Factoring Multivariate Polynomials over Finite Fields

A. K. Lenstra*
Centrum voor Wiskunde en Informatica. Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Received June 10, 1983; revised November 15, 1984; accepted December 21, 1984

Abstract

This paper describes an algorithm for the factorization of multivariate polynomials with coefficients in a finite field that is polynomial-time in the degrees of the polynomial to be factored. The algorithm makes use of a new basis reduction algorithm for lattices over $\mathbb{F}_{q}[Y]$. C 1985 Academic Press, Inc.

0. Factoring Multivariate Polynomials over Finite Fields

We present an algorithm for the factorization of multivariate polynomials with coefficients in a finite field. Let f be a polynomial in $\mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{t}\right]$ of degree n_{i} in X_{i}, where \mathbb{F}_{q} denotes a finite field containing q elements, for some prime power $q=p^{m}$. To factor f, our algorithm needs a number of arithmetic operations in \mathbb{F}_{q} that is bounded by a polynomial function of $\prod_{i=1}^{i} n_{i}$ and $p m$. This compares favorably to the standard technique based on Hensel's lemma for which nothing better can be proved than a running time that is exponential in each of the degrees n_{i}.

If the number of variables t equals two, then our algorithm is similar to the polynomial-time algorithm for the factorization of polynomials in one variable with rational coefficients [7]. An outline of the algorithm to factor $f \in \mathbb{F}_{q}[X, Y]$ is as follows. For a suitably chosen irreducible polynomial $F \in \mathbb{F}_{q}[Y]$, and a large enough positive integer k, we determine a factor h of f modulo the ideal $\left(F^{k}\right)$. The irreducible factor h_{0} of f for which h divides h_{0} modulo (F^{k}) can be regarded as an element of a certain lattice over $\mathbb{F}_{4}[Y]$. We prove that h_{0} is, in a certain sense, the shortest element in this lattice, and we show that this enables us to determine h_{0} by means of a new basis reduction algorithm for lattices over $\mathbb{F}_{4}[Y]$.

For $f \in \mathbb{F}_{4}\left[X_{1}, X_{2}, \ldots, X_{t}\right]$ with $t>2$, we first substitute high enough powers of X_{2} for X_{3} up to X_{t}. We then proceed in a similar way as above with the resulting polynomial in $\mathbb{F}_{q}\left[X_{1}, X_{2}\right]$.

[^0]The basis reduction algorithm for lattices over $\mathbb{F}_{q}[Y]$ is described in Section 1. If we define the norm of a vector over $\mathbb{F}_{q}[Y]$ as its degree in Y, then this algorithm enables us to determine the successive minima of a lattice over $\mathbb{F}_{q}[Y]$.

The algorithm to factor polynomials in $\mathbb{F}_{q}[X, Y]$ is presented in Section 2; the results are similar to Sections 2 and 3 of [7]. In Section 3 the algorithm for polynomials in more than two variables over a finite field is explained.
Other recent publications on this subject are [4] and [6]. For two variables the algorithm from [4] is similar to ours; it only differs in the determination of short vectors in a lattice over $\mathbb{F}_{q}[Y]$. Also the generalization to more than two variables is distinct from ours. It should be noted that it appeared earlier than the present paper. Another approach is given in [6].

1. The Reduction Algorithm

Let n be a positive integer, and let \mathbb{F}_{q} denote the finite field containing q elements, for some prime power q. For a rational function $g \in \mathbb{F}_{q}(Y)$ we denote by $|g|$ its degree in Y (i.e., the degree of the numerator minus the degree of the denominator); we put $|0|=-\infty$. The norm $|a|$ of an n-dimensional vector $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in$ $\mathbb{F}_{q}(Y)^{n}$ is defined as $\max \left\{\left|a_{i}\right|: 1 \leqslant i \leqslant n\right\}$.

Let $b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{F}_{q}[Y]^{n} \subset \mathbb{F}_{q}(Y)^{n}$ be linearly independent over $\mathbb{F}_{q}[Y]$; we denote by $b_{i j} \in \mathbb{F}_{q}[Y]$ the j th coordinate of b_{i}. The lattice $L \subset \mathbb{F}_{q}[Y]^{n}$ of rank n spanned by $b_{1}, b_{2}, \ldots, b_{n}$ is defined as

$$
L=\sum_{i=1}^{n} \mathbb{F}_{q}[Y] b_{i}=\left\{\sum_{i=1}^{n} r_{i} b_{i}: r_{i} \in \mathbb{F}_{q}[Y](1 \leqslant i \leqslant n)\right\} .
$$

The determinant $d(L) \in \mathbb{F}_{q}[Y]$ of L is defined as the determinant of the $n \times n$ matrix B having the vectors $b_{1}, b_{2}, \ldots, b_{n}$ as rows. It is well known that, up to units in \mathbb{F}_{q}, the value of $d(L)$ does not depend on the choice of basis for L. The orthogonality defect $O D\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ of a basis $b_{1}, b_{2}, \ldots, b_{n}$ for a lattice L is defined as $\sum_{i=1}^{n}\left|b_{i}\right|-|d(L)|$. Clearly $O D\left(b_{1}, b_{2}, \ldots, b_{n}\right) \geqslant 0$.
1.1. Proposition. Let $x=\sum_{i=1}^{n} r_{i} b_{i} \in L$. Then

$$
\left|r_{i} b_{i}\right| \leqslant|x|+O D\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

for $1 \leqslant i \leqslant n$.
Proof. The norm of the i th column of B^{-1} is bounded from above by $\sum_{j=1}^{n}\left|b_{j}\right|-\left|b_{i}\right|-|d(L)|=O D\left(b_{1}, b_{2}, \ldots, b_{n}\right)-\left|b_{i}\right|$ by Cramer's rule. Since r_{i} is the inner product of x and the i th column of B^{-1}, we have that $\left|r_{i}\right| \leqslant|x|+$ $O D\left(b_{1}, b_{2}, \ldots, b_{n}\right)-\left|b_{i}\right|$, which proves Proposition 1.1.

For $1 \leqslant j \leqslant n$ a j th successive minimum $\left|m_{j}\right|$ of L is recursively defined as the norm of a vector of smallest norm in L that is linearly independent of $m_{1}, m_{2}, \ldots, m_{i-1}$
over $\mathbb{F}_{q}[Y]$. It is well known that $\left|m_{j}\right|$ is independent of the particular choice of $m_{1}, m_{2}, \ldots, m_{j-1}$ (cf. [8]).
1.2. Proposition. Let $b_{1}, b_{2}, \ldots, b_{n}$ be a basis for a lattice L satisfying $O D\left(b_{1}, b_{2}, \ldots, b_{n}\right)=0$, ordered in such a way that $\left|b_{i}\right| \leqslant\left|b_{j}\right|$ for $1 \leqslant i<j \leqslant n$. Then $\left|b_{j}\right|$ is a jth successive minimum of L for $1 \leqslant j \leqslant n$, and in particular $\left|b_{1}\right| \leqslant|x|$ for every $x \in L, x \neq 0$.

