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Abstract 

Zero-knowledge proofs of computational power have been proposed by Yung and 
others. In this paper, we propose an efficient (direct) and constant round (five round) 
construction of zero knowledge proofs of computational power. To formulate the classes 
that can be applied to these efficient protocols, we introduce a class of invulnerable 
problems, FewPR and FewPRu. We show that any invulnerable problem in FewPR 
and FewP Ru has an efficient and constant round zero knowledge proof of computational 
power, assuming the existence of a one-way function. We discuss some applications of 
these zero-knowledge proofs of computational power. 

1. Introduction 

Zero knowledge interactive proofs that were originally introduced by Goldwasser, 
Micali, and Rackoff [GMR] were defined for "membership" problems, in which the 
membership of an instance in language L is demonstrated. On the other hand, two 
other types of (zero-knowledge) interactive proofs have been proposed; one is proofs 
of "knowledge" [FFS, TW], in which prover's possession of knowledge is demonstrated, 
and the other is proofs of "computational power"[Y, K, OkOh, BDLP], in which prover's 
computational power or ability of solving a problem is demonstrated. 

In many cases, a protocol constructed for a zero-knowledge proof of "membership" 
is also a protocol for a zero-knowledge proof of "knowledge", if the infinite power prover 
in the former one can be replaced by a poly-time bounded prover with an auxiliary 
input in the latter one. On the other hand, zero-knowledge proofs of "computational 
power" are quite different from zero-knowledge proofs of "membership". For example, 
a protocol of a zero-knowledge proof of "membership" usually cannot be a protocol for 
a zero-knowledge proof of "computational power", although the former can be used for 
constructing the latter as a subprotocol. 

Similar to the relationship between zero-knowledge proofs of "membership" and 
"knowledge", there is also a relationship between zero-knowledge proofs of "compu
tational power" and "knowledge". Note that, therefore, we have two types of zero
knowledge proofs of ''knowledge"; one is related to "membership" zero-knowledge proofs 
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(where knowledge is a "witness of the related language") and the other is related to 
"computational power" zero-knowledge proofs (where knowledge is a "key of the re
lated trapdoor function"). 

Regarding zero-knowledge proofs of "membership" and its related proofs of "knowl
edge", some efficient and constant round (five or four round)1 constructions have been 
proposed [BMO, FFS, FeS, TW]. However, these results do not imply that we can 
also construct an efficient zero-knowledge proofs of "computational power", since, as 
mentioned above, zero-knowledge proofs of "computational power" are quite different 
from those of "membership". Actually, the previously proposed zero-knowledge proofs 
of "computational power" [Y, K] are very inefficient, because these proofs use some 
zero-knowledge proofs of knowledge as subprotocols repeated polynomially many times. 
Moreover, no direct construction of the zero-knowledge proof of knowledge used as sub
protocol in these zero-knowledge proofs is given, since its construction is only guaranteed 
by an inefficient (even though polynomial-time) reduction to a zero-knowledge proof for 
an NP-complete predicate. On the other hand, zero-knowledge proofs of "computa
tional power" by [OkOh, BDLP] need specific and strong cryptographic assumptions, 
although they are efficient ([OkOh] is three rounds, and [BDLP] is four rounds). 

In this paper, we propose efficient (direct) and constant round (five round} zero 
knowledge interactive proofs of "computational power" assuming the existence of a 
secure bit-commitment (or of a one-way function [H, ILL, N]). In order to formulate the 
classes that can be applied to these efficient proofs, we introduce the class of invulnerable 
problems, FewPR and FewPRu. We show that any invulnerable problem in FewPR 
and FewP Ru has an efficient (direct) and constant round (five round) zero knowledge 
proof of computational power, assuming the existence of a secure bit-commitment. 

As an application of this efficient zero knowledge proof of "computational power", 
we show an efficient zero knowledge proof of "knowledge", in which prover's possession 
of knowledge (a key of the related trapdoor function) is demonstrated. As a typical 
example of this application, we show a zero-knowledge proof of possessing prime factors 
of a composite number, which is much more efficient than the previously proposed 
protocol in [TW]. We also discuss another application for an identification scheme. 

