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This paper describes an algorithm for the factorization of multivariate polynomials with 
coefficients in a finite field that is polynomial-time in the degrees of the polynomial to be fac­
tored. The algorithm makes use of a new basis reduction algorithm for lattices over IF<J[ Y]. 
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0. FACTORING MULTIVARIATE POLYNOMIALS OVER 

FINITE FIELDS 

We present an algorithm for the factorization of multivariate polynomials with 
coefficients in a finite field. Let f be a polynomial in IF ,JX1 , X 2 , ••• , X 1 ] of degree n; in 
X;, where IF q denotes a finite field containing q elements, for some prime power 
q = p"'. To factor j; our algorithm needs a number of arithmetic operations in IF q 

that is bounded by a polynomial function of n;~ 1 n; and pm. This compares 
favorably to the standard technique based on Hensel's lemma for which nothing 
better can be proved than a running time that is exponential in each of the degrees 
n;. 

If the number of variables t equals two, then our algorithm is similar to the 
polynomial-time algorithm for the factorization of polynomials in one variable with 
rational coefficients [7]. An outline of the algorithm to factor jE IF ,JX, Y] is as 
follows. For a suitably chosen irreducible polynomial FE IF q[ Y], and a large 
enough positive integer k, we determine a factor h off modulo the ideal (Fk). The 
irreducible factor h0 off for which h divides h0 modulo (Fk) can be regarded as an 
element of a certain lattice over IF q[ Y]. We prove that h0 is, in a certain sense, the 
shortest element in this lattice, and we show that this enables us to determine h 0 by 
means of a new basis reduction algorithm for lattices over IF ,J Y]. 

For fE IF,1[X 1, X2 , .•• , X 1 ] with t > 2, we first substitute high enough powers of X 2 

for X 3 up to X1• We then proceed in a similar way as above with the resulting 
polynomial in IF,,[X1, X 2 ]. 
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The basis reduction algorithm for lattices over IF q[ Y] is described in Section 1. If 
we define the norm of a vector over IF q[ Y] as its degree in Y, then this algorithm 
enables us to determine the successive minima of a lattice over IF q[ Y]. 

The algorithm to factor polynomials in IF q[X, Y] is presented in Section 2; the 
results are similar to Sections 2 and 3 of [7]. In Section 3 the algorithm for 
polynomials in more than two variables over a finite field is explained. 

Other recent publications on this subject are [4] and [6]. For two variables the 
algorithm from [ 4] is similar to ours; it only differs in the determination of short 
vectors in a lattice over IF q[ Y]. Also the generalization to more than two variables 
is distinct from ours. It should be noted that it appeared earlier than the present 
paper. Another approach is given in [6]. 

1. THE REDUCTION ALGORITHM 

Let n be a positive integer, and let IF q denote the finite field containing q elements, 
for some prime power q. For a rational function g e IF q( Y) we denote by I gl its 
degree in Y (i.e., the degree of the numerator minus the degree of the denominator); 
we put IOI= -oo. The norm Jal of an n-dimensional vector a= (a 1 , a2 ,. •• , an)E 
IF q( Yt is defined as max { I a ;I: l ~ i ~ n } . 

Let b 1 , b2 , ••• , b n E IF q[ Y] n c IF q( Yt be linearly independent over IF q[ Y]; we denote 
by b ij E IF q [ Y] the jth coordinate of b;. The lattice L c IF q [ Y] n of rank n spanned by 
b 1 , b2 , ••• , bn is defined as 

The determinant d(L) E IF q[ Y] of L is defined as the determinant of the n x n matrix 
B having the vectors b1 , b2 , ••. , b11 as rows. It is well known that, up to units in IF q• 

the value of d( L) does not depend on the choice of basis for L. The orthogonality 
defect OD(b 1,h2 , ••• ,b 11 ) of a basis b 1,b2 , •• .,bn for a lattice L is defined as 
L:;'~ 1 lh;J - Jd(L)J. Clearly OD(b 1 , b2 , ••• , bn);?; 0. 

1.1. PROPOSITION. Let x = 2::7= 1 r;b;E L. Then 

for I ~i~n. 

Proof The norm of the ith column of s- 1 is bounded from above by 
L:f'= 1 lhjl-lh;J-ld(L)J=OD(h 1,b2 , ••• ,bn)-lb;J by Cramer's rule. Since r; is the 
inner product of x and the ith column of s- 1, we have that lr;J ~ lxl + 
OD(h 1 , b2 , ••• , bn)- Jb;J, which proves Proposition 1.1. I 

For l ~j~n ajth successive minimum lmjl of Lis recursively defined as the norm 
of a vector of smallest norm in L that is linearly independent of m1, m2, ... , mi- I 
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over IF q[ Y]. It is well known that lmil is independent of the particular choice of 
m 1 , m 2 , ... , m1 _ 1 (cf. [8]). 