Proof. Let $|x|$ be a j th successive minimum of L, for some $j, 1 \leqslant j \leqslant n$. It is sufficient to prove that $|x| \geqslant\left|b_{j}\right|$. Suppose that $x=\sum_{i=1}^{n} r_{i} b_{i}$. If necessary we renumber $b_{1}, b_{2}, \ldots, b_{n}$ without changing the $\left|b_{i}\right|$ for $1 \leqslant i \leqslant n$ in order to achieve that there is an index $i_{0} \in\{j, j+1, \ldots, n\}$ such that $r_{i_{0}} \neq 0$. This is possible because $|x|$ is a j th successive minimum. Proposition (1.1) yields that

$$
|x| \geqslant\left|r_{i_{0}} b_{i_{0}}\right| \geqslant\left|b_{i_{0}}\right| \geqslant\left|b_{j}\right|,
$$

which proves Proposition 1.2.
We say that the basis $b_{1}, b_{2}, \ldots, b_{n}$ is reduced if the columns of B (i.e., the coordinates of the vectors $b_{1}, b_{2}, \ldots, b_{n}$) can be permuted in such a way that the rows $\bar{b}_{1}, \bar{b}_{2}, \ldots, \bar{b}_{n}$ of the resulting matrix satisfy

$$
\begin{array}{ll}
\left|\bar{b}_{i}\right| \leqslant\left|\bar{b}_{j}\right| & \text { for } 1 \leqslant i<j \leqslant n, \\
\left|\bar{b}_{i i}\right| \geqslant\left|\bar{b}_{i j}\right| & \text { for } 1 \leqslant i<j \leqslant n, \\
\left|\bar{b}_{i i}\right|>\left|\bar{b}_{i j}\right| & \text { for } 1 \leqslant j<i \leqslant n . \tag{1.5}
\end{array}
$$

Conditions (1.4) and (1.5) are illustrated in Figure 1; observe that $\left|b_{i}\right|=\left|\bar{b}_{i}\right|$.

$$
\left[\begin{array}{ccccc}
=\left|b_{1}\right| & \leqslant\left|b_{1}\right| & \leqslant\left|b_{1}\right| & \cdots & \leqslant\left|b_{1}\right| \\
<\left|b_{2}\right| & =\left|b_{2}\right| & \leqslant\left|b_{2}\right| & \cdots & \leqslant\left|b_{2}\right| \\
<\left|b_{3}\right| & <\left|b_{3}\right| & =\left|b_{3}\right| & \cdots & \leqslant\left|b_{3}\right| \\
\vdots & \vdots & \vdots & & \vdots \\
<\left|b_{n}\right| & <\left|b_{n}\right| & <\left|b_{n}\right| & \cdots & =\left|b_{n}\right|
\end{array}\right]
$$

FIG. 1. The j th position in the i th row gives the condition that holds for $\left|b_{i j}\right|$ if $b_{1}, b_{2}, \ldots, b_{n}$ is a reduced basis.
1.6. Remark. It follows from (1.4) and (1.5) that a reduced basis $b_{1}, b_{2} \ldots, b_{n}$ for a lattice L satisfies $O D\left(b_{1}, b_{2}, \ldots, b_{n}\right)=0$. Combined with (1.3) and Proposition 1.2 this implies that $\left|b_{j}\right|$ is a j th successive minimum of L, for $1 \leqslant j \leqslant n$, and b_{1} is a shortest vector in L.
(1.7) We now describe an algorithm that transforms a basis $b_{1}, b_{2}, \ldots, b_{n}$ for a lattice L into a reduced basis for L. In the course of this algorithm the coor-
dinates of $b_{1}, b_{2}, \ldots, b_{n}$ will be permuted in such a way that at the end of the algorithm (1.3), (1.4), and (1.5) hold with $\bar{b}_{1}, \bar{b}_{2}, \ldots, \bar{b}_{n}$ replaced by $b_{1}, b_{2}, \ldots, b_{n}$; the original ordering of the coordinates can then be restored by applying the appropriate inverse permutation of the coordinates. For simplicity we take $\left|b_{0}\right|=-\infty$.

Suppose that an integer $k \in\{0,1, \ldots, n\}$ is given such that

$$
\begin{array}{ll}
\left|b_{i}\right| \leqslant\left|b_{j}\right| & \text { for } 1 \leqslant i<j \leqslant k, \\
\left|b_{k}\right| \leqslant\left|b_{j}\right| & \text { for } k<j \leqslant n, \\
\left|b_{i i}\right| \geqslant\left|b_{i j}\right| & \text { for } 1 \leqslant i \leqslant k \text { and } i<j \leqslant n, \\
\left|b_{i i}\right|>\left|b_{i j}\right| & \text { for } 1 \leqslant j<i \leqslant k . \tag{1.11}
\end{array}
$$

(Initially these conditions are satisfied for $k=0$.) In this situation we proceed as follows. If $k=n$, then the basis is reduced, and the algorithm terminates. Suppose that $k<n$. Renumber $\left\{b_{k+1}, b_{k+2}, \ldots, b_{n}\right\}$ in such a way that $\left|b_{k+1}\right|=\min \left\{\left|b_{i}\right|\right.$: $k+1 \leqslant i \leqslant n\}$. Let $a_{i j} \in \mathbb{F}_{q}$ be the coefficient of $Y^{\left|b_{i}\right|}$ in $b_{i j}$ for $1 \leqslant i \leqslant k+1$ and $1 \leqslant j \leqslant k$. It follows from (1.10) and (1.11) that $a_{i i} \neq 0$ for $1 \leqslant i \leqslant k$, and that $a_{i j}=0$ for $1 \leqslant j<i \leqslant k$. This implies that a solution $\left(r_{1}, r_{2}, \ldots, r_{k}\right)$, with $r_{i} \in \mathbb{F}_{q}$, of the following triangular system of equations over \mathbb{F}_{q} exists:

$$
\begin{equation*}
\sum_{i=1}^{k} a_{i j} r_{i}=a_{k+1 j} \quad \text { for } 1 \leqslant j \leqslant k \tag{1.12}
\end{equation*}
$$

We put

$$
\begin{equation*}
b_{k+1}^{*}=b_{k+1}-\sum_{i=1}^{k} r_{i} b_{i} Y^{\left|b_{k+1}\right|-\left|b_{i}\right|}, \tag{1.13}
\end{equation*}
$$

then $\left|b_{k+1}^{*}\right| \leqslant\left|b_{k+1}\right|$, and, with (1.8) and (1.9), $b_{k+1}^{*} \in \mathbb{F}_{q}[Y]^{n}$. Furthermore, (1.12) implies that $\left|b_{k+1 i}^{*}\right|<\left|b_{k+1}\right|$ for $1 \leqslant i \leqslant k$. We distinguish two cases.

If $\left|b_{k+1}^{*}\right|=\left|b_{k+1}\right|$, then we replace b_{k+1} by b_{k+1}^{*}, we permute the coordinates of $b_{1}, b_{2}, \ldots, b_{n}$ in such a way that $\left|b_{k+1 k+1}\right|=\left|b_{k+1}\right|$ (this does not affect the first k coordinates), and finally we replace k by $k+1$.

If, on the other hand, $\left|b_{k+1}^{*}\right|<\left|b_{k+1}\right|$, then we replace b_{k+1} by b_{k+1}^{*} and we replace k by the largest index $l \in\{0,1, \ldots, k\}$ such that $\left|b_{l}\right| \leqslant\left|b_{k+1}\right|$.

We are now in the situation as described in (1.8), (1.9), (1.10), and (1.11), and we proceed with the algorithm from there. This finishes the description of algorithm (1.7).

We shall now analyze the running time of algorithm (1.7). By an arithmetic operation in \mathbb{F}_{q} we mean an addition, subtraction, multiplication, or division of two elements of \mathbb{F}_{q}.
1.14. Proposition. Algorithm (1.7) takes $O\left(n^{3} B\left(O D\left(b_{1}, b_{2}, \ldots, b_{n}\right)+1\right)\right)$ arithmetic operations in \mathbb{F}_{q} to transform a basis $b_{1}, b_{2}, \ldots, b_{n}$ for a lattice L into a reduced basis for L, where $B \in \mathbb{Z}_{\geqslant 2}$ is chosen in such a way that $\left|b_{i}\right| \leqslant B$ for $1 \leqslant i \leqslant n$.

