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Applied mathematics has become an extremely important and useful discipline in
the context of development of powerful computers. On the one hand, mathemat-
ics (in a broad sense) is the most efficient approach to model reality, especially
complex reality. Moreover, it provides the best possibilities of reasoning. With
cheap powerful computers, mathematics becomes implementable and unavoid-
able in designing, producing, deciding ...

On the other hand, mathematics has evolved considerably to extend its appli-
cability to real problems. This is why applied mathematics is so alive and fast
progressing. Needless to say, the connection between applied mathematics and
information technology is an extremely fruitful approach to new ideas and a basic
source of research topics. This is a line to which Professor Cor Baayen has al-
ways dedicated his efforts. He has greatly contributed to closing the gap between
mathematics and computer science. To give an exhaustive presentation of all
directions of applied mathematics in a short talk is of course out of reach, and
beyond the possibilities of one speaker. So the purpose of this lecture is more to
outline some significant features, among many others.

1. SCIENTIFIC COMPUTING
The traditional applications of mathematics arise in Physics, Mechanics, ....
Powerful computing means and supercomputers have permitted :

— to study completely new areas of physical sciences.
— to consider new numerical techniques
— to investigate new approaches.
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1.1. New Areas of physical sciences

It would be particularly unrealistic to be exhaustive here. Nevertheless, among
important developments in several fields, we emphasize the Numerical Simu-
lation of Reactive flow. It applies indeed to combustion, aeronomy, partially
tonized plasmas, aerodynamics, gas dynamic lasers, astrophysics, general mul-
tiphase and magneto-hydrodynamic flows, ....

The model takes into account the coupling between fluid dynamics and chemical
reactions, and thus opens the door to a large family of complex problems.

The traditional model of an homogeneous, viscous, incompressible flow with
no chemical reactions and no external forces consists of Navier Stokes equations

0
po(—u +u-D)u)—pAu+Dp = 0

ot
divu = 0

If the fluid has a constant specific heat ¢c and there are no external heat sources,
then the temperature of the fluid is the solution of :

pgc(aa—f +u-DT) — AAT == 2tre?(u)

(Du + (Du)T) is the welocity tensor. The internal energy density

where € = %

is cT.

In general, all variables are coupled and appear as the solution of a complex
system of P.D.E.

The main unknown are the mass density p, the velocity of the flow u, the
number densities n* of the individual chemical species and the total energy
density E.

The system of equations is the following :

dp
E+D-(pu) =0
A(pu) i i
5 +D (puu)+D-0c = Zpa
O D) = @ Lin'
oFE _ i id
E—I—D-(Eu)—{—D-(u-a)—l—D-(q—{—qT) = Z(u—{—u)-ma

i

where o is the pressure tensor, g the heat flux, ¢, the radiative heat flux, a’
represent external forces, and Q?, L? represent the chemical production rates



and losses of species i, u’ is the diffusion velocity of species i. They are highly
nonlinear expressions of the unknowns, including the temperature 7.

In view of the complexity, a modular approach is useful. Each physical
process is calculated accurately and calibrated separately .

The physical properties should be incorporated in the numerical algorithms
and a mathematical analysis of the behaviour of the algorithms should be
performed. For more details, see [18].

1.2. Numerical methods
We shall illustrate the general idea of decoupling the difficulties in the case of
Navier Stokes equations:

0

6—1:+(u-D)u—uAu+Dp:f

divu=0

u(z,0) = uo(x) divug=0

u=gonl /V-ng:O
r

The two main difficulties are non linearities and incompressibility condition.
Operator splitting will realize the decoupling.

Let 6 be a parameter in (0, 1) and o, 3 with a + 8 = 1.
Knowing u™, we compute {u™t? pmt9} 4" t1=% and {u"*!, p"t1} by the
iteration :

OAL apAu"t? + Dp™t? = fuAu®

_(un R D)un + fn+6‘ (1)
div ut? =0
untl = gnto onI'
un+1_9 B un+9 A n+1—0 n+1—0 D n+l1—0 __ A n+60
T(—20at Bulu + (u D)u = aplu

_Dpn+0 + fn+1—9 (2)

un«l»lfé' — gn+170 onT
un-l—l _ un-|—1—9
- - aMAuTH_I + Dpn+1 = /BMAUTH_I_&

OAZ
_(un+1— 'D)Un+1_9 +fn+1 (3)
div 4™t =0
yntl = gntl on T

(2) is nonlinear and solved by a least square technique , and conjugate gradient
minimization. (1) and (3) are linear and can be reformulated as variational
problems for the pressure p.