1.2. PROPOSITION. Let b1 , b2, ... , bn be a basis for a lattice L satisfying 
OD(b 1, b2 , ••• , bn)=O, ordered in such a way that lb;I:::;:; lh11for1 ::;;i<j~n. Then lb_;I 
is a jth successive minimum of L for 1 ::;;j:::;:; n, and in particular lb 1 I~ lxl for every 
XEL, x;i=O. 

Proof Let lxl be a jth successive minimum of L, for some j, 1 ::;;j ~ n. It is suf­
ficient to prove that lxl ~lb). Suppose that x = L.7= 1 r;b;. If necessary we renumber 
b 1 , b2 , .•• , bn without changing the lb;I for 1 ~ i ~ n in order to achieve that there is 
an index i0 E {j,j + 1, ... , n} such that r;0 =F 0. This is possible because lxl is ajth suc­
cessive minimum. Proposition ( 1.1) yields that 

!xl ~ !r;0 b;0 I ~ lb;0 I ~ !b1I, 

which proves Proposition 1.2. I 
We say that the basis b1 , b2 , ••• , bn is reduced if the columns of B (i.e., the coor­

dinates of the vectors bi. b2 , •.• , bn) can be permuted in such a way that the rows 
Ei1 , 'fi2 , .•• , Tin of the resulting matrix satisfy 

\li;I ~ 101 for 1 ::;;i<j::;;n, ( 1.3) 

lb;;\~ lbijl for 1 ::;;i<j::;;n, ( 1.4) 

lb;;\>lbul for 1 ::;:;j < i ~ n. ( 1.5) 

Conditions (1.4) and (1.5) are illustrated in Figure l; observe that lb;I = lli;I· 

=lh1l ~[hi[ ~lh1l ~lhil 

< lh2l = lh2l ~ lh2I ~ lh2l 

< [h3[ < [h3[ = [h3[ ~ [h3[ 

< [h,,[ < lhn[ <[h.,[ = lhn[ 

FIG. I. The jth position in the ith row gives the condition that holds for [liij[ if b1 , b2 , ..• , b" is a 
reduced basis. 

1.6. Remark. It follows from ( 1.4) and ( 1.5) that a reduced basis b1 , b2 ••• , bn for 
a lattice L satisfies OD(b 1, b 2 , ••• , bn) = 0. Combined with ( 1.3) and Proposition 1.2 
this implies that I b11 is a jth successive minimum of L, for 1 ::;;j:::;:; n, and b 1 is a shor­
test vector in L. 

(1.7) We now describe an algorithm that transforms a basis bt> b2 , ••• , b11 for 
a lattice L into a reduced basis for L. In the course of this algorithm the coor-
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dinates of h1 • h2 .... , b,, will be permuted in such a way that at the end of the 
algorithm ( 1.3 ), ( 1.4 ), and ( 1.5) hold with 51 , 52 , •• ., li,, replaced by b 1, b2 ,. .. , b,,; the 
original ordering of the coordinates can then be restored by applying the 
appropriate inverse permutation of the coordinates. For simplicity we take 
lho/ = - :x_,_ 

Suppose that an integer k E { 0, I, ... , n} is given such that 

/h;I ~ lh;I for I ~ i <} ~ k, ( 1.8) 

lhkl ~ lb;I for k<j~ n, ( 1.9) 

lhul ~ ibul for 1 ~ i ~ k and i <j ~ n, (l.10) 

fb;;f > lbul for I ~j < i ~ k. (1.11) 

(Initially these conditions are satisfied for k = 0.) In this situation we proceed as 
follows. If k = n, then the basis is reduced, and the algorithm terminates. Suppose 
that k<n. Renumber {bk+ 1,hk+ 2 , ••• ,b,,} in such a way that lbk+il=min{fb;f: 
k+l~i~n}. Let auEIF4 be the coefficient of ylb;I in hu for l~i~k+l and 
1 ~j:::;;,.k. It follows from (1.10) and (l.11) that a;;i:-0 for 1 ~i~k, and that au=O 
for I :::;;,.j < i~k. This implies that a solution (r 1, r 2 , ... , rk), with r;E IF", of the follow­
ing triangular system of equations over IF" exists: 

We put 

k 

I G;/;=ak+lJ 
i= l 

for 1 ~j~k. 

k 

b* -b '°' r b ylhk+il lh;I k+I- k+I- f._, ii 

i= 1 

(1.12) 

(1.13) 

then lb!+ 1 I ~/bk+ 1 f, and, with ( 1.8) and ( 1.9 ), hL 1 E IF"[ Y]". Furthermore, ( 1.12) 
implies that lh! + 1;1<lhk+ 1 I for I~ i ~ k. We distinguish two cases. 