Proof. To prove that algorithm (1.7) terminates, consider $S=\sum_{i=1}^{n}\left|b_{i}\right|$. During one pass through the main loop of the algorithm either S remains unaltered (first case), or S decreases by at least one (second case). Since the value of k is increased by one in the first case, it follows that a particular value of S can occur for at most $(n+1)$ different values for k. But S can have at most $O D\left(b_{1}, b_{2}, \ldots, b_{n}\right)+1$ different values, so that the number of passes through the main loop is $O\left(n\left(O D\left(b_{1}, b_{2}, \ldots\right.\right.\right.$, $\left.\left.b_{n}\right)+1\right)$).

The result now follows by observing that (1.12) takes $O\left(k^{2}\right)$ and that (1.13) takes $O(n k B)$ operations in \mathbb{F}_{q}.
1.15. Remark. With $O D\left(b_{1}, b_{2}, \ldots, b_{n}\right) \leqslant n B$ it follows that algorithm (1.7) takes $O\left(n^{4} B^{2}\right)$ arithmetic operations in \mathbb{F}_{q}.
1.16. Remark. Most of the results above can be generalized to the case that L is a lattice in $\mathbb{F}_{q}[Y]^{n}$ of rank smaller than n. Let m be a positive integer $<n$, let $b_{1}, b_{2}, \ldots, b_{m} \in \mathbb{F}_{q}[Y]^{n}$ be linearly independent over $\mathbb{F}_{q}[Y]$, and let L be the lattice in $\mathbb{F}_{q}[Y]^{n}$ of rank m spanned by $b_{1}, b_{2}, \ldots, b_{m}$:

$$
L=\sum_{i=1}^{m} \mathbb{F}_{q}[Y] b_{i} .
$$

By B we denote the $m \times n$ matrix having $b_{1}, b_{2}, \ldots, b_{m}$ as rows. We define the norm $|L|$ of L as the maximum of the norms of the determinants of the $m \times m$ submatrices of B; notice that $|L|=|d(L)|$ if $m=n$. This enables us to define the orthogonality defect $O D\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ as $\sum_{i=1}^{m}\left|b_{i}\right|-|L|$. The basis $b_{1}, b_{2}, \ldots, b_{m}$ is reduced if the coordinates of $b_{1}, b_{2}, \ldots, b_{m}$ can be permuted in such a way that (1.8), (1.10), and (1.11) hold with k replaced by m. For $x \in L$ we denote by $\tilde{x} \in \mathbb{F}_{q}[Y]^{m}$ the vector consisting of the first m coordinates of x after application of the above permutation.

If the basis $b_{1}, b_{2}, \ldots, b_{m}$ is reduced, then $\left|b_{j}\right|$ is a j th successive minimum of L. Namely, suppose that $|x|$ is a j th successive minimum of L, for some $x \in L$. As in Proposition 1.2 we prove that $|\tilde{x}| \geqslant\left|\widetilde{b}_{j}\right|$, so that, combined with $|x| \geqslant|\tilde{x}|$ and $\left|\widetilde{b}_{j}\right|=\left|b_{j}\right|$, we find $|x| \geqslant\left|b_{j}\right|$.

It is easily verified (cf. Proposition 1.14) that it takes $O\left(m^{2} n\left(O D\left(b_{1}, b_{2}, \ldots, b_{m}\right)+\right.\right.$ 1) ($\left.\max _{1 \leqslant i \leqslant m}\left|b_{i}\right|+1\right)$) operations in \mathbb{F}_{q} to transform a basis $b_{1}, b_{2}, \ldots, b_{m}$ into a reduced one by means of algorithm (1.7).
1.17. Remark. We have given an algorithm to find successive minima in a lattice $L \subset \mathbb{F}_{4}[Y]^{n}$, and in particular the algorithm finds a shortest vector in L. In the sequel we will use this algorithm to decide whether L contains a nonzero element x satisfying $|x| \leqslant l$, for a certain small value of $l \geqslant 0$. This problem, however, can also be solved in a more direct way.

Suppose that a basis $b_{1}, b_{2}, \ldots, b_{n}$ for L is given, and that $O D\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is known. If an element x in L exists with $|x| \leqslant l$, then $x=\sum_{i=1}^{n} r_{i} b_{i}$ for certain
polynomials $r_{i} \in \mathbb{F}_{q}[Y]$, with $\left|r_{i}\right| \leqslant l+O D\left(b_{1}, b_{2}, \ldots, b_{n}\right)-\left|b_{i}\right|$ (cf. Proposition 1.1). Regarding the coefficients of r_{i} for $1 \leqslant i \leqslant n$ as unknowns, we can see this as a system of $n O D\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ equations in $\sum_{i=1}^{n}\left(\left|r_{i}\right|+1\right)$ unknowns over \mathbb{F}_{q} (namely, for $1 \leqslant j \leqslant n$, the j th coordinate of x equals $\sum_{i=1}^{n} r_{i} b_{i j} \in \mathbb{F}_{q}[Y]$, so that the $(l+1)$ th up to the ($l+O D\left(b_{1}, b_{2}, \ldots, b_{n}\right)$)th coefficient of $\sum_{i=1}^{n} r_{i} b_{i j}$ must be zero). Clearly, such an element x exists if and only if this system of equations over \mathbb{F}_{q} has a solution. This results in an algorithm that takes $O\left(n^{6} B^{3}\right)$ arithmetic operations in \mathbb{F}_{4}. An advantage of this method over algorithm (1.7) is that, if we replace \mathbb{F}_{4} by, for instance, the set of integers \mathbb{Z}, the coefficient growth during the Gaussian elimination can easily be bounded using methods from [5]. If we restrict ourselves to \mathbb{F}_{q} however, then algorithm (1.7) yields a better running time.

2. Factorization of Polynomials in $\mathbb{F}_{q}[X, Y]$

In this section we present an algorithm for the factorization of polynomials in two variables over a finite field that is polynomial-time in the degrees of the polynomial to be factored. The propositions and algorithms here are very similar to their counterparts in [7, Sects. 2, 3]. We therefore omit most of the details.

Let $f \in \mathbb{F}_{q}[X, Y]$ be the polynomial to be factored. Suppose that a positive integer u, and an irreducible polynomial $F \in \mathbb{F}_{q}[Y]$ of degree u are given. In the sequel we will describe how u and F are chosen. We may assume that F has leading coefficient one.

Let k be some positive integer. $\operatorname{By}\left(F^{k}\right)$ we denote the ideal generated by F^{k}. Since $\mathrm{F}_{q}[Y] /\left(F^{k}\right) \simeq\left\{\sum_{i=0}^{u k-1} a_{i} \alpha^{i}: a_{i} \in \mathbb{F}_{q}\right\}$, where $\alpha=\left(Y \bmod \left(F^{k}\right)\right)$ is a zero of F^{k}, we can represent the elements of the ring $\mathbb{F}_{q}[Y] /\left(F^{k}\right)$ as polynomials in α over \mathbb{F}_{q} of degree $<u k$. Notice that $\mathbb{F}_{q}[Y] /(F) \simeq \mathbb{F}_{q^{u \prime}}$ the finite field containing q^{u} elements.
For a polynomial $g=\sum_{i} b_{i} X^{i} \in \mathbb{F}_{q}[X, Y]$, we denote by $\left(g \bmod F^{k}\right) \in$ $\left(\mathbb{F}_{q}[Y] /\left(F^{k}\right)\right)[X]$ the polynomial $\sum_{i}\left(b_{i} \bmod \left(F^{k}\right)\right) X^{i}$, and by $\delta_{X} g$ and $\delta_{Y} g$ the degrees of g in X and Y, respectively.

