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To test solvers for implicit differential equations, it is important to have a rep
resentative collection of test problems. Such a test set can both decrease the 
effort for the code developer to test his software in a reliable way, and cross the 
bridge between the application field and numerical mathematics. In this paper 
we describe the CWI Test Set for IVP solvers and look at two applications in 
detail, one from car industry and one from biochemistry. 
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1. INTRODUCTION 

For many processes in industry it is indispensable to solve differential equa
tions. Examples are the simulation of electrical circuits, the behavior of a train 
on a rail track, the steering of robots and chemical reactions. Normally, the 
differential equations are far too complicated to solve analytically, and one has 
to resort to numerical integration techniques implemented on a computer to 
obtain an approximation to the solution. Numerical analysts are challenged to 
come up with faster algorithms, because problems become ever complexer, (for 
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example chip design) and in several cases a decrease in computer time is re
quired, for example it is undesirable to steer the motion of a robot by software 
that needs several seconds to compute a new move. 

There is a wide-spread attitude to take the testing of these algorithms not 
very seriously. What one typically sees in scientific talks, is that the speaker 
addresses 993 of his time to describe his beautiful new method, and then, 
when the chairman has already coughed a couple of times, he quickly puts up 
a slide with two curves, which are supposed to explain that his new method 
works better than some existing one, without explaining how he has performed 
his tests. Quite often, it turns out that the testing involved only a very simple, 
academic problem. In scientific literature, the attitude is basically the same. 

It is easy to justify the need for a precisely defined test protocol that tests 
on large, real-life problems. Although reliable software for solving differential 
equations has been around for the past few decades, new codes are necessary 
because the existing software often performs too slow on large problems, or can 
not handle nasty complications arising in practice, such as discontinuities in 
the differential equations, or a phenomenon called higher index character, which 
means that some components of a problem are more sensitive for perturbations 
than other. Of course it does not make sense to promote a new algorithm on 
the basis of small, academic test problems that could be solved satisfactorily 
by existing codes. Besides, a new important issue in code development is to 
make codes suitable for implementation on parallel computers. Especially for 
large problems it is sometimes necessary to resort to such computers in order 
to reduce the computer time to reasonable values. Again it is clear that one 
should not test these parallel algorithms on small problems. 

Another justification of performing well-defined real-life tests is that poor 
testing may lead to not considering methods that perform badly in such a 
test, even if they might work well for a certain class of problems, which is not 
represented by the test problems used. On the other hand, it may also happen 
that one trusts methods that perform well in a test, although they suffer from 
all sorts of disadvantages, not revealed by the test. Probably, the latter case 
occurs more often than the former, since most tests in articles and talks favor 
the author's method. 

Good test problems and a good test protocol should contain the following 
ingredients. 

- A complete specification of the problem should be given, including initial 
values, parameter settings, integration interval, reference solution, etc. In 
order to ensure that everyone really uses the same test problem, also an 
actual implementation should be given. 

It should be clear why one is interested in a problem. What is the quantity 
of interest and how can we measure it? How do we interpret the problem 
variables and the results? For example, it does not make sense to test the 
method by computing the behavior of a car on a smooth road, because that 
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is not the 'hard' part. What matters is a test on a bumpy road. 

A test set should be classified, so that a developer of a code that is meant 
for a certain application area, can easily select the problems that are of 
interest to him. 

Along with a test problem, recommendations should be given, for example, 
'notice that a solver might have difficulty in solving this problem, if it does 
not pay proper attention to its discontinuities'. 

A test set should be representative for many areas of applications. Small 
test sets create inbreeding, in the sense that if codes are developed such that 
they can solve problems of a non-representative test set, then it may happen 
that too much attention is paid to only a few features in problems, whereas 
features that are not present in the test problems, are not addressed at all. 

Guidelines should be given for people who want to use for some reason their 
own test problems. 

Test problems should be of interest to people from industrial application 
fields. If so, the problems can help to bridge the gap between industrial 
engineering and the numerical analysis community. Using industrial real
life problems as test problem assures that solvers developed can deal with 
practical issues. 

The 'CWI test set for IVP solvers' (5] tries to fulfill these demands. It can 
also save a lot of time and effort for the developer of software for differential 
equations, because using the test set, he does not have to program the test 
problems and describe them in his article anymore, nor does he need to produce 
the test results for reference solvers. The test set is available via the WWW 
page http://www. cwi .nl/ cwi/proj ects/IVPtestset/, or via anonymous ftp 
at site ftp. cwi. nl in the directory pub/ IVPtestset . Since the first release 
in August 1996, the test set has grown to fifteen serious test problems, and is 
used by many researchers all over the world. This success would not have been 
possible without the many cooperative contributors from different application 
areas. 