Various possibilities of finite element approximation, multigrid methods and
domain decomposition can then be used at the discretization stage.

Efficient software packages result in the combination of all these techniques.
For more details, see [10].

1.3. New approaches
We present two new directions :

1.8.1. Wavelets An alternative to Fourier analysis has been developed in re-
cent years, with applications to signal and image processing, sound analysis
and numerical analysis. It has foundations in quantum field theory, statistical
mechanics and pure mathematics (geometry of Banach spaces). This is the
Wavelet analysis.

It combines advantages of the Haar system and of the trigonometrical sys-
tem. The Haar system is defined by :

1
G %§z<1
0 otherwise

(@) =27 F$2 "2 —n),  m,ne Z.

The %, , form an orthonormal basis of L?(R), (and even LP) but not for
Sobolev spaces (unlike trigonometric series for periodic Sobolev spaces). On
the other hand, the v, , have good localization properties unlike trigonometric
functions (the reverse being true for their Fourier transforms).

A wavelet system is defined by a function ¢(z) and
Vmon(T) =27 2927 ™2 — n)

with the property

L2(R) = @mEZWm
Win

span {Ymnlt, orthogonal spaces
{¥m.n,n € Z} is an orthonormal basis for W,,.

Y. Meyer has constructed a wavelet system with ¢, C* with rapide decay
(faster that any power). Later one has constructed a wavelet system with 1, C*
with exponential decay, and finally I. Daubechies has shown the existence of
wavelet systems with compact support and arbitrary regularity. They will be
very useful for all kinds of applications.



They are obtained from sequences h,, with compact support, satisfying
additional assumptions by the following procedure :

¢(z) = lim ng(z)

k— o0
m(z) = V2 hame_1(2z —n)

then

(@) = V23 (1) hons16(22 — n)

The most compact support corresponds to the two possible choices :

h:wﬁ h:3¢\/§ h:3i¢§ hzliﬁ
0 4\/57 1 4\/57 2 4\/§7 3 4\/57

For more details, see [15], [9].

1.8.2. Cellular Automata The availability of massively parallel computers, has
motivated the use of cellular automata on large lattices for obtaining solutions
to P.D.E., in particular the incompressible Navier Stokes equations. A lot of
work is necessary to justify this approach.

We describe here a model due to B.M. BOGHOSIAN, C.D. LEVERMORE,[5].
See also U. FRISCH, B. HASSLACHER, Y. POMEAU, [13].

Consider Burgers’ equation :

ou 0 i)
ot caz v 27 VaxQ
Replacing % by u(z,t + At) — u(z,t)

At
. lu(z + Az, t) — u(z — Az, t)
Replacing — by =
o8 2 Az

0
Replacing g2 by —(u(z + Az, t) +u(x — Az, t) — 2u(z,t))
Ox? Ax?
22
and choosing At, Az such that 2v = Ap we obtain the discretization scheme



1- LA 1+ £A
u(z,t + At) = #mu(m + Az, t) + %u(m — Az, t)
A
68 m(u2(z + Az, t) —u?(x — Az, t))
v

This can be simulated “approximately” by the stochastic process :

&i(z 4+ Azt + At) = waw(fl(%t)‘f'fz(%t))
- w(x>t)£1 (:U,t)fz (I>t)
Gla—drttan = 2200 (60 1)

+ ’w(ma t)fl (Iv t)fQ (ma t)

where &1, & take the values 0,1, w is random and takes the values -1 or 1. The
random variables are independent and :

Fw = iAw
2v

It can be proved that :

u(z, t) ~ E(& + &2)
The process &1, &5 is a cellular automata which can be simulated on a massively
parallel computer.

Reseach on similar types of stochastic processes is important in the context
of solving nonlinear P.D.E. on massively parallel machines.

2. CONTROL, IDENTIFICATION, ESTIMATION.
The applications of these techniques are extremely diversified and come from
physical sciences as well as from economic or even social sciences.

We describe some :

— new areas of applications
— new algorithms
— new approaches .

2.1. New areas of application

2.1.1. Environmental studies. The program “Global Change” In view of the
growing importance of environmental issues, a worldwide program of research
has been developing in recent years, under the name of ”Global Change”. It
connects specialists of Climate Dynamics, Oceanography, Planetary Physics,. . .
It seems that this direction is a source of important mathematical problems, of
somewhat new nature.



