
AFDELING INFORMATICA

stichting

mathematisch

centrum

IW 130/80 JANUARI
(DEPARTMENT OF COMPUTER SCIENCE)

J. V. TUCKER

COMPUTING IN ALGEBRAIC SYSTEMS

Preprint

~
MC

2e boerhaave1straat 49 amsterdam

Ptunted a.:t .the Ma.:thema.:ti.c.a.l Ce.n:tJr.e, 49, 2e BoeJc.ha.a.v<Ui.tJt.a.a.t, Am6.teJula.m.

The Ma.thematic.a.l Cen;t;r.e,' 6ou.n.ded .the 11-.th 06 Feb11.uaJLy 1946, .u a non­
pll.o 6U ..i.M-tUuti..o n cwn-lng a.t .the p,r.omo:Uo n. o 6 pUll.e ma.:thematiC-6 and La
appUc.a.ucm.~. 1.t .u .6pon6oll.ed by .the Ne.theJri.a.nd.6 GoveJt.nme.n.t .thll.ough .the
Ne.theJlia.n.d6 011.ganization 6011. .the Advanc.emen.t 06 PU/Le R<UieaJr.c.h (Z.W.O).

1980 Mathematics subject classification: 03D01, 03D35, 03D75, 03D80,
68B10, 68C30, 68C40

ACM~computing Review-categories: 5.24, 5.26, 5.27

Computing in algebraic systems*)

by

J.V. Tucker

ABSTRACT

We describe the basic recursion theory of functions computable by

different kinds of register machines designed to operate within an arbi­

trarily chosen algebraic system. Especial emphasis is placed upon computation

in natural algebraic systems such as groups, rings and fields. A useful

theorem about the topological structure of computable subsets of a

Hausdorff topological algebra is proved.

KEY WORDS & PHRASES: algebraic register machines, finite algorithmic

procedures, algorithmically decidable and undecidable

problems in Algebra, computable functions on algebraic

data types

*) This report will be published elsewhere and is not for review.

INTRODUCTION

Given a relational structure A, imagine an A-register machine
which can hold in its registers a fixed, finite number of elements
of A, perform the basic operations and decide the basic relations
on these elements, and manage some simple manipulations and decis­
ions such as to replace the contents of one register by those of
another and to tell when two registers carry the same eleme-o.t.
Next, picture an A-register machine with counting by adding a fin­
ite number of counting registers to an A-register machine; these
carry natural numbers and the device is able to put zero into a
counting register, add or subtract one from the contents of any
counting register, tell if two registers contain the same number,
and so on. Thirdly, there is the A-register machine with stacking
which augments an A-register machine with a single stack register
into which the entire contents of the ordinary algebraic registers
of the basic machine can be temporarily placed at various points
in the course of a calculation. Thus, the combinatorial operations
of the A-·register machine are extended in the first instance by
permitting subcomputations on the natural numbers wand in the
second by prolonging the number and complexity of entirely alge­
braic subcomputations. On arranging both we have an A-register
machine uJi th counting and stacking.

To use one of these machines to compute a partial function on
A is to write down the familiar finite program of instructions
referring to whatever activities of the machine are available and
containing information to stop in certain circumstances. Such a
program is called a finite algorithmic procedure, a finite algor­
ithmic pr"ocedure with counting., a finite algorithmic procedure
with stac-king, or a finite algorithmic procedure with counting and
stacking accordingly as it includes or ignores instructions in­
volving the counting and stack facilities. These are abbreviated
in turn by fap, fapC, fa:pS and fapCS. The classes of all functions
over A they compute, FAP(A), FAPC(A), FAPS(A) and FAPCS(A), are
the subject of this paper.

The idea of the A-register machine first appeared in G.T.
Herman & S.D. Isard [13] and in H. Friedman [7], there together
with its counting facility. The stack mechanism belongs to

1

2

[22,23] in which J. Moldestad, V. Stoltenberg-Hansen and I
investigated· recursion-theoretic properties of the four families
of fap-computable functions. This third article is a set of notes
which introduces such models of computing into an algebraic
milieu to settle decision problems: The membership question for
finitely generated ideals of polynomial rings over fields is
fapCS-computable (Theorem 3.2). The membership question for single
generator subgroups of the torus groups is fap-semicomputable, but
not fapCS-computable (Example 6.4). And to settle theoretical
issues about computation: For A an "everyday algebraic system of
Mathematics"., F APC (A) = F APCS (A) (Theorem 5 • 2) • But, for example,
if A is ~he algebraic closure of some finite field llp then
FAPS(A) = FAPC(A) (Theorem 5.9).

The intention is to map out Elementary Recursion Theory in an
algebraic setting: enough to show what peculiarities arise in
lifting the contents of, say, Machtey & Young's book [20], stopp­
ing short of the Turing degree theory of the various fap-semi­
computable sets which seems mysterious outside the finitely
generated algebras (c.f. Section 4 and Theorem 5.10). The first
two sections sunnnarise formal definitions and certain relevant
properties of the functions from [22,23,24]. The next two sections
establish the local algebraic character of machine computations
while Section 5 is about counting and stacking. Section 6 contains
a useful theorem about fapCS-computable subsets of topological
algebras.

Although the emphasis is on the classes of functions computed
over natural algebraic systems, and not on the structure of prog­
rams and their semantics, the material here does usefully connect
with the literature of Theoretical Computer Science: it provides
the sort of basic technical information needed to fit de Bakker's
mathematical semantics of program control structures based on
w [2] to the ADJ Group's algebraic theory of data types [8], for
example. A specific technical application to program semantics is
[3] by J.A. Bergstra, J. Tiuryn and myself.

My interest in Generalised Recursion Theory I owe to my time
in Oslo, to J.E. Fenstad, D. Normann, S.S. Wainer and, especially,
J. Moldestad and v. Stoltenberg-Hansen; in this connection I
gratefully acknowledge the support of a fellowship from the
European Progrannne of The Royal Society, London. These notes have
also profited from information and advice from P.R.J. Asveld,
J.A. Bergstra, B. Birkeland, H. Rolletschek, and J.I. Zucker.

NOTATION Throughout we are concerned with relational structures
of finite signature. The word function, unqualified, will mean
partial function and typically these will be (n,m)-ary maps
either An x wm ➔ A or An x wm ➔ oo, a distinction we preserve in
the abbreviation An x wm ➔ A/w. For (a,x) E A0 x wm, f(a,x) ~
g(a,x) means f(a,x), g(a,x) are both defined and equal or are
both undefined. On fixing part of the argument a E An of a
function f:An+m ➔ Awe write f(a):Am ➔ A.On extending a unary
function f:A ➔ A to an n-fold product fx ••• xf:An ➔ An, we write

for a= (a 1, ••• ,an) E An the value f(a) for (fa1,•••,fan)• Relat­
ions may be identified with their characteristic functions using
0 for tru.e, l for false. The complement of a set A is denoted, A.

7l , 7Z:p ~ (Q, JR, t are the integers, the integers modulo p, the
rationals, reals and complex numbers respectively.

For those ideas and facts of Algebra left unexplained in the
text consult the books of A.G. Kurosh [18] and Mal 1 cev [21] on
Universal Algebra, that of Kurosh [16,17] on Group Theory and
B.L. van der Waerden [25] for Field Theory.

