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Computing in algebraic systems*) 

by 

J.V. Tucker 

ABSTRACT 

We describe the basic recursion theory of functions computable by 

different kinds of register machines designed to operate within an arbi

trarily chosen algebraic system. Especial emphasis is placed upon computation 

in natural algebraic systems such as groups, rings and fields. A useful 

theorem about the topological structure of computable subsets of a 

Hausdorff topological algebra is proved. 

KEY WORDS & PHRASES: algebraic register machines, finite algorithmic 

procedures, algorithmically decidable and undecidable 

problems in Algebra, computable functions on algebraic 

data types 

*) This report will be published elsewhere and is not for review. 





INTRODUCTION 

Given a relational structure A, imagine an A-register machine 
which can hold in its registers a fixed, finite number of elements 
of A, perform the basic operations and decide the basic relations 
on these elements, and manage some simple manipulations and decis
ions such as to replace the contents of one register by those of 
another and to tell when two registers carry the same eleme-o.t. 
Next, picture an A-register machine with counting by adding a fin
ite number of counting registers to an A-register machine; these 
carry natural numbers and the device is able to put zero into a 
counting register, add or subtract one from the contents of any 
counting register, tell if two registers contain the same number, 
and so on. Thirdly, there is the A-register machine with stacking 
which augments an A-register machine with a single stack register 
into which the entire contents of the ordinary algebraic registers 
of the basic machine can be temporarily placed at various points 
in the course of a calculation. Thus, the combinatorial operations 
of the A-·register machine are extended in the first instance by 
permitting subcomputations on the natural numbers wand in the 
second by prolonging the number and complexity of entirely alge
braic subcomputations. On arranging both we have an A-register 
machine uJi th counting and stacking. 

To use one of these machines to compute a partial function on 
A is to write down the familiar finite program of instructions 
referring to whatever activities of the machine are available and 
containing information to stop in certain circumstances. Such a 
program is called a finite algorithmic procedure, a finite algor
ithmic pr"ocedure with counting., a finite algorithmic procedure 
with stac-king, or a finite algorithmic procedure with counting and 
stacking accordingly as it includes or ignores instructions in
volving the counting and stack facilities. These are abbreviated 
in turn by fap, fapC, fa:pS and fapCS. The classes of all functions 
over A they compute, FAP(A), FAPC(A), FAPS(A) and FAPCS(A), are 
the subject of this paper. 

The idea of the A-register machine first appeared in G.T. 
Herman & S.D. Isard [13] and in H. Friedman [7], there together 
with its counting facility. The stack mechanism belongs to 
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[22,23] in which J. Moldestad, V. Stoltenberg-Hansen and I 
investigated· recursion-theoretic properties of the four families 
of fap-computable functions. This third article is a set of notes 
which introduces such models of computing into an algebraic 
milieu to settle decision problems: The membership question for 
finitely generated ideals of polynomial rings over fields is 
fapCS-computable (Theorem 3.2). The membership question for single 
generator subgroups of the torus groups is fap-semicomputable, but 
not fapCS-computable (Example 6.4). And to settle theoretical 
issues about computation: For A an "everyday algebraic system of 
Mathematics"., F APC (A) = F APCS (A) (Theorem 5 • 2) • But, for example, 
if A is ~he algebraic closure of some finite field llp then 
FAPS(A) = FAPC(A) (Theorem 5.9). 

The intention is to map out Elementary Recursion Theory in an 
algebraic setting: enough to show what peculiarities arise in 
lifting the contents of, say, Machtey & Young's book [20], stopp
ing short of the Turing degree theory of the various fap-semi
computable sets which seems mysterious outside the finitely 
generated algebras (c.f. Section 4 and Theorem 5.10). The first 
two sections sunnnarise formal definitions and certain relevant 
properties of the functions from [22,23,24]. The next two sections 
establish the local algebraic character of machine computations 
while Section 5 is about counting and stacking. Section 6 contains 
a useful theorem about fapCS-computable subsets of topological 
algebras. 

Although the emphasis is on the classes of functions computed 
over natural algebraic systems, and not on the structure of prog
rams and their semantics, the material here does usefully connect 
with the literature of Theoretical Computer Science: it provides 
the sort of basic technical information needed to fit de Bakker's 
mathematical semantics of program control structures based on 
w [2] to the ADJ Group's algebraic theory of data types [8], for 
example. A specific technical application to program semantics is 
[3] by J.A. Bergstra, J. Tiuryn and myself. 

My interest in Generalised Recursion Theory I owe to my time 
in Oslo, to J.E. Fenstad, D. Normann, S.S. Wainer and, especially, 
J. Moldestad and v. Stoltenberg-Hansen; in this connection I 
gratefully acknowledge the support of a fellowship from the 
European Progrannne of The Royal Society, London. These notes have 
also profited from information and advice from P.R.J. Asveld, 
J.A. Bergstra, B. Birkeland, H. Rolletschek, and J.I. Zucker. 

NOTATION Throughout we are concerned with relational structures 
of finite signature. The word function, unqualified, will mean 
partial function and typically these will be (n,m)-ary maps 
either An x wm ➔ A or An x wm ➔ oo, a distinction we preserve in 
the abbreviation An x wm ➔ A/w. For (a,x) E A0 x wm, f(a,x) ~ 
g(a,x) means f(a,x), g(a,x) are both defined and equal or are 
both undefined. On fixing part of the argument a E An of a 
function f:An+m ➔ Awe write f(a):Am ➔ A.On extending a unary 
function f:A ➔ A to an n-fold product fx ••• xf:An ➔ An, we write 



for a= (a 1, ••• ,an) E An the value f(a) for (fa1,•••,fan)• Relat
ions may be identified with their characteristic functions using 
0 for tru.e, l for false. The complement of a set A is denoted, A. 

7l , 7Z:p ~ (Q, JR, t are the integers, the integers modulo p, the 
rationals, reals and complex numbers respectively. 

For those ideas and facts of Algebra left unexplained in the 
text consult the books of A.G. Kurosh [18] and Mal 1 cev [21] on 
Universal Algebra, that of Kurosh [16,17] on Group Theory and 
B.L. van der Waerden [25] for Field Theory. 

1. FINITE ALGORITHMIC PROCEDURES 
The program language for A-register machines has variables 

r 0 , r!, r 2 , ••• for algebra register~; its constants, functi?n and 
relation symbols are those of the signature of A together with 
new constants T for tru.e, F for false, H for halt., 1,2, ••• for 
instru.ction labels or markers and new relation= for algebraic 
equal.ity. 