The basic problem deals with the prediction of physical quantities, solutions
of a set of nonlinear evolution P.D.E., with unknown parameters and unknown
initial state. Nonlinearity creates an important sensitivity with respect to initial
data and unknown quantities, resulting in a lack of predictability beyond some
length of time. A fundamental question is to identify the important regimes
of the physical variables, those which contain the main futures of interest and
are persistent. There are several ways to give a mathematical meaning to this
question. The interesting feature is that they result in a mizture of statistical
and dynamical methods. A lot of work is needed in that direction, even for
simple nonlinear systems.

The point of view of dynamical systems is to obtain the stationary solutions
of the nonlinear P.D.E. (or system of P.D.E.) and the long-time behaviour of
solutions. This is the theory of attractors.

A complementary statistical theory has been developed, for which we de-
scribe only two ideas, that of persistent anomalies and that of FOF analysis
(Empirical orthogonal functions).

Consider a vector representing physical variables (typically a flow) which
is computable through a model, which is not in general completely known
(this is an important difficulty, which we leave aside). We represent it by
Yr(t),k =1...N where k may represent a point z; on a grid, or a component
if the solution is obtained by an expansion.

We set < ¢, >= average of ¢ (t) over some record of data.

The instantaneous anomaly is defined by :

() = br(t)— < Pp >

The pattern correlation between an anomaly at time ¢ and at a later time ¢ + 7

is defined by :

i = ST OB+ ) = (S B0, Talt +7)
’ o(t)o(t+7)

where
o(t) =D k(1) — (O ve(t)*.
k k
We say that an anomaly Jk(tg) persists from t = ty, to t = tg + J7, if :

p(tj,T) > po, wheret; =tg+j7,j=0...J -1

and py represents the persistence criterion. What is ezpected is that the anoma-
lies which satisfy a reasonable persistence criterion fall into a small number of
easily identifiable patterns, related to the attractors of dynamical system.

The EOF analysis goes as follows. Let :



Tre =< by >

Consider the eigenvalues of the matrix '  A!...AY, ranked in decreasing order
and e'...e" are the corresponding eigenvectors, called the 1st EOF, the 2nd
EOF, ..

Next expand the vector 1(t) = (% (t)) on the basis e! - - - e, hence :

N

W(t) = ' a;(t)e’

=1

then one can easily check that :

< Q; 0 >= }\16”

The coefficients a;(t) are called the principal components. The EOF are in-
terpreted as directions of variability of the anomaly, A\’ representing the part
of the variance related to EOF e (the total variance being A! + ... + AN).
The important conjecture is that the main OEF are related to the patterns
associated to persistent anomalies.

In [16] theses connections are exhibited experimentally on some models.

Is there a general theory for these phenomenon, at least for some class of
nonlinear dynamical systems 7 This is an open question, which has a crucial
importance for the understanding of the variability of atmospheric dynamics.

2.1.2. Computer vision

2.1.2.1. The segmentation problem An image can be represented by a function
g(z) measuring the strength of the light signal striking a plane at point z.
Such a function is expected to have discontinuities reflecting edges of objects,
and shadows. Outside such lines the function g is expected to behave more
smoothly.

Having this in mind, one defines a segmentation of a region (2, as a set
of open connected subsets 2;,7 = 1---n, each one with a piecewise smooth
boundary and I is the union of the parts of the boundaries of the §2; inside €.

An approximation of g is a function u which is differentiable on 2 —T". One
defines a cost function :

J(u,T) = H/ (u — g)*dx +/ |Dul?dz + v|T|
Q Q-1

The segmentation problem consists in minimizing the functional J over the pair
(u,T). Note that if v =0,infJ = 0.

This is a new class of problems in the calculus of variations, introduced in

[17].
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It has attracted a lot of interest and some progress has been made, con-
cerning existence, and approximation.

It is interesting to consider the one dimensional problem, in which 2 =
(0,1),I ={a1;---an, with 0 < a1 < ag- - <any <1} and |I'| = N. One has :

1 N ait1
J(u,al,---,aN)Z,u/ (u—g)de—{—Z/ u?dx +vN
0 i=0 Y %
and we have defined ag = 0,an4+1 = 1.

Since we do not impose continuity at points a;, we may write preferably :

Ai41

N
J(m,---,umal,---,am=u2/ [(ui — 9)? +u)dz + vN
i=0 v i

There is a probabilistic interpretation of J. Consider in the segment (a;, a;41)
a process x; such that :

mz(t) = m,(a,) + wi(t), t e [ai,aH_l[

where z;(a;) is not random, and w;(t) is a standard Wiener process. We observe
on (a;,a;t1) the process y;(t) with :

where b; is Wiener process independent from w;.
The ”a priori probability” of the trajectory z;(t) to coincide with a given

function u;(t) which is H'(a;,a; + 1) is :

B - R N
exp 5 [(uy® 4+ ui)dt — 2u;dy;]

For details see [20].

