On Distance-Transitive Graphs and Involutions*

John van Bon ${ }^{\dagger}$
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract

We present a new result on distance-transitive graphs and show how it can be used in the case where the vertex stabilizer is the centralizer of some involution.

1. Introduction

In the classification of primitive distance-transitive graphs one is confronted with the question if for a finite group G there is a suitable maximal subgroup H and a suitable suborbit leading to a distance-transitive graph. In this paper (see section 2) we present a result concerning the case where there is a suborbit on which H acts unfaithfully. As an immediate consequence one gets strong restrictions on the special case where H is the centralizer of an involution. As an application we determine in section 3 all primitive distance-transitive graphs with automorphism group G such that $S \leq G \leq \operatorname{Aut}(S)$, where S is a sporadic simple group, that is, one of the 26 groups mentioned as such in the Atlas [6], and H the centralizer of some involution.

Throughout this paper we shall use the notation of the Atlas [6]; our terminology is standard, see Bannai \& Ito [2] and Brouwer, Cohen \& Neumaier [5] for general reference.

2. General Theory

In this section Γ is a graph on which G acts transitively. By G_{x} we denote the stabilizer of $x \in \Gamma$ in G. If G_{x} is the centralizer of some involution $\sigma \in \operatorname{Aut}(G)$ then the vertex set of Γ can be identified with the conjugacy class D of involutions which are G-conjugate to σ. Note that for any pair $\alpha, \beta \in D$ with $\alpha C_{G}(\sigma)$-conjugate to β we have $|\alpha \sigma|=|\beta \sigma|$. The following omnibus lemma states some well known results which we shall use; (i)-(v) goes back to Taylor \& Levingston [15] and (vi)-(viii) follows from the work by Gardiner, see for instance Brouwer, Cohen \& Neumaier [5].

[^0]2.1. Lemma. Let Γ be a distance-regular graph with $\operatorname{diam} \Gamma \geq 3$, and, for $\gamma \in \Gamma$, set $k_{i}=\left|\Gamma_{i}(\gamma)\right|$.
(i) There are i, j with $1 \leq i \leq j \leq d$ such that $1<k_{1}<\cdots<k_{i}=\cdots=k_{j}>\cdots>$ k_{d}.
(ii) If $i \leq j$ and $i+j \leq d$, then $k_{i} \leq k_{j}$.
(iii) If $k_{i}=k_{j}$ for i, j with $i<j$ and $i+j \leq d$, then $k_{i+1}=k_{j-1}$.
(iv) If $k_{i}=k_{i+1}$, then $k_{i} \geq k_{j}$ for all j.
(v) If $k_{j-1}=k$ for some j with $3 \leq j \leq d$, then $k=2$ or Γ is an antipodal 2-cover.
(vi) If $c_{2}=c_{3}$ then $c_{2}=c_{3}=1$.
(vii) If $b_{1}=b_{2}$ then $c_{2}=1$.
(viii) Given a non-bipartite distance-regular graph, there are numbers \underline{i}, \bar{i} such that $a_{l} \neq 0$ if and only if $\underline{i} \leq l \leq \bar{i}$. Moreover $\underline{i}+\bar{i} \geq d$.
(ix) $c_{1} \leq c_{2} \leq \cdots \leq c_{d}$ and $b_{0} \geq b_{1} \geq \cdots \geq b_{d-1}$.
(x) If $i+j \leq d$ then $c_{i} \leq b_{j}$.

A useful set of inequalities was given by Terwilliger [16]:
2.2. Theorem. Let Γ be a distance-regular graph with intersection array $\left\{b_{0}, b_{1}, \ldots\right.$, $\left.b_{d-1} ; c_{1}, \ldots, c_{d}\right\}$. If Γ contains a quadrangle, then, for all $i(i=1, \ldots, d), c_{i}-b_{i} \geq$ $c_{i-1}-b_{i-1}+a_{1}+2 ;$ in particular, $d \leq\left(k+c_{d}\right) /\left(a_{1}+2\right)$.

The next lemma tells us that in the case $G_{x} \leq C_{G}(\sigma)$, with $\sigma \in \operatorname{Aut}(G)$, we may assume $\sigma \in$ Aut Γ.
2.3. Lemma. Let Γ be a graph on which G acts primitively distance-transitively, and denote by H the stabilizer in G of a vertex of Γ. Suppose σ is an automorphism of G.
(i) If σ centralizes H and diam $\Gamma \geq 3$, then $\sigma \in$ Aut Γ.
(ii) If σ normalizes H and $\operatorname{diam} \Gamma \geq 5$, then the same conclusion holds.

Proof. As G acts distance-transitively on Γ we can identify Γ with $\Gamma(G, H, r)$ for some $r \in G$. Clearly σ induces a permutation of the vertices of Γ, and we are done if $H r H=H r^{\sigma} H$. Suppose this is not the case. Let us define $\Gamma^{\sigma}=\Gamma\left(G, H, r^{\sigma}\right)$. Clearly $\sigma: g H \rightarrow g^{\sigma} H$ is an isomorphism from Γ to Γ^{σ}. By assumption $r^{\sigma} H$ is not adjacent to H, so is at distance a say, with $a>1$. Now we get $\Gamma^{\sigma}=\Gamma_{a}$ and, as G acts distance-transitively, $k_{a}=k$. It follows by Taylor \& Levingston [15] that if $a \neq d:=\operatorname{diam} \Gamma$ then $k_{2}=k$ or $k_{d-1}=k$ and Γ is imprimitive. So we may assume $a=d$. As $a_{d}=0$ (for else $k_{2}=k$) we have $c_{d}=k$ and $d\left(r H, r^{\sigma} H\right)=d-1$. If σ centralizes H then $H \cap r H r^{-1}=H \cap r^{\sigma} \mathrm{Hr}^{-\sigma} \subseteq r \mathrm{Hr}^{-1} \cap r^{\sigma} \mathrm{Hr}^{-\sigma}$. By distancetransitively we have $k=\left[H: H \cap r H r^{-1}\right] \geq\left|r H r^{-1}\right| /\left|r H r^{-1} \cap r^{\sigma}{H r^{-\sigma}}^{-\sigma}\right|=k_{d-1}$ and again $k_{d-1}=k$ i.e. Γ imprimitive, a contradiction. If σ normalizes H, let $S=$ $\Gamma\left(r^{\sigma} H\right) \cap \Gamma_{d}(r H)$, then $S^{\sigma}=S,|S|=b_{d-1}$ and the graph induced on S is a coclique.

If $|S|=1$ then $k_{d-1}=k^{2}$ whence $k_{d-1}>k_{2}$ and from lemma 2.1 follows that if $k_{j}=k_{2}$ then $j=2$ whence $\left(\Gamma_{2}(H)\right)^{\sigma}=\Gamma_{2}(H)$.

If $|S| \geq 2$ take $s_{1}, s_{2} \in S$. Now $d\left(s_{1}, s_{2}\right)=2=d\left(s_{1}^{\sigma}, s_{2}^{\sigma}\right)$. So $H x H=H x^{\sigma} H$ where $H x H$ is the double coset corresponding to $\Gamma_{2}(H)$.

Thus for a vertex $g H$ with $d(g H, H)=2$ we have $d\left(g^{\sigma} H, H\right)=2$.
If $d \geq 5$ we have $0=p_{2 d}^{2}=p_{21}^{2}=a_{2}, a_{d}=0$ and by lemma $2.1 a_{1}=0$, i.e. $b_{1}=k-1$. From the equality $\sum_{i} p_{i j}^{l} p_{l s}^{m}=\sum_{r} p_{i r}^{m} p_{j s}^{r}$ with $m=s=d$ and $i=j=1$ it follows:

$$
b_{0} p_{0 d}^{d}+a_{1} p_{1 d}^{d}+c_{2} p_{2 d}^{d}=c_{d} p_{1 d}^{d-1}+a_{d} p_{1 d}^{d}
$$

i.e. $k+c_{2} b_{1}=k b_{d-1}$. Thus $c_{2}(k-1)=k\left(b_{d-1}-1\right)$; as $c_{2} \leq k$ and $b_{d-1} \leq k$ this contradicts $\operatorname{diam} \Gamma \geq 5$.
2.4. Lemma. Let Γ be a finite graph, $x, y \in \Gamma$ with $x \sim y$ and let H be a subgroup of Aut Γ such that the graphs induced on y^{H} and x^{H} are both cliques. If Γ contains no quadrangle then the graph induced on $y^{H} \cup x^{H}$ is also a clique.
Proof. Without los of generality we may assume $\left|y^{H}\right| \geq 2$ and $\left|x^{H}\right| \geq 2$. If $x \in y^{H}$ then $y^{H} \cup x^{H}=y^{H}$ is a clique and we are done. So we may assume $x \notin y^{H}$. Let $h \in H$ with $h y \neq y$, we want to show that $x \sim h y$. If $h x=x$ then $x=h x \sim h y$ and we are done therefore assume $h x \neq x$ and by way of contradiction $x \nprec h y$. Now $y \sim h y \sim h x \sim x \sim y$. As there are no quadrangles we get $h x \sim y$.