In the following two sections we describe the structure of the CWI test 
set and its use as test platform. We conclude by treating two test problems 
in some detail. We selected these examples because their relative simplicity 
allows for self-contained descriptions. In the test set there are more complicated 
problems: larger systems, much more CPU time and more difficult to solve. 

2. THE STRUCTURE OF THE CWI TEST SET 

The CWI test set consists of a descriptive part and a software part. The first 
part describes test problems and reports on the behavior of a few state-of-the
art solvers on these problems. The software serves as a platform on which one 
can test the performance of a solver on a particular test problem oneself. 
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------------- CWIQua-.ly ---------------

2.1. The descriptive part 
The test set has been divided into chapters, each describing one test problem. 
Every chapter contains the following 4 sections: 

I. General information, listing e.g. the problem identification, dimension, in
dex, contributor, etc. 

2. Mathematical description of the problem, with all ingredients that are nec
essary for implementation given in mathematical formulas. 

3. Origin of the problem, with a description of the origin, which gives a phys
ical interpretation of the problem. References to the literature are given 
for further details. This section is important for bridging the gap between 
the application field and numerical mathematics. It describes the modeling 
process and gives a feeling for the important characteristics of the problem. 

4. Numerical solution of the problem, which adreses the following items: 

(a) Solution in the endpoint. The values of the solution components in the 
endpoint are listed. 

(b) Run characteristics. A table with integration statistics of runs with 
some well-known codes are given. For example, for problem HIRES, 
which will be described in §4, these characteristics are in Table 2. 

The symbols in this table have the following meaning: 

solver The name of the numerical solver with which the run was per
formed, currently one of DASSL [6], RADAU5 [3], PSIDE [10] and 
VODE [1]. 

rtol, atol and hO The user supplied relative and absolute error toler
ance and the initial stepsize, if requested by the solver. 

scd The scd values are an indication of the quality of the numerical 
solution. They denote the minimum number of significant correct 
digits in the endpoint, i.e. 

scd := - log10(max. norm of the relative error in the endpoint). 

steps Total number of steps taken by the solver (including rejected 
steps). 

accept The number of accepted steps. 

# f and# Jae The number of evaluations of the function j and its 
Jacobian, respectively, where f is the problem defining function. 

#LU The number of LU-decompositions. 
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CPU The CPU time in seconds to perform the run on an SGI work
station, an Indy with a 100 MHz R4000SC processor, using the 
Fortran 77 compiler with optimization: f77 -0. 

For all solvers, the integration characteristics mentioned previously and 
presented in the tables, refer to execution on a one-processor computer. 
With respect to the run characteristics of PSIDE -- Parallel Software 
for Implicit Differential Equations - we remark that this solver aims at 
execution on a parallel shared memory computer with four processors. 
On such a computer, one may divide the number of evaluations, de
compositions and solves by four to obtain the effective characteristics. 

(c) Behavior of the numerical solution. Plots of (some of) the components 
over (part of) the integration interval are presented. For example, 
Figure 7 shows the behavior of the concentrations in problem HIRES. 

(d) Work-precision diagram. For every relevant solver, a range of input 
tolerances and, if necessary, a range of initial stepsizes, were used to 
produce a plot of the resulting scd values against the number of CPU 
seconds needed for the run on the aforementioned computer. One thus 
gets an impression of the work needed to obtain a certain precision. To 
give an impression of the performance of PSIDE on a parallel computer 
we plotted two PSIDE curves in the work-precision diagrams, PSIDE-1 
and PSIDE-4. The first curve refers to PSIDE on one processor. The 
latter curve was obtained by dividing the CPU timings of the runs on 
one processor by the speed-up factor for one single run as obtained on 
four processors of a Cray C90. Figure 6 is an example of such a diagram 
for problem HIRES. 

2.2. The test set as test platform 
In order to perform a test run, the test set offers a number of Fortran 77 files, 
which can be divided into four categories: 

Problem definition Such files contain six subroutines. The first gives some gen
eral characteristics of the problem, such as the problem identification, the 
dimension and the time points where the problem has a discontinuity in 
time. The second routine gives the initial values Yo and Yb (the latter is 
not necessary for ordinary differential equations). The problem defining 
function is in the third routine. The fourth and fifth routine contain the 
derivatives of the problem defining function. In order to be able to deter
mine the accuracy of the numerical solution produced by the test run, it 
has to be compared with a reference solution, which is available in the sixth 
routine. 