Considering independent processes in each interval, we obtain :

1 N ai4+1
exp —— w? + u?)dt — 2u;dy;
Py 3 [, [t bt~ 2udy
and the maximization of this probability results in minimizing J, up to the
correspondence dy; — ¢ on (a;,a;y1). It would be extremely interesting to
treat the 2 dimensional problem, which is the real one, by similar probabilistic
methods. It is an open problem.

11



2.1.2.2. Aziomatic derivation of image processing models We describe here a
new approach to image processing due to L. Alvarez, F. Guichard, P.L. Lions
and J.M. Morel [4]. Consider the signal g(z) representing the image. We look
at it at a scale t, measuring roughly speaking the size of details of the image
(small ¢ means fine scale, while large ¢t means coarse scale). An analysis at scale
t is a transformation T;g. A multiscale analysis is thus a family, parametrized
by t > 0, of nonlinear operators (or filters).

Of course, some conditions have to be made on the operator T}, in order to
fulfill physical requirements of the filter. These restrictions or axioms are such
that the function u(z,t) = (Ttg)(z) appears as the solution of a fully nonlinear,
parabolic, possibly degenerate second order equation

Oou 9

u(z,0) = g(z).

In fact, the choice of the function F' is equivalent to the choice of the family
T;. Among physical requirements, one has the following main one

F(p,A) < F(p,B),Yp,A<B

which is in fact the condition which suffices to give a meaning to (4) in viscosity
sense.
FEzxzamples :

— The Gaussian pyramid. It corresponds simply to the heat equation

1
F(p,A) = §tTA

Quasilinear filters :

F(p, A) = allp)trA + quD%

where
a>0,  a(lpl]) +d'(|p|)lpl > 0

Morphological filters :
F(p)=inf pg

qes
where S is a compact set of RZ.
— Curvature operators
1 Ap-p
F(p, A) = |p|G(~ (trA — )
p| [pl?

1
with possible G(s) = s or |s|*~!s (in particular a = 5)

12



2.1.2.3. Mobile Robotics Consider the problem of a mobile robot which tries
to recover its environment, during its motion (the environment is assumed to
be static). The robot is equipped with a camera, which takes images between
time intervals. One way of approaching the problem is to extract tokens from
the images in the sequence, match them from image to image and recover the
motion and the structure of the environment.

Naturally, the tokens we compute in the images should be closely related
to objects in the scene, if we want the matches to be meaningful. They are in
general surface markings, shadows, depth discontinuities.

Let us explain the general ideas in the case of a point M, which is the object
to be recognized by the mobile robot (see Figure 1). So M is the real point,

hi

o

FIGURE 1.

Ci,Cy represent the motion of the camera (installed on the robot), mq,my the
images of M. The motion is decomposed into a rotation R with a rotation axis
going through C, and a translation ¢t = CCs.

If we consider a coordinate system attached to the camera, then we can
measure Cym; and Comeo with the local coordinate system. The coordinates
with respect to a common coordinate system, that related to C; are Cimy
and RCim;. Then one expresses the planarity constraint, namely that Cimg,
Comy and t are coplanar ; it amounts to :

C’lml - (t A Rc’zmg) =0.

The vector t has coordinate t.,t,,t. but from the linearity, we can assume
that ||¢]] = 1, hence 2 parameters are enough. The matrix R depends of 3
parameters which characterize the unit rotation axis (2 parameters) and the
rotation angle.

13



Conceptually, what is important is to recognize that the previous relations
amounts to :

flz,a) =0
where a is a vector of parameters € IR", and z is a vector of measurement € IR"
and f is a nonlinear relation.

Each successive image leads to a relation :

f(zg,a)=0

However the observation is not exact and rather described by the model

Zk = T + Vg

where vy is a white noise of covariance I'. Considering that

gyl =ap =0

we are in the framework on nonlinear filtering if we can express zj, as a function
of ar. It is of course natural to linearize around a given estimate of a, and to
use extended Kalman filtering. Once ¢, R is obtained, one can recover M by
expressing the relations :

)\Clml =t+ HRC2m2

where A, p are unknown scalars. In this relation again ¢, R are known random
variables, as well as Cimq,Camsy . Thus we are in a situation similar to the
above and can use again a Kalman filter.

These techniques have been extensively used in the context of mobile robotics

by O. FAUGERAS and his team, see for instance [11].

2.2. New algorithms

2.2.1. Parallel algorithms The development of multiprocessors has generated a
substantial interest in the obtaining of parallel algorithms. A thorough analysis
is needed, since surprises can arise in comparison with the sequential approach.