If lh! + 1 I = lhk + 1 f, then we replace bk+ 1 by ht + 1 , we permute the coordinates of 
h1, h2 , ... , h11 in such a way that lhk + lk + 1I=/bk+ 1 I (this does not affect the first k 
coordinates), and finally we replace k by k + 1. 

If, on the other hand, lh!+il<lhk+ll, then we replace hk+i by h!+i and we 
replace k by the largest index I E { 0, 1,. .. , k} such that I b 11 ~ f h k + 1 f. 

We are now in the situation as described in ( 1.8 ), ( 1.9 ), ( 1.10 ), and ( 1.11 ), and we 
proceed with the algorithm from there. This finishes the description of algorithm 
( 1.7). 

We shall now analyze the running time of algorithm (1.7). By an arithmetic 
operation in IF 4 we mean an addition, subtraction, multiplication, or division of two 
elements of IF"' 
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1.14. PROPOSITION. Algorithm (1.7) takes 0(n 3B(OD(h 1 , h 2 , ... , b 11 ) + l)) 
arithmetic operations in IF" to transform a basis b 1 , h 1 , ... , h 11 for a lattice L into a 
reduced basis for L, where BE 71.. ~ 2 is chosen in such a way that I b ;! ~ B for I ~ i ~ n. 

Proof To prove that algorithm (l.7) terminates, consider S = 2::7= 1 !hJ During 
one pass through the main loop of the algorithm either S remains unaltered (first 
case), or S decreases by at least one (second case). Since the value of k is increased 
by one in the first case, it follows that a particular value of S can occur for at most 
(n + 1) different values fork. But Scan have at most OD(b 1, b 2 , ... , b 11 ) + 1 different 
values, so that the number of passes through the main loop is O(n(OD(h 1 , b2 , ... , 

b,,) + 1) ). 
The result now follows by observing that (l.12) takes O(k 2 ) and that (l.13) takes 

O(nkB) operations in IF q· I 
1.15. Remark. With OD(b 1 , b2 , ... , b,,)~nB it follows that algorithm (1.7) takes 

O(n 4B 2 ) arithmetic operations in IF"' 

1.16. Remark. Most of the results above can be generalized to the case that Lis 
a lattice in IF"[Yr of rank smaller than n. Let m be a positive integer <n, let 
b 1 , b2 , ... , bm E IF'I[ Y]" be linearly independent over IF,J Y], and let L be the lattice in 
IFq[Y]" of rank m spanned by h,, b 2 , ... , b,,,: 

m 

L = L IF" [ Y] h;. 
i= l 

By B we denote the m x n matrix having b 1 , b2 , ... , b,,, as rows. We define the norm 
ILi of Las the maximum of the norms of the determinants of them x m submatrices 
of B; notice that !LI= !d(L)I if rn = n. This enables us to define the orthogonality 
defect OD(b 1 , b 2 , ... , b,,,) as L:;'~ 1 \h,I - ILi. The basis h 1 , b 2 , ... , b,,, is reduced if the 
coordinates of b,, h2 , ... , h,,, can be permuted in such a way that (1.8), (1.10), and 
(1.11) hold with k replaced by m. For x EL we denote by x E IF"[ YY' the vector 
consisting of the first m coordinates of x after application of the above permutation. 

If the basis h 1, b 2 , ••• , h,,, is reduced, then lb) is a jth successive minimum of L. 
Namely, suppose that Ix\ is a jth successive minimum of L, for some x EL. As in 
Proposition 1.2 we prove that IX'I ~ IEil, so that, combined with lxl ~ IX'I and 
IE,1 = lhil, we find \xl ~ lhil· 

It is easily verified (cf. Proposition 1.14) that it takes O(m 2n(OD(b 1 , b 2 , ... , bm)+ 
1) (max 1 ,,,;,,,,,,lb;l+l)) operations in IF" to transform a basis h1 , b2 ,. .. ,b,,, into a 
reduced one by means of algorithm (1.7). 

1.17. Remark. We have given an algoritqm to find successive minima in a lat­
tice L c IF,1[ Y]", and in particular the algorithm finds a shortest vector in L. In the 
sequel we will use this algorithm to decide whether L contains a nonzero element x 
satisfying I xl ~I, for a certain small value of l ~ 0. This problem, however, can also 
be solved in a more direct way. 