A finite algorithmic procedure is a finite ordered list of 
labelled instructions I 1, ••• ,I-f: which are of these types. The 
algebraic operational instruct&ons manipulate elements of A and 
are 

ru:=~ meaning 11replace the contents of register rµ 
by the element a EA named by a". 

rµ:=o(r 1'1, ••• ,r"-k) meaning "apply the k-ary operation 

a of A to the contents of registers rA 1 , ••• ,r"-k and replace the 
contents of rµ by this value". 

rµ:=rA meaning "replace the contents of register rµ 
with that of r>,_"• 
The algeb:raic conditional instructions determine the order of 
executing instructions and are 

J.f R(r>,_ 1, ••• , rAk) then i else j meaning "if the k-ary 
relation R is true of the contents of q, 1 , ••• , rxk then the next 
instruction is Ii otherwise it is Ij 11 • 

_if rµ=rA then i else j which takes its obvious meaning 
and, incidentally, gives us goto i. 
Finally, r :=T, r :=F marking true and false, and H meaning "stop" 
are includ~d. µ 

For the A-register machine with counting the language is ex
tended by variables co,c1,c2,••• for counting registers., a con
stant O for zero, function symbols +1 for successor., !.J for pre
decessor; and relational symbol= for numerical equality. The 
counting instructions., which when mixed with fap instructions make 
finite algorithmic procedures with counting., are simply the usual 
instructions for (natural number) register machines: 

cµ:':'O c11 :':'c>..+l cµ:':'cA.!.I if cµ=c 1, then i else j 
and take their obvious meanings. 

For the A-register machine with stacking we add to the A
register machine language a variables for stack register and 0 
for empty,. The new instructions are 

stack (z, r0 , ••• , rm) meaning "along with instruction 
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marker z 1, copy the contents of r 0 , ••• ,rm as a:n (m+1)-tuple into 
the stack!'. 

restore(r0, ... ,rj-i,r; 1, ••• ,rm) meaning "remove the last 
or topmm.it vector 1,n the stackJb:nd replace the contents of the 
ri (i:rj) by the corresponding entries of the vector". 

if s=Ql then i else marker meaning "if the stack is empty 
. then the next instruction is Ii otherwise it is the instruction· 

label led by the marker in the topmost element in the stack". 
A finite algorithmic procedure with stacking is an ordered list 
of fap instructions and stack instructions with the convention 
that all the ordinary algebraic register variables are included in 
every stack-instruction, and all but one of them are included in 
every restore~instruction; the role of the marker is to remember 
at which points in the program the basic A-register machine is 
cleared for an independent subcomputation. For a proper account 
of the stack and its operation the reader should consult [22], but 
the description given is adequate for what follows. The definition 
of a finite algorithmic procedure with counting and stacking is 
innnediate: though we note that the stack allows only algebra ele
ments to be stored. 

To compute An x wm ➔ A/w with program a choose n of its .alge
braic variables, and m of its counting variables, as input vari
ables, and name a suitable variable as output variable. On fixing 
a machine appropriate for a load input argument (a,x) E An x wm 
into the registers a reserves as inputs, and make the remaining 
registers empty. The instructions of a are executed on the machine 
in the order they are given except where a conditional instruction 
directs otherwise. If at some stage an instruction cannot be 
carried out, such as happens when one applies a fap conditional 
to empty registers, then the computation is said to hang in that 
state and no value is computed. If the machine halts then the out
put value of the computation a(a,x) is the element contained in 
the output register named by a, if this is not empty; in all 
other circumstances, no output value is obtained. Converging 
and diverging computations are distinguished by a(a,x~ and 
a(a,x)t, respectively, and, as usual, a(a,x) also denotes the 
(defined or undefined) value of a computation. 

The four types of fap-computable function, relation or set 
can now be formally defined in the obvious way. A set or relation 
Sc An x (um is, say, fapCS-semicomputable if it is the domain of 
a fapCS-computable function; fap/fapC/fapS-semicomputability is 
defined similarly, of course. The different sets of computable 
functions An ➔ A are denoted nFAP(A), nFAPC(A), nFAPS(A), nFAPCS(A). 

For those acquainted with Theoretical Computer Science it 
ought to be pointed out that the hierarchy of low to high-level 
languages characteristic of computing praxis is also an essential 
feature of theoria: to prove a relation on an algebra A decidable, 
the richer the progrannning language the better whereas to prove 
it undecidable the opposite is true. Here our needs are best met 
by defining the various fap-computable functions through a crude 
"assembler code" for A-register machines, but features like the 



so called stru.ctured control statements, reaursion, and data type 
creation can be encorporated into the definitions of FAP(A), 
FAPS(A) and FAPCS(A) respectively. Thus, to prove the set FO(G) of 
all elements of finite order in a group G is fap-semicomputable 
one may use this program wherein rI and ro are input and output 
variables: 

r:=rI; ·while r+t do r:=r.rI od; r 0 :=T;H. 
In conclusion, here are some technical ideas. A state descrip

tion in a machine computation under fapCS a is typically a list 
(k;a1,•••,ap,x1,•••,xq;(z1;a11,•••,a1p), ••• ,(z 15 ;as1,•••,asp)) 

where a 1, ••• ,ap are the contents of the algebra registers namea 
by a;xj,•••,xq are those of the counting registers; there ares 
vectors piled in the stack register, zi is the marker of the i-th 
element and aij the'.element in the j-th register of the i-th 
stored vector. And, finally, k is the number of the instruction in 
a which is to be applied to these elements. Each state description 
represents a step in a computation. Often we need to unfold a 
computation a(a,x) into all its stages a~d then we use 

Di(a,a,x) = (mi,aij,Xij; (Zij,ajk)) 
to denote the i-th step in the computation a(a,x). The length 
la,a,xl of the computation a(a,x) is by definition the ordinal 
number of steps in the unfolding of a(a,x). ,_ ,; 

All four sets of programs we assume godel numbered in the 
usual way with r2o,nc,ns,ncs denoting the_ code sets for fap, fapC, 
fapS and fapCS programs respectively. We also assume the tey,,n or 
polynomial algebra T[X1, ••• ,Xn] of any signature to be coded uni
formly inn, ny: nQ + t[XJ, ••• ,Xn] with the abbreviation ny*(i) = 
[i]. Each term ~(Xt,•••,Xn) defines a function An+ A by substi
tuting algebra elements for indeterminates and we define n-ary 
term evaluation nTE:nQ x An+ A by nTE(i,a) = [i](a). Finally, 
define for t,t' E T[X1,•••,Xu] t =At' if, and only if, for all 
a E An, t(a) = t'(a). 

2. THE FAP-COMPUTABLE FUNCTIONS IN THE LARGE 
To sketch essential background information from [22,23,24] 

about the recursion-theoretic properties of fap-computable func
tions, we begin with an axiomatisation of the large-scale struc
ture of the partial recursive functions on w. 

In summary, a set of functions 0 over A is a computation theory 
over A with code set Cc A if associated with 0 is a surjection E: 
C ~ e, called a coding and abbreviated by E{e) = {e} fore EC, 
and an ordinal valued length of computation function I .I such 
that I e,al -1, ~- {e} (a)h for which the following properties hold. 