2. Notations 

v( n) denotes a function vanishing faster than the inverse of any polynomial. For
mally, 

'Ve > 0 3d > 0 'Vn > d 

Negligible probability is the probability that behaves as v( n), and overwhelming prob
ability is probablity behaves as 1- v(n). When Sis a set, 11 S JI denotes the number of 
elements in the set S. EB denotes the exclusive-or. 

( P, V) is an interactive pair of Turing machines, where P is the prover, and V is 
the verifier [GMR, TM]. Let T E {P, V}. T(s) denotes T begun with s on its input 
work tape. (P, V)(x) refers to the probability space that assigns to the string rr the 
probability that (P, V), on input x, outputs rr. 

1 Here, one "round" means one message transmission. Note that "round" is used as 
a couple of message transmissions (send and return) in [FeS]. 
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3. Invulnerable Problems 

In this section, we define the problems whose instance-witness pairs are efficiently 
generated. These are variants of the invulnerable problems introduced by Abadi, Allen
der, Broder, Feigenbaum, and Hemachandra (AABFH]. 

Definition 1: R denotes a predicate that can be computed in polynomial time by a 
deterministic algorithm. 

SR= {(x, w) I R(x, w)}, 

XR = {x I 3w R(x, w)}, 

WR(x) = {w I R(x, w)}, 

FewPR = {R I 3c > 0 Vx E XR JI WR(x) II::; lxlc}, 
Ru denotes a predicate with an auxiliary witness that can be computed in polynomial 
time by a deterministic algorithm with an auxiliary witness. 

SRu = {(x, w, u) I Ru(x, w)}, 

XRu = { x I 3w 3u Ru(x, w)}, 

WRu(x) = {w I R,,(x,w)}, 

FewPRu = {R,, I 3c > 0 Vx E XRu IJ WRu(x) II::; lxic}, 

Note: In our definition, when RE FewPR (or Ru E FewPRu) is determined, the 
size of x E X R (or x E X Ru) is fixed. In other words, R is defined for each size of 
x E XR. We write IRI as lxl (x E XR). 

Definition 2: The uniform generation scheme for R E FewP R, which we denote 
GR, is a polynomial-time algorithm that, on R, obtains an output stringy. If y is (x, w) 
E SR with uniform probability, where R(x,w), then GR outputs (x, w); otherwise, it 
outputs A. GR is o:-invulnerable, if the probability that there exists a polynomial-time 
algorithm computing w from x for nonnegligible fraction of x E X R or GR outputs A is 
at most 1 - o:. 

The uniform generation scheme for Ru E FewPRu, which we denote GRu, is a 
polynomial time algorithm that, on input Ru, obtains an output string y. If y is 
(x, w, u) E SRu with uniform probability, where R,,(x, w), then GRu outputs (x, w, u); 
otherwise, it outputs A. GRu is a-invulnerable, if the probability that there exists a 
polynomial-time algorithm computing w from x and Ru for nonnegligible fraction of 
x E XRu or GRu outputs A is at most 1- o:. 

R or Ru is a-invulnerable, if there exists an a-invulnerable uniform generation scheme. 
A subset C C FewP R is a-invulnerable, if any R E C is a-invulnerable. A subset 
C C FewP Ru is a-invulnerable, if any Ru E C is a-invulnerable. When 1 - a is 
negligible, o:-invulnerable is refered to simply as invulnerable. 

Example 1: (Invulnerable problem in FewP R) 

R(x,w): x = E(w), 
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where Eis a one-way function (e.g., an encryption function). 

Example 2: (Invulnerable problem in FewP R) 

R( x, w) : x = we mod n, 

where n = p · q (p, q: prime), e is coprime to p - 1 and q - 1. If breaking the RSA 
scheme is hard, then this is an invulnerable problem in FewP R. 

Example 3: (Invulnerable problem in FewP Ru) 

R,..(x,w):x=g"modp, w=b"modp, 

where p is prime, g is a primitive element of GF(p), and b is an element in GF(p) 
(b = ga mod p ). If breaking the DH scheme is hard, then this is an invulnerable problem 
in FewPRu. 