Suppose that a basis b 1 , h2 , .. ., b n for L is given, and that 0 D( bi. b 2 , ... , hn) is 
known. If an element x in L exists with I xl ~ l, then x = L:7 = 1' ;b; for certain 
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polynomials r,.EIFq[Y], with lril~l+OD(b 1 ,b 2 ,. .. ,bnl-lbil (cf. Propositionl.l). 
Regarding the coefficients of r i for 1 ~ i ~ n as unknowns, we can see this as a 
system of n0D(b 1, b2 , •• ., b,.) equations in L:7= 1 (iril + 1) unknowns over IF q (namely, 
for 1 ~.i ~ n, the jth coordinate of x equals L:7= 1 ribiJ E IF q[ Y], so that the (I+ 1 )th 
up to the (/+OD(b 1,b2 , •• .,b,,))th coefficient ofL:7= 1 r,.biJ must be zero). Clearly, 
such an element x exists if and only if this system of equations over IF q has a 
solution. This results in an algorithm that takes O(n 6 B3 ) arithmetic operations in 
IF q· An advantage of this method over algorithm (1.7) is that, if we replace IF q by, 
for instance, the set of integers '11., the coefficient growth during the Gaussian 
elimination can easily be bounded using methods from [5]. If we restrict ourselves 
to IF q however, then algorithm (1.7) yields a better running time. 

2. FACTORIZATION OF POLYNOMIALS JN 1Fq[X, Y] 

In this section we present an algorithm for the factorization of polynomials in 
two variables over a finite field that is polynomial-time in the degrees of the 
polynomial to be factored. The propositions and algorithms here are very similar to 
their counterparts in [7, Sects. 2, 3]. We therefore omit most of the details. 

Let f E IF q[ X, Y] be the polynomial to be factored. Suppose that a positive integer 
u, and an irreducible polynomial FE IF q[ Y] of degree u are given. In the sequel we 
will describe how u and Fare chosen. We may assume that F has leading coefficient 
one. 

Let k be some positive integer. By (Fk) we denote the ideal generated by F*. Since 
F q[ Y]/(Fk) ~ {L:~~,-0 1 air/: ai E IF q }, where a= ( Y mod(F*)) is a zero of F\ we can 
represent the elements of the ring IF"[ Y]/(Fk) as polynomials in ex over IF q of degree 
< uk. Notice that IF q[ Y]/(F) ~IF q"' the finite field containing q" elements. 

For a polynomial g=L:,.b,.X,.EIFq[X, Y], we denote by (gmodFk)E 
(IFq[Y]/(Fk))[X] the polynomial :L,.(b,.mod(Fk))Xi, and by bxg and byg the 
degrees of g in X and Y, respectively. 

Suppose that a polynomial h E IF q[X, Y] is given such that: 

The leading coefficient with respect to X of h equals one, (2.1) 

(h mod Fk) divides(/ mod Fk) in (IF q[ Y]/(Fk) )[X], (2.2) 

(h mod F) is irreducible in IF q•[X], (2.3) 

(h mod F) 2 does not divide (/mod F) in IFAXJ. (2.4) 

Clearly 0 < b xh ~ 5 x f In the sequel we will see how such a polynomial h can be 
determined. The following proposition and its proof are similar to [7: (2.5)]. 

2.5. PROPOSITION. The polynomial f has an irreducible factor h0 E IF q[X, Y] for 
which (h mod F) divides (h 0 mod F) in IF".[X], and this factor is unique up to units in 
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IF". Further, !l g divides f in IF q[X, Y], then the following three assertions are 
equivalent: 

(i) (h mod F) divides (g mod F) in IFq,.[X]; 

(ii) (/z mod F") divides ( g mod Fk) in (IF"[ Y]/(F") )[.\"]; 

(iii) /z 0 divides gin IF,JX, Y]. 

In particular (h mod Fk) di!'ides (h0 mod F') in (IF q[ Y]/(F" ))[.:\'.']. 

(2.6) Let m be an integer ~b,h. Define Las the collection of polynomials 
gEIF,JX, Y] with i5.rg~m and such that (hmodFk) divides (gmodF") in 
(IFq[Y]/(Fk))[X]. This is a subset of the (m+ I )-dimensional vector space 
IF"( Y) +IF"( Y) X + · · · +IF q( Y) X"'. We identify this vector space with IF"( Y)"' + 1 by 
identifying .L;'~ 0 a; X' E IF q( Y) [X] with ( a0 , a 1 , ... , a,,,). As in Section 1 the norm I gl 
of the vector identified with the polynomial g E IF "[X, Y] is defined as ()>.g. The 
collection L is a lattice in IF ,1 [ Y]"' + 1 c IF,,( Y)"' + 1 and, because of ( 2.1 ), a basis for L 
is given by 

{FkX1:0~i<c5,h}u{hX; '5 '":b,h~i~m}. 

