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Deterministically recognizing EOL-languages in time O(n
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by 

J. van Leeuwen 

ABSTRACT 

We show that when appropriate data-structures are defined, Valiant's 

fast algorithm for the recognition of context-free languages in time 

O(n2•81 ) can be modified into an O(n3• 81 ) algorithm for deterministically 

recognizing EOL-languages, a powerful proper generalization of the context

free languages. 

KEY WORDS & PHRASES: Lindenmayer languages, deterministic recognition, 

Valiant's algorithm. 





I. INTRODUCTION 

About seven years ago A. LINDENMAYER [3] proposed a number of easy 

mechanisms which could model the parallel behaviour of cellular growth in 

one-dimensional organisms (filaments). His "type O" (interaction-less) sys

tems have since led to a study of EGL-grammars which generate languages 

very much like ordinary context-free grammars do except that in derivations 

we require that in each step all symbols of an intermediate string are re

written simultaneously according to productions listed in the grannnar. The 

algorithmic structure of EGL-languages and various generalizations has been 

actively investigated in the past few years, but instead of documenting this 

paper with a long list of references we kindly refer the reader to HERMAN & 

ROZENBERG [1] for further information. EGL-languages are a powerful, proper 

generalization of the context-free languages strictly included in the indexed 

languages, containing for example languages like {a2n I n;;:: O} and 
n n } { a 1 ... ak n ;;:: 0 (any k) . 

One of the main structural differences between context-free and EOL

grannnars is that in derivation-trees of the latter all paths from the root 

to contributing leaves must be of equal length. It is no surprise therefore 

that efficient recognition-algorithms for EGL-languages are somewhat like 

similar procedures for context-free languages to which an appropriate count

ing-mechanism has been added. 

VAN LEEUWEN [8] showed that EGL-languages can be deterministically 

recognized in space O(log3n) (but rather inefficiently in time) and with a 

different organization in polynomial time (using more space in that case). 

OPATRNY [4] has analyzed this further and showed that the dynamic progrannning 

method underlying Younger's algorithm ([9]) can be modified for EGL-languages 

and implemented on a multitape Turing machine in time O(n4). 

Although Opatrny's algorithm is clearly efficient, we shall prove that 

one can do asymptotically faster on a random-access computer, very much like 

Valiant observed for context-free languages, thus providing a better bound 

on the computational complexity of EGL-languages. 

We show that appropriate data-structures ("ladders") can be defined 

and manipulated at a reasonably low cost such that Valiant's fast algorithm 
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for computing the transitive closure of matrices over non-associative do-

. (-7]) b 1· d . h 1 1· . d h d · 0( 3 · 81 ) mains L can e app ie wit on ya imite over ea to give an n 

algorithm for EOL-recognition. 

2. SOME PRELIMINARIES. 

For standard language-theoretic concepts and notations we refer to 

HOPCROFT & ULLMAN [2] and to SALOMAA [SJ. 

An EOL-grammar (see[l]) is a 4-tuple G = <V,E,S,o> where V,E, and S 

* are as usual and o is a finite substitution from V into V. When Ai o(A) 
. * . for all A EV then G is called A-free. L ~ E is called an EOL-languagewhen 

* * there exists an EOL-grammar G = <V,E,S,o> such that L = o (S) n E • 

Finding efficient recognition-procedures for EOL-languages is compli

cated by the lack of suitable normal forms that one can use. About the 

simplest form to which all EOL-grammars can be effectively reduced is ex

pressed in the following result (see e.g. VAN LEEUWEN[8]). 

LEMMA 2.1. Each (A-free) EOL-language can be generated by an EOL-grammar 

G = <V,E,S,o> in which o is A-free and for all A EV and w Ev*: 

w E o(A) => [wl = I or lwl = 2. 

In such an EOL-grammar in normal form one can distinguish symbols which 

always divide (wEo(A)=>lw[=2), symbols which never divide (wEo(A)=>lw[=l), and 

symbols which may or may not divide (o(A) contains words of length land 

length 2). 

