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Elaborating on the work of Ibragimov and Has'minskii (1981) we prove a 
law of large deviations (LLD) for M-estimators, i.e., those estimators which 
maximize a functional, continuous in the parameter, of the observations. This 
LLD is applied, using the results of Petrov (1975), to the problem of 
parametrical nonlinear regression in the situation of discrete time, indepen
dent errors and regression functions which are continuous in the parameter. 
This improves a result of Prakasa Rao (1984). 

1. Introduction. The main results of this paper are Theorems 3.1 and 3.2, 
which establish an LLD for the least-squares estimator of a nonlinear regression 
parameter. The proofs rely on Theorem 2.1, which is a generalization of Theorem 
1.5.l of Ibragimov and Has'minskii (1981). In order to understand why generali
zation is desirable, consider the following nonlinear regression model for the 
observations xn == X1, X2 , ••• , Xn: 

(1.1) Xe = ft(O) +et> t = 1,2, ... , n, 

where the ft are known continuous functions on a parameter set 0 c Rk, the et 
are independent, not necessarily identically distributed, errors with zero expecta
tion, and 0 E 0 is the true value of the parameter, which is to be estimated by 
some functional On(X1, X2 , ••• , Xn). 

If the distributions Fi of the et are known, then we can construct a family of 
measures {IJllJnl, 8 E 0} on a suitable space of events {3f(nl, q{(nl}, define the 
family of statistical experiments { 3[<nl, %'(n), PJnl}, n = 1, 2, ... , and proceed as 
in Ibragimov and Has'minskii (1981) in order to describe the asymptotic behav
ior of the maximum likelihood estimator o;;n-. 

For instance, we can apply Theorem 1.5.l of Ibragimov and Has'minskii 
(1981), which states that a law of large deviations [i.e., an (exponential) in
equality for the probability of a large deviation of the estimator OnML from the 
true value 8] holds if the normalized likelihood ratio zn, 8(u) satisfies two 
conditions, which, roughly stated, are that, for n large enough ( e small enough, 
in the formulation of the theorem, put e == l/n ), Zn, 8( u) is, in expectation, 
sufficiently continuous in u and that IEZn, 8 ( u )112 decreases exponentially as 

lul - oo. 
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However, if the distributions Ft are unknown, 8~L is not defined. In this .case, 
one often resorts to the so-called least-squares estimator 8:113, which minimizes 
the residual sum of squares 

(1.2) 
ts.n 

The properties of 8;!' can be investigated if one restricts the Fe to a sufficiently 
"nice" class {Fe}. We claim that Theorem 1.5.1 of Ibragimov and Has'minskii 
(1981), although formulated for the maxim.um likelihood scheme, can provide a 
valuable tool here. In the theory of M-estimators the idea has been developed 
[see, for instance, Serfling (1980)] that the classical maxi)llum likelihood theory 
can be extended to estimators maximizing some other functional of the observa
tions. Indeed, inspection of the proof of the previously mentioned theorem 
reveals that it continues to hold if the likelihood is replaced by some other 
8-continuous PJn>-a.s. positive functional Cn(Xn, 8), which we shall call an 
M-functional. 

We shall try to apply this generalized version of Theorem 1.5.1 to ·the 
LS-estimator for the model given by (1.1), which maximizes the M-functional 

(1.3) Cn(Xn,8) •=exp(-; :E (Xt- fl8)) 2), 

ts.n 

which is, of course, the likelihood if the et are i.i.d. standard normal. Theorem 
1.5.1 (and our Theorem 2.1) express the large deviation properties of the 
estimator in the normalized ratio Zn 8(u) and not directly in Cn(Xn, 8) (the 
reason for this lies in the application' of Lemma A.2). Therefore we define, for 
some choice of norming constants IJ>n, 

(1.4) 

Unfortunately, it turns out that it is not at all easy to formulate conditions on 
the family of regressors {fe(8), (} E 0} and the class of distributions {Fe} of et 
which guarantee that the zn, 8(u) defined by (1.3) and (1.4) satisfies the condi
tions of the generalized theorem described above. It is perhaps for this reason 
that Prakasa Rao (1984) restricts himself to the case that the et are i.i.d. 
Gaussian and the dimension k of 0 is equal to 1. The main difficulty inherent in 
Theorem l.5.1 seems to be that its Holder condition (1) is quite difficult to verify, 
as its authors, in their comment on Theorem 1.5.1, implicitly admit, especially if 
the dimension k of 0 is > 1. On page 56 of Ibragimov and Has'rninskii {1981), a 
theorem is announced which concerns the case k > 1 (Theorem 1.5.8). The proof, 
however, is valid only for k = 1, and extension to the case k > 1 is not obvious. 
Less powerful, but more sound methods all require considerable manipulation, 
even in the Gaussian situation, cf. Ingster (1984), page 1179, and Ibragimov and 
Has'rninskii (1981), Lemma 3.5.2 on page 202ff. 

These observations motivated us to look for an LLD in the spirit of Theorem 
1.5.1, which would not only apply to a much broader class of estimators than 
just ML, but which would also be more fiexible in its conditions. This effort 
resulted in Theorem 2.1 of this paper, which we apply, in Section 3, to the 
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nonlinear regression problem. For statistical applications of LD theorems we 
refer the reader to Theorem 3.1.3 of lbragimov and Has'minskii (1981), which 
may give an idea of the possibilities. 

Dzhaparidze (1986) used a rudimentary form of Theorem 2.1 to infer about 
intensity parameters of counting processes. Another study on Theorem 1.5.1 was 
recently made by Vostrikova (1984), who gives conditions for an LLD for 
Bayesian and ML-estimators in terms of variation distance and predictable 
terms. Large deviation results for M-estimators in an i.i.d. setting were recently 
obtained by Kester (1985). 

2. A law of large deviations. Consider a family of statistical experiments 
ff(e) = {q-<e>, %'<e>, l?J•>; 9 E 0}, where the ?J•> are not necessarily of known 
form (see Section 1). The parameter set 0 is a Borel subset of k-dimensional 
Euclidean space. We shall consider M-estimators maximizing an M-functional 
C.: q-<•> X 0 -+ [0, oo ), which is assumed to be, for all X• E ~<•>, a positive 
continuous function of() and, for each() E 0, a measurable functional of X'. 