2.7. PROPOSITION. Let h EL satisf."v 

c) )f b .1 h + b rh c) .1/ < uk 13 xh. (2.8) 

Then h is divisible by h0 in IF"[X, Y]. where h0 is as in Proposition 2.5, and in 
particular gcd( j; h) # I. 

Proof: We give only a sketch of the proof; for the details we refer to the proof of 
[7: (2.7)]. 

Put g = gcd( f h ), and e = b 1 g. The projections of the polynomials 

[ Xf 0 ~ i < b_,h- e} u { .rh: 0 ~ i < b ,f- e} (2.9) 

on IF4[Y]X"+IFq[Y]X<'+ 1 + ... +IF'l[Y]X'i\/+~xh e I form a basis for a 

( 13x f + b xh - 2e )-dimensional lattice M' contained in IF ,J Y]'1d+ '1x 0 2". Define the 
determinant d(M') E IF q[ Y] of M' as the determinant of the matrix having these pro­
jections as rows, then we have 

i5 yd(M') ~ b >,_f\c5xh - e) + b >b(b,f- e ). 

Combined with (2.8) we get 

3yd(M') <uk bxh. (2.10) 

Let v E IF 4 [X, Y] be some linear combination over IFJ Y] of the polynomials in 
(2.9) such that bx v < e + 13 .\h. Assuming that (h mod F) does not divide (g mod F) 
in IF AXJ, it is not difficult to prove that 

( v mod Fk) = 0. ( 2.11 ) 
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Now choose a basis b,.,bn 1,. •• ,hlixf+Sxb-e-·t for M' such that bxh;=i for 
e~i<il.J+b.,h-e (which is clearly possible because IFq[Y] is euclidean). The 
degree with respect to Y of the leading coefficient with respect to X of the first [J xh 
of these vectors h, is, according to (2.11 ), at least uk. Since d(M') equals the 
product of the leading coefficients, we find that 

(j rd(M') ~ uk J xh, 

which is a contradiction with (2.10). We conclude that (h mod F) divides (g mod F) 
in IF qU[X], which, combined with Proposition 2.5, proves Proposition 2. 7. I 

2.12. PROPOSITION. Suppose that b 1,b2 , •.• ,bm+I is a reduced basis for L (see 
( 1.3 ), ( 1.4 ), ( 1.5) ), and that 

(2.13) 

Let h0 be as in Proposition 2.5. Then the following three assertions are equivalent: 

(i) bxh0 ~m; 

(ii) J y b I ~ (j y f; 
(iii) h 1 =dh0 forsomedEIFq[X]. 

Proof Use Remark 1.6, Proposition 2. 7, and 6 rho~ 6 rf I 
Now that we have formulated the counterparts of [7: (2.5), (2.6), (2.7), (2.13)] in 

Proposition 2.5, (2.6), Propositions 2.7 and 2.12, respectively, we are ready to 
present the algorithm for factorization in IF q[X, Y]. 

We may assume that f = L'.;f;X; E IF q[X, Y] is primitive, i.e., (J r gcd(j~, 
/ 1 , ... ,f~x1l = 0 in IF q[ Y], and that [J x f> 0 and (J r f> 0. In the sequel we show that F 
of degree u can be chosen in such a way that 

for every a > 0 (2.14) 

(where the constant factor involved in the 0 does only depend on a, and not on q ). 
First we sketch an algorithm to determine the factor off that has a prescribed 

factor (h mod F) in IF qU[X] (cf. Proposition 2.5); this is done in the proof of the 
following proposition: 

2.15. PROPOSITION. Let h E IF q[X, Y] be given such that (2.1 ), (2.3 ), (2.4 ), and 
(2.2) with k replaced by I, are satisfied. The polynomial h0 , as defined in 
Proposition 2.5, can be found in 0( (J xho (J x f 5 (J r f 2 ) arithmetic operations in IF q. 

Proof If J xh = (J_.,:f, then h0 = f Suppose that 6 xh < 6 xf We take k E Z >O 

minimal such that (2.13) holds with m replaced by bxf-1: 

u(k-1) bxh ~ 6yj(2 bxf-1) < uk [J xh. (2.16) 
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We modify h in such a way that (2.2) also holds for h and this value of k. This can 
be done by means of a suitable version of Hensel's lemma as described, for instance, 
in [9, pp. 79-81] (remark that Hensel's lemma can be applied because of (2.4) ). It 
can easily be verified that the number of arithmetic operations in IF" needed for this 
modification of h is 

where we use the fact that arithmetic operations in IF"" can be done in O(u 2 ) 

operations in IF". Combined with (2.14) and (2.16) this becomes 

(2.17) 