We claim that $h^{i} x \sim y$ for all i. We prove the claim with induction. Suppose $h^{r} x \sim y, r \geq 1$. If $h^{r+1} y=y$ then $h^{r+1} x \sim h^{r+1} y=y$ done. If $h^{r+1} x=x$ then $x=$ $h^{r+1} x=h h^{r} x \sim h y$ a contradiction. Thus we have $y \sim h^{r} x \sim h^{r+1} x \sim h^{r+1} y \sim y$. As $x \nsim h y$ we have $h^{r} x \nsucc h^{r+1} y$ thus we must have $y \sim h^{r+1} x$ proving the claim.

In particular we have $h^{-1} x \sim y$ i.e. $x \sim h y$, a contradiction. Thus $x \sim h y$ for all $h \in H$. And interchanging the role of x and y we find $y \sim h x$ for all $h \in H$ proving the lemma.
2.5. Proposition. Let Γ be a graph of diameter d on which the group G acts distancetransitively as a group of automorphisms. For a vertex $x \in \Gamma$, denote by G_{x}^{i} the kernel of the action of G_{x} on $\Gamma_{i}(x)$. If, for some $i \geq 1$, we have $G_{x}^{i} \neq 1$, then

$$
G_{x}^{i} \subset G_{x}^{i-1} \subset \cdots \subset G_{x}^{1} \quad \text { or } \quad G_{x}^{i} \subset G_{x}^{i+1} \subset \cdots \subset G_{x}^{d} .
$$

Proof. First we shall prove $G_{x}^{i} \subseteq G_{x}^{i-1} \subseteq \cdots \subseteq G_{x}^{1}$ or $G_{x}^{i} \subseteq G_{x}^{i+1} \subseteq \cdots \subseteq G_{x}^{d}$. Suppose not. Then there is a $i \geq 1$ with $G_{x}^{i} \neq 1$ and there are $j_{1}<i<j_{2}$ with $G_{x}^{i} \nsubseteq G_{x}^{j_{1}}$ and $G_{x}^{i} \nsubseteq G_{x}^{j_{2}}$. Choose j_{1} maximal and j_{2} minimal with this property. Thus there are $y_{1} \in \Gamma_{j_{1}}(x), y_{2} \in \Gamma_{j_{2}}(x)$ and $h_{1}, h_{2} \in G_{x}^{i}$ with $h_{1} y_{1} \neq y_{1}$ and $h_{2} y_{2} \neq y_{2}$. Suppose $h_{2} y_{2} \nsucc y_{2}$. Then $h_{2} y_{2}$ and y_{2} have at least $c_{j_{2}}$ common neighbours i.e. $c_{j_{2}} \leq c_{2}$. If $j_{2}=2$ then $i=1, j_{1}=0$ and $G_{x}^{j_{1}}=G_{x}$, a contradiction. So $j_{2} \geq 2$ and $c_{2}=\cdots=$ $c_{j_{2}}=1$ whence $G_{x}^{i} \subseteq G_{x}^{i-1} \subseteq \cdots \subseteq G_{x}^{1}$, a contradiction. Thus $h_{2} y_{2} \sim y_{2}$. Without los of generality we may assume $h y_{2}=y_{2}$ or $h y_{2} \sim y_{2}$ for all $h \in G_{x}^{i}$ and $y_{2} \in \Gamma_{j_{2}}(x)$. Consequently $b_{j_{2}-1} \geq 2$ and $c_{j_{2}} \leq \lambda$. If $h_{1} y_{1} \nsucc y_{1}$ then $h_{1} y_{1}$ and y_{1} have at least $b_{j_{1}}$ common neighbours, i.e. $b_{j_{1}} \leq c_{2}$. If $j_{1}<d-2$ then $b_{j_{1}} \geq c_{3}$, so $c_{3}=c_{2}=1$ whence $b_{j_{1}}=1$ and $1=b_{j_{1}} \geq b_{j_{2}} \geq 2$, a contradiction. Therefore $j_{1} \geq d-2$ and so $j_{1}=d-2, i=d-1, j_{2}=d$ and $b_{d-2}=c_{2}$. If Γ contains a quadrangle then, by Terwilliger [16]

$$
c_{r}-b_{r} \geq c_{r-1}-b_{r-1}+\lambda+2 \quad \text { for all } \quad 1 \leq r \leq d
$$

Especially we find $c_{d} \geq c_{d-1}-b_{d-1}+\lambda+2 \geq c_{d-2}-b_{d-2}+2 \lambda+4$ and so we get $\lambda \geq c_{d} \geq c_{d-2}-c_{2}+2 \lambda+4$ i.e. $c_{2} \geq c_{d-2}+\lambda+4$ but then $\lambda \geq c_{d} \geq c_{2} \geq \lambda+4$, a contradiction. Thus Γ contains no quadrangle. From lemma 2.4 follows that for each $z \in \Gamma_{d}(x) \cap \Gamma\left(y_{2}\right)$ and $h \in G_{x}^{i}$ we have $z \in \Gamma_{d}(x) \cap \Gamma\left(h y_{2}\right)$. By hypotheses there is a $h \in G_{x}^{i}$ with $h y_{2} \neq y_{2}$ i.e. $h y_{2}$ and y_{2} have at least $a_{d}-1+c_{d}$ common neighbours. Thus $c_{d}+a_{d-1} \leq \lambda$ but this implies $k=\lambda+1$, a contradiction.

Therefore $h_{1} y_{1} \sim y_{1}$. Now $b_{j_{1}} \leq \lambda$.
If Γ contains a quadrangle then we have $c_{i+1}-b_{i+1} \geq c_{i-1}-b_{i-1}+2(\lambda+2)$.
But we have $c_{i+1} \leq c_{j_{2}} \leq \lambda$ and $b_{i-1} \leq b_{j_{1}} \leq \lambda$ leading to

$$
\begin{aligned}
\lambda & \geq c_{i+1}-b_{i+1} \geq c_{i-1}-b_{i-1}+2(\lambda+2) \geq c_{i-1}-\lambda+2(\lambda+2)=c_{i-1}+\lambda+4 \\
& \geq \lambda+4
\end{aligned}
$$

a contradiction.
Thus Γ contains no quadrangle. Again from lemma 2.4 follows that if

$$
z \in \Gamma_{j_{r}}(x) \cap \Gamma\left(y_{r}\right) \backslash h_{r} y_{r} \quad \text { then } \quad z \in \Gamma_{j_{r}}(x) \cap \Gamma\left(h_{r} y_{r}\right), \quad r \in\{1,2\} .
$$

Thus y_{1} and $h_{1} y_{1}$ have at least $a_{j_{1}}+b_{j_{1}}-1$ common neighbours, and y_{2} and $h_{2} y_{2}$ have at least $a_{j_{2}}+c_{j_{2}}-1$ common neighbours. Whence

$$
\lambda \geq a_{j_{1}}+b_{j_{1}}-1=k-c_{j_{1}}-1 \quad \text { and } \quad \lambda \geq a_{j_{2}}+c_{j_{2}}-1=k-b_{j_{2}}-1
$$

substituting $\lambda=k-b_{1}-1$ we get $b_{1} \leq b_{j_{2}}$. As $j_{2} \geq 2$ we have $b_{1}=b_{2}$ whence $c_{2}=1$. Also

$$
k \leq \lambda+b_{j_{2}}+1 \leq \lambda+b_{j_{1}}+1 \leq 2 \lambda+1
$$

Let $u, v \in \Gamma(x)$ with $u \nsim v$ then $\Gamma(u) \cap \Gamma(v)=\{x\}$ hence

$$
\{u\} \cup\{v\} \cup(\Gamma(x) \cap \Gamma(u)) \cup(\Gamma(x) \cap \Gamma(v)) \subseteq \Gamma(x)
$$

counting the number of vertices in these sets we get $k \geq 2+2 \lambda$, a contradiction.
It remains to show that if $G_{x}^{j}=G_{x}^{j+1}$ for some j, then $G_{\lambda}^{j}=G_{x}^{j+1}=\{1\}$.
Therefore suppose $G_{x}^{j}=G_{x}^{j+1} \neq\{1\}$.
If $G_{x}^{j+1} \subseteq G_{x}^{j} \subseteq \cdots \subseteq G_{x}^{1}$ then take a $y \in \Gamma_{j+1}(x)$ and a $z \in \Gamma(x) \cap \Gamma_{j}(y)$. Now $G_{x}^{j+1} \subseteq G_{z}^{j}=G_{z}^{j+1}$ whence $g y=y$ for all $g \in G_{x}^{i+1}$.