Suppose that a polynomial $h \in \mathbb{F}_{q}[X, Y]$ is given such that:

$$
\begin{align*}
& \text { The leading coefficient with respect to } X \text { of } h \text { equals one, } \tag{2.1}\\
& \left(h \bmod F^{k}\right) \text { divides }\left(f \bmod F^{k}\right) \text { in }\left(\mathbb{F}_{q}[Y] /\left(F^{k}\right)\right)[X], \tag{2.2}\\
& (h \bmod F) \text { is irreducible in } \mathbb{F}_{q^{4}}[X], \tag{2.3}\\
& (h \bmod F)^{2} \text { does not divide }(f \bmod F) \text { in } \mathbb{F}_{q^{4}}[X] . \tag{2.4}
\end{align*}
$$

Clearly $0<\delta_{x} h \leqslant \delta_{x} f$. In the sequel we will see how such a polynomial h can be determined. The following proposition and its proof are similar to [7: (2.5)].
2.5. Proposition. The polynomial f has an irreducible factor $h_{0} \in \mathbb{F}_{q}[X, Y]$ for which $(h \bmod F)$ divides $\left(h_{0} \bmod F\right)$ in $\mathbb{F}_{q^{\prime}}[X]$, and this factor is unique up to units in
\mathbb{F}_{q}. Further, if g divides f in $\mathbb{F}_{q}[X, Y]$, then the following three assertions are equivalent:
(i) $(h \bmod F)$ divides $(g \bmod F)$ in $\mathbb{F}_{q^{u}}[X]$;
(ii) $\left(h \bmod F^{k}\right)$ divides $\left(g \bmod F^{k}\right)$ in $\left(\mathbb{F}_{q}[Y] /\left(F^{k}\right)\right)[X]$;
(iii) h_{0} divides g in $\mathbb{F}_{q}[X, Y]$.

In particular $\left(h \bmod F^{k}\right)$ divides $\left(h_{0} \bmod F^{k}\right)$ in $\left(\mathbb{F}_{q}[Y] /\left(F^{k}\right)\right)[X]$.
(2.6) Let m be an integer $\geqslant \delta_{x} h$. Define L as the collection of polynomials $g \in \mathbb{F}_{q}[X, Y]$ with $\delta_{x} g \leqslant m$ and such that $\left(h \bmod F^{k}\right)$ divides $\left(g \bmod F^{k}\right)$ in $\left(\mathbb{F}_{q}[Y] /\left(F^{k}\right)\right)[X]$. This is a subset of the $(m+1)$-dimensional vector space $\mathbb{F}_{q}(Y)+\mathbb{F}_{q}(Y) X+\cdots+\mathbb{F}_{q}(Y) X^{m}$. We identify this vector space with $\mathbb{F}_{q}(Y)^{m+1}$ by identifying $\sum_{i=0}^{m} a_{i} X^{i} \in \mathbb{F}_{q}(Y)[X]$ with $\left(a_{0}, a_{1}, \ldots, a_{m}\right)$. As in Section 1 the norm $|g|$ of the vector identified with the polynomial $g \in \mathbb{F}_{q}[X, Y]$ is defined as $\delta_{y} g$. The collection L is a lattice in $\mathbb{F}_{q}[Y]^{m+1} \subset \mathbb{F}_{q}(Y)^{m+1}$ and, because of (2.1), a basis for L is given by

$$
\left\{F^{k} X^{i}: 0 \leqslant i<\delta_{x} h\right\} \cup\left\{h X^{i-\delta_{x} h}: \delta_{x} h \leqslant i \leqslant m\right\} .
$$

2.7. Proposition. Let $b \in L$ satisfy

$$
\begin{equation*}
\delta_{Y} f \delta_{X} b+\delta_{Y} b \delta_{X} f<u k \delta_{X} h . \tag{2.8}
\end{equation*}
$$

Then b is divisible by h_{0} in $\mathbb{F}_{q}[X, Y]$, where h_{0} is as in Proposition 2.5, and in particular $\operatorname{gcd}(f, h) \neq 1$.

Proof. We give only a sketch of the proof; for the details we refer to the proof of [7: (2.7)].

Put $g=\operatorname{gcd}(f, b)$, and $e=\delta_{x} g$. The projections of the polynomials

$$
\begin{equation*}
\left\{X^{i} f: 0 \leqslant i<\delta_{x} b-e\right\} \cup\left\{X^{i} b: 0 \leqslant i<\delta_{x} f-e\right\} \tag{2.9}
\end{equation*}
$$

on $\mathbb{F}_{q}[Y] X^{e}+\mathbb{F}_{q}[Y] X^{e+1}+\cdots+\mathbb{F}_{q}[Y] X^{\delta_{X} f+\delta_{X} h-e-1}$ form a basis for a $\left(\delta_{x} f+\delta_{x} b-2 e\right)$-dimensional lattice M^{\prime} contained in $\mathbb{F}_{q}[Y]^{\delta_{x} f+\delta_{x} h-2 e}$. Define the determinant $d\left(M^{\prime}\right) \in \mathbb{F}_{q}[Y]$ of M^{\prime} as the determinant of the matrix having these projections as rows, then we have

$$
\delta_{Y} d\left(M^{\prime}\right) \leqslant \delta_{Y} f\left(\delta_{X} b-e\right)+\delta_{Y} b\left(\delta_{X} f-e\right) .
$$

Combined with (2.8) we get

$$
\begin{equation*}
\delta_{Y} d\left(M^{\prime}\right)<u k \delta_{X} h . \tag{2.10}
\end{equation*}
$$

Let $v \in \mathbb{F}_{q}[X, Y]$ be some linear combination over $\mathbb{F}_{q}[Y]$ of the polynomials in (2.9) such that $\delta_{X} v<e+\delta_{X} h$. Assuming that $(h \bmod F)$ does not divide $(g \bmod F)$ in $\mathbb{F}_{4^{4}}[X]$, it is not difficult to prove that

$$
\begin{equation*}
\left(v \bmod F^{\kappa}\right)=0 . \tag{2.11}
\end{equation*}
$$

Now choose a basis $b_{e}, b_{c+1}, \ldots, b_{\delta_{y} f+\delta_{X} b-e-1}$ for M^{\prime} such that $\delta_{X} b_{i}=i$ for $e \leqslant i<\delta_{x} f+\delta_{x} b-e$ (which is clearly possible because $\mathbb{F}_{q}[Y]$ is euclidean). The degree with respect to Y of the leading coefficient with respect to X of the first $\delta_{X} h$ of these vectors b_{i} is, according to (2.11), at least $u k$. Since $d\left(M^{\prime}\right)$ equals the product of the leading coefficients, we find that

$$
\delta_{Y} d\left(M^{\prime}\right) \geqslant u k \delta_{X} h,
$$

which is a contradiction with (2.10). We conclude that $(h \bmod F)$ divides $(g \bmod F)$ in $\mathbb{F}_{q^{4}}[X]$, which, combined with Proposition 2.5, proves Proposition 2.7.
2.12. Proposition. Suppose that $b_{1}, b_{2}, \ldots, b_{m+1}$ is a reduced basis for L (see (1.3), (1.4), (1.5)), and that

$$
\begin{equation*}
\delta_{Y} f m+\delta_{Y} f \delta_{X} f<u k \delta_{X} h . \tag{2.13}
\end{equation*}
$$

Let h_{0} be as in Proposition 2.5. Then the following three assertions are equivalent:
(i) $\delta_{X} h_{0} \leqslant m$;
(ii) $\delta_{Y} b_{1} \leqslant \delta_{Y} f$;
(iii) $b_{1}=d h_{0}$ for some $d \in \mathbb{F}_{q}[X]$.