Throughout we assume that, for all 9 e 0 and ?J•>-almost all x•, a solution o. 
to the equation 

(2.1) ce(x•,O.) = supc.(x•,(J) 
6e0 

exists (this is certainly true if 0 is compact). On the basis of the existence 
assumption we may demonstrate that a measurable functional 0.: q-<•> - 0 ~· ·' 
exists which is a solution of (2.1). This is worked out in Lemma A.l in the 
Appendix. So we assume henceforth that d. is measurable. 

All our results are of asymptotic nature, i.e., they are valid fore small enough 
and R large enough, where e - 0 describes the approach of the limit experiment 
8<0> and R describes the normalized deviation of the estimator 0. from the true 
value 9. 

Let, for each e and () E 0, cf>(e, 9) be a nonsingular k X k matrix and define 
the normalized M-ratio 

(2.2) z •. 9 (u) := z •. e<x•, u) = c.(x•, 9 + ct>(e, 8)u);c.(x•, 9), 

which, for fixed observation x•, is a continuous, nonnegative finite function on 
the set U,, 9 := cf>(e, 9)- 1(0 - 9). Define r., 8,R := U,, 8 n {u: R ::>; iul ::>; R + l}. 
We define the following sets of functions [compare lbragimov and Has'minskii 
(1981), Chapter 1.5, page 41]. 

G is the set of all functions g.(·) possessing the following properties: 

(1) for fixed e, g.(·) is a function on [O, oo) monotonically increasing to infinity; 
(2) for any N > 0, 

(2.3) lim RNexp( -g.(R)) = 0. 
R-+oo 
e-+O 

Let K be a measurable subset of 0, then HK is the set of all functions 11 •• k) 
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possessing the following properties: 

(1) for fixed E and(} E 0, 'IJ,,k) is a function U,,8 ~ (0, oo); 
(2) there exists a polynomial pol(R) in R such that, for e small enough and R 

sufficiently large, 

(2.4) sup 'IJ,, 6(u)- 1 ~ pol(R). 
8eK; uefn,B,R 

Let, for each e and (J, f. 8: [O, oo) ~ IR be a monotonically nondecreasing 
continuous function and define the random functional 

(2.5) 

The main result of this section is the following theorem, which gives sufficient 
conditions, in terms of the functionals t. 8(u), for an LLD to hold for 0. . . 

THEOREM 2.1. (a) Let the functionals t., 8(u) possess the following proper
ties: Given a measurable subset Kc e c IRk, there correspond to it numbers m 
and a, where m ~ a > k, functions g, E G and T/e, 8 E HK• and a polynomial 
polK(R) in R such that,for all e small and R large enough, the following 
conditions hol,d: 

(M.1) 

(M.2) 

JE~•>it.,9(u) - t.,e(v)r ~Ju - vJapolK(R), 

for all {} e K and u and nv e r •. e, R; 

i?J•>{t.,e(u) - t.,9(0) ~ -TJ.,e(u)} ~ exp(-g.(R)), 

for all() EK and U E f., 8, R· 

Then the following uniform LLD ho Ms: There exist positive constants B0 and 
b0 , such that, for all e small and H large enough, 

sup PJ•>{icf>( e, IJ)- 1{ I. - IJ) I~ H} ~ B0exp{ -b0g.(H)). 
8eK 

The constant b0 can be made arbitrarily close ( from below) to (a - k )/(a - k + 
mk) by choosing B0 large enough. 

(b) The conclusion of part (a) continues to hol,d if (M.1) is replaced by the 
following condition (M.18): 

(M.18) (M.1) ho/,ds for all fJ E Kand u, v E r •. 8, R satisfying Ju - vJ ~ 8, where 
8 is a fixed positive constant, 

provided one of the two following (weak) assumptions is satisfied: 

(M.l') e is a convex set, 

(M.1") 1E~·>1r.,e(u) Im~ polK(R) for all 8 EK and u E r.,8,R· 

REMARKS. 

1. For applications in the method of Ibragimov and Has'minskii (1981), the set 
K is chosen to be compact. For the preceding theorem this is not essential. 

II 
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2. Theorem 1.5.1 of Ibragimov and Has'minskii (1981) follows from the preceding 
theorem by choosing te, 9(u) •= z •. 9(u)1lm and 11.,e(u) = f. In particular, 
condition (2) of 1.5.1 implies (M.2) by Markov's inequality and condition (1) 
implies (M.1). 

3. Compare also the conditions of Vostrikova (1984), Theorems 1 and 3. 
4. If, for some IJ, cj>( e, IJ) -+ 0 in operator norm as e -+ 0, then this IJ is weakly 

consistently estimated by Be. 
The proof of Theorem 2.1 proceeds via a number of propositions. The reader is 
advised to consult the proof of Theorem 1.5.1 of Ibragimov and Has'minskii 
(1981), as our proof follows the same line. To avoid tedious repetitions, we 
assume at each stage of the proof that an initial choice of sufficiently small e and 
sufficiently large R (or H) has been made. 

PROPOSITION 2.2. If there exist COTZStants B and b such that 

(2.6) sup IPJ•>{ sup t .. e(u) ~ t •. io)} :::;; Bexp(-bg.(R)), 
IJeK uef,,s,R 

then (i) the assertion of Theorem 2.1 hokls, and (ii) the COTZStant b0 there can be 
chosen arbitrarily close ( from below) "to b. 

PRooF. Ibragimov and Has'minskii (1981), Chapter 1.5, page 42, prove a 
similar, but less precise, statement in (5.4). We apply Lemma A.2 (Appendix) and 
estimate its right-hand side. For any small positive 8, one has, using the 
monotonicity of g, and f, 

IPJ•>{ sup Z,, 8(u) ~ 1} :::;; BE exp( -bg,(r + H)) 
luj;;::H r-0 

(2.7) ueU,, 8 

00 

= B exp( -b0ge(H)) L exp(-bl3g,(H + r )) , 
r-o 

where b0 •= b(l - 6). The sum on the right-hand side is finite: Relation (2.3) 
says that in the limit, RNexp(-geCR)) :::;; 1 for all N, so put N = 2/6b. Then 
exl>(-Mg,(R)) :::;; R- 2• o 

PROPOSITION 2.3. Condition (M.18) together with either condition (M.l') or 
(M.1") implies condition (M.l). 