Remark: Hereafter, we will only talk about FewP Rand omit FewP Ru, because they 
are almost same. 

4. Interactive Proofs of Computational Power 

In this section, we introduce the formal definition of interactive proofs of compu
tational power. 

Definition 3: (P, V) is an interactive proof that the prover P has the computational 
power to solve the invulnerable problem C C FewP R, if and only if it satisfies the 
following two conditions 
• Completeness: 

For any RE C, 

Pr{(P, V) accepts R} > 1 - v(IRI). 

The probability is taken over the coin tosses of P and V. 
• Soundness: 

For any c > 0, there exists a polynomial-time probabilistic algorithm M (with 
complete control over P*) such that, for any machine P* acting as a prover, and any 
sufficiently large R E C, 

Pr{(P*, V) accepts R} > 1/IR!c ___.. Pr{M(x) = WR(x), x E 'DR}> 1- v(!RI), 

where 'DR C XR, II 'DR II< IRlc' for a constant c', and 'DR is randomly selected from 
X R with the same distribution as generated by verifier V. The probability is taken over 
the coin tosses of P*, M, V, and the distribution of 'DR. 

5. Efficient Zero Knowledge Interactive Proof of Computational Power to 
Solve an Invulnerable Problem in FewPR 

In this section, we show that any invulnerable problem in FewP R (and FewP Ru) 
has an efficient (direct) and constant round (five round) zero-know ledge interactive 
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proof of computational power assuming the existence of a secure bit-commitment (or of 
a one-way function). 

First, before describing the construction of zero-knowledge proofs of computational 
power, we roughly introduce the notion of the bit-commitment (see the formal definition 
in [N]). The bit-commitment protocol between Alice (committer) and Bob (verifier) 
consists of two stages; the commit stage and the revealing stage. In the commit stage, 
after their exchanging messages, Bob has some information that represents Alice's secret 
bit b. In the revealing stage, Bob knows b. Roughly, after the commit stage, Bob cannot 
guess b, and Alice can reveal only one possible value. Here, when the protocol needs 
k rounds in the commit stage, we call it k round bit-commitment. We can construct 
one round bit-commitment using probabilistic encryption [GM], and two round bit
commitment using any one-way function [H, ILL, N]. In the commit stage of one round 
bit-commiment, Alice generates a random number r and sends BC( b, r) to Bob, where 
BC is a bit-commit function. When Alice wishes to commit l bits, bi, b2, ... , b1, she 
sends BC(b1, r1 ), .. ., BC(b1, r1) to Bob. Hereafter, we will simply write BC(b, r) as 
(BC(b1 , r1), .. ., BC(b1, r1)), where b = (b1, ... , b1) and r = (r1, ... , r1). 

Next, we show the protocol of an efficient (direct) and constant round (five round) 
zero-knowledge interactive proof of computational power. 

Protocol A 
Let C C FewPR be an invulnerable problem. The following (P, V) protocol on 

input RE C should be repeated m = O(JRI) times. 

(i) P generates random bit strings r; and ii (i = 1, 2, ... , I), and calculates bit
commitment v; = BCh, t;) ( i = 1, 2,. . ., I), where BC is a bit-commitment 
function, and t; is a random bit string to commit r;. Here, I is the maximum 
number of witnesses of R with I RI. 

(ii) V randomly generates (x, w) E SR using GR, and sends x to P. If GR does not 
output anything, V sends terminate to P and halts. 

(iii) P generates random bit strings s;, and calculates u; = s; EB r; (i = 1,2, ... ,J). 
P computes { w; I R(x, w;), i = 1, 2, ... , I} from x using P's computational power, 
and calculates z; = BC( w;, s;) ( i = 1, 2, ... , I). (When the number of the witnesses 
of x is less than I, P set any values as the dummy witnesses.) If P cannot find 
any witness w;, then P sends terminate to V and halts. Otherwise, P sends u;, z; 
( i = 1, 2, ... , I) to V. 