Driver These drivers contain global declarations and form an interface between 
the problem defining routines and a specific solver. All the solver dependent 
settings are done here as well. The availability of these drivers decreases 
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------------ (\\/IQ-rly ---------------

the effort of performing runs considerably, because the design of them is a 
cumbersome and error-prone job. 

Solver Currently, the following solvers are available in the test set: 
RADAU5 [3], VODE [1], DASSL [6] and PSIDE [10]. 

I/O This file asks for the input parameters in a user-friendly fashion and prints 
the integration characteristics and numerical solution in a surveyable man
ner. 

Auxiliary linear algebra Every solver requires linear algebra routines which are 
supplied separately from the solver. 

As an example, we perform a test run, in which we solve problem HIRES, 
which will be described in §4 and whose subroutines are in the file hires. f, 
with RADAU5, of which the source code, driver and auxiliary routines are in 
the files radau5. f, radaud. f and radaua. f, respectively. 

Figure 1 shows what one has to do. 

3. EXAMPLE: THE CAR AXIS PROBLEM 

3.1. The model 
The car axis problem was taken from [8]. It is an example of a rather simple 
multibody system, in which the behavioc of a car axis on a bumpy road is 
modeled by a set of differential-algebraic equations. We selected this example 
because its simplicity allows for a self-contained description, which includes the 
main aspects of the modeling process of more complicated multibody systems 
in the test set. Moreover, it gives us the opportunity to focus briefly on what 
is meant by the index of a variable and consistent initial values. 

A simplification of the car is depicted in Figure 2. We model the situation 
that the left wheel at the origin (0, 0) rolls on a fiat surface and the right wheel 
at coordinates (xb, Yb) rolls over a hill of height h every r seconds. This means 
that Yb varies over time according to 

(1) 

The length of the axis, denoted by l, remains constant over time. Consequently, 
the equation for Xb is given by 

Xb = Vl 2 - y~(t). (2) 

Two springs carry over the movement of the axis between the wheels to the 
chassis of the car, which is represented by the bar (x1, Y1)-(xr, Yr) of mass M. 
The two springs are assumed to be massless and have Hooke's constant 1/f.2 

and length lo at rest. 
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-------------- cw10--.iy ---------------

$ f77 -0 -o dotest radaud.f hires.f radau5.f radaua.f report.f 
$ dotest 
Solving Problem HIRES using RADAU5 

User input: 

give relative error tolerance: ld-4 
give absolute error tolerance: ld-4 
give initial stepsize: ld-7 

Numerical solution: 

solution component 

y( 1) 
y( 2) 

y( 3) 
y( 4) 
y( 5) 

y( 6) 

y( 7) 

y ( 8) 

0.7421645857497393E-03 
0.1452408987422247E-03 
0.5982382362740506E-04 
0.1185056912601290E-02 
0.2537002003509868E-02 
0.6714837054158053E-02 
0.2953745838879603E-02 
0.2746254161120250E-02 

used components for scd 
scd of Y (maximum norm) 
using relative error yields scd 

Integration characteristics: 

number of integration steps 
number of accepted steps 
number of f evaluations 
number of Jacobian evaluations 
number of LU decompositions 

CPU-time used: 

scd 
----------------

abs 

5.30 
6.00 
6.03 
5.03 
3.82 
3.32 
3.98 
3.98 

8 
3.32 

43 
35 

314 
22 
43 

0.03 sec 

rel 

2.17 
2.16 
1.80 
2.10 
1.20 
1.12 
1.44 
1.44 

8 
1.12 
1.12 

ignore 

FIGURE 1. Example of performing run, in which we solve problem HIRES with 
RADAU5. 



······ ····· 

FIGURE 2. Model of the car axis. 

