution a we associate an 
infinite two-dimensional array .Aa of weak and strong 
fairness sets. The array contains all the weak or strong 
fairness sets that are enabled at some point in execu­
tion a but from which no action has been executed 
in the subsequent part of a. We will use array .Aa to 
define a strategy that treats each fairness set in a fair 
manner and thus establishes that live( A) is a live I/O 
automaton. The array is defined by induction on the 
length of a: 
• If a consists of a single state s, then .Aa is con­

structed by filling the first row with the sets in 
wfair(A) and sfair(A) that are enabled in s. 
While filling, the sets are altematingly taken from 
wfair( A) and sf air( A) . Remaining positions are 
filled with the symbol a 
If s enables 6 weak fairness sets and 2 strong 
fairness sets, then .Aa might look like this: 

1 
2 

12345 6 7 8 9 
W1 1 S1 1 wh S12 W13 W14 W1s W16 • 
• • • • • • • • • . . . 

... 

. .. 

. 

Note that by Condition ( 1) we are able to squeeze 
all the enabled sets in a single row. 

• If a contains n > 1 states and is of the form a' as, 
then .Aa is constructed from .A.,1 by replacing each 
fairness set that contains action a by •, and filling 
the nth row with the sets in Mifair(A) and sfair(A) 
that are enabled in s, as in the previous case. 
The array for an execution a with 4 states might 
look like this: 

1 
2 
3 
4 
5 

W1i 

• 
S31 

W41 

• 

2 3 4 5 6 7 g ... 

Si. • S12 • • W1, • ... 

Si1 W22 Si2 W23 Si, • • . .. 
• • S3,. S3, S36 • • . .. 

S41 W42 S+i W43 S43 W44 S44 
... 

• • • • • • • . .. 
. 

I 
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Let p = (g, f) be any strategy defined on safe( A) 
that satisfies the following conditions: 
( 1) If f (a) = .L then the last state of a enables no 

set in wf air( A) U .if air( A) . 
(2) If f(a) = (a,s) then the last state of a enables 

a set in 'Kifair(A) Usfair(A), and a is member of 
the first set U that is enabled in the last state of 
a and that occurs in the sequence 

n( a) 4: .A.. [ 1, 1 J 
.A,.[1,2) .A,.[2, 1) 

.A,.[1,3] A,[2,2) .A,.[3,1] 

.Aa[l,4] A,[2,3) A.,(3,2] A,(4, l) 

Note that a strategy p satisfying these properties exists 
since by construction the array A. contains at least 
all the weak and strong fairness sets that are enabled 
in the last state of a, and sequence il(a) enumerates 
all elements of Aa. 

We show that live(A) is a live I/O automaton 
by proving that the outcome a' = Op(a,I) is fair 
for each finite execution a and each environment 
sequence I. 

Assume that a' is a finite execution. Then I contains 
only finitely many input actions and, for s the last state 
of a', f (a') =.L. Therefore, by the first assumption 
about strategy p, the last state of a' enables no set in 
'Kif air( A) or sf air( A). Hence a' is fair. 

Thus we may assume that cl is infinite. We prove 
that a' is fair by contradiction. Suppose a' is not fair. 
We distinguish between two cases: 
( 1) a' is not strongly fair. 

Then some strong fairness set S is enabled in an 
infinite number of states of a' and a' contains 
only finitely many occurrences of actions in S. 
Since S is input resistant, it is enabled in an in­
finite number of states in which a system move 
is allowed by I. From the definition of strategy 
p it follows that S is enabled in an infinite num­
ber of states in which a locally controlled action 
occurs. Since there are only finitely many occur­
rences of actions in S, there is a state in a' after 
which no action in S occurs. Nevertheless, there 
is a subsequent state of a', say the ith state, in 
which S is enabled. Therefore, there is a posi-

tion [i,j] such that, if «t is the finite prefix of 
a' with k states, .A.at [ i, j] = S, for all k ~ i. Let 
l = i + j - I. Then, for each n ~ l, each position 
preceding [i,j] in the strategy's sequence that is 
filled with• in the array .A..., is also filled with• 
in any array A.m with m > n. Each locally con­
trolled action that occurs after the Ith state from a 
state that enables S causes a fairness set at a po­
sition preceding [i,j] in the strategy's sequence 
to be replaced by • in the array. This happens 
infinitely many times. But this is a contradiction 
since the number of preceding positions is finite . 

( 2) a' is not weakly fair. 
Then some weak fairness set W is enabled in all 
states of an infinite suffix of a' with only finitely 
many occurrences of actions from W. 
By an argument that is almost identical to the one 
used in the previous case we arrive at a contra­
diction. 

Hence al is fair and we may conclude that live( A) is 
a live I/ 0 automaton. 0 

4. Composition 

Building on the work of [ 7 ,4], there is an obvious 
way to define composition of fair I/O automata. 

We say that two fair I/O automata A1 and A1 are 
compatible if safe( A 1) and safe( A1) are compatible. 
Suppose that A1 and A2 are compatible fair I/O au­
tomata. Then the composition A1 llA2 is the fair I/O 
automaton A given by 
• safe( A) = safe(A1) i1sa/e(A2), 
• wfair(A) = wfair(A1) Uwfair(A2) and sfair(A) = 

.ifair(A1) U sfair(A2). 
Thus we simply compose the underlying safe I/O au­
tomata and take the unions of the weak and strong 
fairness sets. The following theorem, which is easy to 
prove, states that the above composition operation for 
fair I/O automata is compatible with the composition 
operation for live I/O automata of [ 4]. 