PROOF. 
Case 1. (M.16) and (M.1') => (M.1). From the convexity of E> follows that 

any U and V in fe, 8, R may be connected by a path in f,, 9, R consisting of linear 
segments of length :::;; 6, where the number of segments does not exceed 
C8- 1 ju - vl and C is a fixed constant not depending on () or R. To all the 
segments (M.18) is applied; by Minkowski's inequality for integrals it then 
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follows that 

(2.8) (1Elt,,o(u) - t,,o(v)r)l/m S Co- 1iu - vi5"1mpolK(R)11m, 

which leads to (M.1) because, as u and v E f,, 8, R, 

lu - vl S lu - vla/m(2(R + l))l-a/m, 

where the second factor is absorbed by the polynomial pol K. 

Case 2. (Ml.o) and (M.1") => (M.l). From (M.l") follows, using Minkowski's 
inequality again, that the left-hand side of (M.l) is bounded by 2mpolx(R), 
which, for any u, v such that lu - vl > 8, is bounded by lu - vl"'2mo-"polx(R). 

D 

PRooF OF THEOREM 2.1. By Proposition 2.3 it suffices to prove only part (a). 
By Proposition 2.2 we need only prove relation (2.6). We subdivide the section 
{ u: R s I ul s R + 1} into N regions, each with diameter at most h. Such a 
subdivision can be accomplished such that the number of regions is bounded by 

(2.9) 

where const.(k) is a constant depending only on k. This subdivision induces a 
partition of r •. o, R in at most N sets; denote this partition by 

(2.10) r,,8,R = f,<,1b,R u r.<~b.R u · · · ur.<.~:~. 
where N' s N, and choose in each member r.~ib,R a point U;. Then 

(2.11) ?J•l{~up t,, 11 (u);;::; t,, 0(0)} s P1 + P2 , 

,.,6,R 

where P1 and P2 are given by 

(2.12) 

N' 

P1 := L J?J•l{t,,o(uj) - t,,o(O) :2:: -11,,o(uj)}, 
j=l 

P2 := pJ•>{ max It, e(u) - t. o(v)I;;::; inf 11. 9; u, v Er. 8 R}· 
Ju-vJ:<=h ' ' f,,9,R ' ' ' 

From condition (M.2) and the inequality (2.9) we have immediately 

(2.13) P1 s const.(k)(R + l)k-lh-kexp - g,(R). 

The second term P2 is bounded as follows. Throughout the argument we let 
pol(R) denote any (not necessarily always the same) polynomial in R, the 
coefficients of which may depend on a, k, m and polx but not on e, R, (}, u and 
v. Now, let Uo be any point in r •. e, R and consider the random function 
t,,o(u) - t,, 8(u 0 ) on the closed set r.,o,R· Now apply it to Lemma A.3 in the 
Appendix. By assumption, t is continuous in u and hence it has a measurable 
and separable version [see Neveu (1970) for the notion of separability]. Put 

(2.14) C(u) := max{l, lu - u01"}polx(R), 
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then C( u) is .bounded by pol( R), as u and Uo E r •. 8, R· With this choice of C( u ), 
conditions (1) and (2) of the lemma are fulfilled due to condition (M.l) of 
Theorem 2.1. It then follows from this lemma and Markov's inequality that 

(2.15) P2 ::S: h(a-k)/mpol(R), 

where we have used the property (2.4) of 11;:~ to be polynomially bounded in u. 
Putting the inequalitiEl? (2.11), (2.13) and (2.15) together we have 

(2.16) 
PJ•l{supf,, 8(u) ~ t,,e(o)} ::s: h-kpol(R)exp(-g,(R)) 

+ h(a-k)/mpol( R). 

Now we put h == exp(Cg.(R)), where the constant C should be chosen such that 
no one tail in (2.16) dominates the other. This leads to 

(2.17) C = -m/(a - k + mk). 

The final result (2.6) follows from (2.16), (2.17) and the property (2.3) of exp g, to 
dominate any polynomial. The statement concerning b0 is now obvious from the 
second part of Proposition 2.2. We remark that Ibragimov and Has'minskii 
(1981) use, instead of (2.9), the inequality N:::;: = const.(k)(R + l)/hk- 1, which 
we were unable to verify. Of course, this would lead to another bound for b0 in 
Theorem 2.1. D 

3. Nonlinear least-squares regression with independent errors. Let 8 
be a Borel subset of IR k and let f / (}) be a continuous deterministic function from 
8 to ~ for each t E N; all our results can easily be generalized to the case of a 
deterministic triangular design array (tfnl, t~nl, ... , t~nl; n E N). We consider the 
nonlinear regression model 

(3.1) t= 1,2, ... ,n, 

where xn == Xl, X2, ... ' xn are the observed random variables and { Ep t EN} 
is a sequence of real independent random variables with expectation zero. 

The least-squares estimator en (which we assume to exist; see Section 2 and 
Lemma A.l) maximizes the functional 

(3.2) 
ts,n 

Given a sequence of nonsingular matrix norming factors <Pn(O) we define the ratio 

Zn,o(u) == Cn(xn, 0 + <Pn(B)u)/Cn(Xn, 8) 
(3.3) 

where 

(3.4) 

Because of the many practical applications of the model (3.1), the various 
properties of the least-squares estimator, such as strong or weak consistency, 
asymptotic normality and large deviation behavior, have been studied 
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extensively. See, e.g., van de Geer (1986), Ivanov (1976), Lauter (1985), Prakasa 
Rao (1984) and Wu (1981). All these authors restrict themselves to the case that 
the errors et are independent and identically distributed. 