There are two position constraints. Firstly, the distance between ( xi, Yt) 
and (xr, Yr) must remain constantly l: 

(3) 

Secondly, for simplicity of the model, we assume that the left spring remains 
orthogonal to the axis: 

(4) 

For later reference, we introduce the vector p := (xi, yi, Xr, Yr)T and use the 
shorthand notation 

ef>(t,p) = 0, (5) 

for the equations (3) and (4). 
The setting of the parameters is as follows: 

I l = 1 I f = 10-2
1 

h = 1/5 I 
lo = 1/2 M = 10 r = 7r /5 
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-------------- CVVI~ --------------

9.2. Lagrangian mechanics 
Using Lagrangian mechanics, the equations of motions for p are now given by 

(6) 

Here, G is the 2 x 4 Jacobian matrix of the function <f> with respect top and>. 
is the 2-dimensional vector containing the so-called Lagrange multipliers. The 
factor M /2 is explained by the fact that the mass M is divided equally over 
(xi,yz) and (xr,Yr). The force FH represents the spring forces: 

where Fi and Fr are the forces induced by the left and right spring, respectively, 
according to Hooke's law: 

Fi = (lz - lo)/f.2 , 

Fr = (lr - lo)/f.2 • 

Here, lz and lr are the actual lengths of the left and right spring, respectively: 

lz = Jx~ +y[, 
~--------

l r = J(xr - Xb) 2 +(Yr -yb)2. 

Furthermore, a 1 and ar are the angles of the left and right spring with respect 
to the horizontal axis of the coordinate system: 

az = arctan(yi/x1), 

ll!r = arctan((Yr - Yb)/(xr - Xb)). 

Finally, F9 represents the gravitational force 

TM F9 = -(0, 1, 0, 1) 2g. 

The original formulation [8] sets g = 1. 
We rewrite (6) as a system of first order differential eq~ations_ by intro?ucing 

the velocity vector q, so that we obtain the first order d1fferent1al equations 

dp 
dt 

Mdq 
2 dt 

= q, 

We thus modeled the system by eight differential and 2 two algebraic equa
tions. The integration is started at to = O and continued during 3 seconds. 
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________ __,, ___ (\V:Q...,rh!O'iy ---------------

3.3. Index determination 
In order to be able to integrate the system of differential-algebraic equations 
numerically with a variable stepsize, one usually estimates a local error, in 
which the index of the variables has to be taken into account. 

For the car axis it is easy to determine these indexes, because the problem 
falls in the class of multibody systems with position constraints. For this class, 
the indexes of the points p, velocities q, and Lagrange multipliers A. is 1, 2, 
and 3, respectively (see e.g. [9, p. 176] or [2]). The index information belongs 
to the test problem definition and is user-supplied input for the solvers. 

3.4. Consistent initial conditions 
The numerical integration needs a set of initial values (to, Po, qo, A.0 ) that is 
consistent, which means that not only the constraint 

<P(to,Po) = 0 (7) 

has to be satisfied, but also the 1 up to k - 1 times differentiated constraint ( 7), 
where k is the highest variable index. To facilitate notation, we introduce 
p := (t,pT)T and its derivative ij := ~~ = (1,qT)T. The Jacobian of <P with 

respect top will be denoted by G. For the car axis problem k = 3, yielding the 
additional conditions 

G(flo)iio = 0 (8) 

and 

<Pvv(flo)(ijo, iio) + G(flo)i'ib = 0, 

where <Pvv denotes the second derivative of <P with respect top. Using (6) and 
the fact that the first component of q0 vanishes, the latter condition equals 

<Pvv(flo)(ijo, iio) + ~G(po) (FH(Po) +GT (po)A.o + Fg (Po)) = 0, (9) 

The equations (7)-(9) are solved for 

Xr = l 

Xt = 0 

Yr= Yl =lo 

I / lo 7r 
Xr = x 1 = ---h 

[ T 

I [2T 

Yr= M7rh (2-\1 - >-2) 

, = l 2r (2.A _ ,\ ) ± l / -8,\1 + 2.A2 
Yi lvhh 1 2 V M 

where the initial conditions for Xr, x1, Yr, and y1 are given. We choose ..\1 

A.2 = 0, so that y~ = yf = 0. 
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PS/DE-1 -+--· 
PS/DE-4 ·B·-

4 

FIGURE 3. Work-precision diagram for the car axis problem. 
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3.5. The solution 
Solving the car axis problem numerically yielded the following results: Table 1 
shows the run characteristics; Figure 3 and Figure 4 show the work-precision 
diagram and the behavior of the solution over the integration interval, respec
tively. 