This shows $G_{x}^{j+1} \subseteq G_{x}^{j+2}$.
If $G_{x}^{j+2} \subseteq G_{x}^{j+3} \cdots \subseteq G_{x}^{d}$ then G_{x}^{j+1} fixes all vertices of Γ contradicting $G_{x}^{j+1} \neq\{1\}$, thus

$$
G_{x}^{j+2} \subseteq G_{x}^{j+1} \subseteq G_{x}^{j} \subseteq \cdots \subseteq G_{x}^{1}
$$

i.e. $G_{x}^{j+2}=G_{x}^{j+1}=G_{x}^{j}$. Now $G_{x}^{j}=\{1\}$ readily follows.

If $G_{x}^{j} \subseteq G_{x}^{j+1} \subseteq \cdots \subseteq G_{x}^{d}$ then take a $y \in \Gamma_{j-1}(x)$ and a $z \in \Gamma(x) \cap \Gamma_{j}(y)$. As $\Gamma_{d}(z)=$ $\Gamma_{d}(w)$ implies $z=w$, and $j \leq d-1$, we have $G_{x}^{j} \subseteq G_{z}$. Now $G_{x}^{j} \subseteq G_{z}^{j+1}=G_{z}^{j}$ hence $g y=y$ for all $g \in G_{x}^{j}$ this shows $G_{x}^{j} \subseteq G_{x}^{j-1}$.

If $G_{x}^{j} \subseteq G_{x}^{j-1} \subseteq \cdots \subseteq G_{x}^{1}$ then G_{x}^{j} fixes all vertices of Γ contradicting $G_{x}^{j} \neq\{1\}$, thus $G_{x}^{j-1} \subseteq G_{x}^{j} \subseteq \cdots \subseteq G_{x}^{d}$ i.e. $G_{x}^{j-1}=G_{x}^{j}=G_{x}^{j+1}$. Now $G_{x}^{j}=\{1\}$ readily follows.

Define $G_{x}^{\leq i}$ for the kernel of the action of G_{x} on the union of all $\Gamma_{j}(x)$ for $0 \leq j \leq i$, and, likewise $G_{x}^{\geq i}$ for the kernel on the union of all $\Gamma_{j}(x)$ for $i \leq j \leq d$.
2.6. Corollary. Let Γ be a graph of diameter d on which the group G acts distancetransitively and primitively as a group of automorphisms. Let $x \in \Gamma$.
(i) If $G_{x}^{\leq i} \neq 1$ then $\left|G_{x}^{\leq i}\right|>\left|G_{x}^{\geq d-i}\right|$.
(ii) Let π be a permutation of $\{1, \ldots, d\}$ such that K_{i} is the kernel of the action of
$G_{x}^{\pi(i)}$ on $\Gamma_{\pi(i)}(x)$, and $\left|K_{i}\right| \geq\left|K_{i+1}\right|(i=0 \ldots d)$, where $\left|k_{d+1}\right|=1$. If $\left|K_{1}\right|>\left|K_{2}\right|=$ $\left|K_{3}\right| \neq 1$, then $\pi(1)=1$.
(iii) If $G_{x}^{\leq i} \neq 1$ and G_{x} acts trivially on $G_{x}^{\leq i} / G_{x}^{\leq i+1}$ then $G_{x}^{\leq i+1}=\{1\}$.

Proof. (i) Let $x \in \Gamma$ and $y \in \Gamma_{d}(x)$ clearly $G_{x}^{\geq d-i} \leq G_{y}^{\leq i}$ thus $\left|G_{x}^{\geq d-i}\right| \leq\left|G_{y}^{\leq i}\right|=\left|G_{x}^{\leq i}\right|$.
If $\left|G_{x}^{\geq d-i}\right|=\left|G_{x}^{\leq i}\right|$ then $G_{y}^{\leq i}=G_{x}^{\geq d-i}$ hence $G_{y}^{\leq i} \unlhd\left\langle G_{x}, G_{y}\right\rangle=G$. Thus $G_{y}^{\leq i}=\{1\}$ and also $G_{x}^{\leq i}=\{1\}$ a contradiction.
(ii) From the proposition it follows that if $\pi(1)=d$ then $G_{x}^{\geq d-1}, G_{x}^{1} \in\left\{K_{2}, K_{3}\right\}$ but now $\left|G_{x}^{\geq d-1}\right|=\left|G_{x}^{1}\right|$ contradicting (i).
(iii) Take $z \in \Gamma(x)$. Then $G_{z}^{\leq i+1} \leq G_{x}^{\leq i}$, thus G_{x} acts trivial on $G_{z}^{\leq i+1} G_{x}^{\leq i+1} /$ $G_{x}^{\leq i+1}$. Hence $\left\langle G_{z}^{\leq i+1}, G_{x}^{\leq i+1}\right\rangle \unlhd G_{x}$. As G acts transitively on Γ, we can interchange x and z, thus $\left\langle G_{z}^{\leq i+1}, G_{x}^{\leq i+1}\right\rangle \unlhd G_{z}$. But now $\left\langle G_{z}^{\leq i+1}, G_{x}^{\leq i+1}\right\rangle \unlhd\left\langle G_{x}, G_{z}\right\rangle=G$ and thus $\left\langle G_{z}^{\leq i+1}, G_{x}^{\leq i+1}\right\rangle=\{1\}$. In particular $G_{x}^{\leq i+1}=\{1\}$.
2.7. Lemma. Let Γ be a distance-regular graph of diameter d and automorphism group G. If Γ contains no quadrangle and $c_{2}>1$ then $G_{x}^{\leq 2}=G_{x}^{\geq d-2}=\{1\}$ for all vertices $x \in \Gamma$.

Proof. Suppose there is a $x \in \Gamma$ with $G_{x}^{\leq 2} \neq\{1\}$. Then there is an $i \geq 2$ with $G_{x}^{\leq i} \neq\{1\}$ and $G_{x}^{\leq i+1}=\{1\}$. Let $y \in \Gamma_{i+1}(x)$ and $g_{0} \in G_{x}^{\leq i}$ with $g_{0} y \neq y$. Now $g_{0} y$ and y have at least $\left|\Gamma_{i}(x) \cap \Gamma(y)\right|=c_{i+1}$ common neighbours. If $g_{0} y \nsim y$ then we have $c_{i+1} \leq c_{2}$ whence $c_{2}=c_{i+1}=1$, a contradiction. Thus $g_{0} y \sim y$. Hence we find $g z=z$ or $g z \sim z$ for all $g \in G_{x}^{\leq i}$ and $z \in \Gamma_{i+1}(x)$. From lemma 2.4 it follows that each $z \in \Gamma_{i+1}(x) \cap \Gamma(y) \backslash\left\{g_{0} y\right\}$ also is in $\Gamma_{i+1}(x) \cap \Gamma\left(g_{0} y\right) \backslash\{y\}$. Whence y and $g_{0} y$ have at least $c_{i+1}+a_{i+1}-1$ common neighbours. Thus $\lambda \geq c_{i+1}+a_{i+1}-1$ i.e. $b_{1}=b_{i+1}$. But from lemma 2.1 it follows that $b_{i+1}=b_{1}$ and $c_{2}=1$, a contradiction. Therefore $G_{x}^{\leq 2}=\{1\}$ for all $x \in \Gamma$. Suppose there is a $x \in \Gamma$ with $G_{x}^{\geq d-2} \neq\{1\}$. Let $y \in \Gamma_{d}(x)$ then $\{1\} \neq G_{x}^{\geq d-2} \leq G_{y}^{\leq 2}=\{1\}$, the final contradiction.
2.8. Theorem. Let Γ be a distance-transitive graph with distance-transitive group G. Suppose that the vertex set $V \Gamma$ of Γ is a conjugacy class of involutions in G, that G acts on Γ by conjugation and that there are elements in $V \Gamma$ which commute in G. Take $x, y \in \Gamma$ with x adjacent to y. Then at least one of the following statements holds.
(i) Γ is a polygon or an antipodal 2-cover of a complete graph.
(ii) G is a 2-group.
(iii) The order of $x y$ is an odd prime, if $a, b \in \Gamma$ with $a b$ of order 2 , then a and b have maximal distance in Γ, and if $a, b \in \Gamma$ the order of $a b$ is not 4 .
(iv) The elements x and y commute, and if $z \in \Gamma_{2}(x)$ then $x z$ has order 2,4 or an odd prime. Moreover either $O_{2}\left(C_{G}(x)\right) \neq\langle x\rangle$ or $C_{G}(x)$ contains a normal subgroup generated by p-transpositions.