1. FINITE ALGORITHMIC PROCEDURES
The program language for A-register machines has variables

r 0 , r!, r 2 , ••• for algebra register~; its constants, functi?n and
relation symbols are those of the signature of A together with
new constants T for tru.e, F for false, H for halt., 1,2, ••• for
instru.ction labels or markers and new relation= for algebraic
equal.ity.

A finite algorithmic procedure is a finite ordered list of
labelled instructions I 1, ••• ,I-f: which are of these types. The
algebraic operational instruct&ons manipulate elements of A and
are

ru:=~ meaning 11replace the contents of register rµ
by the element a EA named by a".

rµ:=o(r 1'1, ••• ,r"-k) meaning "apply the k-ary operation

a of A to the contents of registers rA 1 , ••• ,r"-k and replace the
contents of rµ by this value".

rµ:=rA meaning "replace the contents of register rµ
with that of r>,_"•
The algeb:raic conditional instructions determine the order of
executing instructions and are

J.f R(r>,_ 1, ••• , rAk) then i else j meaning "if the k-ary
relation R is true of the contents of q, 1 , ••• , rxk then the next
instruction is Ii otherwise it is Ij 11 •

_if rµ=rA then i else j which takes its obvious meaning
and, incidentally, gives us goto i.
Finally, r :=T, r :=F marking true and false, and H meaning "stop"
are includ~d. µ

For the A-register machine with counting the language is ex­
tended by variables co,c1,c2,••• for counting registers., a con­
stant O for zero, function symbols +1 for successor., !.J for pre­
decessor; and relational symbol= for numerical equality. The
counting instructions., which when mixed with fap instructions make
finite algorithmic procedures with counting., are simply the usual
instructions for (natural number) register machines:

cµ:':'O c11 :':'c>..+l cµ:':'cA.!.I if cµ=c 1, then i else j
and take their obvious meanings.

For the A-register machine with stacking we add to the A­
register machine language a variables for stack register and 0
for empty,. The new instructions are

stack (z, r0 , ••• , rm) meaning "along with instruction

3

4

marker z 1, copy the contents of r 0 , ••• ,rm as a:n (m+1)-tuple into
the stack!'.

restore(r0, ... ,rj-i,r; 1, ••• ,rm) meaning "remove the last
or topmm.it vector 1,n the stackJb:nd replace the contents of the
ri (i:rj) by the corresponding entries of the vector".

if s=Ql then i else marker meaning "if the stack is empty
. then the next instruction is Ii otherwise it is the instruction·

label led by the marker in the topmost element in the stack".
A finite algorithmic procedure with stacking is an ordered list
of fap instructions and stack instructions with the convention
that all the ordinary algebraic register variables are included in
every stack-instruction, and all but one of them are included in
every restore~instruction; the role of the marker is to remember
at which points in the program the basic A-register machine is
cleared for an independent subcomputation. For a proper account
of the stack and its operation the reader should consult [22], but
the description given is adequate for what follows. The definition
of a finite algorithmic procedure with counting and stacking is
innnediate: though we note that the stack allows only algebra ele­
ments to be stored.

To compute An x wm ➔ A/w with program a choose n of its .alge­
braic variables, and m of its counting variables, as input vari­
ables, and name a suitable variable as output variable. On fixing
a machine appropriate for a load input argument (a,x) E An x wm
into the registers a reserves as inputs, and make the remaining
registers empty. The instructions of a are executed on the machine
in the order they are given except where a conditional instruction
directs otherwise. If at some stage an instruction cannot be
carried out, such as happens when one applies a fap conditional
to empty registers, then the computation is said to hang in that
state and no value is computed. If the machine halts then the out­
put value of the computation a(a,x) is the element contained in
the output register named by a, if this is not empty; in all
other circumstances, no output value is obtained. Converging
and diverging computations are distinguished by a(a,x~ and
a(a,x)t, respectively, and, as usual, a(a,x) also denotes the
(defined or undefined) value of a computation.

The four types of fap-computable function, relation or set
can now be formally defined in the obvious way. A set or relation
Sc An x (um is, say, fapCS-semicomputable if it is the domain of
a fapCS-computable function; fap/fapC/fapS-semicomputability is
defined similarly, of course. The different sets of computable
functions An ➔ A are denoted nFAP(A), nFAPC(A), nFAPS(A), nFAPCS(A).

For those acquainted with Theoretical Computer Science it
ought to be pointed out that the hierarchy of low to high-level
languages characteristic of computing praxis is also an essential
feature of theoria: to prove a relation on an algebra A decidable,
the richer the progrannning language the better whereas to prove
it undecidable the opposite is true. Here our needs are best met
by defining the various fap-computable functions through a crude
"assembler code" for A-register machines, but features like the

so called stru.ctured control statements, reaursion, and data type
creation can be encorporated into the definitions of FAP(A),
FAPS(A) and FAPCS(A) respectively. Thus, to prove the set FO(G) of
all elements of finite order in a group G is fap-semicomputable
one may use this program wherein rI and ro are input and output
variables:

r:=rI; ·while r+t do r:=r.rI od; r 0 :=T;H.
In conclusion, here are some technical ideas. A state descrip­

tion in a machine computation under fapCS a is typically a list
(k;a1,•••,ap,x1,•••,xq;(z1;a11,•••,a1p), ••• ,(z 15 ;as1,•••,asp))

where a 1, ••• ,ap are the contents of the algebra registers namea
by a;xj,•••,xq are those of the counting registers; there ares
vectors piled in the stack register, zi is the marker of the i-th
element and aij the'.element in the j-th register of the i-th
stored vector. And, finally, k is the number of the instruction in
a which is to be applied to these elements. Each state description
represents a step in a computation. Often we need to unfold a
computation a(a,x) into all its stages a~d then we use

Di(a,a,x) = (mi,aij,Xij; (Zij,ajk))
to denote the i-th step in the computation a(a,x). The length
la,a,xl of the computation a(a,x) is by definition the ordinal
number of steps in the unfolding of a(a,x). ,_ ,;

All four sets of programs we assume godel numbered in the
usual way with r2o,nc,ns,ncs denoting the_ code sets for fap, fapC,
fapS and fapCS programs respectively. We also assume the tey,,n or
polynomial algebra T[X1, ••• ,Xn] of any signature to be coded uni­
formly inn, ny: nQ + t[XJ, ••• ,Xn] with the abbreviation ny*(i) =
[i]. Each term ~(Xt,•••,Xn) defines a function An+ A by substi­
tuting algebra elements for indeterminates and we define n-ary
term evaluation nTE:nQ x An+ A by nTE(i,a) = [i](a). Finally,
define for t,t' E T[X1,•••,Xu] t =At' if, and only if, for all
a E An, t(a) = t'(a).

2. THE FAP-COMPUTABLE FUNCTIONS IN THE LARGE
To sketch essential background information from [22,23,24]

about the recursion-theoretic properties of fap-computable func­
tions, we begin with an axiomatisation of the large-scale struc­
ture of the partial recursive functions on w.