Proof. Use Remark 1.6, Proposition 2.7, and $\delta_{Y} h_{0} \leqslant \delta_{Y} f$.
Now that we have formulated the counterparts of [7: (2.5), (2.6), (2.7), (2.13)] in Proposition 2.5, (2.6), Propositions 2.7 and 2.12 , respectively, we are ready to present the algorithm for factorization in $\mathbb{F}_{q}[X, Y]$.

We may assume that $f=\sum_{i} f_{i} X^{i} \in \mathbb{F}_{q}[X, Y]$ is primitive, i.e., $\delta_{Y} \operatorname{gcd}\left(f_{0}\right.$, $\left.f_{1}, \ldots, f_{\delta_{X} f}\right)=0$ in $\mathbb{F}_{q}[Y]$, and that $\delta_{X} f>0$ and $\delta_{Y} f>0$. In the sequel we show that F of degree u can be chosen in such a way that

$$
\begin{equation*}
u=O\left(\delta_{X} f^{z} \delta_{Y} f^{z}\right) \quad \text { for every } \varepsilon>0 \tag{2.14}
\end{equation*}
$$

(where the constant factor involved in the O does only depend on ε, and not on q).
First we sketch an algorithm to determine the factor of f that has a prescribed factor $(h \bmod F)$ in $\mathbb{F}_{q^{4}}[X]$ (cf. Proposition 2.5); this is done in the proof of the following proposition.
2.15. Proposition. Let $h \in \mathbb{F}_{q}[X, Y]$ be given such that (2.1), (2.3), (2.4), and (2.2) with k replaced by 1 , are satisfied. The polynomial h_{0}, as defined in Proposition 2.5 , can be found in $O\left(\delta_{X} h_{0} \delta_{X} f^{5} \delta_{Y} f^{2}\right)$ arithmetic operations in \mathbb{F}_{q}.

Proof. If $\delta_{x} h=\delta_{x} f$, then $h_{0}=f$. Suppose that $\delta_{x} h<\delta_{x} f$. We take $k \in \mathbb{Z}_{>0}$ minimal such that (2.13) holds with m replaced by $\delta_{x} f-1$:

$$
\begin{equation*}
u(k-1) \delta_{X} h \leqslant \delta_{Y} f\left(2 \delta_{X} f-1\right)<u k \delta_{X} h . \tag{2.16}
\end{equation*}
$$

We modify h in such a way that (2.2) also holds for h and this value of k. This can be done by means of a suitable version of Hensel's lemma as described, for instance, in [9, pp. 79-81] (remark that Hensel's lemma can be applied because of (2.4)). It can easily be verified that the number of arithmetic operations in \mathbb{F}_{q} needed for this modification of h is

$$
O\left(u \delta_{X} f \delta_{Y} f+u^{2} \delta_{X} f^{3}+k^{2} u^{2} \delta_{X} h\left(\delta_{X} f-\delta_{X} h\right)\right)
$$

where we use the fact that arithmetic operations in $\mathbb{F}_{q^{u}}$ can be done in $O\left(u^{2}\right)$ operations in \mathbb{F}_{q}. Combined with (2.14) and (2.16) this becomes

$$
\begin{equation*}
O\left(u^{2} \delta_{X} f^{3}+\delta_{X} f^{3} \delta_{Y} f^{2}\right) \tag{2.17}
\end{equation*}
$$

For each of the values of $m=\delta_{X} h, \delta_{X} h+1, \ldots, \delta_{X} f-1$ in succession we apply algorithm (1.7) to the ($m+1$)-dimensional lattice L as defined in (2.6). But we stop as soon as for one of the values of m we succeed in determining h_{0} using Proposition 2.12. If this does not occur for any m, then $\delta_{X} h_{0}>\delta_{X} f-1$, so $h_{0}=f$.

The norms of the initial vectors in the bases of the lattices are bounded by $1+\delta_{Y} f\left(2 \delta_{X} f-1\right) / \delta_{X} h$ (cf. (2.16)). If $b_{1}, b_{2}, \ldots, b_{m}$ is a reduced basis then $O D\left(b_{1}, b_{2}, \ldots, b_{m}, b_{m+1}\right) \leqslant\left|b_{m+1}\right|$. Combining these observations with Proposition 1.14 and Remark 1.15, we find that the total cost of the lattice reductions is

$$
O\left(\delta_{X} h_{0}^{4} \delta_{X} f^{2} \delta_{Y} f^{2}+\sum_{i=\delta_{X} h+1}^{\delta_{X h_{0}}} \delta_{X} h_{0}^{3} \delta_{X} f \delta_{Y} f\left|b_{i}\right|\right)
$$

arithmetic operations in \mathbb{F}_{q}. This proves Proposition 2.15.
2.18. Theorem. Let f be a polynomial in $\mathbb{F}_{q}[X, Y]$. Then the factorization of f into irreducible factors in $\mathbb{F}_{q}[X, Y]$ can be determined in $O\left(\delta_{X} f^{6} \delta_{Y} f^{2}+\delta_{X} f^{3} p m+\right.$ $\left.\delta_{Y} f^{3} p m\right)$ arithmetic operations in \mathbb{F}_{q}, where $q=p^{m}$.

Proof. The factorization of the gcd of the coefficients of f with respect to X can be computed in $O\left(\delta_{Y} f^{3} p m\right)$ arithmetic operations in \mathbb{F}_{q} according to [2, Sect. 5]. Because the computation of this gcd also satisfies the estimates in Theorem 2.18, we may assume that f is primitive. We give an outline of the algorithm to factor f, and we analyze its running time.

First we calculate the resultant $R\left(f, f^{\prime}\right) \in \mathbb{F}_{q}[Y]$ of f and its derivative f^{\prime} with respect to X, using the algorithm from [3]. This computation takes $O\left(\delta_{X} f^{5} \delta_{Y} f^{2}\right)$ arithmetic operations in \mathbb{F}_{q}. We assume that $R\left(f, f^{\prime}\right) \neq 0$; it is well known how to deal with the case $R\left(f, f^{\prime}\right)=0$ (cf. [7: (3.5)]). Notice that, if both $\partial f / \partial X$ and $\partial f / \partial Y$ are zero, then $f(X, Y)=g\left(X^{p}, Y^{p}\right)=(h(X, Y))^{p}$, for polynomials g, h in $\mathbb{F}_{q}[X, Y]$.