Proof. First suppose $[x, y] \neq 1$. If Γ has diameter 2 then there is a number m such that for any two involutions $x, y \in \Gamma$ with $x \neq y$ the order of $x y$ is 2 or m. Clearly $m \in\{2,4, p\}$ where p is an odd prime. Thus by Baer [1] we are in (ii) or (iii). From now on assume that Γ has diameter >2. Then $V \Gamma$ viewed as conjugacy class of involutions is a subset of $G \leq \operatorname{Aut}(\Gamma)$. By the existence of commuting involutions it follows that at least one of $G_{x}^{\leq i}, G_{x}^{\geq i}$ is non trivial. Suppose $d\left(x^{y}, x\right)=2$. Then, as G_{x} acts transitively on $\Gamma_{2}(x)$, there is a surjection $z \rightarrow x^{z}$ from $\Gamma(x)$ on $\Gamma_{2}(x)$, and so
$k_{2} \leq k$. This amounts to $b_{1} \leq c_{2}$. As Γ has diameter at least 3 , it follows by standard distance-regular graph theory that $b_{1}=c_{2}$ so, $k_{2}=k$, and it is readily seen that Γ is as (i) or (ii). Therefore, taking into account that $x \sim y \sim x^{y}$ we may assume that x^{y} and x are adjacent. Then $x^{y} x=(y x)^{2}$ and $y x$ have the same order, which must be an odd number, say p. Let $r_{j}=(y x)^{j} 1 \leq j \leq p-1$, if $x^{r_{i}} \nsim x$ then we get by the same argument as before a contradiction. Hence $x^{r_{i}} \sim x$ and p is an odd prime. Let $v \in \Gamma$ with $|x v|=2, d(x, v)=j$ say. Now $v \in G_{x}^{\leq j}$ or $G_{x}^{\geq j}$. As $v \notin G_{x}^{1}$ we have $v \in G_{x}^{\geq j}$ and if $w \in \Gamma_{\geq j}(x)$ then $|w x|=2$. If $j \neq d$ then v has a neighbour w with $d(x, v) \neq$ $d(x, w)$ but $|v w|=p$ hence they are conjugate in $\langle v, w\rangle \leq G_{x}$ a contradiction. Thus $j=d$. Let $x=x_{0} \sim x_{1} \sim \cdots \sim x_{d}=v$ be a geodesic of Γ. If $\left|x x_{j}\right|=4$ for some j then $d\left(x_{j}, x_{j}^{x}\right)=d$ and $x_{1} \sim x_{1}^{x}$ whence $d \leq \min (2 j-1,2(d-j))$ i.e. $2 j \leq d \leq 2 j-1$ a contradiction. Hence assertion (iii) holds. Finally suppose $[x, y]=1$ let N be the group generated by the neighbours of x. Clearly this is a normal subgroup of $G_{x}=C_{G}(x)$ which is generated by p-transpositions if $|x z|=p$ or a 2-group otherwise.

If $G_{x}=C_{G}(\sigma), \sigma$ a involution in G, then the vertices of Γ can be identified with the conjugacy class of involutions containing σ. This graph is then called a graph on involutions.
2.9. Lemma. If Γ is a distance-transitive graph on involutions and $x, z \in \Gamma$ with $x z \in \Gamma$ then $d(x, z)=d(x, x z)=d(z, x z)$.
Proof. As Γ is a distance-transitive graph there is an automorphism of Γ, g say, with $x^{g}=z$ and $z^{g}=x$ thus $(x z)^{g}=x z$ hence $d(x z, z)=d(x z, x)$, interchanging the roles of $x z$ and z the lemma follows.
2.10. Lemma. Let σ be a involution of Γ, Γ as above, D its G-conjugacy class and K a conjugacy class of G. Then the number $\alpha_{k}(\sigma)$ of involutions $\tau \in D$ with $\sigma \tau \in K$ equals

$$
\frac{|D \| K|}{|G|} \sum_{x} \frac{\chi(K) \chi(D)^{2}}{\chi(1)}
$$

where χ runs through the irreducible characters of G.
Proof. It is well known (see [11]) that the number of order pairs $(g, t) \in K \times D$ with $g \tau=\sigma$ equals

$$
\frac{|D||K|}{|G|} \sum_{x} \frac{\chi(K) \chi(D) \overline{\chi(D)}}{\chi(1)}
$$

where χ runs through the irreducible characters of G. As D is a conjugacy class of involutions we have $\chi(D)=\chi\left(D^{-1}\right)=\overline{\chi(D)}$, now its clear that this number equals $\alpha_{k}(\sigma)$, whence the lemma.

Note that $\alpha_{k}(\sigma)$ is the sum of orbit-lengths of $C_{G}(\sigma)$ on the involutions of D.

3. The Groups

Recall that we mean by a sporadic simple group one of the 26 groups mentioned as such in the Atlas. Our goal in this section is to prove the following:
3.1. Proposition. Let Γ be a graph on which the group G acts primitively distancetransitively, where G has a normal sporadic simple subgroup and $G_{x}=C_{G}(x)$ for an involution $x \in \operatorname{Aut}(G)$.

Then G, Γ is on of the following pairs of groups and graphs.
(i) $\quad M_{22} \unlhd G \leq$ aut M_{22} and Γ is the 2-residual of $S(5,8,24)$, a graph on 330 vertices.
(ii) $G=$ aut $H J$ and Γ is the near octagon associated with $H J$ on 315 vertices.
(iii) $F \unlhd G \leq$ aut F, where F is one of $F i_{22}, F i_{23}$ or $F i_{24}^{\prime}$ and Γ is the Fischer graph on the 3-transpositions or its complement.
In the subsequent sections all 26 groups will be handled, thus providing a proof for the proposition. Par abus de language we shall identify the vertices of the graph Γ with the corresponding involutions.

3.2. Mathieu Group M_{11}

There is only one conjugacy class D of involutions and $C_{G}(D) \cong 2 \cdot S_{4} \cong G L_{2}(3)$.
For a fixed involution x there are 24 involutions y with $|x y|=4$ so the adjacent vertices form a orbital of involutions commuting with x. For a fixed involution x there are 12 involutions y with $|x y|=2$, this is one orbit under $G L_{2}(3)$ but not of odd transpositions. Whence we cannot make a distance-transitive graph.

3.3. Mathieu Group M_{12}

There are 2 conjugacy classes X of involutions, of types $2 A$ and $2 B$ say, with $C_{G}(x)$ a maximal subgroup of G. Thus we have to consider 2 cases.
(1) $X=2 A$. For a fixed involution $a \in 2 A$ there are

20 involutions $x \in 2 A$ with $a x \in 2 A$
15 involutions $x \in 2 A$ with $a x \in 2 B$
60 involutions $x \in 2 A$ with $|a x|=4$ (30 with $a x \in 4 A, 30$ with $a x \in 4 B$).
As $C_{M_{12}}(a) \cong 2 \times S_{5}$ and $C_{M_{12} .2}(a) \cong\left(2^{2} \times A_{5}\right): 2$, it readily follows that we can identify the 20 involution x with $x a \in 2 A$ with the transpositions y in S_{5} and $a y$.

Also it is clear that if $u \sim a$ then $a u \in 2 A$ (for A_{5} is not generated by odd transpositions). If these 20 involution are in one orbit of $C_{M_{12} .2}(a)$ then we get a contradiction by calculating orders in $\Gamma(a)$. If its not no orbital then there are 3 distances Γ with the property of having a as kernel hence also a contradiction.
(2) $X=2 B$. For a fixed involution $b \in 2 B$ there are 30 involutions $x \in 2 B$ with $x b \in 2 B$ and $96(=48+48)$ with $|x b|=4$,

$$
H=C_{M_{12}}(b) \cong 2_{+}^{1+4} \cdot S_{3}
$$

besides b this group contains $302 B$ and $122 A$ involutions. If $b, b^{\prime} \in 2 B$ with $\left|b b^{\prime}\right|=2$ then $b b^{\prime} \in 2 B$. These 30 involutions split in 2 orbits under H of size 6 and 24. As $O_{2}(H)-\{b\}$ contains 18 involutions ($62 B$ and $122 A$), it readily follows that we get a graph of valency 6 and non existence of a distance-transitive graph follows by Faradjev, Ivanov \& Ivanov [7] or Gardiner \& Praeger [8].