In summary, a set of functions 0 over A is a computation theory
over A with code set Cc A if associated with 0 is a surjection E:
C ~ e, called a coding and abbreviated by E{e) = {e} fore EC,
and an ordinal valued length of computation function I .I such
that I e,al -1, ~- {e} (a)h for which the following properties hold.

(1) C contains a copy of wand 8 contains copies of zero,
successor, predecessor on~.

(2) 0 contains the projection functions, the operations of A
and the relations of A in the form of definition-by-cases functions.

(3) 0 is closed under composition, the permuting of arguments,
and the addition of dummy arguments. And, in particular,

(4) 0 contains universal functions nu such that for eEC,aEAn

1\J(e,a) = {e}(a).

5

6

(5) 0 enjoys this itePation pPopePty: for each n,m there is a
maps~€_ 0 such that for eEC, aECn, bEAm

{s:(e,a)}(b) ~ {e}(a,b).
Moreover, it ts required that certain uniformity hypotheses are

. satisfied and that the length function respect the efficiency
of the functions mentioned in the definition; for full details
see [23) or J.E. Fenstad's monograph [6] from which this axiomat­
isation is taken.

The coding of programs, mentioned in the previous section,
extends to a coding of the functions they compute: choose C=w
and {e} to be the function computed by fapC e, if e E Ste, or to
be the everywhere undefined function otherwise. Define length of
computation le,a,xl to be the number of steps in computation
{e}(a,x). To be faithful to the definition of a computation theory,
the code set C is adjoined to A to make the structure -Aw whose
domain is A u w and whose operations and relations are those of A
together with zero, successor, predecessor, and equality on w. It
turns out that the fapC-computable functions can be identified
with FAP(Aw).

2.1 THEOREM The fapC-corrrputable functfons oveP A constitute. a
computation theo-:r:y oveP A with code set C = w if, and only if,
term evaluation nTE is fapC-corrrputable oveP A uniformly inn.

Now term· evaluation is always fapCS-computable and so on repeating
the coding constructions with QCS it follows that

2.2 THEOREM The fapCS-corrrputable functions oveP A constitute a
computation theoPy oveP A with code set C = w.

The next step in [23] was to define a computation theory 0 over A
with code set C to be minimal if 0 is contained in any other
computation theory~ over A with code set C. And then to prove

2.3 THEOREM The fapCS-computable functions oveP A constitute
the minimal computation theoPy oveP A with code set C = w.

2.4 THEOREM ThePe exists a stPuctuPe A whePe the following
inclusions aPe stPict

/ FAPC(A) ~
FAP(A) FAPCS(A)

~ FAPS (A)__,..->

Theorem 2.3 coupled to Theorem 2.1, and Theorem 2.4 are the point
of departure for Section 5. Two other basic facts are needed later
on. The first comes from [23), the second, a corollary, we leave
as an exercise for the reader.

2.5 THEOREM The Pelation n,msTEP c C x An x wm x w defined by
n,msTEP(c,a,x,k) = le,a,xl ~ k

·• is fapCS-computable uniformly in n,m.

2.6 THEOREM Sc An x wm is fapCS-computable if, and only if, s
and 7 S ape fapCS-semicomputable.

1n [22] it was shown that the functions inductively definable
over A, in the sense of Platek, are precisely the fapS-computable
functions. To establish a wider context for the algebraic study of
computation, J. Moldestad and I have attempted to systematically

. classify, in terms of the fap formalism, the many disparate
approaches to defining computability in an abstract setting. Thus
in [24] it is shown that Normann's set reaursion is equivalent to
faf.CS-computability, that a natural generalisation of Herbrand­
Gbdel-Kleene equational definability is equivalent to fapS-comput­
ability, as is computability by flowcharts with LISP-like recursive
procedures. See [24] for a complete survey and a discussion of a
Generalised Church-Turing Thesis nominating the fapCS-computable
functions as the class of functions effectively calculable by
finite, deterministic algorithms in Algebra.

3. ALGEBRAIC INFLUENCES ON FAP-COMPUTATION

3.1 LOCALITY OF COMPUTATION LEMMA Let a:An x wm + A/w be a fapCS
and (a,x) E An x wm. Then each state of the computation a(a,x)
lies within wand the subalgebra <a> of A generated by a E An.
In particular, if a:An x wm + A and a(a,x)+ then a(a,x) E <~>.

PROOF. Let Di(a,a,x) be a state description in the unfolding of
a(a,x). We must prove by induction on i that any algebraic element
of Di(ci,a,x) lies in <a>. This is immed.iate for the basis i = 1 by
convention. The induction step from Di(a,a,x) to Di+1(a,a,x) de­
pends upon the type of instruction numbered ni in Di(a,a,x). There
are 15 cases. The conditional instructions do not alter algebraic
registers, nor do the operational instructions for counting. And
the algebraic operational instructions either relocate elements
of Di(a,a,x), assumed in <a>, or apply a basic operation of A to
them to create possibly new elements of <a>. Q.E.D.

Let F be a field. The function f(a) = /a which picks out some
square root of a, if it exists, is not in general fapCS-corrrputable.
Take F = lR: if f were fapCS-computable then f(2) = ± ✓2would lie
in the subfield <2> =~which is not the case.

Let R be an Euclidean domain with degree function a:R + w. The
algorithm which computes for a IO, b ER elements q,r with
b·= qa +rand either r = 0 or a(r) < a(a) is not in general
fapCS-corrrputable over (R,a). Take R = 7l [X] with a the usual poly­
nomial degree. Let a= x2, b = x7 so that necessarily q = x5,
r = O. But x5 i <Xt,X2> since this subring involves only powers of
the form x2n+?m for n,m E w.

In addition to treating search mechanisms with caution when
formalising algorithms, one must also be prepared to sometimes
dispense with pairing and unpairing functions:

A is locally n-finite if every n-generator subalgebra of A is
finite. A is locally finite if it is locally n-finite for each n.
If A is locally n-finite then the number of algebraic values for
all the fapCS-computable functions at argument a E An is finite
being bounded by the order function nord(a) = l<a>I. In [9], E.S.

7

8

Golod shows that for each n there is a group G which is locally
n-fini te but not locally (n+ I)-finite. And for these groups the
theory of fapCS-computable functions of~ n arguments is consider­
ably removed from that of functions of> n arguments.

The reinstatement of search and pairing (of a local character)
is the subject of Section 4, but fapCS-computation is better
thought of as "sensitive" rather than "weak":

3.2 THEOREM Let F be a field. Then the membership relation for
finitely generated ideals of F[X], ••• ,XnJ, defined

n,kM(q,p1,•••,Pk) = q E (pl,•••,Pk)
is fapCS-corrrputable over F uniformly in k,n.

PROOF. We describe the algorithm informally for (any) fixed n,k
and sketch the reasons why it stays within the realm of fapCS­
computation over F, freely referencing principles which belong to
the next section. The algorithm refers to the data typesF,
F[X1, ••• ,Xn], the ring M(s,t,F) of s x t matrices over F, w, and
a second polynomial ring F[tij:l~i~k,l~j:SJ'.J, but in fact operates
in those parts defined by the subfield L of F generated by the
coefficients of the input polynomials: L[Xt,•••,Xn], M(s,t,L) and
so on. These,localisations, and what the algorithm requires of
them, can be fapCS-computably simulated over F, w from the input
coefficients; this claim we ask the reader to check possibly
guided by the principles of Local Enumeration, Search and Pairing
from Section 4.