We shall study the large deviation probability of the least-squares estimator 
in the case of independent errors. To this end, we stipulate the following 
assumptions which allow us to apply Theorem 2.1. 

Assume that, for some Borel subset K of 0, there exist functions gnCR) E G, 
positive constants y > 0, A1 E (0, oo], a E (0, t), ic > 0, p E (0, 1] and a poly
nomial pol(R) such that, for all n and R large enough, the following inequalities 
hold: 

(N.1) for all t E N and IAI ::;;; A1 (note that A1 = oo is allowed) 

IE exp(Aee)::;;; exp(h>-2 ); 

(N.2) for all 8 E K and u, v E fn, ll, R• where lu - til :S ic, one has 

L [ ft(O + <1>n(8)u) - fe(8 + <1>n(O)v)] 2 .S: lu - vl 2Ppol(R) 
ts.n 

and 

ts;n 

(N.3) for all 8 EK and u E fn,ll, Rone has 

L [ft(8 + <Pn(O)u) - ft(8)] 2 ~An((), u)gn(R), 
ts.n 

where 

and 

max ( (), u) == max { I ft( 8 + <l>n( 8) u) - ft( 8) I; t = 1, 2, ... , n} . 
n 

The following theorem seems to us an instructive example of the application 
of the very general Theorem 2.1. 

THEOREM 3.1. Let, for some Kc El and suitably chosen normings <Pn(B), 
assumptions (N.1)-(N.3) be fulfilled. Then the following LLD holds: There exist 
constants B0 and b0 , such that, for all n and H large enough, 

sup 1PJn>{l<1>n(8)- 1( en - e) I ~ H} :S Boexp( -bogn(H)). 
9EK 

Moreover, for any /3 > 0 we can choose B0 such that 

(3.5) b0 ~ p(p + k)- 1 - {3. 

Before proving this theorem, let us discuss the significance of conditions 
(N.1)-(N.3) and the relation they bear to known results concerning the behavior 
of the least-squares estimator. 
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Condition (N.1) prescribes that the tails of the et should be uniformly "thin." 
The uniformity is evident in the i.i.d. case. If the Et are, e.g., Gaussian, or 
bounded, then (N.1) holds with A 1 = oo; in that case /::,.n in (N.3) is constant and 
lftC8 + <Pn(8)u) - ft(8)1 may increase unboundedly in t. 

Condition (N.2) is a Holder-type continuity condition on the parametrization 
8 - f( 8). It is directly related to condition (M.1) of Theorem 2.1. This assures 
that the regression functions do not behave too wildly in 8, so that uniform 
estimates can be obtained. Compare, e.g., Lemma 3 of Jennrich (1969), Condition 
III of Ivanov (1976), Assumption A(ii) of Wu (1981) and condition (2.5) of 
Prakasa Rao (1984), which are of a similar nature. It is easy to construct an 
example, where the regression functions ft( 8) are not everywhere continuous in 0 
but still an LLD holds. Therefore, we mention the approach of van de Geer 
(1986) to impose entropy instead of continuity conditions; compare also our 
inequality (2.9) and Lemma A of Wu (1981). 

Condition (N.3) prescribes the rate of asymptotic separation. Asymptotic 
separation (the regression functions keep enough apart to be statistically dis
tinguishable) is a necessary condition for consistent estimation; see Wu (1981), 
Theorem 1. It may be interesting to note that asymptotic separation may be 
viewed as a form of continuity of the inverse of the parametrization, i.e., of the 
map /(8)--+ 0: If 8 and 81 == 8 + <t>i8)u are "apart," i.e., if lcPn(0)- 1(8 - 0')1 ~ 
R, then /(8) and f(O') are also apart in the sense of condition (N.3). Logically, 
this is equivalent to a form of continuity. In Jennrich (1969), the separation 
condition is that of existence of the tail cross products (see also his Lemma 3). In 
Wu (1981), this seems to be his (complicated) condition A(i). In the same line lie 
the conditions of Ivanov (1976) (Condition III), Prakasa Rao (1984), condition 
(2.6), and Lauter (1985), condition (12) to Theorem 1. 

PROOF OF THEOREM 3.1. The proof consists of checking conditions (M.1) and 
(M.2) to Theorem 2.1 with f(Z) ==log Z. We assume that an initial choice of 
sufficiently large n and R has been made. Let, throughout, u, v E rn,8,R• 

lu - vl ~"and 8 EK. 
First we check condition (M.1). 
Condition (N.2) may be expressed in the dtn 9(u), as defined in (3.4): 

(3.6) L ldtne(u) - dtne(v)l2 ~ lu - vl 2Ppol(R) 
tsn 

and 

(3.7) 
tsn 

Note that from (3.7) it follows that (3.6) holds also, if lu - vl > ic. In fact, (3.7) 
gives 

tsn 

where the factor ic- 2P is absorbed by the polynomial pol(R). From (3.3) we have, 
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choosing r n, e( u) := log zn, e( u ), 

(3.8) rn,e(u)-rn,e(v)= LAtet-Bt, 

where 

(3.9) 

ts;,n 

At:= dtne(u) - dtne(v), 

2Bt == dtne( U ) 2 - dtne( V ) 2 • 

Note that, by Lemma 5 in Chapter 3.4 of Petrov (1975), condition (N.l) 

implies the existence and boundedness, uniform in t, of moments of all order m 
of et. Hence, using the independence of the e1, condition (N.1) and Eet = 0, we 
find, for all even m ~ 2, 

(3.10) IEJrn,e(u)-Kn,e(v)rsconst.(m) l:* l](fA~')(fBt)z, 
z.z1 ..... z. i i 

where * denotes summation over all positive even l1, l2 , ••• , l 8 2: 2 and even 

l 2 0 (where s 2: 0) having sum m. We have the following estimates: 

(3.11) 

12~Btl S ~Jdtne(u) - dtne(v)JJdtno(u) + dtne(v)J 

s ( ~ldtniu)- dtne(v)J 2 ~ldtno(u) + dtne(v)J 2f12 

s tu - vJPpol(R), 

where we have used Cauchy-Schwarz, the inequality (a+ b)2 s 2a 2 + 2b2 , the 

fact that u, v E rn,8,R by assumption and inequalities (3.6) and (3.7). We also 
have, for l even and ~ 2, using (3.6) again, 

(3.12) I 1
1/2 

0.::;; LA~ s LA; s tu - vJP1pol(R). 
tsn ts;, n 

Consequently, (3.10) becomes, using (3.11) and (3.12), 

(3.13) IEJKn,o(u) - Kn,e(v)Jm s ju - vJPmpol(R). 