3.4. Mathieu Group M_{22}

There is only one maximal subgroup of M_{22} which is the centralizer of an involution. This involution is contained in Aut $M_{22} \backslash M_{22}$. By lemma 2.3 we may assume that these involutions are contained in $\operatorname{Aut}(\Gamma)$. Now $C_{M_{22} \cdot 3}(c) \cong 2^{3}: L_{3}(2) \times 2$ and for a fixed involution c
there are $49(=7+42)$ involutions x with $x c \in 2 A$
$\begin{array}{ll}168 & \text { involutions } x \text { with } x c \in 4 A \\ 112 & \text { involutions } x \text { with } x c \in 3 A\end{array}$
leading to a graph with distance distribution diagram

3.5. Mathieu Groups M_{23}, M_{24}

These groups do not contain maximal subgroups which are centralizers of involutions.

3.6. Higman-Sims Group HS

In this group all involutions give rise to a maximal subgroup. So we have to consider 3 cases.

Type 2A.
Let $a \in 2 A$ then $C_{H S}(a) \cong 4 \cdot 2^{4}: S_{5}$ and $C_{H S .2}(a) \cong 2_{+}^{1+6}: S_{5}$. For this fixed a there are

110 involutions $x \in 2 A$ with $a x \in 2 B$
480 involutions $x \in 2 A$ with $a x \in 4 B$
960 involutions $x \in 2 A$ with $a x \in 4 C$
640 involutions $x \in 2 A$ with $a x \in 3 A$
128 involutions $x \in 2 A$ with $a x \in 5 B$
1536 involutions $x \in 2 A$ with $a x \in 5 C$
1920 involutions $x \in 2 A$ with $a x \in 6 B$.
Now $O_{2}\left(C_{H S}(a)\right)$ contains only 30 involutions and $O_{2}\left(C_{H S}(a)\right) \cap a^{H S} \neq\{a\}$.
The 110 involutions commuting with a split in 2 orbitals of size 30 and 80 the others are all orbitals, as one can check by using Cayley. Whence $k_{1}=30$ and $k_{d}=80$ as $\Gamma_{1}(a)$ contains two involutions α, β with $|\alpha, \beta|=4$. Now $480=k_{2} \leq k_{i}$
$i \neq d, d-1$ so $k_{d-1}=128$ but if $v \in \Gamma_{d-1}(a)$ the $\left|v^{a}\right|=5$ contradiction with $d\left(v^{a}, a\right) \leq 2$.

Type 2B.
For a fixed involution $b \in 2 B$ there are 75 involutions $x \in 2 B$ with $b x \in 2 A$ and 72 involutions $x \in 2 B$ with $b x \in 2 B$.

So if $g \sim b$ the $|y b|=2$. Now $\left\langle\Gamma_{1}(b)\right\rangle \unlhd C_{H S}(b)$ but $A_{6} \cdot 2^{2} \cong P \Gamma L_{2}(9)$ is not generated by p-transpositions hence the graph thus obtained is not distance-transitive. Type 2C.
These are involutions of $\operatorname{Aut}(H S) \backslash H S$, with $C_{H S .2}(c) \cong 2 \times S_{8}$.
For a fixed involution $c \in 2 C$ there are

$$
105 \text { involutions } x \in 2 C \text { with } x c \in 2 A
$$

280 involutions $x \in 2 C$ with $x c \in 2 B$
336 involutions $x \in 2 C$ with $x c \in 3 A$
630 involutions $x \in 2 C$ with $x c \in 4 B$.
So if $y \in \Gamma(c)$ then $|y c|=2$ and by the usual arguments $y c \in 2 B$. So there are $y, z \in \Gamma(c)$ with $|y z|=3$, thus the 105 involutions x with $x c \in 2 A$ are at maximal distance d. As the permutation rank equals 5 , we can find a path $c \sim x_{1} \sim x_{2} \sim$ $x_{3} \sim x_{4}$ with

$$
\left|c x_{1}\right|=2, \quad\left|c x_{2}\right|=3, \quad\left|c x_{3}\right|=4, \quad\left|c x_{4}\right|=2
$$

but then $d\left(x_{3}, x_{3}^{c}\right)=2$ and $x_{3} x_{3}^{c} \in 2 A$, contradicting distance-transitively.

3.7. First Janko Group J_{1}

There is only one conjugacy class of involutions in J_{1}. The centralizer of an involution a is isomorphic with $2 \times A_{5}$ and it readily follows that we cannot turn it into a distance-transitive graph.

Remark. One can identify the involutions with the edges of the Levingston-graph, and thus obtain a non-multiplicity free permutation character for this subgroup.

3.8. Second Janko Group J_{2} (Hall-Janko HJ)

There are 2 maximal subgroups which are the centralizer of an involution. The involutions of type $2 A$ have centralizers isomorphic with $2^{1+4}: A_{5}$ and $2^{1+4} \cdot S_{5}$ in $H J$ and Aut $H J$ respectively.

For a fixed involution $a \in 2 A$ there are
10 involutions $x \in 2 A$ with $a x \in 2 A$
80 involutions $x \in 2 A$ with $a x \in 4 A$
160 involutions $x \in 2 A$ with $a x \in 3 B$
64 involutions $x \in 2 A$ with $a x \in 5 A$ or $5 B(64=32+32$ in $H J)$
leading to a distance-transitive graph with distance distribution diagram

The involutions of type $2 C$ have centralizers isomorphic with $2 \times L_{3}(2): 2$.
For a fixed involution $c \in 2 C$ there are
21 involutions x with $c x \in 2 A$
28 involutions x with $c x \in 2 B$
126 involutions x with $c x \in 4 A$.
So from theorem 2.8 it follows that the involutions corresponding to two adjacent vertices commute. But $L_{3}(2): 2$ is not generated by odd transpositions and $O_{2}\left(C_{M_{22} \cdot 2}(c)\right)=\langle c\rangle$. This contradicts the existence of a distance-transitive graph.

3.9. Third Janko Group J_{3}

There are two conjugacy classes of involutions, $2 A$ and $2 B$. Those of $2 B$ are contained in Aut $J_{3} \backslash J_{3}$.

For a fixed involution $b \in 2 B$ there are 918 involutions $x \in 2 B$ with $|b x|=4$. Hence if $y \in 2 B$ and $y \sim b$ then $|y b|=2$. As $C_{J_{3} .2}(b) \cong 2 \times L_{2}(17)$ and $L_{2}(17)$ is not generated by p-transpositions we get that no distance-transitive graph can arise here.

For a fixed involution $a \in 2 A$ there are 130 involution $x \in 2 A$ with $a x \in 2 A$ they fall in two orbitals of size 10 an 120 respectively. It is clear that we must have $k_{1}=10$ but there exists no distance-transitive graph on 26163 points with $k_{1}=10$ c.f. Ivanov \& Ivanov [12].

3.10. Fourth Janko Group J_{4}

J_{4} contains two conjugacy classes of involutions, $2 A, 2 B$. The $2 B$ involutions have a centralizer $2^{11}:\left(M_{22}: 2\right)$ contained in the maximal subgroup $2^{11}: M_{24}$. So we only have to look at the $2 A$ involutions. These have centralizers H with $H \cong 2_{+}^{1+2} \cdot 3 M_{22}: 2$. The involutions in this group are represented by the following involutions (and H-orbit lengths).

z	1
e	1386
f	2772
t^{\prime}	18480
$z t^{\prime}$	18480
t_{1}	110880
t_{2}	221760

with $z, e, f \in O_{2}(H)$ by Janko [13], and z, e, t^{\prime}, t_{1}, are conjugate in J_{4}. Thus there are three orbitals of commuting involutions under H with the same kernel. Whence there is no distance-transitive graph on these involutions.

3.11. M^{c} Laughlin Group $M^{c} L$

$M^{c} L$ contains only one conjugacy class of involutions, $2 A$ say, with centralizer isomorphic to $2 \cdot A_{8}$ in $M^{c} L$.

For a fixed involution $a \in 2 A$ there are 210 involutions $x \in 2 A$ with $a x \in 2 A$ and 5040 with $a x \in 4 A$. As $2 \cdot A_{8}$ is not generated by p-transpositions the usual argument leads to the non-existence of a distance-transitive graph on these involutions.

Aut $\left(M^{c} L\right)$ contains an other conjugacy class of involutions, $2 B$ say, with centralizer isomorphic to $2 \times M_{11}$. Fix an involution $x \in 2 B$. Clearly if $y \in M_{11}$ an involution then $x y$ conjugate to x. As M_{11} contains involutions y_{1}, y_{2} with $\left|y_{1} y_{2}\right|=4$ we have $\left|y_{1} x y_{2} x\right|=\left|y_{1} y_{2}\right|=4 . M_{11}$ contains only one conjugacy class of involutions, thus two involutions are adjacent if and only if they commute, hence by the usual arguments there is no distance-transitive graph on involutions.