From Satz 2 of G. Hermann [14] one can obtain this fact:
Consider equations of the form

r1p1+ ... +rkpk = q (*)
where q,pt, ••• ,Pk are g1-.ven and r1, ••• ,rk are to be found. There
exists a primitive recursive function f: w1 + w such that if(*)
has a solution in F[X1,•••,XnJ then it does so with deg(ri) ~
f(a,b,n) where a= deg(q) ana b = max{deg(pi): l~i~k}. To decide
q E (p1,•••,Pk) is to decide whether or not (*) has a solution and
this is done by setting up a system of linear equations over F.

Construct formal polynomials r1,•••,rk of degreed= f(a,b,n)
with coefficients treated as indetermi~ates over F,

r. = L t .. XJ
1 I . , <d 1] J - . . •

where j = (j 1, ••• ,jn), ljJ = j 1+ ••• +jn and xJ = (xp.,.xiin).
Substituting these into equation(*) produces a polynomial identity
whose LHS has degree~ f(a,b,n) +band whose RHS has degree= a.
Comparing coefficients leads to a set of linear equations int,.

1]
over F. Thus q E (p 1, ••• ,pk) iff this set of equations has a
solution in F; the latter point is covered by this lemma:

3.3 LEMMA The relation m,nR c M(m,n,F) x Fm defined
m,nR(A,b) = (3xEFn)(Ax=b)

is fapCS-corrrputable over F uniformly in n,m.

PROOF, First consider the rank function m,nr:M(m,n,F) + w defined
m,nr(A) = rank of matrix A. This is fapCS-computable over F uni­
formly in m,n: calculate r 0 E w such that A has at least one

non-singular ro x ro minor and, for s > ro, every s x s minor of
A is singular. Then m,nr(A) = ro and m,nr is fapCS-computable
(by Local Search 4.4 and the fact that determinants are poly­
nomials over the prime subfield of F!).

Now the lemma follows from a well known theorem of Linear
Algebra: given A E M(m,n,F) and b E Fm, let [A,b] be A augmented
by bas an (n+l)-th column. Then m,nR(A,b) iff m,nr(A) =
m,n+lr([A,b]). Q;E.D.

What is striking about Hermann's bound is that it holds for all
fields. To properly exploit the constructive implications of
this uniformity one must dispense with traditional hypothesesk
such as that F be computable, designed to make the problem n, M
constructively well posed, but irrelevant to its algorithmic
solution which is field-theoretic in the fullest, abstract, sense
of the term. And it is with precisely this sort of example in
mind that we advocate the study of effective computability in a
completely abstract algebraic setting.

3.4 INVARIANCE THEOREM Let A and B be relational systems and
~:A ➔ Ba relational homomorphism which is injective. Let a be a
fapCS over their signatu:r>e. Then

a(~a,x) ~ ~a(a,x) if a:An x wm ➔ A;
a(~a,x) ~ a(a,x) if a:An x wm ➔ w.

PROOF. This is best proved via a stronger, but technical, fact
about state descriptions of a(a,x) and a(~a,x): if Di(a,a,x} =
(mi,aij,Xij,(~j,ajk~) the~ Di(a,!a,x) = (mi,~~ij,~ij,(zj,~ajk)).
The argument is by induction on i. The basis i=t is true by
convention. Assume the identity true at step i and compare how
Di+1Ca,a,x) and Di+1(a,~a,x) arise from Di(a,a,x) and Di(a,~a,x),
respectively; this depends on the 15 types of instruction numbered
by mi at stage i.

For example, let mi name i~ R~rAJ'":•,r~k) ~ u else v. In
both cases the new state descriptions differ from those at stage i
only in their instruction numbers say mi+l and ni+I• Thanks to
the induction hypothesis, the transitions are determined by these
formulae

{
u if R(aiAJ'•••,aiAk);

mi+I = ni+I =
v otherwise;

{
u if R(~aiAt'•••,~aiAk);

v otherwise.

Since~ is a relational homomorphism IDi+l = ni+l•
We leave to the reader the task of checking the other cases

noting only that it is the algebraic conditional with equality
which requires~ to be a monomorphism. Q.E.D.

3.5 COROLLARY Each fapcs~semicomputable sets c An is invariant
under the action of the automorphism group Aut(A) of A.

PROOF, Let a be a fapCS such that S = dom(a) and let ~ E Aut (A).
For a E An,

9

10

$(a)€ S...,. a($a)+
...,. $a(aH
...,. a(aH

Thus $(S) = S. Q;E.D.

by Theorem 3.4;
since$ is total •

For example, fapCS-semicomputa~le subgroups must be normal.
And since complex conjugation Z...+ z is an automorphism of the
field~, the set {i} where i = l='t is not fapCS-semicomputable.

3.6 COROLLARY The group of aZl fo:pCS-computabZe automortphisms
Autfapcs(A) is a subgroup of the centre of Aut(A). Thus
Autfapcs(A) <1Aut(A).

If G is a group with trivial centre then Aut(G) has trivial
centre, see Kurosh [16] p. 89. Therefore, if group G has trivial
centre, as is the case when G is non-abelian and simple or when
G is a free group of rank> 1, then Autf~p~s(G) is trivial. On
the other hand, if G is a torsion-free divisible abelian group
then Aut(G) contains the infinite family expn(g) = gn for Oln€w.

·4. LOCAL FAPCS-ENUMERATION, SEARCH AND PAIRING

In fapCS-computation, algebraic enumerations assume a strictly
local character: given a1,•••,an € A one can always fapCS­
computably list the subalgebra <at,•••,an>• And from this comes
local fapCS-computable search and local fapCS-computable pairing.
Here we state results which formulate these mechanisms precisely,
leaving their proofs to the reader as straightforward, though
instructive, exercises in manipulating the term evaluation func­
tions by means of recursive calculations on~. The theorems are
quite fundamental, however. They strongly suggest that most
results in Degree Theory and Axiomatic Complexity Theory on w
can be reproved in a local fo:l'm for fapCS-computation, and that,
in particular, Classical Recursion Theory can be reconstructed
for FAPCS(A) provided A is finitely generated by elements named
as constants in its signature.

(A study of the regularities and singularities involved in
lifting the principal facts of Degree Theory and Axiomatic
Complexity Theory has been undertaken by V. Stoltenberg-Hansen
and myself and will appear in due course.)

4.1 LOCAL ENUMERATION THEOREM There is a family of functions
nL:An x w-+ A fo:pCS-computable unifo:l'mly inn such that for each
a€ An, nL(a):w-+ <a> is a surjection; moreover nL can be so
chosen as to make nL(a) a bijection w-+ <a>, if <a> is infinite,
or a bijection {O, ••• ,m-1}-+ <a>, if <a> is finite of order m.

Two corollaries of this enumeration facility which we use
later on are

4.2 LEMMA The order function nord:An-+ w defined nord(a) = l<a>I
is fo:pCS-computable unifo:l'mly inn.

4.3 LEMMA The membership relation for finitely generated sub­
algebras of A, defined nM(b,a) = b € <a> for b € A and a€ An,

is fapCS-semicomputable uniformly inn.