Take for instance Jacobi and Gauss Seidel iterations for obtaining a fixed
point of :

= f(x) zeR"

A Jacobi iteration is the following :

k41 k .
= fie), i=1n
and a Gauss Seidel is :
k+1 _ k+1 k+1 K k
Ty _fi(lll 7"'7xi7171'i7"'7mn)



The advantage of Gauss Seidel iteration is that it converges more frequently
that Jacobi, and sequentially it performs much better (the convergence rate of
Gauss Seidel iteration is better).

Parallel implementation will change the situation considerably.

k

Consider the case when there are n processors, and the sequence z" such

that :

P = fat)

denoted by %/ (Jacobi sequence) converges towards the fixed point. Suppose
also f monotone, i.e. f(z) < f(y) Yo,y with < y. Then take a sequence z*U
defined by :

1‘?+1’U — fi(mk7U)7 Vi e Uk

k+1,U _ kU .
X =, , Vi §é Uk

K2

Uy is a subset of {1,---,n}.
One can prove (T.N. TSITSIKLIS) that if one starts with the same initial
value z° and f(z%) < 20 or 2% < f(2°), then :

z* < Ik’J < ;Uk’U, vk

where z* is the limit fixed point. Hence Jacobi iteration performs better than
any parallel version of Gauss Seidel iteration. When they are less than n
processors available, or the assumption of monotonicity is not satisfied, no
general statement can be made (see [4])

2.2.2. Simulated Annealing and global optimization This type of algorithm has
been developed in the recent years in order to obtain a global minimum for a
function U(x), over ¢ € B, B compact, in the case when U is smooth. It is
clear that such a problem occurs in many applications. Simulated annealing
has first been used in the context of image processing.

The algorithm consists in a discrete version of the following stochastic dif-
ferential equation:

dzy = —DU (zy)dt + cio(xy)dw,, z(0) =2

where the following assumptions are made

— U is C? from B to [0,00) and

MingepU(z) =0, DU(z)-2>0, Vo€ B-—B

where B is a ball in IR", centered at the origin, and Bj is an other ball,
also centered at the origin and strictly included in B.
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o is Lipschitz continuous from B to [0, 1], with ¢ = 1, for € B;,0 = 0 for

r€0B,0>00on B
- ct:L for t large, ¢ > 0.

Logt’
— wy standard Wiener process in R"
1 2U () .
— n°(z) = —(exp — —5—)1p with [7°(z)dz = 1 converges weakly to a
€

probability 7 as € — 0.
Note that 7 is a probability concentrated on the set of global minima of
U(.).

Then the following result can be proved :

Ef(z) — 7(f)

Vf bounded, continuous, as ¢ — oo, uniformly for z (the initial value) in B.
(For more details see [7]).

2.3. New approaches

Let us just mention the developments related to H,, theory and which permit
to obtain protection of dynamic systems from disturbances via feedback control
. We just mention some recent results concerning linear systems.

Let us consider the linear system

t = Az + Bu+ Dw,
y = Cz

where w represents a disturbance, and u a control. We consider feedback con-
trols, u = Ky. The transfer matrix Tk (s) is given by
Tk(s) =C[sI — (A+ BK)| " 'D

and we consider those K for which A + BK is stable. The Hy norm is defined
by :

1 [tee e 1
ITxll = (= / tr Tie(—juo)" T (jeo) o)

2 J_ o

and the H,, norm is defined by :
ITiclloe = sup( tr Tic(—jeo) Tic (o)) *
we

which are finite since A + BK is stable.

The problem of H,, or Hy control consists in minimizing the above norms
with respect to K.

16



Note that

il =sup{( [~ ls0Pa0)*|( [~ wan® <1)

and thus this norm expresses the sensitivity of the system with respect to ex-
ternal disturbances.

Among the important results obtained recently, it has been proven that we
can chose a K such that [|[Tk||c < 7v,Vy given, if there exists € such that one
can solve the Riccati equation

1 1 1
PA+ A*P - —-PBB*P+ —PDD*P+ —CC*+¢l =0
€ v v

In fact K = —B P
2¢e

will serve for this purpose (for more details, see [14]).

3. DISCRETE SYSTEMS

3.1. Discrete event systems

New applications strongly related to information technology have created the
need to develop a theory of DEDS, discrete event dynamic systems. Such appli-
cations are production or assembly lines, computer/communication networks,
traffic systems, ... A special issue of IEEE, Jan. 1989 is devoted to dynamics
of discrete event systems.