For each of the values of m = b xh, b xh + 1, ... , bx f- 1 in succession we apply 
algorithm (1.7) to the (m + 1 )-dimensional lattice L as defined in (2.6). But we stop 
as soon as for one of the values of m we succeed in determining h0 using 
Proposition 2.12. If this does not occur for any m, then 6,,J10 > <Jxf-1, so h0 = f 

The norms of the initial vectors in the bases of the lattices are bounded by 
1 +6yf(2bxf-1)/!J\,h (cf. (2.16)), If h1 ,b2 ,. •• ,bm is a reduced basis then 
0 D(b 1 , b2 , ••• , bn,, bm + 1 ) ~ Ihm+ ii- Combining these observations with Proposition 
1.14 and Remark 1.15, we find that the total cost of the lattice reductions is 

arithmetic operations in IF q· This proves Proposition 2.15. I 

2.18. THEOREM. Let f be a polynomial in IF "[X, Y]. Then the factorization off 
into irreducible factors in IF q[X, Y] can he determined in O(b xf6 b ).f2 +bx f 3pm + 
c5 y f 3pm) arithmetic operations in IF 4 , where q =pm. 

Proof The factorization of the gcd of the coefficients off with respect to X can 
be computed in 0( !; y f 3pm) arithmetic operations in IF" according to [2, Sect. 5]. 
Because the computation of this gcd also satisfies the estimates in Theorem 2.18, we 
may assume that f is primitive. We give an outline of the algorithm to factor j; and 
we analyze its running time. 

First we calculate the resultant R(f,f') E IF"[ Y] off and its derivative f' with 
respect to X, using the algorithm from [3]. This computation takes O(bxf5 by/2 ) 

arithmetic operations in IF". We assume that R(JJ')i=O; it is well known how to 
deal with the case R(fJ') = 0 (cf. [7: (3.5 )] ). Notice that, if both afjaX and Jj/J Y 
are zero, then f(X, Y) = g(XP, P) = (h(X, Y))P, for polynomials g, h in IF ,JX, Y]. 

Next we determine a positive integer u and an irreducible polynomial FE IF 4 [ Y] 
of degree u in such a way that R(fJ') io 0 modulo F. This can be done as follows. 
If q>byR=i5yR(jJ'), then we choose an element sEIF 4 such that (Y-s) does 
not divide R(jJ'), and we put F= Y-s and u= 1. This can be done in O(byR 2 ) 
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operations in IF q; if we use the parallel evaluation scheme as described in [ 1, 
Corollary 2, p. 294] this can be improved to 0( by R 1 + ') for every e > 0. ~ 

Otherwise, if q ~ by R, we take ii E Z > 0 minimal such that qu > b y R, so qu - 1 = 
O(b yR). We determine an irreducible polynomial GE IF q[ Y] of degree ii with 
leading coefficient one. Since we can restrict ourselves during this search for G to 
polynomials having O or 1 as coefficient for ya- i, and because an irreducibility test 
for a polynomial of degree ii in IF q[ Y] takes O(ii2 log q + ii3 ) operations in IF q• the 
determination of G can be done in O(q"- 1(ii2 logq+ii3 )), that is O(byR 1 +r.) 
operations in IF q· (Namely, G of degree ii without multiple factors is irreducible if 
and only if the ii xii matrix with (Xiq - X;) modulo G for O::;;; i <ii as columns, has 
co-rank one.) We put IFqu=IFq[Y]/(G). Since qu>byR, there is an element f3e1Fq• 
such that R(f,f') i:O modulo ( Y - {3). Such an element f3 can be found in 
O(byR 1 +e1) operations in IFq• by evaluating R(f,f') in byR+ 1 distinct points of 
IF q• by means of the parallel evaluation scheme from [ 1]. Arithmetic operations in 
IFq• take O(ii2 )=0(byR'2 ) arithmetic operations in IFq, so the determination of f3 
can be done in O(b yR 1 +e) operations in IF q• for every e > 0. Finally, we compute 
FE IF q[ Y] of degree u ~ii as the minimal polynomial of {3, by looking for a linear 
dependence relation among p0, /3 1, .. ., pu; this takes O(ii2u) operations in IF q· Clearly, 
F satisfies R( f, f') modulo F-=!= 0. 

We conclude that in both cases F and u can be found in 0( by R 1 + ') arithmetic 
operations in IF q• for every e > 0. Since b yR::::; by /(2 bx f - 1) this satisfies the 
estimates in Theorem 2.18. Notice that (2.14) is satisfied. 