4.4 LOCAL SEARCH THEOREM There is a family of functions
n,m,kv:c x An x rum -+ Ak fapCS-computable uniformly in n,m,k such
that if s c An x wm x Ak is fapCS-semicomputable by fapCS 1JJith
code e EC and there is y E <t>k such that S(a,x,y) then
n,m,°kv(e,a,x)+ and S(a,x,n,m, v(e,a,x)).

4.5 LOCAL PAIRING THEOREM There is a family of functions
n,tni.*:An x wr-+ AmfapCS-computable uniformly in n,m such that for
each a E An, n,tni.*(a):w -+.<a>m is a surjection; moreover n,~*
can be so chosen as to make a listing of <a>m without repetitions.

5. COUNTING AND STACKING: VARIETIES AND LOCAL FINITENESS

While the four kinds of fap-computable functions on algebra
A are distinct (Theorem 2.4), the typical situation in Algebra
is

FAP(A) r.._ __ > FAPS(A) -<---t-> FAPC(A) = FAPCS(A)

Defining algebra A to be regular if A has uniform fapC-computable
term evaluation, with Theorems 2.1 and 2.4 in mind, we substan­
tiate this claim with a sufficient condition for A to be regular
based on the proofs that groups and rings are regular. Notice
regularity is an isomorphism invariant (Theorem 3.4).

First, we introduce term width which is used to measure the
number of algebra registers required to fapC-evaluate a term on
any input; c.f. Friedman [7], pp. 376-377.

An n-axy syntactic development of width mis a sequence
Tt,•••,Tl such that

(i) each T1 is a list of m terms from T[X1, ••• ,Xn_] l~i~;
(ii) Tt contains only indeterminates
(iii) for l~i~-1, either Ti+l arises from Ti by applying· some
k-a~y operation symbol o to some of the terms t1,•••,tk in Ti
and replacing one of the terms of Ti by o(t1,•••,tk) or,
(iv) Ti+l arises from Ti by replacing one of the terms of Ti
by an indeterminate or by another of its terms;
(v) Ti+l differs from Ti in at most one of its terms l~i~l.

A term t(Xt,•••,Xn) is of width at most m if it belongs to some
n-ary syntactic development of width m. Given a code for a term of
width m and any a E An one can recursively calculate a code for
some development to construct its values at each stage in m
algebraic registers and output its value t(a).

Next, we adapt the notion of a varietal nomal fom as in
H. Lausch & W. Ngbauer [19], p. 23.

A recursive and complete set of term representatives of width
m(n) for an algebra A is a family J = {Jn:n E w} with
Jn c T[X1,•••,Xn] such that

(i) the terms of Jn are of width at most m(n);
(ii) for each t E T[Xt,•••,Xn] one can recursively calculate

t' E Jn for which t =At';
(iii) mis recursive.

11

12

5.1 THEOREM Let A ha:ve a Peaursive and complete set of te!'Trt
PepPesentatives of uJidth bounded by m(n). Let M be the laPgest
aPity of the opePations of A. Then thePe is a fapC involving
(M+lh m(n) algebPaic.woPK PegistePs which computes te!'Trt evaluation.
In paPtiaulaP, A and all its homomorphic images aPe PegulaP.

The proof of this is routine: use Friedman's Lennna 1.6.2 and
straightforward properties of homomorphisms. Theorem 5.1 is
designed with those algebras which make up categories possessing
free objects of all finite ranks in mind; for example, varieties
and quasivarieties (among the first-order axiomatisable classes).
Not only is Algebra replete with such categories but, invariably,
the sets of no!'Trtal fo!'Trts constructed for the syntactic copies of
their free objects are recursive and are of bounded width: from
Lausch & Nbbauer [19] and P. Hall [11] we can "read off"

5.2 THEOREM Let A be an algebPa belonging to one of these
vaPieties: semigPoups, gPoups, associative Pings with OP without
unity, Lie Pings, semilattices, lattices, boolean algebPas. Then
FAPC(A) = FAPCS(A).

Of course, the hypothesis of recursive sets of representatives
for a variety is much weaker than that of recursive normal.forms
as the latter entails the free algebras of a variety have a
decidable word problem. Notice, too, that fields do not form a
variety, but recursive and complete sets of term representatives
are easily made from the construction of rational functions,
(Q(X1, ••• ,Xn) or llp (X1, ••• ,~), from polynomials, ll [X1, ••• ,Xn]
or llp(X],•••,Xn].

Keeping within the regular algebras A, we now digress to
collapse FAPCS(A) to FAP(A) by counting inside A.

An algebra A is said to have fap counting on an element
a€ A if there are functions S,P:A ➔ A such that (i) {sn(a):nEw}
is infinite, (ii) psn(a) = sn-J(a) for each n and (iii) S,P are
fap computable over (A,a).

5.3 THEOREM Let A be PegulaP. Then A has fap-counting on an
element a E A if, and only if, A is not ZoaaUy I-finite and
FAP(A,a) = FAPCS(A,a).

PROOF. Assuming A to have fap-counting on a€ A, the Locality
Lennna 3.1 shows A is not locally]-finite. To simulate a fapC over
(A,a) by a fap one rewrites a replacing each counting variable c
in a by a new algebra variable u and then replacing each instruct­
ion of the left hand colunm by the corresponding fap instructions
abbreviated in the right hand colunm:

c: = 0 u: = a
c: = c'+l u: = S(u')
c: = C 1 .!.] u: = P(u')

if c=c' then * else ** if u=u' then * else **
The converse implication is an exercise in the use of the Local
Enumeration Theorem 4.1. Q.E.D.

5.4 EXAMPLE A gPoup G has fap-counting on an element if, and only
if, G is not peY'iodic. Since periodicity and local]-finiteness
coincide in groups one implication follows from Theorem 5.3.
Conversely, if G is non-periodic with g E G of finite order then
define S(x) = gx and P(x) = g-lx which are fap-computable over (G,g).

· It is not enough to assume G is not locally finite to obtain_
counting on an element: take any of Golod;s groups [9] which are
periodic but not locally finite. This is not the case for fields
however:
5.5 EXAMPLE A field F has fap counting on an element if, and only
if, Fis of chaY'acteY'istic O OY' is of pPime chaY'acteY'istic but not
algebY'aic oVeY' its pY'ime subfield. Let F have fap-counting on
a E F and assume F has characteristic p; denote the prime subfield
of F by 7lp • The subfield <a> = 7lp (a) is infinite so cannot be
algebraic 'over 7lp as otherwise 7lp (a) would have order pn where
n is the degree of a over 7lp. The converse is obvious in case F
has characteristic O and if t E Fis transcendental over Z'p then
Fas a multiplicative group is not periodic since tis of infinite
order and we can use Example 5.4. It is easy to check Fis locally
finite if, and only if, it has prime characteristic and is
algebraic over its prime subfield.