(1) C contains a copy of wand 8 contains copies of zero, 
successor, predecessor on~. 

(2) 0 contains the projection functions, the operations of A 
and the relations of A in the form of definition-by-cases functions. 

(3) 0 is closed under composition, the permuting of arguments, 
and the addition of dummy arguments. And, in particular, 

(4) 0 contains universal functions nu such that for eEC,aEAn 

1\J(e,a) = {e}(a). 
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(5) 0 enjoys this itePation pPopePty: for each n,m there is a 
maps~€_ 0 such that for eEC, aECn, bEAm 

{s:(e,a)}(b) ~ {e}(a,b). 
Moreover, it ts required that certain uniformity hypotheses are 

. satisfied and that the length function respect the efficiency 
of the functions mentioned in the definition; for full details 
see [23) or J.E. Fenstad's monograph [6] from which this axiomat
isation is taken. 

The coding of programs, mentioned in the previous section, 
extends to a coding of the functions they compute: choose C=w 
and {e} to be the function computed by fapC e, if e E Ste, or to 
be the everywhere undefined function otherwise. Define length of 
computation le,a,xl to be the number of steps in computation 
{e}(a,x). To be faithful to the definition of a computation theory, 
the code set C is adjoined to A to make the structure -Aw whose 
domain is A u w and whose operations and relations are those of A 
together with zero, successor, predecessor, and equality on w. It 
turns out that the fapC-computable functions can be identified 
with FAP(Aw). 

2.1 THEOREM The fapC-corrrputable functfons oveP A constitute. a 
computation theo-:r:y oveP A with code set C = w if, and only if, 
term evaluation nTE is fapC-corrrputable oveP A uniformly inn. 

Now term· evaluation is always fapCS-computable and so on repeating 
the coding constructions with QCS it follows that 

2.2 THEOREM The fapCS-corrrputable functions oveP A constitute a 
computation theoPy oveP A with code set C = w. 

The next step in [23] was to define a computation theory 0 over A 
with code set C to be minimal if 0 is contained in any other 
computation theory~ over A with code set C. And then to prove 

2.3 THEOREM The fapCS-computable functions oveP A constitute 
the minimal computation theoPy oveP A with code set C = w. 

2.4 THEOREM ThePe exists a stPuctuPe A whePe the following 
inclusions aPe stPict 

/ FAPC(A) ~ 
FAP(A) FAPCS(A) 

~ FAPS (A)__,..-> 

Theorem 2.3 coupled to Theorem 2.1, and Theorem 2.4 are the point 
of departure for Section 5. Two other basic facts are needed later 
on. The first comes from [23), the second, a corollary, we leave 
as an exercise for the reader. 

2.5 THEOREM The Pelation n,msTEP c C x An x wm x w defined by 
n,msTEP(c,a,x,k) = le,a,xl ~ k 

·• is fapCS-computable uniformly in n,m. 

2.6 THEOREM Sc An x wm is fapCS-computable if, and only if, s 
and 7 S ape fapCS-semicomputable. 



1n [22] it was shown that the functions inductively definable 
over A, in the sense of Platek, are precisely the fapS-computable 
functions. To establish a wider context for the algebraic study of 
computation, J. Moldestad and I have attempted to systematically 

. classify, in terms of the fap formalism, the many disparate 
approaches to defining computability in an abstract setting. Thus 
in [24] it is shown that Normann's set reaursion is equivalent to 
faf.CS-computability, that a natural generalisation of Herbrand
Gbdel-Kleene equational definability is equivalent to fapS-comput
ability, as is computability by flowcharts with LISP-like recursive 
procedures. See [24] for a complete survey and a discussion of a 
Generalised Church-Turing Thesis nominating the fapCS-computable 
functions as the class of functions effectively calculable by 
finite, deterministic algorithms in Algebra. 

3. ALGEBRAIC INFLUENCES ON FAP-COMPUTATION 

3.1 LOCALITY OF COMPUTATION LEMMA Let a:An x wm + A/w be a fapCS 
and (a,x) E An x wm. Then each state of the computation a(a,x) 
lies within wand the subalgebra <a> of A generated by a E An. 
In particular, if a:An x wm + A and a(a,x)+ then a(a,x) E <~>. 

PROOF. Let Di(a,a,x) be a state description in the unfolding of 
a(a,x). We must prove by induction on i that any algebraic element 
of Di(ci,a,x) lies in <a>. This is immed.iate for the basis i = 1 by 
convention. The induction step from Di(a,a,x) to Di+1(a,a,x) de
pends upon the type of instruction numbered ni in Di(a,a,x). There 
are 15 cases. The conditional instructions do not alter algebraic 
registers, nor do the operational instructions for counting. And 
the algebraic operational instructions either relocate elements 
of Di(a,a,x), assumed in <a>, or apply a basic operation of A to 
them to create possibly new elements of <a>. Q.E.D. 

Let F be a field. The function f(a) = /a which picks out some 
square root of a, if it exists, is not in general fapCS-corrrputable. 
Take F = lR: if f were fapCS-computable then f(2) = ± ✓2would lie 
in the subfield <2> =~which is not the case. 

Let R be an Euclidean domain with degree function a:R + w. The 
algorithm which computes for a IO, b ER elements q,r with 
b·= qa +rand either r = 0 or a(r) < a(a) is not in general 
fapCS-corrrputable over (R,a). Take R = 7l [X] with a the usual poly
nomial degree. Let a= x2, b = x7 so that necessarily q = x5, 
r = O. But x5 i <Xt,X2> since this subring involves only powers of 
the form x2n+?m for n,m E w. 

In addition to treating search mechanisms with caution when 
formalising algorithms, one must also be prepared to sometimes 
dispense with pairing and unpairing functions: 

A is locally n-finite if every n-generator subalgebra of A is 
finite. A is locally finite if it is locally n-finite for each n. 
If A is locally n-finite then the number of algebraic values for 
all the fapCS-computable functions at argument a E An is finite 
being bounded by the order function nord(a) = l<a>I. In [9], E.S. 
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Golod shows that for each n there is a group G which is locally 
n-fini te but not locally (n+ I )-finite. And for these groups the 
theory of fapCS-computable functions of~ n arguments is consider
ably removed from that of functions of> n arguments. 

The reinstatement of search and pairing (of a local character) 
is the subject of Section 4, but fapCS-computation is better 
thought of as "sensitive" rather than "weak": 

3.2 THEOREM Let F be a field. Then the membership relation for 
finitely generated ideals of F[X], ••• ,XnJ, defined 

n,kM(q,p1,•••,Pk) = q E (pl,•••,Pk) 
is fapCS-corrrputable over F uniformly in k,n. 