Many new mathematical techniques have been developed in this context.
We describe here one of them, the use of an algebraic structure, called dioid,
in the modelling of timed event graphs.

Let us just recall the basic definition of a dioid. It is a set D provided with
two inner operations @ and ® (addition and multiplication) such that

- they are both associative
- addition is commutative
- multiplication is right distributive with respect to addition
- there exists a null and identity elements
de €D : VaeD, ade=a

Je €D : VYa €D, a®Re=eRa=a

- the null element is absorbing

Va €D, aRe=cQa=c¢

17



- the addition is idem potent
YaeD, aBa=a.

When addition is commutative, the dioid is called commutative. As an
example take D = ZU {—o0} U {+o0} and

® = max, Q=+

e=—o00, e=0
(note that we impose the rule (—o0) ® (+00) = (—00)).
We can also consider

@ = min, ® =+

€ = +00, e=0

(in which case (—00) ® (+00) = +00).

A dioid is a structure somewhere between linear algebra and lattices.
One can define a partial order relation

a>bsa=adb

and a pseudo left inverse denoted a\c which is the greatest subsolution of

a@Rr=c.

Starting with these premises affine equations can be solved, as well as matrices
defined and a matrix calculus is available. Matrix equations can also be solved.
Let us see briefly how these concepts apply to timed event graphs.

Times event graphs are a special kind of Petri nets. They are directed
graphs with two types of edges, places and transitions

In Figure 2,, the transitions are wuy,us, x1,Z2,z3, y and the places are
denoted by z1|u1, za|us, z3|r1, v3|Ta, 23|23, Y|T3, Y|T2, T1|T2, T2|21.

There is a single transition upstream and downstream, at each place.

In places, there are tokens or not. Tokens are created or consumed when
transitions are fired, more precisely when a transition t is fired one token is
consumed at each place which precedes ¢ and one is created at each place
which succeeds it.

Let us assume that transitions are immediate, but a token must stay at a
place an amount of time called the holding time, which depends on the place.
The following symbols are used

For instance consider the places which precede x;, we complete the infor-
mation as follows

Let for a transition x, x, be date at which transition z has been fired for
the n'? time. We can write the relation

18



FIGURE 2.
na oken 1 taken 1l wolen
holding, me = 3 holding, tme 0 holdmz ime =2
FIGURE 3.

(71)n = max[(z2)n—1, (u1)n + 3]

and of course similar relations for other transitions.

If the dates take values in Z U {400} U {—o0}, then we can work with the
dioid considered above D, with the operations & = max, ® = +.

The preceding relation writes
(#1)n = (T2)n—1 ® 3(u1)n
where 3(u1), = 3 ® (u1), to simplify the notation.

One of the objectives of research in these directions is to obtain a theory
similar to that of linear dynamic systems. In particular a theory of stability is
being developed. This is important to obtaining an evaluation of performances
for the real system which is modelled by the event graph. (See [8]).
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FIGURE 4.

3.2. Hybrid systems
An hybrid system is a system whose state contains continuously as well as
finitely valued variables. When the discrete variables take a given set of values,
the continuous variables behave as the solutions of differential equations. Tran-
sitions between the possible sets of values of the discrete variables are obtained
through the action of a monitor (a controller). The action of the controller may
be instantaneous or require some delay. The objective is in general to keep the
continuous variables within a given range. Decisions are taken as feedbacks.
An hybrid system will be characterized by a given feedback, and the problem
is to prove that this feedback rule fulfills the goal.

EXAMPLE 1. Suppose we want to control the temperature of a room through
a thermostat, which can turn instantaneously a heater on and off. The tem-
perature is the continuous variable z(t), v(t) = 1 or 0 according whether the
heater is on or off is the discrete variable. We have :

t = —Kz if v=20
¢ = Kh-z) if v=1
If d(t) is the decision taken by the thermostat, d(¢) = 1 or 0 and we have:

v(t +0) = d(t)

We want to maintain z(¢) between m and M. Then we take

1 —
dit)=0 if z(t) = M and v(t) =
and d(t) = v(t) otherwise . Such a feedback fullfills the objective.

EXAMPLE 2. Suppose we control the water level in a tank through a monitor
which can turn a pump on and off. The water level is z(t), and we set v(t) =1
if the pump is on, and v(t) = 0 if it is off. We have
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i = -2 if

t)=0
i = 1 if w(t)=1

Let d(t) be the decision taken by the monitor, d(t) = 1 or 0 and suppose
there is a delay of 2 before the decision is executed then :

v(t) = d(t — 2)

We wish to keep the water level between 1 and 12. We then consider the
feedback

dit) =1 if z(t) = bSandv(t) =0
dit)=0 if z(t) = 10andv(t) =1

and d(t) = v(t) otherwise such a feedback fulfills the desired behaviour. In
general, proving that a specific feedback satisfies a given objective of the con-
tinuous variables is not easy. Results on decidability of such a problem are
available for a particular class of Hybrid systems (cf. R. Alur et al. [1]).