We now turn to the study of exclusively algebraic computation:
the class FAPS(A). The reader might care to keep in mind the
equivalences of fapS-computability with inductive definability,
equational definability and recursive procedures. For example, the
facts which follow have a bearing on the debate about inductive
definability as the generalisation of Recursion Theory to an
abstract setting, see J.E. Fenstad [5,6].

5.6 THEOREM If A is locally n-finite then the halting pPoblem foY'
nFAPS(A) is fapCS-decidable: the Y'elation nH(e,a) iff {e}(a)+ is
fapCS-computable on ~S x An.

PROOF. Let R(e), I(e), and M(e) recursively calculate the number
of algebraic register variables, instructions, and markers for stack
blocks appearing in the fapS coded bye. A state description in a
fapS computation is a list of the form

(k;a1,···,~; (z1;a11,•••,a1m), •.• ,(zs;as1,••·,asm))
and if this belongs to a computation bye then k ~ I(e), m = R(e)
and each z{ ~ M(e).

If in unfolding a computation {e}(a) theY'e ay,e ruo identical
oY'dinary algebY'aic state descPiptions OY' two identical stack state
descriptions then {e}(a)+. This is clear for if either of two
identical states Di,Dj arise then the program must regenerate after
Dj exactly those states intermediate between Di and Dj to produce
an infinite, but periodic, set. of state descriptions. When A is
locally n-finite we can bound the number of distinct state
descriptions in a convergent computation {e}(a): R()

There are at most Bo(e,a) = (I(e) + l)(nord(a)+l) e different
states for the ordinary algebraic registers and instructions. Due
to the fact the stack mechanism copies ordinary algebraic state
descriptions, it is easy to calculate that there can be at most

13

14

L
s=O

- distinct stack states. Therefore, the total number of state
descriptions available for {e}(a)~, and so the computation's run­
time, is fapCS-computably bounded by (the total function)
B(e,a) = BO(e,a).Bg(e,a).

CZaim: Fore E Q_g, a E An, nH(e,a)..,. nsTEP(e,a,B(e,a)).
Obviously, if nsTEP(e,a,B(e,a)) is true then {e}(a)L Conversely,
if {e}(a)+ in l steps and l > B(e,a) then some duplication of
state descriptions must have appeared and so· {e}(a)t. Thus l ~
B(e,a). Q.E.D

5.7 COROLLARY If A is ZoaaZZy finite then the hatting problem
for fapS computations is fapCS-deaidable.

An algebra A is said to be fapCS fo1.'fnaZZy valued when there
is a total function v:A + w which is a fapCS-computable surjection.

5.8 PROPOSITION Let A be I-finite and fapCS fo1.'fnaUy valued by
v. Then the set Kv = {a EA: v(a) Ens & {v(a)}(a)~} is fapCS­
aomputable but not fapS-aomputabZe.

PROOF. A I-finite implies 1H(e,a) is fapCS-decidable on Qg x A
by Theorem 5.6. Thus, Kv is fapCS-decidable as a E Kv..,.
v(a) Ens & 1H(v(a),a) = O, and vis total. Assume for a contra­
diction that Kv is fapS-computable. Then-,.¾ is fapS-semi­
computable and there exists a fapS a such that dom(a) =, Kv•
Choose b EA so that v(b) codes a.
Then b E 7 ¾ ..,. a (b)

..,. {v(b)}(b)+

..,. b E Kv•
Thus there is no such a and Kv is not fapS-computable. Q.E.D.

For illustrations we look for valuations of regular algebras
A which are I-finite where FAPS(A) ~ FAPC(A) = FAPCS(A).

If A contains I-generator subalgebras of every finite order
then 1ord:A + w is a fapCS formal valuation provided A is 1-
finite. For example, take the locally finite group 7l00 consisting
of all the complex roots of unity. More generally, if algebra A
is I-finite and ,r(A) = im(lord) contains a recursive set S then
choose a recursive bijection f:S +wand define

{
f(lord(a)) if lord(a) ES,

v(a) =
· 1ord(a) otherwise.

For an example among groups we must look for a periodic group of
infinite exponent. Let p be a prime and let Zlp,00 be the locally
finite abelian group of all complex roots of unity which are. of
order some power of p: for these groups ,r(Zlp-00) = {pn:n E w},
a recursive set.

Turning to fields, let F be a locally finite field of
characteristic p and observe that 1ord(a) = pd(a) where d:F + w

calculates the degree of a E F, that is d (a) = dim[7lp_(a): 7lp J •
If F contains elements of every degree belonging to a recursive
set then dis a fapCS formal valuation. Such an F can be chosen by
taking the splitting field of the polynomials· {xPn-x E llp[X]:nEw}
but the best example is the algebraic closure K of llp· In
sunnnary,

5. 9 THEOREM Over the groups A = 7l 00 , 7lp00 and the field A = K,
FAPS(A) j FAPC·(A) = FAPCS(A).

In conclusion, we mention in connection with Corollary 5.7,
that fapS computability and fapS semicomputability may actually
coincide.

An algebra A is said to be uniformly locally finite, ulf for
short, if there is a function ;\:·w+ w such that for any
a 1, ••• ,an EA, nord(a1,•••,an) < ;\(n).

If A is a ulf algebra then we can replace B(e,a) in the
argument of Theorem 5.6 by a function B'(e,n). One consequence of
this is that for fixed e, IlH(e,a) is fapS-decidable:

5.10 THEOREM Let A be uniformly locally finite. Then Sc An is
fapS-semicomputable if, and only if, Sis fapS-computable.

For groups, Kostrikin's Theorem implies any locally finite
group of prime exponent is uniformly locally finite. More gener- ·
ally, calling a class of algebras k uniformly locally finite
if there is ;\:w-+ w such that for A Ek and a1,•••,an EA,
nord(a1,•••,an) < ;\(n), it is a corollary of the Ryll-Nardzewski
Theorem that if k is an ~-categorical first-order axiomatisable
class then k is a uniformly locally finite class. See also
Mal'cev's Theorem [21] p. 285 that a variety consisting of locally
finite algebras is uniformly locally finite.

6. TOPOLOGICAL ALGEBRAS

A is a topological algebra if its domain is a non-trivial topol­
ogical space on which its operations are continuous.

6.1 THEOREM Let A be a Hausdorff topological algebra in the
quasivariety V. If A contains a V-free n-generator subalgebra
then for any fapCS-decidable relation.Sc An x wm and x E wm
the sets {a E An: S(a,x)} and {a E An: 7 S(a,x)} cannot both be
dense in An.

This fact we obtain as a useful, palatable corollary of a more
general, technical result about topological relational systems.
Both theorems are suggested by remarks of Herman and Isard, in
[13], concerning E.; we use them on fields, abelian groups and
differential rings.

A relation R c An is continuous at a E An if its character­
istic function R:An + {0,1} is continuous at a between the
product topology on A and the discrete topology on {0,1}.

Recalling the congruence relation =A on T[X1,•••,Xn] from
Section 1, a point a E An is said to be transcendental if for any
terms t,t' E T[X1,•••,Xn]

15

16

t '=A t' if., and only if, t (a) = t' (a) in A.
6.2 THEOREM· Let A be a NZational struatUl'e which is a Hausdorff
topological algebra, and let Sc An x wm be a fapCS-decidable
relation. If A contains a transcendental point a E ~n_on whose
subalgebra <a> the basic relations of A are continuous then for
any x E wm there is an open subset of An containing a upon which
S holds or fails accordingly as it holds or fails on a.