3.12. Suzuki Group Suz

Here we have three conjugacy classes of involutions to consider one contained in Suz two in Aut(Suz) $\backslash S u z$.
$2 A$. The centralizer in Suz of a $a \in 2 A$ involution is isomorphic to $2_{-}^{1+6} \cdot U_{4}(2)$. For a fixed involution a there are 414 involutions $x \in 2 A$ with $a x \in 2 A$ and 1728 with $a x \in 4 A$. Thus the neighbours of a commute with a and $\langle\Gamma(a)\rangle \leq 2_{-}^{1+6} \cdot U_{4}(2)$ is a group generated by p transpositions or a 2-group. Clearly we are in the second case. It is a straightforward calculation that 2_{-}^{1+6} contains 54 involutions different from a. Now $\Gamma(a) /\langle a\rangle$ can be viewed as the orthogonal geometry where the involutions are in one to one correspondence with the isotropic points, two involutions commute if and only if the corresponding points are on an isotropic line. Hence we can find a quadrangle in $\Gamma^{\prime}(a)$. Thus we may apply Terwilliger with $k=54, \lambda=201$, leading to $\operatorname{diam}(\Gamma) \leq 4$. But computations with the character table learns us that there are $x \in 2 A$ with $a x \in\{4 A, 4 C, 3 C, 3 B, 6 D\}$ showing that the diameter of Γ is larger than 5 .

2C. The centralizer of a $2 C$ involution is $S u z$. 2 is isomorphic to $J_{2}: 2 \times 2$. For a involution $c \in 2 C$ there are 315 involutions $x \in 2 C$ with $x c \in 2 A$ and 1800 involutions $x \in 2 C$ with $x c \in 2 B$. As J_{2} is not generated by p-transpositions, we cannot get a distance-transitive graph.
$2 D$. The centralizer of a $2 D$ involution in Suz. 2 is isomorphic to $M_{12}: 2 \times 2$. For a fixed involution $d \in 2 D$ there are 495 involutions $x \in 2 D$ with $x d \in 2 A$ so these involutions $x d$ correspond to the $2 B$ involutions of $M_{12}: 2$. In $M_{12}: 2$ there are involutions α, β of type $2 B$ with $|\alpha \beta|=4$. As $M_{12}: 2$ is not generated by p-transpositions, we again cannot turn it in to a distance-transitive graph.

3.13. Lyons Group Ly

This group contains only one conjugacy class of involutions, $2 A$, with $H=C_{L y}(a) \cong$ $2 \cdot A_{11}$ where $a \in 2 A$. It is clear that there are conjugates of a, c and d say, with $|c d|=4$. Hence, as $2 \cdot A_{11}$ is not generated by odd transpositions, no distancetransitive graph can arrise from this class of involutions.

3.14. Held Group He

Here we have two conjugacy classes to consider, $2 B$ and $2 C$. But the corresponding centralizers do not have a multiplicity free permutation character c.f. V. Bon, Cohen \& Cuypers [4].

3.15. Rudvalis Group $R u$

Only one conjugacy class of involutions leads to a maximal subgroup of $R u$, namely $2 A$.

Note that the class $2 B$ has no fixed points on the graph on 4060 vertices, and a $2 A$ involution fixes 92 points. Thus the involutions of ${ }^{2} F_{4}(2)$ are all conjugate in $R u$.
${ }^{2} F_{4}(2)$ contains 2 conjugacy classes of involutions of sizes 1755 and 11700 respectively. As $R u$ contains 593775 involutions of class $2 A$ and 593775-13455= $580320=2^{5} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 31$ does not divide the order of ${ }^{2} F_{4}(2)$, we see that ${ }^{2} F_{4}(2)$ has at least 4 orbits on the involutions of class $2 A$. Whence the inner product of the corresponding permutation characters exceeds 4 and so the permutation character corresponding to the centralizer of a $2 A$ involution cannot be multiplicity free and a corresponding graph cannot be distance-transitive.

3.16. $O^{\prime} N a n$ Group $O^{\prime} N$

$O^{\prime} N$ contains only one conjugacy class of involutions $2 A$, and its centralizer is isomorphic to $4 \cdot L_{3}(4): 2$.

For a fixed involution $a \in 2 A$ there are 1750 involutions $x \in 2 A$ with $x a \in 2 A$ and 1240 involutions $x \in 2 A$ with $x a \in 4 A$. As this involution centralizer is not generated by p-transpositions, we cannot turn it in a distance-transitive graph.

Aut $\left(O^{\prime} N\right) \backslash O^{\prime} N$ contains also one conjugacy class of involutions, $2 B$. Its centralizer is isomorphic to $J_{1} \times 2$. As J_{1}, is not generated by odd transpositions and as there are 2926 involutions $x \in 2 B$ with $x b \in 4 A$, for a fixed $b \in 2 B$, we again get a contradiction with the existance of a distance-transitive graph.

3.17. Conway Group Co_{3}

Both conjugacy classes of involutions, $2 A$ and $2 B$, give rise to a maximal subgroup of Co_{3}. These are $2 \cdot S_{6}(2)$ and $2 \times M_{12}$.

For the $2 B$ involutions it follows from the usual argument that it is sufficient for the proof of the non-existence of a distance-transitive graph to show that for a fixed involution $b \in 2 B$ there are at least two orbitals of $2 B$ involutions who commute with b. Using the character table one easely finds 495 involutions $x \in 2 B$ with $x b \in 2 A$ and 792 involutions $x \in 2 B$ with $x b \in 2 B$.

For the $2 A$ involutions we find 630 involutions $x \in 2 B$ with $x a \in 2 A$ for a fixed $a \in 2 A$ and no with $x a \in 2 B$. Thus the $2 A$ involutions of Co_{3} correspond with the $2 B$ involutions of $2 \cdot S_{6}(2)$. The $2 B$ involutions of $2 \cdot S_{6}(2)$ are not the transpositions of $S_{6}(2)$. Thus we are done if we have shown that involutions corresponding to adjacent vertices commute. But one can find at least 30240 involutions $x \in 2 A$ with $|x a|=4$, so we are done by theorem 2.8 .

3.18. Conway Group CO_{2}

Of the three conjugacy classes of involutions contained in Co_{2} only two of them give rise to a maximal subgroup of Co_{2}, viz the classes $2 A$ and $2 B$.

The conjugacy classes of involutions of $U_{6}(2): 2$ behave as follows:
The $2 A$ and $2 D$ involutions fuse to the class of $2 A$ involutions, the $2 C$ and $2 E$ involutions fuse to the class of $2 C$ involutions and the $2 B$ of $U_{6}(2): 2$ lift to $2 B$ involutions of Co_{2}. The smallest class, 2 A , has involution centralizer isomorphic to $2_{+}^{1+8}: S_{6}(2)$. Let $a \in 2 A$ and $H=C_{C_{o_{2}}}(a)$ then $a^{H} \cap O_{2}(H)=\langle a\rangle$ c.f. Smith [14]. There are involutions a^{\prime} and $a^{\prime \prime} \in 2 A$ with $a a^{\prime} \in 2 B$ and $a a^{\prime} \in 2 C$. Hence if $x \in \Gamma_{1}(a)$ then $|x a|=2$. Now $\left\langle\Gamma_{1}(a)\right\rangle \unlhd H$ and must be generated by 3-transpositions, but $\left\langle\Gamma_{1}(a)\right\rangle=H$ a contradiction.

Let $b \in 2 B$ and $H=C_{C o_{2}}(b) \cong\left(2_{+}^{1+6} \times 2^{4}\right) . A_{8}$. Now there are involution $b, b^{\prime} \in 2 B$ with $b^{\prime} b \in 2 A, b^{\prime} b \in 2 B$ and $b^{\prime} b \in 2 C$. Hence $\left\langle\Gamma_{1}(b)\right\rangle \unlhd H$ must be elementary abelian and a contradiction follows. So in both cases we do not get a distancetransitive graph.

3.19. Conway Group Co_{1}

Only the conjugacy class of $2 A$ involutions leads to a maximal subgroup of $C o_{1}$. Let $a \in 2 A$. Then $H=C_{C_{o_{1}}}(a) \cong 2_{+}^{1+8} \cdot O_{8}^{+}(2)$. As $a^{H} \cap O_{2}(H) \neq\{a\}$ we can find involutions $a^{\prime}, a^{\prime \prime} \in 2 A \cap O_{2}(H)$ with $\left|a a^{\prime \prime}\right|=4$. By standard arguments we must have $\langle\Gamma(a)\rangle=O_{2}(H)$. But now Terwilliger's diameter bound yields $\operatorname{diam}(\Gamma)<4$, which readily leads to a contradiction.