PROOF. We describe the algorithm informally for (any) fixed n,k 
and sketch the reasons why it stays within the realm of fapCS
computation over F, freely referencing principles which belong to 
the next section. The algorithm refers to the data typesF, 
F[X1, ••• ,Xn], the ring M(s,t,F) of s x t matrices over F, w, and 
a second polynomial ring F[tij:l~i~k,l~j:SJ'.J, but in fact operates 
in those parts defined by the subfield L of F generated by the 
coefficients of the input polynomials: L[Xt,•••,Xn], M(s,t,L) and 
so on. These,localisations, and what the algorithm requires of 
them, can be fapCS-computably simulated over F, w from the input 
coefficients; this claim we ask the reader to check possibly 
guided by the principles of Local Enumeration, Search and Pairing 
from Section 4. 

From Satz 2 of G. Hermann [14] one can obtain this fact: 
Consider equations of the form 

r1p1+ ... +rkpk = q (*) 
where q,pt, ••• ,Pk are g1-.ven and r1, ••• ,rk are to be found. There 
exists a primitive recursive function f: w1 + w such that if(*) 
has a solution in F[X1,•••,XnJ then it does so with deg(ri) ~ 
f(a,b,n) where a= deg(q) ana b = max{deg(pi): l~i~k}. To decide 
q E (p1,•••,Pk) is to decide whether or not (*) has a solution and 
this is done by setting up a system of linear equations over F. 

Construct formal polynomials r1,•••,rk of degreed= f(a,b,n) 
with coefficients treated as indetermi~ates over F, 

r. = L t .. XJ 
1 I . , <d 1] J - . . • 

where j = (j 1, ••• ,jn), ljJ = j 1+ ••• +jn and xJ = (xp.,.xiin). 
Substituting these into equation(*) produces a polynomial identity 
whose LHS has degree~ f(a,b,n) +band whose RHS has degree= a. 
Comparing coefficients leads to a set of linear equations int,. 

1] 
over F. Thus q E (p 1, ••• ,pk) iff this set of equations has a 
solution in F; the latter point is covered by this lemma: 

3.3 LEMMA The relation m,nR c M(m,n,F) x Fm defined 
m,nR(A,b) = (3xEFn)(Ax=b) 

is fapCS-corrrputable over F uniformly in n,m. 

PROOF, First consider the rank function m,nr:M(m,n,F) + w defined 
m,nr(A) = rank of matrix A. This is fapCS-computable over F uni
formly in m,n: calculate r 0 E w such that A has at least one 



non-singular ro x ro minor and, for s > ro, every s x s minor of 
A is singular. Then m,nr(A) = ro and m,nr is fapCS-computable 
(by Local Search 4.4 and the fact that determinants are poly
nomials over the prime subfield of F!). 

Now the lemma follows from a well known theorem of Linear 
Algebra: given A E M(m,n,F) and b E Fm, let [A,b] be A augmented 
by bas an (n+l)-th column. Then m,nR(A,b) iff m,nr(A) = 
m,n+lr([A,b]). Q;E.D. 

What is striking about Hermann's bound is that it holds for all 
fields. To properly exploit the constructive implications of 
this uniformity one must dispense with traditional hypothesesk 
such as that F be computable, designed to make the problem n, M 
constructively well posed, but irrelevant to its algorithmic 
solution which is field-theoretic in the fullest, abstract, sense 
of the term. And it is with precisely this sort of example in 
mind that we advocate the study of effective computability in a 
completely abstract algebraic setting. 

3.4 INVARIANCE THEOREM Let A and B be relational systems and 
~:A ➔ Ba relational homomorphism which is injective. Let a be a 
fapCS over their signatu:r>e. Then 

a(~a,x) ~ ~a(a,x) if a:An x wm ➔ A; 
a(~a,x) ~ a(a,x) if a:An x wm ➔ w. 

PROOF. This is best proved via a stronger, but technical, fact 
about state descriptions of a(a,x) and a(~a,x): if Di(a,a,x} = 
(mi,aij,Xij,(~j,ajk~) the~ Di(a,!a,x) = (mi,~~ij,~ij,(zj,~ajk)). 
The argument is by induction on i. The basis i=t is true by 
convention. Assume the identity true at step i and compare how 
Di+1Ca,a,x) and Di+1(a,~a,x) arise from Di(a,a,x) and Di(a,~a,x), 
respectively; this depends on the 15 types of instruction numbered 
by mi at stage i. 

For example, let mi name i~ R~rAJ'":•,r~k) ~ u else v. In 
both cases the new state descriptions differ from those at stage i 
only in their instruction numbers say mi+l and ni+I• Thanks to 
the induction hypothesis, the transitions are determined by these 
formulae 

{
u if R(aiAJ'•••,aiAk); 

mi+I = ni+I = 
v otherwise; 

{
u if R(~aiAt'•••,~aiAk); 

v otherwise. 

Since~ is a relational homomorphism IDi+l = ni+l• 
We leave to the reader the task of checking the other cases 

noting only that it is the algebraic conditional with equality 
which requires~ to be a monomorphism. Q.E.D. 

3.5 COROLLARY Each fapcs~semicomputable sets c An is invariant 
under the action of the automorphism group Aut(A) of A. 

PROOF, Let a be a fapCS such that S = dom(a) and let ~ E Aut (A). 
For a E An, 
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$(a)€ S...,. a($a)+ 
...,. $a(aH 
...,. a(aH 

Thus $(S) = S. Q;E.D. 

by Theorem 3.4; 
since$ is total • 

For example, fapCS-semicomputa~le subgroups must be normal. 
And since complex conjugation Z...+ z is an automorphism of the 
field~, the set {i} where i = l='t is not fapCS-semicomputable. 

3.6 COROLLARY The group of aZl fo:pCS-computabZe automortphisms 
Autfapcs(A) is a subgroup of the centre of Aut(A). Thus 
Autfapcs(A) <1Aut(A). 

If G is a group with trivial centre then Aut(G) has trivial 
centre, see Kurosh [16] p. 89. Therefore, if group G has trivial 
centre, as is the case when G is non-abelian and simple or when 
G is a free group of rank> 1, then Autf~p~s(G) is trivial. On 
the other hand, if G is a torsion-free divisible abelian group 
then Aut(G) contains the infinite family expn(g) = gn for Oln€w. 

·4. LOCAL FAPCS-ENUMERATION, SEARCH AND PAIRING 

In fapCS-computation, algebraic enumerations assume a strictly 
local character: given a1,•••,an € A one can always fapCS
computably list the subalgebra <at,•••,an>• And from this comes 
local fapCS-computable search and local fapCS-computable pairing. 
Here we state results which formulate these mechanisms precisely, 
leaving their proofs to the reader as straightforward, though 
instructive, exercises in manipulating the term evaluation func
tions by means of recursive calculations on~. The theorems are 
quite fundamental, however. They strongly suggest that most 
results in Degree Theory and Axiomatic Complexity Theory on w 
can be reproved in a local fo:l'm for fapCS-computation, and that, 
in particular, Classical Recursion Theory can be reconstructed 
for FAPCS(A) provided A is finitely generated by elements named 
as constants in its signature. 