From Figure 4 we see that connecting the chassis to the axis with only 
springs and no shock absorbers does not give a satisfactory behavior: bumps 
in the road are slightly magnified and extra vibrations of the chassis are intro
duced. 

solver rtol scd steps accept #f # Jae #LU CPU 
RADAU5 10 4 0.19 98 97 850 95 98 0.16 

10-7 2.51 289 288 2559 282 288 0.49 
10-10 3.13 884 883 8101 861 883 1.53 

PS IDE 10-4 -0.28 55 54 1403 42 220 0.30 
10-7 2.27 179 172 4103 83 464 0.84 
10-10 4.38 621 608 14117 114 980 2.72 

TABLE 1. Run characteristics for the car axis problem (atol = rtol and for 
RADAU5: hO = rtol). 

4. EXAMPLE: PROBLEM HIRES 
4.1. The reaction scheme 
The HIRES problem originates from plant physiology and describes how light 
is involved in morphogenesis. To be precise, it explains the "High Irradiance 
Responses" (HIRES) of photomorphogenesis on the basis of phytochrome, by 
means of a chemical reaction involving eight reactants. The reaction scheme is 
given in Figure 5. 

Pr and Prr refer to the red and far-red absorbing form of phytochrome, 
respectively. They can be bound by two receptors X and X', partially influenced 
by the enzyme E. For more details, we refer to [7J. 

The values of the reaction parameters are 

ki = 1.71 
k2 = 0.43 

k3 = 8.32 
k4 = 0.69 

k5 = 0.035 
ke = 8.32 

k+ = 280 
k_ = 0.69 

k* = 0.69 
Ok, = 0.0007 

The chemical process is started at to = 0 by mixing one mol of Pr with 0.0057 
mol of E. The integration process is continued during 321.8122 seconds, this 
value was chosen by HAIRER & WANNER [4]. 

The reason that we take this problem as an example in this paper, is not 
that the problem is so large, but that it can serve as an example for how to 
model every chemical reaction scheme. In the following, we give a general recipe 
for this modeling procedure and then illustrate every step of it by carrying it 
out for problem HIRES. 
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------------- CWIQ-.ly --------------

Xr Yr 
0.7 

0.6 

0.5 

0.4 

0.90 2 3 0.30 2 3 

Xl YI 
0.05 0.5 

/I 
A ~ 

0.499 

0 0.498 

0.497 ~ y \ 

-0.050 
2 3 

0.4960 2 3 

FIGURE 4. The coordinates (xr, Yr) and (xi, yi) for the car axis problem plotted 
as function of time in seconds. 

4.2. The modeling of chemical reactions 
Every reaction scheme of the type shown in Figure 5 can be described by a 
set of species S, a set of nodes N, a transition matrix M and a source term 
vector r. The set S contains all species that influence the chemical process. 
For problem HIRES, S is given by 

S = {PnPrr,PrX,PrrX,PrX1,PrrX1,PrrX'E,E}. 

The species X, X 1 and Pr/ are not in S, the receptors, because they are assumed 
to abound, and Prr' because its amount can be derived from the conservation 
of the total amount of phytochrome. 

The set N contains all the possible mixtures that react or are formed by a 
reaction. If we view a reaction scheme as a graph, then the nodes of this graph 
are in N. For problem HIRES, N reads 

N = {{Pr}, {Per}, {PrX}, {PrrX}, {PrX1}, {PrrX'}, {E, PrX1}, {PrrX1E}, 
{PrrX', E}, {E} }. 
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_________ ...__..,,..,,..__ C\'.iQ ......... riy ---------------

k k_ 
E + PrX' 2- PrrXj 'ET+ PfrX' + E 

k* 

Pr/+ E 

FIGURE 5. Reaction scheme for problem HIRES. 

For the specific HIRES reaction scheme, it does not occur that a node contains 
more than one entity of a species. We remark that if such a situation would 
arise, then one would have to list the species two times in the definition of the 
node. For example, for the reaction 

k 
2A---B 

the left node would read {A, A}. 
In the graph interpretation, the matrix M contains the arcs of the graph. 

If entry Mii is non-zero, then there is a reaction from the ith node in N to the 
jth node in N with reaction constant Mij. For problem HIRES, the matrix 
M is given by 

0 k1 0 0 0 0 0 0 0 0 
k2 0 0 k3 0 0 0 0 0 0 
k5 0 0 k1 0 0 0 0 0 0 
0 0 k2 0 0 k4 0 0 0 0 

M= 
0 0 k5 0 0 k1 0 0 0 0 
0 0 0 0 k2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 k2 0 k_ k* 
0 0 0 0 0 0 0 k+ 0 0 
0 0 0 0 0 0 0 k+ 0 0 

Notice that the reaction scheme of problem HIRES has two disjunct parts, 
which is reflected in the block diagonal form of M. 