We now apply Berlekamp's algorithm [2, Sect. 5] to compute the irreducible fac­
torization of (/mod F) in IF AXJ. We may assume that the factors have leading 
coefficient one. This computation takes O(bxf3pmu) arithmetic operations in IFq. 
This becomes 0( bx / 4 +' by f 1 + ') if u-=!= 1, because this only occurs in the case that 
pm~byR(f,f'), so that pmu=O(bxf 1+ebyj1+'). Since (2.4) is satisfied for all 
irreducible factors (h mod F) of (/mod F) in IF q•[X], due to the choice of F and u, 
the complete factorization of f can be found by repeated application of 
Proposition 2.15. This takes 0( bx f 6 by f 2 ) operations in IF q. This proves 
Theorem 2.18. I 

3. FACTORIZATION OF POLYNOMIALS IN 

IF q[X1 , X 2 ,. • ., X,] 

In this section we describe an algorithm to factor polynomials in more than two 
variables with coefficients in a finite field. The algorithm that we will present here 
makes use of the algorithm from the previous section. At the end of this section we 
briefly explain an alternative version of our algorithm that does not depend on the 
algorithm from Section 2. 

Let f E IF q[X1 , X 2 ,. • ., X,] be the multivariate polynomial to be factored, with the 
number of variables t ~ 3. By bJ = n; we denote the degree off in X;; for simplicity 
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we often use n instead of n 1 • We may assume that n; ~ n1 for 1 ~ i <j ~ t, and that 
n, ~ 2. We put N1 = CT:=J (n; + 1 ). We say that f is primitive if the gcd of the coef­
ficients off with respect to X 1 equals one (i.e., is a unit in IF q). 

Let k 3 , k 4 , ••• , k 1 be a (t- 2)-tuple of integers. Forge IF q[X1 , X2 , ••• , X 1 ] we denote 
by g1 e 1Fq[X1, X2 , XH 1 , X1+ 2 , .•. , X,] the polynomial 

for 2 ~j ~ t; i.e., g1 is g with X~; substituted for X;, for 3 ~ i ~}. Notice that g2 =g. 
We put g=g 1 • 

Suppose that an irreducible factor 1i E IF q[X1 , X2 ] of J is given such that 

(3.1) 

As in Proposition 2.5 we define h0 as the irreducible factor off in 1Fq[X1 , X2 , ••• , X 1 ] 

for which 1i divides 1i0 in IF q[X1 , X 2 ]; the polynomial h0 is unique up to units in IF q· 

(3.2) Let m be an integer with (J, 'ii~ m < n. We define Las the collection of 
polynomials g in IF q[X1 , X 2 , ••• , X 1] such that: 

(i) D 1 g~m and b;g~n; for 3~i~t, 

(ii) 1i divides g in IF q[X1, X 2 ]. 

This is a subset of the (m + 1 )N3-dimensional vector space IF q(X2) +IF q(X2 ) Xr 
+ · · · +IF q(X2 ) X'f X33 • • • X7 1• We put M = (m + 1) N 3 • We identify this vector space 
with 1Fq(X2)M by identifying L:7'=oL)~ 0 ···L:J;1= 0 aii···kx; X~···X~e1Fq(X2)[X,, 
X 3 , •.. , X1 ] with ( a00 ... 0 , a00 ... 1 , .. ., a,,in3 ... 11,). As in Section 1 the norm I gl of the vector 
associated with the polynomial g E IF q[X1, X2 , ••• , X,] is defined as J2 g. The collec­
tion L is a lattice in IF q[X2]M c IF q(X2)M of rank M - J, li ( cf. Remark 1.16), and a 
basis for L over IF q[X2 ] is given by 

{ X;1 }J3 
(X1 -X~1)i1 : 0 ~ i~m, 0 ~ i1 ~n1 for 3 ~}~ t and 

(i3, i4, .. ., it) =F (0, 0, ... , 0)} 

u {1ix\- 61 li: J,li~i~m}. 

3.3. PROPOSITION. Suppose that f does not contain multiple factors. If 
j-1 

k1 > I k;(2nn;-n;) 
i=2 

(3.4) 

for 3 ~j ~ t, where k 2 = 1, and if b is a nonzero element of L with ibl ~ n2, then ho 
divides b in IF q[X1 , X 2 , .. ., X,], and in particular gcd(f, b) =F 1. 
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Proof First we prove that gcd( f, b) # 1. Suppose that gcd(j; b) = 1. This 
implies that the resultant R = R(f, b) E IF q[X2 , X 3 ,. •. , X 1] off and b (with respect to 
the variable Xi) is unequal to zero. Since ii divides both .1 and E ((3.2)(ii)), and 
because R = R(], b), we also have R = 0. This implies that there is an index j with 
3 ~j ~ t such that 

RJ=O. (3.5) 

Because of (3.2)(i) and lbl ~ n2 , we have that bib~ ni for 2 '(j ~ t. Therefore 
t5 R ~ mn + nn. ~ 2nn - n and also b k 1 ~ 2nn - n ., for 3 '(j '( t. Because :.z 1 J l )' 1_1- 1_ J -