(iv) V sends w to P. 
(v) P checks whether there exists j such that w = Wj· If j exists, V sends j, ri and 

t i, otherwise P halts. 
( vi) V checks whether Vj = BC( ri, ti) and Zj = BC( w, ( ui EB ri)) hold or not. If they 

hold, V continues the protocol, otherwise rejects and halts. 
After m repetitions of this protocol, if V has not rejected it, V accepts and halts. 
Remark: If Naor's bit-commitment scheme [N] is used, V also sends random bits for 
P's bit-commitment before steps (i) and (iii). Note that if probabilistic encryption or 
blob is used as a bit-commitment, V does not need to send any information for P's 
bit-commitment. 
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Theorem 1: If there exists a secure (one round) bit-commitment, then Protocol A is 
a computational zero knowledge interactive proof that the prover has the computational 
power to solve R E C. 
(Proof) 

(Completeness) 
Since P has the power of computing { w; I R( x, w;), i = 1, 2, ... , J}, then clearly P 

can be proven valid with probability 1. 

(Soundness) 
Here, for any c > 0, we construct a polynomial time algorithm M such that when 

for any sufficiently large R E C 

Pr{(P*, V) accepts R} > 1/jRjc, 

then 

Pr{M(x) = WR(x), x E VR} > 1- v(jRI). 

This algorithm consists of two phases. In the first phase, M executes protocol A 
with P* by simulating the honest verifier, and obtains the values of random numbers 
t;, and ri generated by P* with nonnegligible probability. By repeating polynomially 
many times this procedure with fixing the random tape of P*, M obtains all t;, and r; 
that are used for commiting true witnesses but dummy witnesses. 

In the second phase, M resets P*, and also executes protocol A, where M does 
not simulate the honest verifier, but sends x E 1)R to P* in step (ii). In step (iii), P* 
outputs z;. Because in step (iv) M cannot send a valid w, then P* halts in step (v). 
However, since, in the first phase, M knows all t; and r;, then M can obtain all w; from 
u;, z;, t;, and r; with nonnegligible probability, because the same random tape of P* is 
used in the first and second phases. 

Thus, we can extract all w; from x E 1) R with overwhelming probability by repeat
ing the above procedure polynomially many times. 

(Zero knowledgeness) 
Let V* be any polynomial time algorithm for the verifier. 
The simulator M can simulate the history, (P,V*)(R), by using V* as a black-box 

as follows: 
The following procedure should be repeated m = O(jRI) times. 

( 1) M generates prover's first message, { v!; i = 1, 2, ... , I}, by using the same proce
dure as honest prover's, where vi = BC(rL tD. 

(2) M gives { v:; i = 1, 2,. .. , I} to V* as prover's first message and runs V*, which 
outputs x' as verifier's first message. 

( 3) M generates random numbers { wi}, { sa and computes { ui = s: E9 ri}, { zi = 
BC(w~,s~}, where i = 1,2, ... ,I. 

• ' d V* ( 4) M gives { uL zI; i = 1, 2, .. ., I} to V* as prover's second message an runs , 
which outputs w' as verifier's second message. 

(5) M checks whether R(x',w') holds or not. If R(x',w') does not hold, then M 
outputs ({vi; i = 1,2, ... ,I}, x', {ui,zi;i = 1,2, ... ,I},w'), and halts. Ifit holds, 
then go to step (6). 
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(6) M resets V*, and repeats the exact same procedure of steps (1) and (2) with the 
same ramdom tapes. 

(7) M randomly generates j E {l, .. ., I}, s:' ( i = 1,. . ., I) and wi' for i = 1,. .. , j -
1 . 1 I M t II I d t II II ffi I II BC( II II) , J + , ... , . se s wi = w , an compu es u; = s; w ri, z; = W; , s; 
(i = 1,. . ., I). 

(8) M gives { u;', z:'; i = 1, ... , I} to V* as prover's second message, and runs V*, which 
outputs w" as verifier's second message. 

(9) M checks whether w" = w' or not. If it holds, M outputs ( { vi; i = 1, ... , I}, x', 
{u;',zi'; i = l,. . .,J}, w', (j, tj, rj)) as the history. Otherwise, M returns to step 
(6). 