Next we determine a positive integer u and an irreducible polynomial $F \in \mathbb{F}_{4}[Y]$ of degree u in such a way that $R\left(f, f^{\prime}\right) \not \equiv 0$ modulo F. This can be done as follows. If $q>\delta_{Y} R=\delta_{Y} R\left(f, f^{\prime}\right)$, then we choose an element $s \in \mathbb{F}_{q}$ such that ($Y-s$) does not divide $R\left(f, f^{\prime}\right)$, and we put $F=Y-s$ and $u=1$. This can be done in $O\left(\delta_{Y} R^{2}\right)$
operations in \mathbb{F}_{q}; if we use the parallel evaluation scheme as described in [1, Corollary 2, p. 294] this can be improved to $O\left(\delta_{Y} R^{1+\varepsilon}\right)$ for every $\varepsilon>0$.
Otherwise, if $q \leqslant \delta_{Y} R$, we take $\bar{u} \in \mathbb{Z}_{>0}$ minimal such that $q^{\bar{u}}>\delta_{Y} R$, so $q^{\bar{u}-1}=$ $O\left(\delta_{Y} R\right)$. We determine an irreducible polynomial $G \in \mathbb{F}_{q}[Y]$ of degree \bar{u} with leading coefficient one. Since we can restrict ourselves during this search for G to polynomials having 0 or 1 as coefficient for $Y^{\bar{u}-1}$, and because an irreducibility test for a polynomial of degree \bar{u} in $\mathbb{F}_{q}[Y]$ takes $O\left(\bar{u}^{2} \log q+\bar{u}^{3}\right)$ operations in \mathbb{F}_{q}, the determination of G can be done in $O\left(q^{\bar{u}-1}\left(\bar{u}^{2} \log q+\bar{u}^{3}\right)\right)$, that is $O\left(\delta_{Y} R^{1+\varepsilon}\right)$ operations in \mathbb{F}_{q}. (Namely, G of degree \bar{u} without multiple factors is irreducible if and only if the $\bar{u} \times \bar{u}$ matrix with ($X^{i q}-X^{i}$) modulo G for $0 \leqslant i<\bar{u}$ as columns, has co-rank one.) We put $\mathbb{F}_{q^{\bar{u}}}=\mathbb{F}_{q}[Y] /(G)$. Since $q^{\bar{u}}>\delta_{Y} R$, there is an element $\beta \in \mathbb{F}_{q^{\bar{u}}}$ such that $R\left(f, f^{\prime}\right) \not \equiv 0$ modulo $(Y-\beta)$. Such an element β can be found in $O\left(\delta_{Y} R^{1+\varepsilon_{l}}\right)$ operations in $\mathbb{F}_{q^{i}}$ by evaluating $R\left(f, f^{\prime}\right)$ in $\delta_{Y} R+1$ distinct points of $\mathbb{F}_{4^{i}}$ by means of the parallel evaluation scheme from [1]. Arithmetic operations in $\mathbb{F}_{q^{i}}$ take $O\left(\bar{u}^{2}\right)=O\left(\delta_{Y} R^{c_{2}}\right)$ arithmetic operations in \mathbb{F}_{q}, so the determination of β can be done in $O\left(\delta_{Y} R^{1+\varepsilon}\right)$ operations in \mathbb{F}_{q}, for every $\varepsilon>0$. Finally, we compute $F \in \mathbb{F}_{q}[Y]$ of degree $u \leqslant \bar{u}$ as the minimal polynomial of β, by looking for a linear dependence relation among $\beta^{0}, \beta^{1}, \ldots, \beta^{\bar{u}}$; this takes $O\left(\bar{u}^{2} u\right)$ operations in \mathbb{F}_{q}. Clearly, F satisfies $R\left(f, f^{\prime}\right)$ modulo $F \neq 0$.

We conclude that in both cases F and u can be found in $O\left(\delta_{Y} R^{1+\varepsilon}\right)$ arithmetic operations in \mathbb{F}_{q}, for every $\varepsilon>0$. Since $\delta_{Y} R \leqslant \delta_{Y} f\left(2 \delta_{X} f-1\right)$ this satisfies the estimates in Theorem 2.18. Notice that (2.14) is satisfied.

We now apply Berlekamp's algorithm [2, Sect. 5] to compute the irreducible factorization of $(f \bmod F)$ in $\mathbb{F}_{q^{4}}[X]$. We may assume that the factors have leading coefficient one. This computation takes $O\left(\delta_{X} f^{3} p m u\right)$ arithmetic operations in \mathbb{F}_{q}. This becomes $O\left(\delta_{X} f^{4+\varepsilon} \delta_{Y} f^{1+\varepsilon}\right)$ if $u \neq 1$, because this only occurs in the case that $p^{m} \leqslant \delta_{Y} R\left(f, f^{\prime}\right)$, so that $p m u=O\left(\delta_{X} f^{1+\varepsilon} \delta_{Y} f^{1+\varepsilon}\right)$. Since (2.4) is satisfied for all irreducible factors $(h \bmod F)$ of $(f \bmod F)$ in $\mathbb{F}_{q^{4}}[X]$, due to the choice of F and u, the complete factorization of f can be found by repeated application of Proposition 2.15. This takes $O\left(\delta_{X} f^{6} \delta_{Y} f^{2}\right)$ operations in \mathbb{F}_{q}. This proves Theorem 2.18.

3. Factorization of Polynomials in
 $\mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{t}\right]$

In this section we describe an algorithm to factor polynomials in more than two variables with coefficients in a finite field. The algorithm that we will present here makes use of the algorithm from the previous section. At the end of this section we briefly explain an alternative version of our algorithm that does not depend on the algorithm from Section 2.

Let $f \in \mathbb{F}_{4}\left[X_{1}, X_{2}, \ldots, X_{t}\right]$ be the multivariate polynomial to be factored, with the number of variables $t \geqslant 3$. By $\delta_{i} f=n_{i}$ we denote the degree of f in X_{i}; for simplicity
we often use n instead of n_{1}. We may assume that $n_{i} \leqslant n_{j}$ for $1 \leqslant i<j \leqslant t$, and that $n_{1} \geqslant 2$. We put $N_{j}=\prod_{i=j}^{t}\left(n_{i}+1\right)$. We say that f is primitive if the gcd of the coefficients of f with respect to X_{1} equals one (i.e., is a unit in \mathbb{F}_{q}).

Let $k_{3}, k_{4}, \ldots, k_{t}$ be a ($t-2$)-tuple of integers. For $g \in \mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{t}\right]$ we denote by $\tilde{g}_{j} \in \mathbb{F}_{4}\left[X_{1}, X_{2}, X_{j+1}, X_{j+2}, \ldots, X_{t}\right]$ the polynomial

$$
g \text { modulo }\left(\left(X_{3}-X_{2}^{k_{3}}\right),\left(X_{4}-X_{2}^{k_{4}}\right), \ldots,\left(X_{j}-X_{2}^{k_{j}}\right)\right),
$$

for $2 \leqslant j \leqslant t$; i.e., \tilde{g}_{j} is g with $X_{2}^{k_{i}}$ substituted for X_{i}, for $3 \leqslant i \leqslant j$. Notice that $\tilde{g}_{2}=g$. We put $\tilde{g}=\tilde{g}_{t}$.

Suppose that an irreducible factor $\tilde{h} \in \mathbb{F}_{q}\left[X_{1}, X_{2}\right]$ of \tilde{f} is given such that

$$
\begin{equation*}
\tilde{h}^{2} \text { does not divide } \tilde{f} \text { in } \mathbb{F}_{q}\left[X_{1}, X_{2}\right] \text { and } \delta_{1} \tilde{h}>0 . \tag{3.1}
\end{equation*}
$$

As in Proposition 2.5 we define h_{0} as the irreducible factor of f in $\mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{t}\right]$ for which \widetilde{h} divides \widetilde{h}_{0} in $\mathbb{F}_{q}\left[X_{1}, X_{2}\right]$; the polynomial h_{0} is unique up to units in \mathbb{F}_{q}.
(3.2) Let m be an integer with $\delta_{1} \tilde{h} \leqslant m<n$. We define L as the collection of polynomials g in $\mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{t}\right]$ such that:
(i) $\delta_{1} g \leqslant m$ and $\delta_{i} g \leqslant n_{i}$ for $3 \leqslant i \leqslant t$,
(ii) \tilde{h} divides \tilde{g} in $\mathbb{F}_{q}\left[X_{1}, X_{2}\right]$.