To deduce Theorem 6.1, let V be a quasivariety and let
Tv[X1,•••,XnJ = T[X1,•••,XnJ/ =v the V-free polynomial algebra of
rank n. If A EV and a E An V-freely generates the V-free algebra
<a> then va:Tv[X1, ••• ,Xu] + A, defined va[t] = t(a), is an embedd­
ing: t(a) = t'(a) in A iff [t] = [t'] in Tv[X1,•••,XnJ• Butt =vt'
implies t =At' and so a is transcendental. With this hypothesis
of Theorem 6.2 satisfied, the remainder of the deduction of 6.1 is
straightforward.

The Locality Lemma 3.1 prompts us to make this definition. A
syntactic state description is a list of the form

. (k, t 1 (X) , ••• , tp (X) , x 1 , ••• , Xq; (z 1 , t 1 1 (X) , ••• , t 1 p (X)),
••• ,(zs,ts 1(X), ••• ,tsp(X)))

where k and the Zi are instruction labels, x 1, ••• ,x4 E w, ~nd what
remains are terms in X = (X1,•••,Xn). When we unfolcf a computation
a(a,x) syntactically we obtain.the i-th syntactic state descript~on
Ti(a,~,x~ = (mi,tij,Xij,(Zij,tjk)) which is a mapping An to state
descriptions. ·

PROOF OF THEOREM 6.2 Let a fapCS-decide S over A. Let a E An be
transcendental and x E wm be arbitrarily chosen and fixed. Since S
is fapCS-decidable iff ~Sis a fapCS-decidable, we assume, without
loss of generality, that S(a,x) is true and consider a computation
a(a,x) of this fact. Let a(a,x) have length land syntactic state
descriptions Ti(a,a,x) for l~i~ which we take as functions,

Ti(X) = (mi,tij(X), Xij,(Zij,t'.jk(X))),
of X = (X 1, ••• ,Xn) only. For b E An we'denote the i-th state of the
computation a(b,x) by .

i
Di(a,b,x) = (ni,bij,Yij,(Wij,bjk)).

We prove there is a basic open set B(a) containing a such that for
all b E B(a) and each l~i~, Di(a,b,x) = Ti(b). Obviously, this
entails a(b,x) = a(a,x) for b E B(a).

Claim. For each l~i~l there is a basic open set Bi(a) contain­
ing a so that for b E Bi(a), Di(a,b,x) = Ti(b).

On proving the claim by induction on i, we may take
B(a) = nf=1Bi(a).

The basis i=l is true for B1(a) = An by convention. Assume the
claim true at stage i of the computation a(a,x): Bi(a) is con­
structed and for any chosen b E Bi(a), Di(a,b,x) = Ti(b).
Consider the passage from Di(a,b,x) to Di+1(a,b,x) which depends
on the nature of the instruction ni. We give just 3 of the 15
cases:

Let ni = mi be rµ: = a(rA 1, ••• ,rAk). In applying this
instruction only algebra registers are changed, the transitions

of Di(a,b,x) to Di+1<a,b,x), and Ti(X) to Ti+1(X), being
determined by the formulae,

{
cr(biAt'•••,biAk) if j = µ

bi+l,j =
bij if j Iµ

= { cr(tJAJ(X), ••• ,tiAk(X)) if J = µ
ti+l ,j (X)

ti·(X) if J j µ.
Substituting X = b and3applying the induction hypothesis bu,=
tiA'(b) we get Di+1<a,b,x) = Ti+J(b) for a:ny b E Bi(a). So Jwe
can3set Bi+1(a) = Bi(a).

The other operational instructions also make state trans­
itions "independently" of a, but conditional instructions do not:

Let ni = mi be•if R(rA1 , ••• ,rAk) then ti else v. By the induc­
tion hypothesis bij = tij(o) so the state transitions are deter­
mined by

= {u if R(tiAt(b), ••• ,tiAk(b))
ni+l

v otherwise.

v otherwise.
{

u if R(tu I (a), ••• , tuk (a))
mi+l =

. n.
By the continuity hypothesis on relations, the map R o p: A -+{O, 1}
is continuous at a where p(X) = (tu 1(X), ••• ,tuk(X)). So there
is a basic open set Vi(a) containing a such that for any
b E Vi(a) n Bi(a), Ro p(b) =Ro p(a) and ni+l = mi+l• Thus take
Bi+1(a) = Vi(a) n Bi(a).

Let ni = mi be if rµ = r~ then ti else v. Again since bij =
tij(b) we have

u if t. (b)
l. µ

v otherwise.
u if tiµ(a) = tiA(a)

v otherwise.
Consider the two cases for mi+l• If tiµ(a) = tiA(a) then, since
a is transcendental, tiµ '=-A tu and 1:iµ (b) = tu (b) for any b E An,
and the passage of Ti(X) to Ti+1CX) is independent of a. Thus,
set Bi+J(a) = Bi(a) on which ni+l = mi+J.

However, if tiµ(a) I tiA(a) then {b E An: tiµ(b) ~ tiA(b)}
is an open set containing a - because A is Hausdorff - and we can
choose a neighbourhood Vi(a) about a within it. For b E Vi(a) n
Bi(a), ni+l = mi+l so here we set Bi+J(a) = Vi(a) n Bi(a). Q.E.D.

FIELDS. In the field of reals 1R any transcendental number is a
transcendental element in our special sense. Therefore, by
Theorem 6 .. 2, sets such as the rationals~ and the algebraic
numbers A which are dense and codense in 1R cannot be fapCS­
decidable. These examples, cited for fap-decidability, are in
Herman & Isard [13].

ABELIAN GROUPS Let Tn be then dimensional torus group, the

17

18

n-fold direct product of the circle group s 1•

6.3 EXAMPLE The set FO(Tn) of aZZ eZements of Tn of finite order,
aZso known as the tors1:on su.bgroup of Tn, is fap-semicomputabZe
but not fapCS-computabZe.

PROOF It is known from Section l that FO(Tn) is fap-semicomput­
able. To apply Theorem 6.1 we have to show Tn contains a I-gener­
ator free-abelian subgroup and that FO(Tn) is dense and codense
in Tn. We begin by examining s 1• .

Let f:[0,1) ➔ sl be the continuous parameterisation
f(t) = (sin 2wt, cos 2wt). It is easy to check f(t) is of finite
order iff tis a rational number. Thus s 1 has a free-abelian sub­
group and, indeed, since the rationals are dense and codense
[0,1), FO(sl) is dense and codense in sl because the image of a
dense subset of a space is dense in the image of a continuous map.
Now observe that for any group G, FO(G)n = FO(Gn) and IO(c)n =
IO(Gn) where IO(G) = 7 FO(G), and also that in any topological
space X, D dense in X entails Dn dense in xn. Applying these facts
to FO(sl) and IO(S 1) we are done. Q,E.D.