Theorem 2. Suppose that A 1 and A1 are compatible 
fair 110 automata. Then 
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Appendix. Safe and live I/O automata 

In this appendix we review some basic definitions 
from (7,4]. 

Safe I/O automata. A safe UO automaton B consists 
of the following components: 
• A set states(B) of states (possibly infinite). 
• A nonempty set start(B) ~ states(B) of start 

states. 
• A set acts( B) of actions, partitioned into three sets 

in(B), int(B) and out(B) of input, internal and 

output actions, respectively. Actions in local(B) ~ 
out(B) U int(B) are called locally controlled. 

• A set steps(B) ~ states(B) x acts(B) x states(B) 
of transitions, with the property that for every state 
s and input action a E in(B) there is a transition 
(s, a, s') E steps(B). 

We let s, s', ... range over states, and a, ... over 
actions. We write s~ ss', or just s ~ s' if B is 
clear from the context, as a shorthand for ( s, a, s') E 
steps(B). 

Enabling. An action a is enabled in a state s iff 
s ~ s' for some s'. Since every input action is en­
abled in every state, safe II 0 automata are said to be 
input enabled. The intuition behind the input-enabling 
condition is that input actions are under control of the 
environment and that a system that is modeled by a 
safe I/O automaton cannot prevent its environment 
from doing these actions. 

Executions. An execution fragment of a safe I/ 0 au­
tomaton B is a finite or infinite alternating sequence 
s0a1s1a2s2 · · · of states and actions of B, beginning 
with a state, and if it is finite also ending with a state, 
such that for all i, s; a;+i s;+ I· An execution is an exe­
cution fragment that begins with a start state. We write 
execs*(B) for the set of finite executions of B, and 
execs(B) for the set of all executions of B. A states 

of B is reachable iff it is the last state of some finite 
execution of B. 

Live I/O automata. Intuitively, a live UO automaton 
is a pair of a safe I/ 0 automaton B and a set L of 
executions of B such that B can always generate an 
execution in L independently of the input provided by 
its environment. Formally, live I/O automata can be 
defined in terms of a two person game between a sys­
tem player and an environment player. The goal of the 
system player is to construct an execution in L. and 
the goal of the environment player is to prevent this. 
The pair (B, L) is a live I/O automaton iff there ex­
ists a strategy by which the system player can always 
win the game, irrespective of the behavior of the en­
vironment player. 

A strategy defined on a safe II 0 automaton B is 
a pair of functions (g,f) where g : execs*(B) x 
in(B) -+ states(B) and f: execs'"(B) -+ (local(B) 
x states(B)) U {.l} such that 
(1) g(a,a) =s::} aas E execs*(B), 
(2) f(a) = (a,s) :::::> aas E execs*(B). 

An environment sequence for B is an infinite se­
quence of symbols from in(B) U {A} with infinitely 
many occurrences of A. The symbol A represents the 
points at which the system is allowed to move. The 
occurrence of infinitely many A symbols in an envi­
ronment sequence guarantees that each environment 
move consists of only finitely many input actions. 

Let p = (g,f) be a strategy defined on B, I= 
a1a2a3 ·: · an environment sequence for B, and a a 
finite execution of B. Then the outcome 0 P (a, I) is 
the limit of the sequence {a;) i;?J:O of finite executions 
defined inductively by 
• ao =a. 
• Ifi>Othen 

(1) ai=A/\f(a;-i)=(a,s) :::::> a;=«;-1as, 
(2) ai=A/\f(a;-1) =.l => a;=«i-J. 
(3) a; E in(B)/\g(a;-1,ai) = s :::::> ai = «;-1a;s. 
A live l/O automaton is a pair (B, L) with B a 

safe II 0 automaton and L ~ execs ( B) such that there 
exists a strategy p defined on B with for any finite 
execution a of B and any environment sequence I for 
B, Op(a,I) E L. 

Composition. Two safe I/ 0 automata B1 and B2 are 
compatible iff out(B1) n out(B2) = 0, int(B1) n 
acts(B2) = 0. and int(B2) nacts(B1) = 0. The com-
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position B1 llB2 of compatible safe I/O automata B1 

and B2 is the safe I/ 0 automaton B defined by 
• states(B) = states(B1) x states(B2). 
• start(B) =start( Bi) x start(B2), 
• acts(B) = in(B) Uout(B) u int(B). where 

in(B) = (in(B1) U in(B2)) 

- (out(Bi) Uout(B2)), 

out(B) =out(Bi) Uout(B2). 

int(B) = int(Bi) U int(B2), 

• steps(B) is the set of triples ( (si. s2), a, ( s~, lz)) 
in states(B) x acts(B) x states(B) such that, for 
i E {1.2}. if a E acts(Bi) then sr-~-+s;s~ else s; = 
s:. 
Let Bi. B2 be safe I/O automata, L1 ~ ~ecs(Bi) 

and~ f; execs(B2). Thepairs(Bi.Li) and(B2,L2) 
are compatibleiff B1 and B2 are compatible. The com­
position (Bi. Li) II (B2. L2) of two compatible pairs 
(Bi. Li) and (B2 , ~) is the pair (B, L) defined by 

• B = B1llB2. 
• L ={a E execs(B) I arB1 E L1 and arB2 E L2}. 

Here af B; is obtained by projecting each state in a 
on the ith component and by removing each action 
that is not in acts(B;) together with the state that 
follows it. 

A major result of [4] is that the class of live I/O 
automata is closed under composition. 

Theorem 3. Let (Bi. Li) and (82, ~) be compat­
ible live 110 automata. Then ( B1, Li) II ( B2, Li) is a 
live 110 automaton. 
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