4. NEW AREAS OF INFORMATION TECHNOLOGY
Let us mention only some recent mathematical problems motivated by I.T.
(again this is by no means exhaustive).

4.1. Artificial intelligence

Since artificial intelligence needs to deal with qualitative aspects, more than
with quantitative aspects (or in connection with them), this has motivated the
development of qualitative simulation (or qualitative physics) in particular at

Xerox Parc. Note that the economists needed much before similar techniques,
in the context of the theory of comparative economics (P.A. SAMUELSON).

Our presentation here relies on some recent work of J.P. AUBIN.

We pose the problem of the qualitative evolution of solutions to a differential
equation

&= f(z;) zeR"

and more precisely to the qualitative evolution of a set of functionals

Vl (:vt), ey Vm(It)

which are of importance (energy, entropy, indicators, . ..).

The qualitative behavior is expressed by the evolution of the functions sign
d
(aVJ(xt)) with values in R™ = {-1,0,+1}™.
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This is the problem of interest. But we want to obtain this evolution,
without solving the equation, since some independence should be obtained
with respect to the initial condition.

Since sign (EVJ(zt)) = sign (DVj(z;)f(x:)) it is convenient to introduce

in the closed subspace K of R", where lives z;, the qualitative cells

Ko = {z € K| sign (DV;(z)[f(z)) = a;}

where a € R™, and their closure (large qualitative cells)

K, = {z € K| sign (DVj(z)f(z)) = a;j or 0}.

Let D(f, V) be the subset of qualitative states a such that K, is not empty. Let
also denote by z(t; o) the solution of the differential equation corresponding
to an initial date zy. One is interested in the study of transitions between
qualitative cells.

If b€ D(f,V), we say that ¢ € D(f, V) is a successor of b, if Yoy € KN K.,
there exists 7 > 0, such that z(¢;zo) € K., for all t €]0, 7.

A qualitative state a is a qualitative equilibrium, if it is its own successor.
It is said to be a qualitative repellor if Vxy € K,, there exists t > 0 such that
z(t;xg) ¢ K,

The theory developed by J.P. Aubin permits to characterize the map of
successors, the qualitative equilibria, and the qualitative repellors.

It has been applied to the so-called “replicator systems”, a prototype of
which is the differential system ([2])

n
:ﬁi = :Ui(Oé,' - Zaj:vj)
i=1

4.2. Neural networks
The basic neural network can be viewed as an undirected graph with n nodes,
to which are attached a pair (W,0) where

W is an n x n symmetric matrix, W;; is the weight attached to the edge
(1,7), Wi =0

f is an n vector, 6; is the threshold attached to the node i.

Nodes are called neurons. Each neuron has two possible states (1, —1). Let

v be the state of the neural network, v; being the state of neuron i.
Let

EZ(U) = — ZWijvj + 0;

Jj=1

then the following calculation is performed by the network
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" = sign (E;(v*)), forie Sk
vll-”l =vf fori g S*

where S* is a subset of the neurons.
For instance if

k=hn+j j=0..n—1

and S* = {j + 1}, the network operates in serial mode.
Note that in our notation

. 1 if a>0
sign (@) =1 1 ¢ <0

A stable state is a state such that

A basic theorem of HOPFIELD is that if the network operates in serial mode,
then it will converge to a stable state.

The applicability of neural networks in practice arises from the possibility of
interpreting the stable states. For instance, in pattern recognition, the stable
states are known patterns, and for a given input pattern, the network will
converge to the known pattern which is the closest to the input. It is clear that
the neural network realizes the following search problem

. 1
min E(v) = —3 ZW,-jvivj + Zini v; ={-1,+1}
iJ i
and attains a local minimum.