3.20. Fischer Group $F i_{22}$

There are 3 conjugacy classes of involutions where the involution centralizer is a maximal subgroup of $F i_{22}$. These involutions, $2 A, 2 B$ and the outer $2 D$ have centralizer (in $F i_{22}$) of the form

$$
2 \cdot U_{6}(2), \quad\left(2 \times 2_{+}^{1+8}: U_{4}(2)\right): 2 \quad \text { and } \quad O_{8}^{+}(2): S_{3} .
$$

The $2 A$ involutions are the 3 -transpositions leading to a graph Γ with distance distribution diagram

(where two involutions are adjacent if and only if they commute).
Γ has 1216215 edges and these correspond to the $2 B$ involutions. Hence the permutation character of the 2nd group is not multiplicity free and so no distancetransitive graph can arise.

The $2 D$ involutions give a rank 4 permutation representation. Fix $\partial \in 2 D$ if $\partial^{\prime} \in 2 D$ with $\left|\partial \partial^{\prime}\right|=2$. Then $\partial \partial^{\prime}$ is a involution of $O_{8}^{+}(2): S_{3}$. Now by counting it follows that these involutions are of type $2 A$ in $O_{8}^{+}(2): S_{3}$.

Two $2 A$ involutions have order 2,3 of 4 whence there are $2 D$ involutions is $\operatorname{Aut}\left(F i_{22}\right)$ with order $2,3,4$. Thus two $2 D$ involutions are adjacent if and only if they commute and the graph induced on the neighbours of δ is the graph on the 2 A involutions of $\mathrm{O}_{8}^{+}(2): S_{3}$, but this is not a class of odd transpositions. Thus again we cannot turn it into a distance-transitive graph.

3.21. Fischer Group Fi_{23}

There are 3 conjugacy classes of involutions in $F i_{23}, 2 A, 2 B, 2 C$ with involution centralizer isomorphic to

$$
2 \cdot F_{22}, \quad 2^{2} \cdot U_{6}(2) \cdot 2, \quad\left(2^{2} \times 2_{+}^{1+8}\right) \cdot\left(3 \times U_{4}(2)\right) \cdot 2
$$

respectively.
The $2 A$ involutions are the 3-transpositions leading to a distance transitive graph Γ with distance distribution

Thus Γ contains 3^{7}.5.13.17.23 edges and 3^{8}.5.7.11.13.17.13 3-cliques who are in one to one correspondence with the $2 B$ and $2 C$ involutions. It readily follows that the permutation characters of $2 B$ and $2 C$ involutions are not multiplicity free.

Hence no other distance-transitive graph arises.

3.22. Fischer Group Fi_{24}

There are 4 conjugacy classes of involutions, $2 A, 2 B, 2 C, 2 D$ with involution centralizers (in Fi_{24})

$$
\left(2 \times 2 \cdot F i_{22}\right): 2, \quad 2_{+}^{1+12} \cdot 3 U_{4}(3) \cdot 2^{2}, \quad F i_{23} \times 2, \quad\left(2 \times 2^{2} \cdot U_{6}(2)\right): S_{3}
$$

The $2 C$ involutions are the 3 -transpositions with corresponding distribution diagram

hence there are $2^{2} \cdot 3^{7} \cdot 7^{2} \cdot 17 \cdot 23.29$ edges of Γ and $2^{3} \cdot 3^{9} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \cdot 23.29$ 3 -cliques of Γ corresponding with the $2 A, 2 D$ involutions respectively. So the existence of a corresponding distance graph by these involutions fails on the permutation character.

Let $x_{1}, x_{2}, x_{3}, x_{4}$ be $2 C$ involutions forming a 4 -clique in Γ then $x_{1} x_{2} x_{3} x_{4}$ is a $2 B$ involution.

Thus if x_{1}, x_{2}, x_{3}, y and $x_{1}, x_{2}, z_{1}, z_{2}$ are also 4-cliques $y, z_{1}, z_{2} \notin\left\{x_{1}, \ldots, x_{4}\right\}$ with $\left|x_{4} y\right|=\left|x_{3} x_{4} z_{1} z_{2}\right|=2$ then they give $2 B$ involutions b and b^{\prime} with $b b^{\prime} \in 2 A$ and $b b^{\prime} \in 2 B ;\left(\Gamma\left(x_{1}\right) \cap \Gamma\left(x_{2}\right)\right.$ is just the graph on involution of $F i_{22}$. As the maximal set of commuting involutions is that graph has size 22 the existence of these 4 -cliques follows). $3 U_{4}(3)$ acts irreducible on 2^{12} so there are at most 2 orbitals of involutions commuting with a fixed $b \in 2 B$. But, by using CAS, one can find for a given $b \in 2 B 69552=2^{4} \cdot 3^{3} \cdot 7.23$ and $2997162=2.3^{5} .7 .881 b^{t} \in 2 B$ with $b b^{\prime} \in 2 A, 2 B$ respectively. It readily follows that there are more than two orbitals on the involutions commuting with b, so we are done in this case.

3.23. Harada-Norton Group HN

Only the conjugacy classes of involutions denoted with $2 A$ and $2 B$ give a maximal subgroup of $H N$. The type $2 A$ involutions with centralizer $2 . H S .2$ can be dealt with in the usual way, and no distance-transitive graph can arise.

The type $2 B$ involutions have centralizers $2_{+}^{1+8} \cdot\left(A_{5} \times A_{5}\right) \cdot 2$ i.e. $2_{+}^{1+8} . \mathrm{SO}_{4}(4)$. Let $b \in 2 B, H=C_{H N}(b)$.

The 270 noncentral involutions of $O_{2}(H)$ fall in to 2 orbitals (of sizes 150 conjugate to b and 120 not conjugate to b) c.f. [9]. Also are there involutions $b^{\prime} \in 2 B$ with $b b^{\prime} \in 2 A$. Hence if $x \sim b$ then x and b commute. Now clearly $\langle\Gamma(b)\rangle \leq O_{2}(H)$ so $k=150$.

In $O_{2}(H) /\langle b\rangle$ the 75 conjugates of b bear the structure of an orthogonal geometry over $G F(4)$, hence each vertex is colinear with 26 others i.e. $\lambda \geq 52$. Now Terwilliger's diameter bound yields a contradiction, as the permutation rank is at least 10.

3.24. Thompson Group Th

This group contains only one conjugacy class of involutions, $2 A$, with $H=C_{T h}(a) \cong$ $2_{+}^{1+8} \cdot A_{9}$ where $a \in 2 A$.

Clearly H has at least two orbits on the involutions that commute with a and by the usual arguments we must have $b \in 2_{+}^{1+8}$ if $b \sim a$. This group contains 270 involutions different from a. If H acts transitively on these involutions then $\Gamma(a)$ is the graph on involutions of 2_{+}^{1+8} with 2 are adjacent if and only if they commute,
which leads to a contradiction with Terwilliger's diameter bound. If H acts intransitively on 2_{+}^{1+8} then there are at least 3 orbitals of involutions commuting with a. As $H / O_{2}(H)$ does not stabilize a singular subspace of the $O_{8}^{+}(2)$-geometry, Γ_{1} (a) can not be elementary abelian and hence there are at least 3 orbitals with only a as kernel contradicting the existence of a distance-transitive graph.

3.25. Baby Monster Group B

The Baby Monster group contains 4 conjugacy classes of involutions, $2 A, 2 B, 2 C$ and $2 D$ with centralizers

$$
2 \cdot\left({ }^{2} E_{6}(2)\right): 2, \quad 2_{+}^{1+22} \cdot C o_{2}, \quad\left(2^{2} \times F_{4}(2)\right): 2, \quad\left(2 \times 2^{8}\right) 2^{16} \cdot D_{4}(2) \cdot 2 .
$$

The last one is not maximal in B so we only have to look at the $2 A, 2 B$ and $2 C$ involutions.

The $2 A$ involutions form a class of $(3,4)$ transpositions with $a b \in\{2 B, 2 C, 3 A, 4 B\}$ for $a, b \in 2 A \quad a \neq b$, with orbital lengths $3968055,23113728,2370830336$ and 11174042880 respectively. ${ }^{2} E_{6}(2)$ is not generated by p-transpositions, and hence no distance-transitive graph exist. (See also Higman [10] for the rank 5 graph).