If we choose m even and larger than k/ p, (3.13) fulfills condition (M.1) of 
Theorem 2.1, with the constant a = pm. 

Now we check condition (M.2). We shall write, for simplicity of notation, 

dt == dtno(u) and max.JdtJ == max{ldtne(u)J; t = 1,2,. .. , n}. Choose 

(3.14) 11n, o( U) == ( t - 8) L dtne( U )2. 
ts;,n 

By condition (N.3), one has the inequality 

(3.15) L dtnfJ(u) 2 2: 8ygn(R), 
ts;,n 

which shows that T/n,e(u) E HK because, as follows from (2.4), gn(R)- 1 s 1 for 
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n and R sufficiently large. By (3.8), (3.9) and (3.14) and Lemma A.4 in the 
Appendix 

IP>Jn>{r,,,8(u) - tn,8(0) ~ -11n,8(u)} = IPJn>{ L dtet ~ 8 L dl} 
ts.n ts.n 

(3.16) 

S exp{- L dl/An ), 
ts.n 

where An(fJ, u) is defined in condition (N.3). 
It remains to apply the inequality of (N.3) to (3.16), which yields 

(3.17) 1P>Jn>{tn,8(u) - tn,8(0) ~ -11n,8(u)} S exp(-gn(R)), 

thus fulfilling condition (M.2) of Theorem 2.1. 
The last step consists of the verification of the theorem's statement (3.5) 

concerning b0 • This is easily accomplished by choosing a= pm and letting 
m-+ oo. D 

We have formulated conditions (N.2) and (N.3) in the spirit of Ibragimov and 
Has'minskii (1981) and our Theorem 2.1. This has allowed a direct application of 
this theorem. From Theorem 3.1 we now deduce a slightly weaker theorem of 
friendlier appearance, which seems to suffice for many applications. To this end, 
we make the following observations: 

1. Problems might occur if, for some() and u, An((), u) would increase to infinity 
in n. For it follows from (N.2) and (N.3) that gn(R) s pol(R)/An(8, u); if 
An-+ oo, then condition (2.3) on the set G would be violated. Fortunately, one 
also has 

for all () E K and u E rn, 8, R by (N.2) and (N.3), so that An is bounded in n. 
2. One might argue that Theorem 3.1 is of little value in applications because, in 

practice, one never knows the exact value of A1• Indeed, when analyzing real 
data, we may as well set A1 = oo; the meaning of condition (N.1) is, of course, 
that it gives the theorem a certain robustness: nothing terrible happens when 
A 1 < oo. 

3. In practice, the constant p will usually be equal to 1 [a counterexample is 
provided by ft( 8) = ()P, 0 < p < 1 and E> = [ -1, 1]; the repararnetrization 
{)P =: T makes p = 1 again]. 

4. The polynomial pol(R) seems to be unimportant in applications; however, it 
saved us the two extra constants m1 and M 1 used in Theorem 1.5.1 of 
Ibragimov and Has'minskii (1981). 

5. Finally, a natural choice for the function Bn(R) seems to be a quadratic 
function and for K we might [out of the context of Ibragimov and Has'minskii 
(1981)], as well choose the set 0. To obtain simple conditions, we restrict 
ourselves to the case that 4>n does not depend on 8. 
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These considerations have motivated the following theorem: 

THEOREM 3.2. Let, for a suitabk sequence of normalizing matrices q,,., the 
I ollowing conditions be fulfilled: 

(N.1') For some y, condition (N.1) ho/,ds with A1 = oo. 
(N.4) Let there exist positive constants D1 and D2 such that, for all fJ, fJ' E 0 

and n large enough, · 

D1lct>; 1(8 - 8')12 ~ l: [ ft(8) - ft(8')] 2 ~ D2lq,;1(fJ - fJ') 12• 
ts.n 

Then the following LLD holds for the LS estimator 8,.: There exist constants B0 

and b, such that, for all n and H large enough, 

sup?Jn>{jc1>; 1(ti,. - 8)1;;:: H} :s; Boexp(-bH2 ). 
8e9 

Moreover, for any f3 > 0 we can choose B0 such that 

b ;?! D1/(8y(l + k)) - {3. 

PROOF. To apply Theorem 3.1, let us verify its conditions. (N.1) holds by 
assumption; by (N.4), (N.2) holds with p = 1 and pol(R) = D2 • By (N.4) and 
(N.1), (N.3) holds for any 8 E (0, i), with the choice D.,.:= 2yll- 2 and g,.(R) == 
(D1/2y8- 2 )R2• Now apply Theorem 3.1 and let 8-+ t. o 

Theorem 3.2 extends a result of Ivanov (1976), namely his LD Lemma 1. It 
generalizes the result of Prakasa Rao (1984). His theorem follows immediately 
from ours. In Section 4 we give an example to show that our generalization is not 
void. 

4. Examples and concluding remarks. In this section, we present some 
examples of the application of Theorem 3.2. Recall that two sequences of positive 
numbers (an) and ( b,.) are called (asymptotically) equivalent (write a,.= b,.) if 
there exist positive constants C1 and C2 such that C1b,. ~a,. :s; C2 b,. for all n 
(large enough). In the same manner, we call a parametrized family of positive 
sequences {(a,.(8)); 8 E 0} (asymptotically) uniformly equivalent to a positive 
sequence ( bn) if there exist positive constants C1 and C2 such that, for all n 
(large enough), the inequality C1b,. :S: a,.(8) :s; C2 b,. holds. We shall write 
an(O) = bn (uniformly in 8). These definitions can, in an obvious manner, be 
generalized to sequences of positive definite symmetric matrices (A,.; n = 
1, 2, ... ). We say that A,.;?! B,. if the difference is a positive semidefinite matrix. 