One can clearly consider many variants of the above problem. For instance
consider the following model in continuous time

vi(t) = g(ui(t))
d’U,i
dt

0
where g is an increasing function from R to [0,1] and E;(v) = 3 E(v), E(v)
v;
energy function (for instance the above). It will converge towards a local min-
imum of E(v). It can be realized as an analog integrated circuit.
In the spirit of simulated annealing, considered above, one can try to attain
a global minimum of the Energy function, by considering a stochastic version

of the preceding model. This has been done by E. WONG.
Consider the model
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vi(t) = glui(t))

[ 2T
d’U,i = —Ei(’l)(t))dt + md’wl

where T is a constant, and w; are independent standard Wiener processes. The
stationary probability density of the process v(t) is

1 1

p(v) = 7 exp —TE(’U)

where Z is the normalization factor.
The simulated annealing adaptation of the preceding algorithm (for instance
take T'(t) — 0 as t — oo0) remains to be done. For more details, see [6] and

[19]).

4.3. Analytic analysis of algorithms
Computer science leads quite frequently to combinatorial algorithms. A quite
interesting approach of P. Flajolet [12] has shown how generating functions and
complex analysis provide a way to treat these problems. In particular, formal
languages, tree enumerations, comparison based searching and sorting, digital
structures, hashing and occupancy have been interesting applications.

A class of combinatorial structures is a pair of a finite or denumerable set
A, whose elements are called the atoms.

Each atom a € A will have a size |a|. We can perform the following
operations :

The product relation C = A x B :

C={velly=(a,p),ac A, BeB} with |y]=la|+|F]

The union relation C = A+ B C = AU B where A + B are disjoint.
The sequence C = A*

C={e}+ A+ AXA+AXxAXA+---

where |e| = 0. The set construction C = u(A), is the collection of all subsets
of A:
C={{o1, " ,ap, -} g,y g, inAyag, - -+ different}.

The multi set construction C = M (.A) allows repetitions.
The cycle construction = C(A) is the set whose elements are (non empty)
cycles of elements of A.
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Let A, be the number of elements of A, whose elements are (non empty)
cycles of elements of A. Let A, be the number of elements of A, whose size
is n, then the interesting problem is to calculate the C), corresponding to the
more complex structure C. This is where the generating functions are useful.

Define

A(z) = Z A, z" = Z 2(e)

acA

and

C(z) = Z Cp,z" = Z 27

veC

It is possible to express C(z) in function of A(z). For instance, for C = Ax B
one has :

Clz)= Y Pl =Aiz)B(2)

(a,B)EAXB

ForC=A+1B
C(z) =Y zla)+ > 2l = A(z) + B(2)
acA BeB
For C = A*
C(z) = 14+A>R)+A>RZ)?+---
1
T 1-A4(2)

For C = u(A), we note that

w(A) =Haca{e} +{a})

hence
C(z) = Taea(1+ 2z =10,(1 4 27)4
= exp(A(z) — A(; ) + A(3z ) +-49)

For C = M(A) we have

hence

Clz) = HacaT—p




Consider further C = M2(.A), the collection of subsets of A with cardinality 2,
with possible repetition. Then

C(Z) = Z ZlalH"aZl +ZZ2\Q|

Jay | >]az]

1 e |+ as| ,2lal
IDIELLEEDS
B a

1] #|o]

_ % S slarlasl +%Zzz\al

Q1,02 @

hence 1 1

0(:) = (A + 5AG?).
From the previous structures, it is possible to construct further complex struc-
tures, which will lead to functional equations. For instance, consider in Figure

5 the structure of binary trees (the size of a binary tree is the number of leaves)

FIGURE 5.
Let A = {leaf}, then
B=A+BxB
hence
B(z) = z + (B(2))?
which yields a unique formal power series solution

B(z) = %(1 _Vi— )

Similarly consider trees with multiples branches (at least 2), each branch having
at least 2 leaves, one has

B=A+BxB+BxBxB+---

hence



which obtains

B() = ~(1+2—/1—6z+ ).

4

Formulas like (1) allow among other things to study the asymtotic behavior
of B,,. This is governed by the singularities of the generating function B(z),
according to a famous theorem of Darboux.
Suppose we consider the class of mathematical expressions involving constants,
the vaiable z, e and additions or products of similar type of expressions. We
can visualize the set of such expressions by :

+ X exp
&€={cu{ziuq / \ pug/ \pug |

15 15 15 15 9

This permits to represent an element of £ as a tree, for instance the expression
& + e % is represented by Figure 6. The size of an expression will be the

AN
7N

FIGURE 6.

number of nodes of the tree. The above tree has size 7.
Let E(z) to be the generating function corresponding to £, then we have the
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functional equation

E(z) =22 4+ 22E(2)* + zE(2)
Let [z"]E(z) to be the coeflicient of z™ in the formal series E(z), it repre-

sents the number of expressions of size n.

Among possible uses of this machinery, one can compute the complexity of
formal differentiation. One can estimate the asymptotic average size of deriva-
tives. Many more applications can be given.
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