(A study of the regularities and singularities involved in 
lifting the principal facts of Degree Theory and Axiomatic 
Complexity Theory has been undertaken by V. Stoltenberg-Hansen 
and myself and will appear in due course.) 

4.1 LOCAL ENUMERATION THEOREM There is a family of functions 
nL:An x w-+ A fo:pCS-computable unifo:l'mly inn such that for each 
a€ An, nL(a):w-+ <a> is a surjection; moreover nL can be so 
chosen as to make nL(a) a bijection w-+ <a>, if <a> is infinite, 
or a bijection {O, ••• ,m-1}-+ <a>, if <a> is finite of order m. 

Two corollaries of this enumeration facility which we use 
later on are 

4.2 LEMMA The order function nord:An-+ w defined nord(a) = l<a>I 
is fo:pCS-computable unifo:l'mly inn. 

4.3 LEMMA The membership relation for finitely generated sub
algebras of A, defined nM(b,a) = b € <a> for b € A and a€ An, 



is fapCS-semicomputable uniformly inn. 

4.4 LOCAL SEARCH THEOREM There is a family of functions 
n,m,kv:c x An x rum -+ Ak fapCS-computable uniformly in n,m,k such 
that if s c An x wm x Ak is fapCS-semicomputable by fapCS 1JJith 
code e EC and there is y E <t>k such that S(a,x,y) then 
n,m,°kv(e,a,x)+ and S(a,x,n,m, v(e,a,x)). 

4.5 LOCAL PAIRING THEOREM There is a family of functions 
n,tni.*:An x wr-+ AmfapCS-computable uniformly in n,m such that for 
each a E An, n,tni.*(a):w -+.<a>m is a surjection; moreover n,~* 
can be so chosen as to make a listing of <a>m without repetitions. 

5. COUNTING AND STACKING: VARIETIES AND LOCAL FINITENESS 

While the four kinds of fap-computable functions on algebra 
A are distinct (Theorem 2.4), the typical situation in Algebra 
is 

FAP(A) r.._ __ > FAPS(A) -<---t-> FAPC(A) = FAPCS(A) 

Defining algebra A to be regular if A has uniform fapC-computable 
term evaluation, with Theorems 2.1 and 2.4 in mind, we substan
tiate this claim with a sufficient condition for A to be regular 
based on the proofs that groups and rings are regular. Notice 
regularity is an isomorphism invariant (Theorem 3.4). 

First, we introduce term width which is used to measure the 
number of algebra registers required to fapC-evaluate a term on 
any input; c.f. Friedman [7], pp. 376-377. 

An n-axy syntactic development of width mis a sequence 
Tt,•••,Tl such that 

(i) each T1 is a list of m terms from T[X1, ••• ,Xn_] l~i~; 
(ii) Tt contains only indeterminates 
(iii) for l~i~-1, either Ti+l arises from Ti by applying· some 
k-a~y operation symbol o to some of the terms t1,•••,tk in Ti 
and replacing one of the terms of Ti by o(t1,•••,tk) or, 
(iv) Ti+l arises from Ti by replacing one of the terms of Ti 
by an indeterminate or by another of its terms; 
(v) Ti+l differs from Ti in at most one of its terms l~i~l. 

A term t(Xt,•••,Xn) is of width at most m if it belongs to some 
n-ary syntactic development of width m. Given a code for a term of 
width m and any a E An one can recursively calculate a code for 
some development to construct its values at each stage in m 
algebraic registers and output its value t(a). 

Next, we adapt the notion of a varietal nomal fom as in 
H. Lausch & W. Ngbauer [19], p. 23. 

A recursive and complete set of term representatives of width 
m(n) for an algebra A is a family J = {Jn:n E w} with 
Jn c T[X1,•••,Xn] such that 

(i) the terms of Jn are of width at most m(n); 
(ii) for each t E T[Xt,•••,Xn] one can recursively calculate 

t' E Jn for which t =At'; 
(iii) mis recursive. 
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5.1 THEOREM Let A ha:ve a Peaursive and complete set of te!'Trt 
PepPesentatives of uJidth bounded by m(n). Let M be the laPgest 
aPity of the opePations of A. Then thePe is a fapC involving 
(M+lh m(n) algebPaic.woPK PegistePs which computes te!'Trt evaluation. 
In paPtiaulaP, A and all its homomorphic images aPe PegulaP. 

The proof of this is routine: use Friedman's Lennna 1.6.2 and 
straightforward properties of homomorphisms. Theorem 5.1 is 
designed with those algebras which make up categories possessing 
free objects of all finite ranks in mind; for example, varieties 
and quasivarieties (among the first-order axiomatisable classes). 
Not only is Algebra replete with such categories but, invariably, 
the sets of no!'Trtal fo!'Trts constructed for the syntactic copies of 
their free objects are recursive and are of bounded width: from 
Lausch & Nbbauer [ 19] and P. Hall [ 11] we can "read off" 

5.2 THEOREM Let A be an algebPa belonging to one of these 
vaPieties: semigPoups, gPoups, associative Pings with OP without 
unity, Lie Pings, semilattices, lattices, boolean algebPas. Then 
FAPC(A) = FAPCS(A). 

Of course, the hypothesis of recursive sets of representatives 
for a variety is much weaker than that of recursive normal.forms 
as the latter entails the free algebras of a variety have a 
decidable word problem. Notice, too, that fields do not form a 
variety, but recursive and complete sets of term representatives 
are easily made from the construction of rational functions, 
(Q(X1, ••• ,Xn) or llp (X1, ••• ,~), from polynomials, ll [X1, ••• ,Xn] 
or llp(X],•••,Xn]. 

Keeping within the regular algebras A, we now digress to 
collapse FAPCS(A) to FAP(A) by counting inside A. 

An algebra A is said to have fap counting on an element 
a€ A if there are functions S,P:A ➔ A such that (i) {sn(a):nEw} 
is infinite, (ii) psn(a) = sn-J(a) for each n and (iii) S,P are 
fap computable over (A,a). 

5.3 THEOREM Let A be PegulaP. Then A has fap-counting on an 
element a E A if, and only if, A is not ZoaaUy I-finite and 
FAP(A,a) = FAPCS(A,a). 