The $2 C$ involutions are in $1-1$ correspondence with the edges of the graph on $2 A$ involutions obtained by calling $a, b \in 2 A$ adjacent if and only if $a b \in 2 C$. If we fix $a \in 2 A$ the involutions of the form $a a^{\prime} \in 2 C$ with $a^{\prime} \in 2 A$ are the $2 D$ involutions of ${ }^{2} E_{6}(2)$. It is clear that we can find 2 involutions $a^{\prime} a^{\prime \prime}$ with $\left|a^{\prime} a^{\prime \prime}\right|=4$ (for $\left|a a^{\prime} \cdot a a^{\prime \prime}\right|=\left|a^{\prime} a^{\prime \prime}\right| \in\{2,3,4\}$ and ${ }^{2} E_{6}(2)$ is not generated by odd transpositions. Note that the $2 D$ involutions of ${ }^{2} E_{6}(2)$ are not the $\left\{3,4^{+}\right\}$transpositions). As $F_{4}(2)$ is not generated by odd transpositions the nonexistence of a distance-transitive graph follows.

The 2 B involutions have centralizer isomorphic to $\mathrm{H} \cong 2_{+}^{1+22} \cdot \mathrm{Co}_{2}$. Call $V=$ $\mathrm{O}_{2}(\mathrm{H}) / \mathrm{ZO}_{2}(\mathrm{H})$, where $\mathrm{Z}=\mathrm{ZO}_{2}(\mathrm{H})$. It is well known that Co_{2} acts irreducible on V . The nontrivial orbits of CO_{2} on V are as follows.

```
length
point stabilizer
```

$$
\begin{aligned}
2300 & =2^{2} \cdot 5^{2} \cdot 23 \\
46565 & =3^{4} \cdot 5^{2} \cdot 23 \\
24049300 & =2^{2} \cdot 3^{4} \cdot 5^{2} \cdot 11 \cdot 23 \\
476928 & =2^{8} \cdot 3^{4} \cdot 23 \\
1619200 & =2^{8} \cdot 5^{2} \cdot 11 \cdot 23
\end{aligned}
$$

$$
U_{6}(2): 2
$$

$$
2^{10}: M_{22}: 2
$$

$$
2_{+}^{1+8}: S_{8}
$$

$H S: 2$ (corresponding to $4 A$ in B)
$U_{4}(3) . D 8 \quad$ (corresponding to $4 B$ in B)
$2^{22}=4194304=1+2098175+2096128$ so the first three represent the isotropic and the last two the nonisotropic points of $V-\{0\}$ viewed as $\mathrm{O}_{22}^{+}(2)$ module.

The isotropic points become involutions in $\mathrm{O}_{2}(\mathrm{H})$. It is easy to see that the first class of involutions correspond with those of type $2 A$. From Bierbrauer [3] it follows that the others represents $2 B$ and a third class, call the first orbital Δ. Now
Co_{2} cannot fix a singular subspace of V so there are points $x, y \in V \cap D$ with $x y$ not isotropic. Hence there are involutions a, b conjugate to z with $|a b|=4$.

It follows that the orbital of involutions in $O_{2}(H)$ of size 2×46565, must correspond to the neighbours of z, and that there are at most 2 orbitals of involutions commuting with z. Again we find, by using CAS, for a given $b \in 2 B 7379550=$ $2.3^{2} \cdot 5^{2} \cdot 23^{2} .31$ and $262310400=2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 11.23 b^{\prime} \in 2 B$ with $b b^{\prime} \in 2 B, 2 D$ respectively. Looking at the prime-numbers the existence of more than two orbitals of involutions commuting with b follows. Thus we cannot turn this class into a distance-transitive graph.

3.26. Monster Group M

There are only 2 conjugacy classes of involutions in $M, 2 A$ and $2 B$. The corresponding centralizers are

$$
2 \cdot B \text { and } 2_{+}^{1+24} \cdot \mathrm{Co}_{1} .
$$

Let us fix a $2 A$ involution a. If $b \in 2 A$ with $|a b|=2$ then $b \in 2 \cdot B$. There exist a $2 A$ pure subgroup in M. This group of order 4 has normalizer $2^{2} \cdot\left({ }^{2} E_{6}(2)\right): S_{3}$.

Hence there exist a $2 \cdot B$ orbit of $2 A$ involutions who commute with a and correspond to the $2 A$ involutions of B. Thus we can find two $2 A$ involutions $a^{\prime}, a^{\prime \prime}$ in B with $\left|a^{\prime} a^{\prime \prime}\right|=4$. Thus the neighbours of a are involutions that commute with a and as $O_{2}(2 \cdot B)=\langle a\rangle$ and as B is not generated by p-transpositions no distancetransitive graph arises.

Let us fix $2 B$-involution b with centralizer $H \cong 2_{+}^{1+24} \cdot \mathrm{Co}_{1}$. Call $V=O_{2}(H) /\langle b\rangle$, then $|V|=2^{24}$ and $C o_{1}$ acts irreducible on V and has three nontrivial orbits on V. One orbit corresponding with the nonisotropic points with pointstabilizer Co_{3} (type 3). Two orbits on the isotropic points with pointstabilizers Co_{2} and $2^{11}: M_{24}$, (type 2 and 4). Also it is known that there are lines with points of types 222, 223, 224 , and $442,443,444$. If $a \in O_{2}(H)$ and $a \neq b$ then $a b$ is conjugate in M to a, this follows from the existence of only 2 -orbits, which are of different length. The involutions is $O_{2}(H)$ are of type $2 A$ or $2 B$, both occur. Now its straightforward that there are involutions $a_{1}, a_{2}, a_{3}, a_{4} \in O_{2}(H) \cap z^{M}$ commuting with z and where $\left|a_{1} a_{2}\right|=4, a_{1} a_{3} \in 2 A$ and $a_{1} a_{4} \in 2 B$. As we may assume that these are in one orbit under H, nonexistence of a distance-transitive graph follows.

References

1. Baer, R.: Engelsche Elemente Noetherscher Gruppen, Math. Ann. 133, 256-270 (1957)
2. Bannai, E. and Ito, T.: Algebraic Combinatorics I: Association Schemes, Benjamin-Cummings Lecture Note Ser. 58, The Benjamin/Cummings Publishing Company, Inc., London (1984)
3. Bierbrauer, J.: A characterization of the "Baby monster", including a note on ${ }^{2} E_{6}(2)$, J. Algebra 56, 384-395 (1979)
4. Bon, J.T.M. van, Cohen, A.M., and Cuypers, H.: Graphs related to Held's simple group, to appear in J. Algebra (1988)
5. Brouwer, A.E., Cohen, A.M., and Neumaier, A.: Distance-regular graphs, to appear (1988)
6. Conway, R.A. Wilson, R.T. Curtis, Norton, S.P., and Parker, R.P.: Atlas of finite groups, Clarendon Press, Oxford (1985)
7. Faradjev, I.A., Ivanov, A.A., and Ivanov, A.V.: Distance-transitive graphs of valency 5, 6 and 7, Eur. J. Combinatorics 7, 303-319 (1986)
8. Gardiner, A. and Praeger, C.E.: Distance-transitive graphs of valency six, Ars Combinatoria 21A, 195-210 (1986)
9. Harada, K.: On the simple group F of order $2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7.11 .19$, pp. 119-270 in: Proceedings of the conference on Finite Groups (F. Gross, ed.), Academic Press, New York, 1976
10. Higman, D.G.: A Monomial Character of Fischer's Baby Monster, pp. 277-284 in: Proceedings of the conference on Finite Groups (F. Gross, ed.), Academic Press, New York, 1976
11. Isaacs, I.M.: Character Theory of Finite Groups, Academic Press, New York (1976)
12. Ivanov, A.A. and Ivanov, A.V.: Distance-transitive graphs of valency $k, 8 \leq k \leq 13$, Preprint (1986)
13. Janko, Z.: A new finite simple group of order $86,775,571,046,077,562,880$, which possesses M_{24} and the full covering group of M_{22} as subgroups, J. Algebra 42, 564-596 (1976)
14. Smith, S.D.: Large extraspecial subgroups of withs 4 and 6, J. Algebra 58, 251-281 (1979)
15. Taylor, D.E. and Levingston, R.: Distance-regular graphs, pp. 313-323 in: Combinatorial Mathematics, Proc. Canberra 1977, Lecture Notes in Math. 686 (D.A. Holton \& J. Seberry, eds.), Springer, Berlin, 1978
16. Terwilliger, P.: Distance-regular graphs with girth 3 or 4, I, J. Comb Theory (B) 39, 265-281 (1985)

Received: August 8, 1988
Revised: January 8, 1989

[^0]: * Report PM-R8808, Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
 ${ }^{\dagger}$ Present address: Dept. of Math. Tufts University, Medford MA 02155, U.S.A.