It may happen that certain species are continuously added to the chemical 
process. These added quantities are called source terms and are the entries of 
the vector T, whose dimension equals the cardinality of S. For problem HIRES, 
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there is only a source term for P" which is the first element of S, so that the 
vector T takes the form 

T 
T = (ok,,o,o,o,o,o,o,o) . 

Once S, N, M and T are available, it is possible to write down the differ
ential equations that describe the change of the concentrations of the species 
in time. Every non-zero element Mij describes a chemical reaction, whose 
velocity, denoted by 'Vij satisfies 

'Vij = Mij II [Sk], (10) 
{klSkEN;} 

where [Sk] denotes concentration of Sk, the kth species in S. Formula 10 states 
that the velocity is proportional to the concentrations of all species in the node, 
from which the reaction evolves, and the proportionality constant is Mij· 

The concentration [Sk] decreases as a result of every reaction that evolved 
from a node that contains Sk. Vice versa, it increases whenever Skis in a node, 
to which a reaction leads. The decrease and increase take place at a rate that 
equals the velocities of the corresponding reaction. Concentration [Sk] has an 
extra increase if the kth element of T is non-zero. This leads to the following 
differential equation for [Sk]: 

d[Sk]/dt = L L 'Vij - L L Vij + Tk· 

i {JIM;;'iO /\SkEN,} j {ilM;,fO /\S•EN;} 

For problem HIRES, this results in the following differential equations: 

d[Pr]/dt = -ki[Pr] + k2[Prr] + k5[PrX] +Ok,, 

d[Prr]/dt = ki[Pr] - (k2 + k3)[Prr], 

d[PrX]/dt = -(k1 + kB)[PrX] + k2[PrrX] + k5[PrX'], 

d[PfrX]/dt = k3[Prr] + k1[PrX] - (k2 + k4)[PrrXJ, 

d[PrX']/dt = -(k1 + k5)[PrX'] + k2[PrrX'] + k2[PfrX1E], 

d[PrrX']/dt = k4[PrrX] + k1 [PrX'] - k2[PrrX'] + k_[PfrX'E] - k+[PrrX'](E], 

d[PrrX'E]/dt = -(k2 + k_ + k*)[PrrX1E] + k+[PfrX'](E], 

d[E]/dt = (k2 + k_ + k*)[PrrX1E] - k+[PrrX1][E]. 

4.3. The solution 
Solving the HIRES problem numerically yielded the following results: Table 2 
shows the run characteristics; Figure 6 and Figure 7 show the work-precision 
diagram and the behavior of the solution over the integration interval, respec

tively. 
From Figure 7 we see that after about 320 seconds, the concentrations of 

the species in S containing P are very small, which indicates that almost all 
phytochrome has been transformed to Prr'- (Remember that the amount of 
Pr/ can be derived from the conservation of the total amount of phytochrorne.) 
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scd 

DASSL .,._ 
AADAU5 -+--· 
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FIGURE 6. Work-precision diagram for problem HIRES. 
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------------ CWIQ-..fr ------------

solver rtol scd steps accept #f # Jae #LU CPU 
DASSL 10 4 1.03 108 99 173 31 0.04 

10-7 3.87 320 309 473 40 0.11 
10-10 6.70 1150 1134 1588 55 0.38 

RADAU5 10-4 0.72 42 33 333 21 41 0.03 
10-7 4.31 79 72 684 31 61 0.06 
10-10 6.88 203 202 1684 61 100 0.15 

VODE 10-4 1.39 133 131 191 10 25 0.03 
10-7 3.98 415 390 608 9 70 0.09 
10-10 6.20 933 880 1224 15 134 0.20 

PSIDE 10-4 3.03 43 37 665 20 168 0.08 
10-7 4.88 68 60 1208 25 252 0.13 
10-10 8.85 152 151 2528 35 344 0.24 

TABLE 2. Run characteristics for problem HIRES (atol = rtol and for 
RADAU5: hO = rtol/100). 

4 6 

PrX 

0.021~ 
0.01~ 

0o 2 4 6 

0.2~ 
0.1~ 

0o 100 200 300 400 

0.011 
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FIGURE 7. Concentration in mols for problem HIRES plotted as function of 

time in seconds. 
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