PROOF. Assuming A to have fap-counting on a€ A, the Locality 
Lennna 3.1 shows A is not locally ]-finite. To simulate a fapC over 
(A,a) by a fap one rewrites a replacing each counting variable c 
in a by a new algebra variable u and then replacing each instruct
ion of the left hand colunm by the corresponding fap instructions 
abbreviated in the right hand colunm: 

c: = 0 u: = a 
c: = c'+l u: = S(u') 
c: = C 1 .!. ] u: = P(u') 

if c=c' then * else ** if u=u' then * else ** 
The converse implication is an exercise in the use of the Local 
Enumeration Theorem 4.1. Q.E.D. 



5.4 EXAMPLE A gPoup G has fap-counting on an element if, and only 
if, G is not peY'iodic. Since periodicity and local ]-finiteness 
coincide in groups one implication follows from Theorem 5.3. 
Conversely, if G is non-periodic with g E G of finite order then 
define S(x) = gx and P(x) = g-lx which are fap-computable over (G,g). 

· It is not enough to assume G is not locally finite to obtain_ 
counting on an element: take any of Golod;s groups [9] which are 
periodic but not locally finite. This is not the case for fields 
however: 
5.5 EXAMPLE A field F has fap counting on an element if, and only 
if, Fis of chaY'acteY'istic O OY' is of pPime chaY'acteY'istic but not 
algebY'aic oVeY' its pY'ime subfield. Let F have fap-counting on 
a E F and assume F has characteristic p; denote the prime subfield 
of F by 7lp • The subfield <a> = 7lp (a) is infinite so cannot be 
algebraic 'over 7lp as otherwise 7lp (a) would have order pn where 
n is the degree of a over 7lp. The converse is obvious in case F 
has characteristic O and if t E Fis transcendental over Z'p then 
Fas a multiplicative group is not periodic since tis of infinite 
order and we can use Example 5.4. It is easy to check Fis locally 
finite if, and only if, it has prime characteristic and is 
algebraic over its prime subfield. 

We now turn to the study of exclusively algebraic computation: 
the class FAPS(A). The reader might care to keep in mind the 
equivalences of fapS-computability with inductive definability, 
equational definability and recursive procedures. For example, the 
facts which follow have a bearing on the debate about inductive 
definability as the generalisation of Recursion Theory to an 
abstract setting, see J.E. Fenstad [5,6]. 

5.6 THEOREM If A is locally n-finite then the halting pPoblem foY' 
nFAPS(A) is fapCS-decidable: the Y'elation nH(e,a) iff {e}(a)+ is 
fapCS-computable on ~S x An. 

PROOF. Let R(e), I(e), and M(e) recursively calculate the number 
of algebraic register variables, instructions, and markers for stack 
blocks appearing in the fapS coded bye. A state description in a 
fapS computation is a list of the form 

(k;a1,···,~; (z1;a11,•••,a1m), •.• ,(zs;as1,••·,asm)) 
and if this belongs to a computation bye then k ~ I(e), m = R(e) 
and each z{ ~ M(e). 

If in unfolding a computation {e}(a) theY'e ay,e ruo identical 
oY'dinary algebY'aic state descPiptions OY' two identical stack state 
descriptions then {e}(a)+. This is clear for if either of two 
identical states Di,Dj arise then the program must regenerate after 
Dj exactly those states intermediate between Di and Dj to produce 
an infinite, but periodic, set. of state descriptions. When A is 
locally n-finite we can bound the number of distinct state 
descriptions in a convergent computation {e}(a): R() 

There are at most Bo(e,a) = (I(e) + l)(nord(a)+l) e different 
states for the ordinary algebraic registers and instructions. Due 
to the fact the stack mechanism copies ordinary algebraic state 
descriptions, it is easy to calculate that there can be at most 
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L 
s=O 

- distinct stack states. Therefore, the total number of state 
descriptions available for {e}(a)~, and so the computation's run
time, is fapCS-computably bounded by (the total function) 
B(e,a) = BO(e,a).Bg(e,a). 

CZaim: Fore E Q_g, a E An, nH(e,a)..,. nsTEP(e,a,B(e,a)). 
Obviously, if nsTEP(e,a,B(e,a)) is true then {e}(a)L Conversely, 
if {e}(a)+ in l steps and l > B(e,a) then some duplication of 
state descriptions must have appeared and so· {e}(a)t. Thus l ~ 
B(e,a). Q.E.D 

5.7 COROLLARY If A is ZoaaZZy finite then the hatting problem 
for fapS computations is fapCS-deaidable. 

An algebra A is said to be fapCS fo1.'fnaZZy valued when there 
is a total function v:A + w which is a fapCS-computable surjection. 

5.8 PROPOSITION Let A be I-finite and fapCS fo1.'fnaUy valued by 
v. Then the set Kv = {a EA: v(a) Ens & {v(a)}(a)~} is fapCS
aomputable but not fapS-aomputabZe. 

PROOF. A I-finite implies 1H(e,a) is fapCS-decidable on Qg x A 
by Theorem 5.6. Thus, Kv is fapCS-decidable as a E Kv..,. 
v(a) Ens & 1H(v(a),a) = O, and vis total. Assume for a contra
diction that Kv is fapS-computable. Then-,.¾ is fapS-semi
computable and there exists a fapS a such that dom(a) =, Kv• 
Choose b EA so that v(b) codes a. 
Then b E 7 ¾ ..,. a (b) 

..,. {v(b)}(b)+ 

..,. b E Kv• 
Thus there is no such a and Kv is not fapS-computable. Q.E.D. 

For illustrations we look for valuations of regular algebras 
A which are I-finite where FAPS(A) ~ FAPC(A) = FAPCS(A). 

If A contains I-generator subalgebras of every finite order 
then 1ord:A + w is a fapCS formal valuation provided A is 1-
finite. For example, take the locally finite group 7l00 consisting 
of all the complex roots of unity. More generally, if algebra A 
is I-finite and ,r(A) = im(lord) contains a recursive set S then 
choose a recursive bijection f:S +wand define 

{ 
f(lord(a)) if lord(a) ES, 

v(a) = 
· 1ord(a) otherwise. 

For an example among groups we must look for a periodic group of 
infinite exponent. Let p be a prime and let Zlp,00 be the locally 
finite abelian group of all complex roots of unity which are. of 
order some power of p: for these groups ,r(Zlp-00 ) = {pn:n E w}, 
a recursive set. 

Turning to fields, let F be a locally finite field of 
characteristic p and observe that 1ord(a) = pd(a) where d:F + w 



calculates the degree of a E F, that is d (a) = dim[7lp_(a): 7lp J • 
If F contains elements of every degree belonging to a recursive 
set then dis a fapCS formal valuation. Such an F can be chosen by 
taking the splitting field of the polynomials· {xPn-x E llp[X]:nEw} 
but the best example is the algebraic closure K of llp· In 
sunnnary, 

5. 9 THEOREM Over the groups A = 7l 00 , 7lp00 and the field A = K, 
FAPS(A) j FAPC·(A) = FAPCS(A). 