Examples 1and2 are provided by the Michaelis-Menten model, which is used 
to describe the relation between the velocity v of an enzyme reaction and the 
concentration c of the substrate. The parameters are M, the maximal reaction 
velocity, and K, the chemical affinity. The parameter set 0 of the (K, M) is a 
bounded open set in the positive quadrant. The model is 

Mc 
(4.1) v(c;K,M)=-K . 

+c 

\\ 

I 



LARGE DEVIATION RESULT 1043 

We shall consider fixed designs c given by concentrations e1, e2, ••• , en, where 
en-+ 0 as n -+ oo. At each concentration et an independent measurement of the 
velocity is taken, giving the data Xv X 2 , ••• , Xn: 

( ) Met 
4.2 xt = Ve(K, M) +et= -- +et, 

K +et 

where the et are independent centered errors satisfying condition (N.1') of 
Theorem 3.2 for some y. 

EXAMPLE 1. Consider the following simple model, which is obtained from 
(4.1) by assuming that K/M is known (put K/M = 1, without loss of generality) 
and putting et= t- 114• This model can be written as 

1 
(4.3) ft(B) == K_ 1 + tll4 , t = 1,2,3 .... 

Note that, for this model, the conditions of Jennrich (1969), Ivanov (1976) and, 
in particular, Prakasa Rao (1984), do not hold. 

One has 

tsn 

where 

{4.5) Cn(K, K') := L 1/[{K-1 + tl/4)(K'-l + tl/4)) 2 

t:s;,n 

and it is easily shown that the sequence Cn( K, K ') ""' log n, uniformly in K, K '. 
It follows in particular that, for n large enough (as usual), 

(4.6) L ( ft(K) - ft(K')) 2 ~ D11K - K'l 2logn, 
t:s;,n 

where D1 can be chosen arbitrarily close (from below) to 1/(sup K )4. Now we 
can apply Theorem 3.2, which yields 

(4.7) sup o:»Jt>{ (log n) 1121Kn - Kl~ H} 5 Boexp{-bH2 ), 

Ke0 

where b can be chosen arbitrarily close (from below) to 1/16y(sup K )4. We 
remark that, in the case of i.i.d. disturbances et, the strong consistency of the 
LS-estimator for this model can be demonstrated by Theorem 3 of Wu (1981). By 
Theorem 5 of the same author, it is also asymptotically normal: 

(4.8) {log n) 112(Kn - K)-+ .ff{O, o2K 4), 

where o 2 is the variance of the i.i.d. et. 
Of course, the results (4.7) and (4.8) do not imply each other. But information 

on the quality of our bound 1/16y(supK)4 for b can be obtained by considering 
the following quantity [compare Sievers' definition of the inaccuracy rate; see 
Kester (1985), Chapter 1, Definition 1.1]: 

b1(8) == liminf -H-2logo>Jn>{(Iogn)1118n-81 ~H}. 
n--+oo, H-+ot:J 
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From (4.7) it follows that b1(K);;:: l/16-y(supK)4, whereas (4.8) yields 
b1(K) = ~<J 2K 4 • In the case that the et are Gaussian, -y equals <J 2 and the bound 
1/16-y is at most a factor 8 (sup K )4/(inf K )4 too pessimistic. This is a conse
quence of the approximations made in Lemma A.3 and the proof of Theorem 2.1. 

Our bound may be improved by using the apparently more natural parametri
zation L == K- 1• Then (4.6) continues to hold with K replaced by L and D1 

arbitrarily close to 1. Consequently, (4.7) and (4.8) yield b1(L) 2 l/16y and 
b1(L) = l/2a 2, respectively. Our bound is then a factor 8 too pessimistic, 
uniformly over e. 

EXAMPLE 2. Now we consider the model (4.1) in its full generality. One has 

(4.9) vt(K', M') - vt(K, M) = a/M'/K' - M/K) +MM' - M), 

where 

(4.10) 
at(K,K') ==KK'etf(K+ et)(K' +et), 

MK, K') == el/(K + et)(K' +et), 

which suggests the reparametrization (K, M) ~ (L, M) with L == M/K (com
pare L •= 1/K in Example 1). Note that the transform of 0 is again bounded 
and open in the positive quadrant. Putting 

(4.11) 
L at(K, K')MK, K')1 
ts n 

l:be(K,K')2 

ts.n 

and A•= col{L' - L, M' - M} we have 

(4.12) L [vt(K', M') - vi{K, M)] 2 = ATBn(K, K')ii. 
ts,n 

Now we make the following assumptions on the design sequence: 
00 

(4.13) "c4 = co £..., t ' 
1 

(4.14) 

where rn is defined by 

( 4.15) 
rn •= l:n c; t~n c: I ( T:n c: r 

Observe that these assumptions are easily checked if, e.g., et::::: rP. In 
the case that 0 < p < 1/4, the left-hand side of (4.14) is equivalent to 1 + 
1/(1 - 2p)(l .- 4p); he~ce (4.14) can be fulfilled by choosing p close enough to 
1/4. Assumpt10n (4.14) is always fulfilled if p = 1/4. 
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We show that under assumptions (4.13) and (4.14) the family Bn(K, K ') is 
uniformly equivalent. First, note that 

(4.16) 
at= et+ o( en, 
bt = e;/KK I+ o( e:), 

where all our Landau symbols are valid uniformly over the range of (K, K '). 
Next apply Lemma A.5(ii): The traces and determinants mentioned in this 
lemma can be expressed as quotients of sequences sn defined by 

8 n(K1, K2, K3, K4) == L at(Ki, K2)2 L b8 (K3, K4)2 
(4.17) tsn ssn 

- L at(Ki, K2)be(K1, K2) L as(K3, K4)bs(K3, K4), 
tsn ssn 

for various values of the parameters K i· Hence, it suffices that these sequences 
be uniformly equivalent. 