This is a subset of the $(m+1) N_{3}$-dimensional vector space $\mathbb{F}_{q}\left(X_{2}\right)+\mathbb{F}_{q}\left(X_{2}\right) X_{t}$ $+\cdots+\mathbb{F}_{q}\left(X_{2}\right) X_{1}^{m} X_{3}^{n_{3}} \cdots X_{t}^{n_{t}}$. We put $M=(m+1) N_{3}$. We identify this vector space with $\mathbb{F}_{q}\left(X_{2}\right)^{M}$ by identifying $\sum_{i=0}^{m} \sum_{j=0}^{n_{3}} \cdots \sum_{k=0}^{n_{t}} a_{i j \cdots k} X_{1}^{i} X_{3}^{j} \cdots X_{t}^{k} \in \mathbb{F}_{q}\left(X_{2}\right)\left[X_{1}\right.$, $\left.X_{3}, \ldots, X_{t}\right]$ with $\left(a_{00 \cdots 0}, a_{00 \cdots 1}, \ldots, a_{m n_{3} \cdots n_{t}}\right.$). As in Section 1 the norm $|g|$ of the vector associated with the polynomial $g \in \mathbb{F}_{4}\left[X_{1}, X_{2}, \ldots, X_{t}\right]$ is defined as $\delta_{2} g$. The collection L is a lattice in $\mathbb{F}_{q}\left[X_{2}\right]^{M} \subset \mathbb{F}_{q}\left(X_{2}\right)^{M}$ of rank $M-\delta_{1} \tilde{h}$ (cf. Remark 1.16), and a basis for L over $\mathbb{F}_{4}\left[X_{2}\right]$ is given by

$$
\begin{aligned}
& \left\{X_{1}^{i} \prod_{j=3}^{t}\left(X_{j}-X_{2}^{k_{j}}\right)^{i^{i}: 0 \leqslant i \leqslant m, 0 \leqslant i_{j} \leqslant n_{j} \text { for } 3 \leqslant j \leqslant t \text { and }}\right. \\
& \left.\qquad\left(i_{3}, i_{4}, \ldots, i_{t}\right) \neq(0,0, \ldots, 0)\right\} \\
& \\
& \cup\left\{\tilde{h} X_{1}^{i-\delta_{1}}, \delta_{1}: \tilde{h} \leqslant i \leqslant m\right\} .
\end{aligned}
$$

3.3. Proposition. Suppose that f does not contain multiple factors. If

$$
\begin{equation*}
k_{j}>\sum_{i=2}^{j-1} k_{i}\left(2 n n_{i}-n_{i}\right) \tag{3.4}
\end{equation*}
$$

for $3 \leqslant j \leqslant t$, where $k_{2}=1$, and if b is a nonzero element of L with $|b| \leqslant n_{2}$, then h_{0} divides b in $\mathbb{F}_{4}\left[X_{1}, X_{2}, \ldots, X_{t}\right]$, and in particular $\operatorname{gcd}(f, b) \neq 1$.

Proof. First we prove that $\operatorname{gcd}(f, b) \neq 1$. Suppose that $\operatorname{gcd}(f, b)=1$. This implies that the resultant $R=R(f, b) \in \mathbb{F}_{q}\left[X_{2}, X_{3}, \ldots, X_{t}\right]$ of f and b (with respect to the variable X_{1}) is unequal to zero. Since \tilde{h} divides both \tilde{f} and \tilde{b} ((3.2)(ii)), and because $\widetilde{R}=R(\tilde{f}, \tilde{b})$, we also have $\widetilde{R}=0$. This implies that there is an index j with $3 \leqslant j \leqslant t$ such that

$$
\begin{equation*}
\widetilde{R}_{j}=0 . \tag{3.5}
\end{equation*}
$$

Because of (3.2)(i) and $|b| \leqslant n_{2}$, we have that $\delta_{j} b \leqslant n_{j}$ for $2 \leqslant j \leqslant t$. Therefore $\delta_{i} R \leqslant m n_{j}+n n_{j} \leqslant 2 n n_{j}-n_{j}$, and also $\delta_{j} \tilde{R}_{j-1} \leqslant 2 n n_{j}-n_{j}$, for $3 \leqslant j \leqslant t$. Because $\widetilde{R}_{j}=\widetilde{R}_{j-1} \bmod \left(X_{j}-X_{2}^{k_{j}}\right)$ we get $\delta_{2} \widetilde{R}_{j} \leqslant \delta_{2} \widetilde{R}_{j-1}+k_{j} \delta_{j} \widetilde{R}_{j-1} \leqslant \delta_{2} \widetilde{R}_{j-1}+k_{j}\left(2 n n_{j}-n_{j}\right)$, so that, with $k_{2}=1$ and $\widetilde{R}_{2}=R$,

$$
\begin{equation*}
\delta_{2} \widetilde{R}_{j} \leqslant \sum_{i=2}^{j} k_{i}\left(2 n n_{i}-n_{i}\right) \tag{3.6}
\end{equation*}
$$

for $2 \leqslant j \leqslant t$. According to (3.5) there must be an index j with $3 \leqslant j \leqslant t$ such that ($X_{j}-X_{2}^{k_{j}}$) divides \widetilde{R}_{j-1}, which implies that

$$
k_{j} \leqslant \delta_{2} \widetilde{R}_{j-1} .
$$

Combined with (3.4) and (3.6) this is a contradiction, so that $\operatorname{gcd}(f, b) \neq 1$.
Suppose that h_{0} does not divide b in $\mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{t}\right]$. Then h_{0} does not divide $r=\operatorname{gcd}(f, b)$, so that \tilde{h} divides \tilde{f} / \tilde{r} in $\mathbb{F}_{q}\left[X_{1}, X_{2}\right]$. Because $\delta_{i}(f / r) \leqslant n_{i}$ for $1 \leqslant i \leqslant t$, the same reasoning as above yields that $\operatorname{gcd}(f / r, b) \neq 1$. This is a contradiction with $r=\operatorname{gcd}(f, b)$ because f does not contain multiple factors.
(3.7) Suppose that f does not contain multiple factors and that f is primitive. Let

$$
\begin{equation*}
k_{j}=\prod_{i=2}^{j-1}\left(2 n n_{i}-1\right) \tag{3.8}
\end{equation*}
$$

for $3 \leqslant j \leqslant t$, and let \tilde{h} be chosen such that (3.1) is satisfied. Notice that (3.8) implies that (3.4) holds. The divisor h_{0} of f can be determined in the following way.

For each of the values of $m=\delta_{1} \tilde{h}, \delta_{1} \tilde{h}+1, \ldots, n-1$ is succession we apply algorithm (1.7) to the lattice L as defined in (3.2) (cf. Remark 1.16). But we stop as soon as for one of the values of m we succeed in finding a vector b_{1} in L with $\left|b_{1}\right| \leqslant n_{2}$ (cf. Remark 1.6). Then $b_{1}=c h_{0}$ for some $c \in \mathbb{F}_{q}\left[X_{3}, X_{4}, \ldots, X_{t}\right]$ (cf. Proposition 3.3), which enables us to compute h_{0}. (Notice that we can even get $c \in \mathbb{F}_{q}$ if we increase the rank of L by one at each step.)

If we did not find a short enough vector in any of the lattices, then $\delta_{1} h_{0}>n-1$, so that $h_{0}=f$.
3.9. Proposition. Assume that the conditions in (3.7) are satisfied. The polynomial h_{0} can be computed in $O\left(\delta_{1} h_{0} 2^{2 t-4} n^{2 t-1} N_{2}^{2} N_{3}^{4}\right)$ arithmetic operations in \mathbb{F}_{q}.