6.4 EXAJMPLE The I-generator su.bgroup membership reZation Min
Tn is fap-semicomputabZe but not fapCS-computabZe.

PROOF. First we show M = {(g,t): g E <t>} is dense in Tn x Tn. Let
B(a,b) be a basic open set containing (a,b) E Tn x Tn which we
can tak,e, without loss of generality, to be of the form
B1(a) x Bz(b) where B1(a), Bz(b) are basic open sets about a,b
respectively. Now the set of those t E Tn such that <t> is dense
in Tn is itself dense in Tn, see J.F. Adams [I], p. 79. So we can
choose t E Bz(a) so that <t> meets all neighbourhoods and in
particular B1(b). This means there is (g,t) E B1(a) x Bz(b) such
that g E <t> and Mis dense.

Consider? M. Let B(a,b) be as before. From the argument of
Example 6.3, we can choose an element t E Bz(b) of finite order
and g E B1(a) of infinite order and so a pair (g,t) E B(a,b) for
which g i <t>.

From the observations of 6.3, it is easy to show Tn contains
a 2-gen,erator free-abelian subgroup and complete the argument
with Theorem 6.1. Q.E.D.

w INTEGRATION Let C (JR, JR) be the set of all analytic functions
JR+JR which is a differential ring under pointwise addition and
multiplication, and differentiation. Let Ebe the differential
subring generated by ex, sin x, the polynomial functions JR [X],
and all their compositions, a subring of the so-called elementary
functions. Let l(f) be the integration relation in E,
I(f) = (3g E E)(Dg = f). For example, it is well known from a
theorem of Liouville that e-x2 i I, see G.H. Hardy's book [12].

6.5 EXAJMPLE I is a fapCS-semicomputabZe subset of E which is not

fapCS-corrrputable.

PROOF. Equip· cw (JR , JR) with the C00 -topology prescribed thus: a
sequence fn ➔ O, as n-+ O, iff for each k, the sequence Dkfn-+ O,
as n- ➔ O, in the topology of uniform convergence on compact sub­
sets on C(J)(JR, JR); this means that for each k and each real R > O,
the sequence supj~j<Rlnkfn(x)I ➔ 0 in JR. With the C00 -topology

cw(JR, JR) is a topological differential ring (which is not the
case with the usual topology of uniform convergence on compacts
where D fails to be continuous). See M. Golubitsky & V. Guillemin
[10], pp. 42-50. Consider the hypotheses of 6.2. By induction on
term height it is straightforward to prove that (say) eX is a
transcendEmtal point in E: this is omitted. That I is dense in E
in the C00--topology follows from the fact that the polynomials
JR [X] < I < E and that the sequence of Taylor polynomials of an
analytic function converge to the function in the topology of
uniform convergence. That I is codense is more involved.

Let f EI, we shall approximate f b; the sequence of non-inte­
grable functions fn(x) = f(x) + 1/n e-x /n, It is easy to see
that the f are not integrable and that the approximation
property fgllows from the claim that 1/n e-x2/n-+ 0 as n-+ 00 in the
C00-topology. k 2/ -

On calculating the k-th derivative D (e-x n) we find it to .
- 2/ · ·. fi(k)

be of the form Pk(x,1/n)eX n, where Pk(x,1/n) = ri=la{X1 /n

where fi(k) ~ [k/2] = largest natural number~ k/2. Whence it is

easy to check that Dk(e-x2/n)-+ 0 in the topology of uniform
convergence on compact sets. Q.E.D.

Two papers the reader might care to study, in the light of these
notes, are A. Kreczmar [15] and E, Engeler [4], though these
deal with a class of functions slightly smaller than FAP(A).

REFERENCES

1. J.F. ADAMS, Lectures on Lie groups, W,A. Benjamin, New York,
11969.

2. J. W. dE~ BAKKER, Mathematical theory of program correctness.,
Prentice Hall International, London, 1980.

3. J.A. BERGSTRA, J. TIURYN & J.V. TUCKER, 'Correctness theories
and program equivalence', Mathematical Centre., Computer
Bcience Department Research Report., IW 119, Amsterdam,
11979.

4. E. ENGELER, 'Generalized galois theory and its application to
complexity'. ETH-Z't.riah., Computer Science Institute
Report 24, Z~rich, 1978.

5. J.E. FENSTAD, 'On the foundation of general recursion theory:
computations versus inductive definability' pp. 99-111
of J.E. FENSTAD, R.O. GANDY & G.E. SACKS (eds.) Gener­
alized recursion theory II., North Holland, Amsterdam, 1978.

19

20

6. --~-. , Reaursion theory: an a:domatic approach, Springer­
Verlag, Berlin, 1980.

7. H. FRIEDMAN, 'Algorithmic procedures, generalised Turing
algorithms, and elementary recursion theory', pp. 316-
389 of R.O. GANDY & C;E.M. YATES (eds.), Logic Colloquim,
'69, North-Holland, Amsterdam, 1971.

8. J.A. GOGUEN, J.W. THATCHER & E.G. WAGNER, 'An initial algebra
approach to the specification, correctness and imple­
mentation of abstract data types' pp. 80-149 of R.T.
YEH (ed.) Current trends in programning methodology IV.
Data stru.cturing, Prentice-Hall, Engelwood Cliffs,
New Jersey, 1978.

9. E.S. GOLOD, 'On nil-algebras and residually finite p-groups'.
American Math. Soc. Translations, (2) 48 (1965) 103-106.

10. M. GOLUB IT SKY and V. GUILLEMIN, Stab le mappings and their
singularieies, Springer-Verlag, New York, 1973.

11. P. HALL, 'Some word problems', J. London Math. Soc., 33 (1958)
482-496.

12. G.H. HARDY, The integration of functions of a single variable,
Second edition, Cambridge University Press, London, 1916'.

13. G.T. HERMAN & S.D. ISARD, 'Computability, over arbitrary
fields', J. London Math. Soc. 2 (1970) 73-79.

14. G. HERMANN, 'Die Frage der endlich vielen Schritte in der
Theorie der Polynomideale', Mathematische Annalen
95 (1926) 736-788.

15. A. KRECZMAR, 'Programmability in fields', Fundamenta Infor­
maticae 1 (1977) 195-230.

16. A.G. KUROSH, The theory of groups I, Chelsea, New York, 1955.

17. _____ , The theory of groups II, Chelsea, New York, 1956.

18. , General algebra, Chelsea, New York, 1963. ------ ..
19. H. LAUSCH and W. NOBAUER, Algebra of polynomials, North­

Holland, Amsterdam, 1973.

20. M. MACHTEY & P. YOUNG, An introduction to the general theory
of algorithms, North-Holland, New York, 1978.

21. A.I. MAL'CEV, Algebraic systems, Springer-Verlag, Berlin, 1973.

22. J. MOLDESTAD, V. STOLTENBERG-HANSEN & J.V. TUCKER, 'Finite
algorithmic procedures and inductive definability',
to appear in Mathematica Scandinavica.

23. ___ , 'Finite algorithmic procedures and computation
theories' to appear in Mathematica Scandinavica.

24. J. MOLDESTAD & J.V. TUCKER, 'On the classification of
computable functions in an abstract setting', in

21

preparation.

25. B.L. VAN DER WAERDEN, Algebra I, Ungar, New York, 1970.

ONTV1~NGEN 1 1 r:.t. 1380