Using (4.13) and (4.16) it follows that 

(4.18) La;= L c;(1 + on(l)) 
tsn tsn 

and the like for r.bt and r.atbt. This leads to 

sn(K11 K 2, K3 , K 4) = ( L c:/K3K4)\rn(l + on(l)) 
(4.19) tsn 

-(KaK.1/K1K2)(l + on(l))), 

and together with (4.14) uniform equivalence follows: Fixing arbitrary values of 
K and K ', say K 0 and K0, we have, uniformly, 

(4.20) 

whence condition (N.4) holds for some choice of constants D1 and D2 [which can 
be obtained from Lemma A.5(ii)] and <Pn •= Bn(K0 , K0)- 1l 2• Application of 
Theorem 3.2 yields 

(4.21) sup Pt~{l<t>;~ol{.l - L, M- M} I;;:: H} ~ B0exp(-bH2 ), 

where b can be chosen arbitrarily close (from below) to D1/24y. A similar 
inequality can be derived for the pair of estimators ( K, M) but, as in Example 1, 
the bounds for bare of poorer quality. 

EXAMPLE 3. Consider the linear model 

(4.22) xt = 0 + "t• t = 1,2, ... , n, 

where the et are i.i.d. standard normal variables. One immediately obtains 

(4.23) 1?Jn>{n1/ 210n - 01;;:: H} ~ (2/'1T) 112exp(-bH2/2). 

For b we can take any value ~ 1. Theorem 3.2 allows us to take any b < 1/16, 
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which is a factor 16 too pessimistic. No other estimator can improve the value 
b = 1 [see Kester (1985), Chapter 2, Example 1.1]. 

In Section 3, we applied the very general Theorem 2.1 to the problem of 
least-squares estimation. It would be nice to try our method on other M-estima
tors, e.g., the Huber estimators in nonlinear regression, i.e., estimators maximiz
ing a functional of the form 

(4.24) C,.(X", 9) := - E ir(Xt - ft(9)) 
t:s;n 

and to compare our bound for b with the exact rate of convergence obtained by 
Kester (1985) in the case that et are i.i.d. and {) is a location parameter, i.e., 
ft(9) = 8. For details see Kester [(1985), Chapter 2.4b, Theorem 4.2]. 

However, we wish to point out that there are also situations where our 
Theorems 2.1 and 3.1 do not apply. For instance, consider the power model 
ft(8) = t- 9, ()Ee := [O, a], where a~ t. This model is also discussed by Wu 
(1981), who shows that the LS-estimator is strongly consistent. 

Our theorems do not apply because the rate of growth (in n) of I:t :s: ,.( ft( 9) -
ft(8'))2 depends on (J and 91, whereas our theory assumes a uniform growth rate 
in n. Hence, a suitable norming tj>,.( 8) does not exist for this example [Has'minskii 
(1986)]. An extension of Theorem 2.1 to a theorem with more flexible normings 
would meet this difficulty and would also contribute to Ibragimov and 
Has'minskii's theory. 

APPENDIX 

In this appendix, we list the lemmata we used in the paper. 

LEMMA A.1. Let (Et, o/i) be a measurabk space and /,et {IP>0; 8 E f>} be a 
family of probability measures on (Et, 'YI), where 0 is a Borel subset of Rk. Let 
C be a real function from :rx 0 to [O, oo) which is, for all X E fr, a positive 
continuous function of() and, for each (J E 0, a('YI, gj)-measurabk function of 
X. Finally, kt 0° be a subset of 0 which has a countabk subset D which is 
dense in 0°. Then the following assertions hold: 

(i) the random variabk S(X) •= sup9 e 9 oC(X, 0) is 11/i-measurabk; 
(ii) if 0 is compact then, for any X, the equation in t, 

(A.1) sup C(X, 8) = C(X, t), 
9e8 

has a solution [which we deno'te B(X)], which is 'Yl-measurabk; 
(iii) if, for arbitrary (noncompact) 0 the exis'tence of a solution to (A.1) is 

assumed, then there exists a measurabk version 0( X) of this solution. 

PROOF. (i) See Schmetterer (1974), Chapter 5.3, Lemma 3.2, page 307. We 
observe that any subset 0° of Rk has a countable subset D which is dense in the 
closure 0°. 

(ii) See Schmetterer (1974), Chapter 5.3, Lemma 3.3, page 307ff. or Jennrich 
(1969), Lemma 2. 
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(iii) The set 0 is Borel, whence it is possible to approximate it by an 
increasing sequence of compact sets K; t 0. Let E>(X) be the set of the() solving 
(A.1). Let i *(X) be the smallest i such that K; n E>(X) + 0. Then i* is finite 
by assumption; it is also measurable, which can be seen as follows. 

Let D be a countable dense subset of 0. Then the event {i* > n) can be 
written as 

{X: rl lJ LJ sup C(X, e) ~ C(X, T) - k-1}, 
i-1 k=l TED 9eKi 

which is clearly measurable by part (i) of this lemma. Then 

(A.2) supC(X, 0) = supC(X, 0) 
Ki• 8 

and also, because the K i are compact, the equation in t 

(A.3) supC(X, 0) = C(X, t) 

has a measurable solution t = Oi(X) for each i, as is seen by application of part 
(ii) of this lemma. Combining (A.2) and (A.3) it follows that o:.(X) provides a 
solution to (A.1), which is measurable because i * is measurable. D 

LEMMA A.2. Let the quantities C, Z, 8.. etc., be defined as in Section 2. Then 
the following inequality 'holds: 

(A.4) l?Je>{lct>(e, 0)- 1( 8, - e) I ~ H} ~ l?J•>{ sup z.,o(u) ~ 1}. 
lui~H 
ueU..s 

PRooF. See Ibragimov and Has'minskii (1981), Chapter 1.5 and Wu (1981), 
Lemma 1. 0 

LEMMA A.3. Let f( u) be a real-valued function defined on a closed subset r 
of the Euclidean space Rk, which is measurable and separable. Let the follow
ing condition be fulfilled: There exists numbers m ~ a > k and a function 
C: Ill k -+ R, bounded on compact sets, such that for all u, v E r 

(i) 

(ii) 