In conclusion, we mention in connection with Corollary 5.7, 
that fapS computability and fapS semicomputability may actually 
coincide. 

An algebra A is said to be uniformly locally finite, ulf for 
short, if there is a function ;\:·w+ w such that for any 
a 1, ••• ,an EA, nord(a1,•••,an) < ;\(n). 

If A is a ulf algebra then we can replace B(e,a) in the 
argument of Theorem 5.6 by a function B'(e,n). One consequence of 
this is that for fixed e, IlH(e,a) is fapS-decidable: 

5.10 THEOREM Let A be uniformly locally finite. Then Sc An is 
fapS-semicomputable if, and only if, Sis fapS-computable. 

For groups, Kostrikin's Theorem implies any locally finite 
group of prime exponent is uniformly locally finite. More gener- · 
ally, calling a class of algebras k uniformly locally finite 
if there is ;\:w-+ w such that for A Ek and a1,•••,an EA, 
nord(a1,•••,an) < ;\(n), it is a corollary of the Ryll-Nardzewski 
Theorem that if k is an ~-categorical first-order axiomatisable 
class then k is a uniformly locally finite class. See also 
Mal'cev's Theorem [21] p. 285 that a variety consisting of locally 
finite algebras is uniformly locally finite. 

6. TOPOLOGICAL ALGEBRAS 

A is a topological algebra if its domain is a non-trivial topol
ogical space on which its operations are continuous. 

6.1 THEOREM Let A be a Hausdorff topological algebra in the 
quasivariety V. If A contains a V-free n-generator subalgebra 
then for any fapCS-decidable relation.Sc An x wm and x E wm 
the sets {a E An: S(a,x)} and {a E An: 7 S(a,x)} cannot both be 
dense in An. 

This fact we obtain as a useful, palatable corollary of a more 
general, technical result about topological relational systems. 
Both theorems are suggested by remarks of Herman and Isard, in 
[13], concerning E.; we use them on fields, abelian groups and 
differential rings. 

A relation R c An is continuous at a E An if its character
istic function R:An + {0,1} is continuous at a between the 
product topology on A and the discrete topology on {0,1}. 

Recalling the congruence relation =A on T[X1,•••,Xn] from 
Section 1, a point a E An is said to be transcendental if for any 
terms t,t' E T[X1,•••,Xn] 
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t '=A t' if., and only if, t (a) = t' (a) in A. 
6.2 THEOREM· Let A be a NZational struatUl'e which is a Hausdorff 
topological algebra, and let Sc An x wm be a fapCS-decidable 
relation. If A contains a transcendental point a E ~n_on whose 
subalgebra <a> the basic relations of A are continuous then for 
any x E wm there is an open subset of An containing a upon which 
S holds or fails accordingly as it holds or fails on a. 

To deduce Theorem 6.1, let V be a quasivariety and let 
Tv[X1,•••,XnJ = T[X1,•••,XnJ/ =v the V-free polynomial algebra of 
rank n. If A EV and a E An V-freely generates the V-free algebra 
<a> then va:Tv[X1, ••• ,Xu] + A, defined va[t] = t(a), is an embedd
ing: t(a) = t'(a) in A iff [t] = [t'] in Tv[X1,•••,XnJ• Butt =vt' 
implies t =At' and so a is transcendental. With this hypothesis 
of Theorem 6.2 satisfied, the remainder of the deduction of 6.1 is 
straightforward. 

The Locality Lemma 3.1 prompts us to make this definition. A 
syntactic state description is a list of the form 

. (k, t 1 (X) , ••• , tp (X) , x 1 , ••• , Xq; (z 1 , t 1 1 (X) , ••• , t 1 p (X)), 
••• ,(zs,ts 1(X), ••• ,tsp(X))) 

where k and the Zi are instruction labels, x 1, ••• ,x4 E w, ~nd what 
remains are terms in X = (X1,•••,Xn). When we unfolcf a computation 
a(a,x) syntactically we obtain.the i-th syntactic state descript~on 
Ti(a,~,x~ = (mi,tij,Xij,(Zij,tjk)) which is a mapping An to state 
descriptions. · 

PROOF OF THEOREM 6.2 Let a fapCS-decide S over A. Let a E An be 
transcendental and x E wm be arbitrarily chosen and fixed. Since S 
is fapCS-decidable iff ~Sis a fapCS-decidable, we assume, without 
loss of generality, that S(a,x) is true and consider a computation 
a(a,x) of this fact. Let a(a,x) have length land syntactic state 
descriptions Ti(a,a,x) for l~i~ which we take as functions, 

Ti(X) = (mi,tij(X), Xij,(Zij,t'.jk(X))), 
of X = (X 1, ••• ,Xn) only. For b E An we'denote the i-th state of the 
computation a(b,x) by . 

i 
Di(a,b,x) = (ni,bij,Yij,(Wij,bjk)). 

We prove there is a basic open set B(a) containing a such that for 
all b E B(a) and each l~i~, Di(a,b,x) = Ti(b). Obviously, this 
entails a(b,x) = a(a,x) for b E B(a). 

Claim. For each l~i~l there is a basic open set Bi(a) contain
ing a so that for b E Bi(a), Di(a,b,x) = Ti(b). 

On proving the claim by induction on i, we may take 
B(a) = nf=1Bi(a). 

The basis i=l is true for B1(a) = An by convention. Assume the 
claim true at stage i of the computation a(a,x): Bi(a) is con
structed and for any chosen b E Bi(a), Di(a,b,x) = Ti(b). 
Consider the passage from Di(a,b,x) to Di+1(a,b,x) which depends 
on the nature of the instruction ni. We give just 3 of the 15 
cases: 

Let ni = mi be rµ: = a(rA 1, ••• ,rAk). In applying this 
instruction only algebra registers are changed, the transitions 



of Di(a,b,x) to Di+1<a,b,x), and Ti(X) to Ti+1(X), being 
determined by the formulae, 

{ 
cr(biAt'•••,biAk) if j = µ 

bi+l,j = 
bij if j Iµ 

= { cr(tJAJ(X), ••• ,tiAk(X)) if J = µ 
ti+l ,j (X) 

ti·(X) if J j µ. 
Substituting X = b and3applying the induction hypothesis bu,= 
tiA'(b) we get Di+1<a,b,x) = Ti+J(b) for a:ny b E Bi(a). So Jwe 
can3set Bi+1(a) = Bi(a). 