First, the real history Ho of ({v;; i = 1,. . .,I}, x, {u;,z;; i = 1,. .. ,I}, w) is 
computationally indistinguishable from the first-stage simulated history H 1 of ( { v;; 
i = 1, ... , J}, x', { u:, z~; i = 1, ... , I}, w'). This is because if there exists a distinguisher 
D that distinguishes H 0 and H1, then we can use D to extract one committed bit 
of the bit-commitment scheme with nonnegligible probability. This contradicts the 
definition of bit-commitment, since V* and M are polynomial-time bounded and D is 
nonuniformly polynomial-time bounded. 

Similarly, the first-stage simulated history H1 is computationally indistinguish
able from the final-stage simulated history H 2 of ( { vI; i = 1, ... , I}, x', { ui', zI'; i = 
1, ... , I}, w'). This is because H 1 is computationally indistinguishable from H{ = ( { vi; 
i = l,. . .,I}, x', {R;,zi; i = l, ... ,I}, w'), H2 is computationally indistinguishable 
from H~ = ({v;; i = 1, .. .,J}, x', {R;,zi'; i = 1,. . .,I}, w'), and Hf and H!2 are 
computationally indistinguishable, where R; is a real random string. 

Thus, the output of M is computationally indistinguishable from the real history, 
since H2 is computationally indistinguishable from Ho. 

Then, we show that the running time of M is polynomial time with overwhelming 
probability. Suppose that Pi is the probability that V* outputs Wi as w' on input ( { v;; 
i = 1, ... , I}, x', { u;, <; i = 1, ... , I}) and Pi is the probability that V* outputs Wi 

as w' on input ( { v:; i = 1,. .. , I}, x', { ui', z:'; i = 1,. .. ,I}). The expected repetition 
number from step (6) to (9) is Li pif p:. From the property of the bit-commitment, 
€ = IPi - P:I < v(IRI). If there exists co for sufficient large IRI such that Pi > l/IRlc0 , 

then jl - p:fp;j 5 c./pi < v(IRI). Hence, L; p;fp; < I+ v(IRI). If p; < v(IRI), then we 
can neglect the history with Wi, since the probability of the history is negligible and 
the history without w; is statistically indistinguishable from the real history. Thus, the 
running time of the simulation is polynomial time with overwhelming probability. 

(QED) 

Notes: 
(1) In the above protocol, the prover shows his power to compute all witnesses, w1 , ... , 

Wf, from instance x. Definition 3 and this protocol can be easily modified to those 
in which the prover shows his power to compute a subset of { w1, ... , w I} from x. 
In the modified protocol, the verifier accepts the proof if the ratio of the number 
of the accepted cycles to the total cycle number is greater than a predetermined 
value (e.g., 1/(I - c); c is an arbitrary constant), where a"cycle" means step (i) to 
(vi) in Protocol A. 
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(2) The zero-knowledge protocol in the case of example 1 demonstrates that the prover 
can calculate E-1 . 

(3) The zero-knowledge protocol in the case of example 2 demonstrates that the prover 
can decrypt an RSA ciphertext. 

( 4) The zero-knowledge protocol in the case of example 3 demonstrates that, given 
p, g, b, the prover can generate bu mod p from gu mod p without knowing u. 

Corollary 1: Let C C FewP R or FewP Ru be an invulnerable problem. If there 
exists a secure (one round) bit-commitment, then there exists a constant round (five 
round) computational zero knowledge interactive proof that the prover has the compu
tational power to solve R E C. 

(Proof Sketch) 
Clearly, the parallel version of Protocol A satisfies the completeness and soundness 

conditions. 
To prove the zero-knowledgeness, first, simulator M of this protocol executes the 

parallel version of steps (1) and (2) of simulator's procedure in Theorem l 's proof. 
Here, V* outputs m instances, z~, ... , z:.,., as verifier's first messages. Then, M obtains 
witnesses of each instance Zk (k = 1, ... , m) that V* outputs nonnegligibly as verifier's 
second message, by repeating the parallel version of steps (6) through (9) of simulator's 
procedure in Theorem l's proof. {Here, wj' can be a random string in step (7).) The 
expected repetition number is polynomial in IRI. Then, M puts all obtained witnesses 
in z;' (which corresponds to step (7)), and executes the procedure which corresponds to 
steps (8) and (9) of simulator's procedure in Theorem l's proof. 