Proof. We derive an upper bound B for the norm of the vectors in the initial basis for L. From (3.8) we have

$$
\delta_{2} \tilde{f} \leqslant \sum_{j=2}^{t} n_{j} \prod_{i=2}^{j-1}\left(2 n n_{i}-1\right)
$$

so that

$$
\begin{equation*}
\delta_{2} \widetilde{f} \leqslant(2 n)^{t-2} \prod_{i=2}^{t} n_{i} \tag{3.10}
\end{equation*}
$$

Because \tilde{h} divides \tilde{f} in $\mathbb{F}_{q}\left[X_{1}, X_{2}\right]$, this bound also holds for $\delta_{2} \tilde{h}$. With (3.2) it follows that

$$
B=O\left((2 n)^{t-2} N_{2}\right) .
$$

From Remark 1.16 we now find that the applications of algorithm (1.7) together can be done in $O\left(\left(\delta_{1} h_{0} N_{3}\right)^{4} B^{2}+\sum_{i=\delta_{1}, \bar{h}+1}^{\delta_{1} h_{0}}\left(\delta_{1} h_{0} N_{3}\right)^{3} B\left(N_{3} B\right)\right.$) arithmetic operations in \mathbb{F}_{q}.

The final gcd computations in $\mathbb{F}_{4}\left[X_{3}, X_{4}, \ldots, X_{t}\right]$ can be performed in $O\left(\delta_{1} h_{0} n_{2} N_{3}^{5}\right)$ operations in \mathbb{F}_{4}, according to [3].
(3.11) We describe an algorithm to compute the irreducible factorization of a primitive polynomial f in $\mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{t}\right]$.

We assume that f does not contain multiple factors. This implies that the resultant $R=R\left(f, f^{\prime}\right) \in \mathbb{F}_{q}\left[X_{2}, X_{3}, \ldots, X_{t}\right]$ of f and its derivative f^{\prime} with respect to X_{1} is urequal to zero. We take $k_{3}, k_{4}, \ldots, k_{t}$ as in (3.8). It follows from the reasoning in the proof of Proposition 3.3 that $\tilde{R} \neq 0$ for this choice of $k_{3}, k_{4}, \ldots, k_{t}$, so that \tilde{f} does not contain multiple factors. By means of the algorithm from Section 2 we compute the irreducible factors \tilde{h} of \tilde{f} of degree >0 in X_{1}. Because (3.1) holds for all factors \tilde{h} of \tilde{f} thus found, we can compute the irreducible factors of f by repeated application of the algorithm described in (3.7).

It is well known how to deal with the case that f contains multiple factors; notice that special attention has to be paid to the case that $\partial f / \partial X_{i}=0$ for $1 \leqslant i \leqslant t$.
3.12. Theorem. Let f be a polynomial in $\mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{t}\right]$, with $\delta_{i} f=n_{i}$ and $n_{i} \leqslant n_{j}$ for $1 \leqslant i<j \leqslant t$. The factorization of f into irreducible factors in $\mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{t}\right]$ can be determined in $O\left(\left(2 n_{1}\right)^{2 t} N_{2}^{2} N_{3}^{4}+\left(2 n_{1}\right)^{3 t-6} N_{2}^{3} p m\right)$ arithmetic operations in \mathbb{F}_{q}, where $q=p^{m}$, and $N_{j}=\prod_{i=j}^{t}\left(n_{i}+1\right)$.

Proof. First assume that f is primitive. We apply (3.11). From (3.10) and Theorem 2.18 it follows that the factors of f of degree >0 in X_{1} can be found in $O\left(n_{1}^{6}\left(2 n_{1}\right)^{2 t-4} N_{2}^{2}+\left(2 n_{1}\right)^{3 t-6} N_{2}^{3} p m\right)$ operations in \mathbb{F}_{4}. Repeated application of (3.7) takes $O\left(\left(2 n_{1}\right)^{2 t} N_{2}^{2} N_{3}^{4}\right)$ operations in \mathbb{F}_{4} according to Proposition 3.9. If f contains multiple factors, the gcd g of f and f^{\prime} can be computed in $O\left(n_{1}^{3 t-1} N_{2}^{2}\right)$ operations in \mathbb{F}_{q} (cf. [3]), and the same estimates as above are valid for the factorization of f / g
because $\delta_{i}(f / g) \leqslant \delta_{i} f$. It follows that a primitive polynomial can be factored in $O\left(\left(2 n_{1}\right)^{2 t} N_{2}^{2} N_{3}^{4}+\left(2 n_{1}\right)^{3 t-6} N_{2}^{3} p m\right)$ arithmetic operations in \mathbb{F}_{q}.
Now consider the case that f is not primitive. The computation of the $\operatorname{gcd} \operatorname{cont}(f)$ of the coefficients in $\mathbb{F}_{q}\left[X_{2}, X_{3}, \ldots, X_{t}\right]$ of f takes $O\left(n_{1} n_{2}^{3 t-4} N_{3}^{2}\right)$ operations in \mathbb{F}_{q}. Because $\delta_{i} f=\delta_{i}(\operatorname{cont}(f))+\delta_{i}(f / \operatorname{cont}(f))$, the proof follows by repeated application of the above reasoning.
3.13. Remark. It is possible to replace the factor \tilde{h} of \tilde{f} in the above algorithm by a factor ($\left.\tilde{h} \bmod F^{k}\right)$ of $\left(\tilde{f} \bmod F^{k}\right)$, for a suitably chosen irreducible polynomial $F \in \mathbb{F}_{q}\left[X_{2}\right]$ and a positive integer k. The presentation of the resulting algorithm becomes somewhat more complicated in that case, but the ideas remain basically the same. An advantage of the alternative formulation is that the algorithm does not depend on Theorem 2.18, and that the algorithm can be regarded as a direct generalization of the algorithm from Section 2.
3.14. Remark. Because we may assume that $n_{1} \geqslant 2$ and $n_{i} \leqslant n_{j}$ for $1 \leqslant i<j \leqslant t$, we have $\left(2 n_{1}\right)^{t}=O\left(N_{1}^{2}\right)$. This proves our claim that the running time given in Theorem 3.12 is a polynomial function of $\prod_{i=1}^{t} n_{i}$ and $p m$.

Acknowledgments

Suggestions by H. W. Lenstra, Jr. and R. H. Mak have led to considerable improvements of the algorithms in Sections 1 and 2.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "The Design and Analysis of Computer Algorithms," Addison-Wesley, Reading, Mass., 1974.
2. E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970), 713-735.
3. W. S. Brown, The subresultant PRS algorithm, ACM Trans. Math. Software 4 (1978), 237-249.
4. A. L. Chistov and D. Yu Grigoryev, Polynomial-time factoring of multivariable polynomials over a global field, Lomi preprints E-5-82, Leningrad, 1982.
5. J. Edmonds, Systems of distinct representatives and linear algebra, J. Res. Nat. Bur. Standards 71B (1967), 241-245.
6. E. Kaltofen and J. von zur Gathen, A polynomial-time factorization algorithm for multivariate polynomials over finite fields, in "Proceedings 10th international colloquium on automata, languages and programming," LNCS 154, 250-263.
7. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534.
8. K. Mahler, An analogue to Minkowski's geometry of numbers in a field of series, Ann. of Math. 42 (1941), 488-522.
9. D. Y. Y. Yun, "The Hensel Lemma in Algebraic Manipulation," MIT, Cambridge, Mass., 1974; Garland, New York, 1980.

[^0]: * Currently visiting: Department of Computer Science, The University of Chicago, Ryerson Hall, 1100 E. 58th Street, Chicago, IL 60637, U.S.A.