In the reduction-algorithm that is given later we shall always do length

preserving reductions 

"immediately", leaving contracting reductions 
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B C BCE o(A), ••• 

as steps of more explicit concern. 

In making reductions all the way up to the root of the tree, how far 

"up" should one expect to go? Although derivations in an EOL-grannnar could 

very well extend arbitrarily far, eliminating periodicities shows that they 

need never be more than linear in the length of the resulting word (VAN 

LEEUWEN[8]). 

LEMMA 2.2. For each EOL-grammar Gone can find an (integral} constant c such 

that all non-empty words in the language of G at least have one derivation 

of length ~ c • I w I . 

A trivial modification of the EOL-grannnar G = <V,E,S,o> generating a 

language L makes that all non-empty words w EL have a derivation of pre

cisely length c • lwl: add a new start-symbol T (t Voriginally) to G and de

fine o(T) = {T} u {o(S)} 

3. PREPARING REPRESENTATIONS 

Let L be a (>..-free) EOL-language, G = <V ,E ,S, o> an EOL-grannnar in normal 

form generating L such that all w EL have at least one derivation of length 

c • lwl in G. Let n be some natural number (to be interpreted as the length 

of a non-empty word). 

A semi-ladder (of length en) is an array-like data-structure 

F en 
F cn-1 . . 

F = 
. . . . 
Fl 

FO 
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of directly addressible fields containing pointers to the ~rdered represen

tation of subsets of V. Defining E ~ F when for all i E. c F. makes the set 
1 1 

of semi-ladders into a lattice. 

A semi-ladder F (of length en as before) 1s called a ladder if the 

following condition on the field of F holds: 

for all i < c.n, all A E F., B 
1 

if A E o(B) then BE F. 1 1+ 

Thus, in a ladder all possible reductions using letter-to-letter re

writings have been made. 

As an easy, but useful result we observe: 

LEMMA 3.1. For each semi-ladder E there is a unique, smallest ladder F con

taining E. Given E one can corrrpute Fin time O(n). 

PROOF. The first assertion follows by observing that the set of ladders 

(of length en) is a lattice too. Given E, the following algorithm will com

pute the smallest ladder F containing it 

Fa+ Eo 

for i to en - I do (X+{BiF. 1 I o(B)nF. I~}; 
1+ 1 

F i+l + merge 
) D 

For semi-ladders E and F (of the same length en) let E + F be the semi

ladder H determined by H. = E. u F .. Clearly when E and Fare ladders, then 1 1 1 
so is E + F. 

LEMMA 3.2. The sum of -two (semi-Jladders is corrrputable in time O(n). 

PROOF. The time needed to merge two fields is bounded by a constant. D 

It is more interesting that one can also meaningfully define a product

operation for semi-ladders (although later it will only be applied for 

ladders). 

For semi-ladders E and F let E ° F be the smallest ladder containing ,, 
thP semi-ladder H defined by H

O 
= 0, H. 1 = {A I 3B E BC r o (A) l. 

1. + c . , Cc F. 
1. 1. 

1181.IO'fHl:iEK MATl'lltMATISCH CENTRUM 
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LEMMA 3.3. The product of -two (semi-)Zadders is computable in time O(n). 

PROOF. The following algorithm combines computing Hand the method of 3.1. 

to determine the smallest 

(EoF)O + 0 

X + 0 

for i to en -

) 

I 

ladder containing it: 

do 

+ merge ({A I 3BEE.,CEF. BCE o(A)}, X); 
1 1 

+{AI 3BE(EoF). I BE o(A)} 
1+ 

The time needed for basic instructions is again bounded by a constant. 0 

The product is non-associative (but distributive over+). The bracketed 

product of several semi-ladders together is guaranteed to have various empty 

fields, but explicit use of this information does not pay off in the worst 

case analysis of the recognition-algorithm that we shall give. 