Therefore, The running time of M is polynomial time with overwhelming proba
bility, and the output of M is computationally indistinguishable from the real history. 

(QED) 

Corollary 2: Let C C FewP R or FewP Ru be an invulnerable problem. If there 
exists a secure blob (chameleon bit-commitment [BCC]), then there exists a perfect zero 
knowledge argument that the prover has the computational power to solve R E C. 

(Proof Sketch) If we use the same simulator M as that of Theorem 1, the output 
of M is perfectly indistinguishable to the real history of (P, V*). The expected running 
time of Mis L; p;/p; S I. 

(QED) 

Corollary 3: Let C c FewP R or FewP Ru be an invulnerable problem. If there 
exists a secure (one round) blob (chameleon bit-commitment [BCC]), then there exists 
a constant round (five round) statistical zero knowledge argument that the prover has 
the computational power to solve R E C. 
(Proof Sketch) If we use the same simulator M as that of Corollary 1, the output of 
Mis statistically indistinguishable to the real history of (P, V*). The expected running 
time of M is polynomial time with overwhelming probability. 

(QED) 

Corollary 4: Let C c FewP R or FewP Ru be an invulnerable problem. If there 
exists a one-way function, then there exists a constant round (six round) computational 
zero knowledge interactive proof that the prover has the computational power to solve 

REC. 
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6. Applications 

6.1 Zero-Knowledge Proofs for Possession of Knowledge 

In this subsection, we show an efficient zero knowledge proof of "knowledge", based 
on our zero-knowledge proof of "computational power". 

When the power of the prover's ability is bounded in polynomial-time, protocol 
A for example 2 (Section 3) becomes a zero knowledge proof of "knowledge", which 
demonstrates that the prover has a secret key or algorithm for decrypting an RSA 
ciphertext. In the same situation, protocol A for example 3 demonstrates that the 
prover has a secret key or algorithm for computing b,.. mod p from g,.. mod p, g, b, and 
p. Here, note that we need another definition of interactive proofs of "knowledge" than 
that by [FFS, TW]. 

Simialrly, when E in example 1 is the Rabin scheme, we can construct a zero
knowledge proof of possessing prime factors of a composite number. Note that this 
protocol is a zero knowledge proof of "knowledge" in the sense of [FFS, TW]. Clearly, 
this protocol is much more efficient than the previously proposed protocol in [TW). 

6.2 Identification Schemes 

The zero-knowledge proofs of computational power can be applied to identification 
schemes. In the above-mentioned zero-knowledge proofs, we assume that the prover has 
infinite power. When we apply the zero-knowledge proofs to identification schemes, we 
must assume that the power of a prover is bounded in polynomial-time, and that the 
prover possesses a secret auxiliary input. Then, we use a trapdoor one-way function 
(public-key encryption) (E, d), where E is a function, and d is a secret key for the 
trapdoor (in other words, the inverse of E can be efficiently computed using d.) By 
using this trapdoor function, we can construct an invulnerable problem R E FewP R 
such that 

R(x, w): x = E(w), 

and there exists a polynomial-time algorithm Dd, where x = E(Dd(x)). The identifica
tion scheme is as follows: 

(Key generation) 
First, prover P randomly generates (E, d), and publishes E as his public key (dis 

his secret key). 
(Identification) P proves to a verifier that P has the power to compute the inverse 

of E through Protocol A. 
Thus, we can construct an identification scheme if there exists a trapdoor one-way 

function. 

7. Conclusion 

In this paper, we have proposed an efficient (direct} and constant round (five round} 
construction of zero knowledge proofs of computational power. We have shown that any 
invulnerable problem in FewP Rand FewP Ru has an efficient and constant round zero 
knowledge proof of computational power, assuming the existence of a one-way function. 
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We have discussed some applications of these zero-knowledge proofs of computational 
power. 
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