The other operational instructions also make state trans
itions "independently" of a, but conditional instructions do not: 

Let ni = mi be•if R(rA1 , ••• ,rAk) then ti else v. By the induc
tion hypothesis bij = tij(o) so the state transitions are deter
mined by 

= {u if R(tiAt(b), ••• ,tiAk(b)) 
ni+l 

v otherwise. 

v otherwise. 
{

u if R(tu I (a), ••• , tuk (a)) 
mi+l = 

. n. 
By the continuity hypothesis on relations, the map R o p: A -+{O, 1} 
is continuous at a where p(X) = (tu 1(X), ••• ,tuk(X)). So there 
is a basic open set Vi(a) containing a such that for any 
b E Vi(a) n Bi(a), Ro p(b) =Ro p(a) and ni+l = mi+l• Thus take 
Bi+1(a) = Vi(a) n Bi(a). 

Let ni = mi be if rµ = r~ then ti else v. Again since bij = 
tij(b) we have 

u if t. (b) 
l. µ 

v otherwise. 
u if tiµ(a) = tiA(a) 

v otherwise. 
Consider the two cases for mi+l• If tiµ(a) = tiA(a) then, since 
a is transcendental, tiµ '=-A tu and 1:iµ (b) = tu (b) for any b E An, 
and the passage of Ti(X) to Ti+1CX) is independent of a. Thus, 
set Bi+J(a) = Bi(a) on which ni+l = mi+J. 

However, if tiµ(a) I tiA(a) then {b E An: tiµ(b) ~ tiA(b)} 
is an open set containing a - because A is Hausdorff - and we can 
choose a neighbourhood Vi(a) about a within it. For b E Vi(a) n 
Bi(a), ni+l = mi+l so here we set Bi+J(a) = Vi(a) n Bi(a). Q.E.D. 

FIELDS. In the field of reals 1R any transcendental number is a 
transcendental element in our special sense. Therefore, by 
Theorem 6 .. 2, sets such as the rationals~ and the algebraic 
numbers A which are dense and codense in 1R cannot be fapCS
decidable. These examples, cited for fap-decidability, are in 
Herman & Isard [13]. 

ABELIAN GROUPS Let Tn be then dimensional torus group, the 
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n-fold direct product of the circle group s 1• 

6.3 EXAMPLE The set FO(Tn) of aZZ eZements of Tn of finite order, 
aZso known as the tors1:on su.bgroup of Tn, is fap-semicomputabZe 
but not fapCS-computabZe. 

PROOF It is known from Section l that FO(Tn) is fap-semicomput
able. To apply Theorem 6.1 we have to show Tn contains a I-gener
ator free-abelian subgroup and that FO(Tn) is dense and codense 
in Tn. We begin by examining s 1• . 

Let f:[0,1) ➔ sl be the continuous parameterisation 
f(t) = (sin 2wt, cos 2wt). It is easy to check f(t) is of finite 
order iff tis a rational number. Thus s 1 has a free-abelian sub
group and, indeed, since the rationals are dense and codense 
[0,1), FO(sl) is dense and codense in sl because the image of a 
dense subset of a space is dense in the image of a continuous map. 
Now observe that for any group G, FO(G)n = FO(Gn) and IO(c)n = 
IO(Gn) where IO(G) = 7 FO(G), and also that in any topological 
space X, D dense in X entails Dn dense in xn. Applying these facts 
to FO(sl) and IO(S 1) we are done. Q,E.D. 

6.4 EXAJMPLE The I-generator su.bgroup membership reZation Min 
Tn is fap-semicomputabZe but not fapCS-computabZe. 

PROOF. First we show M = {(g,t): g E <t>} is dense in Tn x Tn. Let 
B(a,b) be a basic open set containing (a,b) E Tn x Tn which we 
can tak,e, without loss of generality, to be of the form 
B1(a) x Bz(b) where B1(a), Bz(b) are basic open sets about a,b 
respectively. Now the set of those t E Tn such that <t> is dense 
in Tn is itself dense in Tn, see J.F. Adams [I], p. 79. So we can 
choose t E Bz(a) so that <t> meets all neighbourhoods and in 
particular B1(b). This means there is (g,t) E B1(a) x Bz(b) such 
that g E <t> and Mis dense. 

Consider? M. Let B(a,b) be as before. From the argument of 
Example 6.3, we can choose an element t E Bz(b) of finite order 
and g E B1(a) of infinite order and so a pair (g,t) E B(a,b) for 
which g i <t>. 

From the observations of 6.3, it is easy to show Tn contains 
a 2-gen,erator free-abelian subgroup and complete the argument 
with Theorem 6.1. Q.E.D. 

w INTEGRATION Let C (JR, JR) be the set of all analytic functions 
JR+JR which is a differential ring under pointwise addition and 
multiplication, and differentiation. Let Ebe the differential 
subring generated by ex, sin x, the polynomial functions JR [X], 
and all their compositions, a subring of the so-called elementary 
functions. Let l(f) be the integration relation in E, 
I(f) = (3g E E)(Dg = f). For example, it is well known from a 
theorem of Liouville that e-x2 i I, see G.H. Hardy's book [12]. 

6.5 EXAJMPLE I is a fapCS-semicomputabZe subset of E which is not 



fapCS-corrrputable. 

PROOF. Equip· cw (JR , JR) with the C00 -topology prescribed thus: a 
sequence fn ➔ O, as n-+ O, iff for each k, the sequence Dkfn-+ O, 
as n- ➔ O, in the topology of uniform convergence on compact sub
sets on C(J)(JR, JR); this means that for each k and each real R > O, 
the sequence supj~j<Rlnkfn(x)I ➔ 0 in JR. With the C00 -topology 

cw(JR, JR) is a topological differential ring (which is not the 
case with the usual topology of uniform convergence on compacts 
where D fails to be continuous). See M. Golubitsky & V. Guillemin 
[10], pp. 42-50. Consider the hypotheses of 6.2. By induction on 
term height it is straightforward to prove that (say) eX is a 
transcendEmtal point in E: this is omitted. That I is dense in E 
in the C00--topology follows from the fact that the polynomials 
JR [X] < I < E and that the sequence of Taylor polynomials of an 
analytic function converge to the function in the topology of 
uniform convergence. That I is codense is more involved. 

Let f EI, we shall approximate f b; the sequence of non-inte
grable functions fn(x) = f(x) + 1/n e-x /n, It is easy to see 
that the f are not integrable and that the approximation 
property fgllows from the claim that 1/n e-x2/n-+ 0 as n-+ 00 in the 
C00-topology. k 2/ -

On calculating the k-th derivative D (e-x n) we find it to . 
- 2/ · ·. fi(k) 

be of the form Pk(x,1/n)eX n, where Pk(x,1/n) = ri=la{X1 /n 

where fi(k) ~ [k/2] = largest natural number~ k/2. Whence it is 

easy to check that Dk(e-x2/n)-+ 0 in the topology of uniform 
convergence on compact sets. Q.E.D. 

Two papers the reader might care to study, in the light of these 
notes, are A. Kreczmar [15] and E, Engeler [4], though these 
deal with a class of functions slightly smaller than FAP(A). 
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