LEMMA 3.4. The sum of -two n+l-by-n+J matrices whose elements are pointers to 

(semi-)ladders of length en is computable in time O(n3), the product in time 
O(n3.8I). 

PROOF. STRASSEN [6] shows that sum and product can be computed in O(n
2

) and 

O(n2• 81 ) basic operations over a domain where laws as for ladder-manipula

tion are satisfied. In 3.2 and 3.3 was shown that basic operations require 

O(n) time each. 0 

4. AN EOL-RECOGNITION PROCEDURE 

Let L be a (A-free) EOL-language, G = <V,E,S,o> an EOL-grarrnnar in normal 

form generating Las before. We assume that all w EL have at least one deri

vation of length c • lwl. 

Suppose we wish to determine whether or not w = a 1 
Deffne a matrix 

a belongs to L. 
n 



4> M 12 4> 4> . . . . . 4> 

4> 4> M23 4> 

4> 4> 4> M34 

M = 

. . 
M nn+l 

4> . . . . . . . . . . . 4> 

in which Mii+l is a pointer to the smallest ladder containing 

cj> -- en 

cj> 

a. 
i 

0 

. h . h f . O(n2} Preparing t e matrix t ere ore requires time. 
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Define the transitive closure of Mover a non-associative domain in the 

usual fashion: 

where 

M(l} = M 

M(j} 
j-1 

M(j-i). M(i). = I 
i=I 

Observe that the entries of M+ can be computed diagonal-wise just as in 

Younger's algorithm [9]. 

THEOREM 4: I. w E L if and only if S E (M+ ) • 
l,n+l en 
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PROOF. We show by induction on k that for j 

l."fA·la. 

~ en: A E (M: . k). if and only 
l. 1.+ J 

- .•. a.kl' l. 1.+ -
This is clear fork= (by construction). For k > I we observe that 

M: 1. i+k 
= M+. M+ + + M+. M+ + 

1. i+k-1 ° i+k-1 i+k ..• 1. i+j-1 ° i+j-1 i+k 

+ + 
+ • '· + Mi i+I O Mi+l i+k . 

If A M+ (M+. M+ ) · · · ( .. k). then A E •• 1° .. 1 . k. for some J• By def1.n1.-1. 1.+ J l. I.+J- 1.+J- 1.+ J 
+ + tion of the product there must be a j' ~ j, BE (M ... 1°M .. 1 . k)., and 
l. 1.+J- 1.+J- 1.+ J 

CE (M: i+j-l)j'-I' DE (M:+j-l i+k)j'-I such that 

j-j' j'-1 
A => B (by construction)=> CD => (a .... a .. )(a. . . .• a. ) 

1. 1. + J-2 1. + J - I 1. + k- I 

using the induction-hypothesis for C and D. 

j 
If A=> ai •.• ai+k-l then revert the same argument to show that neces-

sarily A E <MI i+k)j. 0 

With 4.1 the recognition of w is essentially reduced to computing the 

transitive closure of M. 

VALIANT [7] has recently shown that for upper-triangular matrices (like 

M) the "non-associative" transitive closure can still be computed in a num

ber of basic operations in the order of Strassen's fast matrix-multiplication 

algorithm (ignoring the usual overhead of recursive progrannning). Valiant's 

observation carries over in the present situation, although one has to go 

through the entire analysis of Valiant's algorithm once again to see exactly 

where the extra time-factors must be included accounting for the more ex

pensive manipulations of matrix-sums and -products in the various steps. 

One easily obtains then 

THEOREM 4.2. EOL-languages can be recognized in time O(n3· 81 ). 

It is hard to conclude a practical rather than structural relevance of 

4.2, an implementation on a random-access computer-model would invite the 

same criticisms as Strassen's matrix-multiplication algorithm as a numerical 

procedure. It shows, nevertheless, that the smallest number of arithmetic 



operations on elements of the system is bounded by O(n3· 81 ), in that way 

establishing a tight bound on the asymptotic growth of the complexity of 

EOL-recognition. 
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