1Elf(u)lm :s; C(u), 

1Elf(u) - f( v) Im~ C(u)lu - vl"· 

Then a.s. the realizations of t(u) are continuous functions on f. Moreover, set 

w(h, f, L) •= suplf(u) - f(v)I, 

where the sup is mken over all u, v E r with lu - vl ~ h, lul ~ L, lvl :s; L. Then 

Ew(h, t, L) ~ B( sup C(u) r/m Lk/mh<a-k)/m, 
lul:s:L 

where B is a constant depending on m, a and k. 
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PROOF. See Ibragimov and Has'minskii (1981), page 372ff., where in (8) Lk 
should be replaced by Lk/m (printing error). D 

LEMMA A.4. Let ¥1, Y2, ••• , Yn be independent random variables. Let 
d1, ••• , dn be reals and /,et Sn == t;:,;; ndiY;_. Suppose there exist positive constants 
'Yi, i = 1, 2, ... , n, and A1 ( A.1 possibly oo) such that, for all A. E [ - A1, A1] and 
t = 1, 2, ... , n, one has 

(A.5) 1E exp( A.~) ~ exp(tytA.2). 

Write G ==Li:,;; n'Yidf and A == A1/max{ !d1!, ... , ldnl }. Then 

(A.6) ?{Sn~ x} s exp(-min{x 2/2G, Ax/2} ). 

The same inequalities hold if we replace Sn by - Sn. 

PRooF. This lemma is a simple extension of Theorem 16 of Petrov (1975), 
Chapter 3.4. D 

LEMMA A.5. Let {'l>"n, n E N} be a sequence of positive definite symmetric 
matrices and /,et .A:= {Mn( K ): K E K, n E N} be a family of sequences of 
positive definite symmetric matrices indexed by the parameter K. For all K in K 
define the sequence 

(A.7) Rn(K) := .yn-Il2Mn(K)'l>"n-ll2 , n E 1\1. 

Then the following assertion ho/,ds: The family .A is uniformly equivalent (for a 
definition see Section 4) to the sequence '11 n iff there exists an interoal I== [ o:, ,8], 
with ,8 > o: > 0, such that for all n E 1\1 and all K E K, the spectrum of Rn( K) 
is contained in the interval I. 

REMARKS. (i) For 'lrn we may always take Mn(K 0 ), where K 0 is an arbi
rary, but fixed, element in K; 

(ii) if all Mn( K) are of size 2 X 2, then it is also necessary and sufficient that 
the trace and determinant of Rn(K) remain in some fixed positive interval for all 
n and K. In fact, one has, for any K, 

(A.8) ( i~fdet Rn(K )/tr Rn(K)).Yn ~ Mn(K) S ( sitr Rn(K) ).Yn. 

PROOF. If .At"" 'l>"n, then there exists an a> 0 such that, for all K and n, 

(A.9) ai'n S Mn(K) S /3'1'n. 

Now let x be any eigenvector of Rn(K) and sandwich (A.9) between '1'; 112x and 
its transpose; this yields a~ A. s {J, where A. is the eigenvalue belonging to x. On 
the other hand, from eigenvectors of R nC K) one may form an orthonormal basis 
of Rn so the converse reasoning also holds. D 

Acknowledgments. We acknowledge C. Scheffer for his helpful advice and 
L. Lekx for her careful manipulation of the text. We thank the referee, whose 
remarks have substantially improved the paper. 



LARGE DEVIATION RESULT 1049 

REFERENCES 

DZHAPARIDZE, K. 0. (1986). On asymptotic inference about intensity parameters of a counting 
process. Report, Centre for Mathematics and Computer Science, Amsterdam. 

HAs'MINSKII, R. Z. (1986). Personal communication. 
IBRAGIMOV, I. A. and HAS'MINSKII, R. z. (1981). Smtistical Estimation: Asymptotic Theory. 

Springer, New York. 
INGSTER, Yu. I. (1984). Asymptotic regularity of a family of measures corresponding to a Gaussian 

random process which contains a white noise component for a parametric family of 
spectral densities. J. Soviet Math. 25 1165-1181. 

IVANOV, A. V. (1976). An asymptotic expansion for the distribution of the least-squares estimator of 
the nonlinear regression parameter. Theory Probab. Appl. 21 557-570. 

JENNRICH, R. I. (1969). Asymptotic properties of nonlinear least squares estimators. Ann. Math. 
Statist. 40 633-643. 

KESTER, A. D. M. (1985). Some large deviation results in statistics. CWI Tract 18, Centre for 
Mathematics and Computer Science, Amsterdam. 

LAUTER, H. (1985). Strong consistency of the least squares estimator in nonlinear regression. 
Preprint, Akad. der Wissensch. der DDR, Berlin. 

NEVEU, J. (1970). Calcul des Probabilites. Masson, Paris. 
PETROV, V. V. (1975). Sums of Independent Random Variables. Springer, Berlin. 
PRAKASA RAO, B. L. S. (1984). On the exponential rate of convergence of the least squares estimator 

in the nonlinear regression model with Gaussian errors. Smtist. Probab. Lett. 2 139-142. 
ScHMETTERER, L. (1974). Introduction to Mathematical Smtistics. Springer, Berlin. 
SERFLING, R. J. (1980). Approximation Theorems of Mathematical Smtistics. Wiley, New York. 
VAN DE GEER, S. (1986). On rates of convergence in least squares estimation. Report, Centre for 

Mathematics and Computer Science, Amsterdam. 
VosTRIKOVA, L. Ju. (1984). On criteria for c(n)-consistency of estimators. Stochastics 11 265-290. 
Wu, C.-F. (1981). Asymptotic theory of nonlinear least squares estimation. Ann. Statist. 9 501-513. 

DEPARTMENT OF MATHEMATICS 
DELFT UNIVERSITY OF TECHNOLOGY 
JULIANALAAN 132 
2628 BL DELFT 
THE NETHERLANDS 

CENTRE FOR MATHEMATICS AND 
COMPUTER SCIENCE 

KRUISLAAN 413 
1098 SJ AMSTERDAM 
THE NETHERLANDS 