RJ=RJ_ 1 mod(XJ-X~1) ~e get b)'?-;~b 2 RJ 1 +kifJJRJ--i :(62 RJ-i +k/2nni-ni), 
so that, with k 2 = 1 and R 2 = R, 

j 

b)'?"i,,;; I k;(2nn;- n;) (3.6) 
i=2 

for 2 '(j,,;; t. According to (3.5) there must be an index j with 3 :(j :( t such that 
(XJ-X}) divides RJ- 1, which implies that 

kj,,;; 62 R.j- 1 • 

Combined with (3.4) and (3.6) this is a contradiction, so that gcd(j, b) # 1. 
Suppose that h0 does not divide bin 1Fq[X1, X2 ,. •• , Xi]. Then h0 does not divide 

r=gcd(f,b), so that h dividesJ/r in 1Fq[X1 , X 2 ]. Because fJ;(_fjr):(n; for 1 :(i:(t, 
the same reasoning as above yields that gcd(f/r, b) # 1. This is a contradiction with 
r = gcd(f, b) because f does not contain multiple factors. I 

(3.7) Suppose that f does not contain multiple factors and .that f is 
primitive. Let 

i- I 

ki= fl (2nn;-1) (3.8) 
i=2 

for 3 ~j,,;; t, and let ii be chosen such that (3.1) is satisfied. Notice that (3.8) implies 
that ( 3.4) holds. The divisor h0 off can be determined in the following way. 

For each of the values of m = [J 1 h, b 1 ii+ 1, ... , n - 1 is succession we apply 
algorithm (1.7) to the lattice L as defined in (3.2) ( cf. Remark 1.16 ). But we stop as 
soon as for one of the values of m we succeed in finding a vector b 1 in L with 
lb 1 l~n 2 (cf. Remarkl.6). Then h 1 =ch 0 for some cEIFq[X3 ,X4 , ... ,X,] (cf. 
Proposition 3.3 ), which enables us to compute h0 . (Notice that we can even get 
c E IF" if we increase the rank of L by one at each step.) 

If we did not find a short enough vector in any of the lattices, then b 1 h0 > n - 1, 
so that h0 = f 

3.9. PROPOSITION. Assume that the conditions in (3.7) are satisfied. The 
polynomial h0 can be computed in 0(8 1h0 221 4n 21 - 1 N~Nj) arithmetic operations in 
IF q. 
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Proof We derive an upper bound B for the norm of the vectors in the initial 
basis for L. From (3.8) we have 

I )- I 

f>J~ L nJ Il (2nn;- 1) 
)=2 i=2 

so that 

t 

6 2]~(2n)'- 2 Il n;. ( 3.10) 
i=2 

Because Ji divides Jin 1Fq[X1 , X 2 ], this bound also holds for i5)i. With (3.2) it 
follows that 

From Remark 1.16 we now find that the applications of algorithm (1.7) together 
can be done m O((f> 1h0 N 3 )4 B2 +L.f'!%1ii+ 1 ('5 1 h0 N 3 ) 3 B(N3 B)) arithmetic 
operations in IF q· 

The final gcd computations in IF q[X3 , X4 , ... , X,] can be performed in 
0(6 1h0 n2 Nj) operations in IF</, according to [3]. I 

(3.11) We describe an algorithm to compute the irreducible factorization of 
a primitive polynomial/in IF</[X1 , X 2 , ... , X,]. 

We assume that f does not contain multiple factors. This implies that the 
resultant R = R(jJ') E IF JX2 , X 3 , ... , X 1 ] off and its derivative f' with respect to 
X 1 is ur.equal to zero. We take k 3 , k 4 , ... , k, as in (3.8). It follows from the reasoning 
in the proof of Proposition 3.3 that R # 0 for this choice of k 3 , k 4 , ... , k,, so that J 
does not contain multiple factors. By means of the algorithm from Section 2 we 
compute the irreducible factors h of] of degree >0 in X 1 • Because (3.1) holds for 
all factors Ji of]thus found, we can compute the irreducible factors of/by repeated 
application of the algorithm described in (3.7). 

It is well known how to deal with the case that f contains multiple factors; notice 
that special attention has to be paid to the case that of/oX; = 0 for I ~ i ~ t. 

3.12. THEOREM. Let f be a po(rnomial in IF"[X1 , X 2 , ... , X,], with (5J = n; and 
n 1 :( n1 for 1 :( i <} ~ t. The factori:::ation of f into irreducible factors in 
IF"[X1 , X2 , ... , X,] can be determined in 0((2n 1 ) 21 N~Nj+ (2ni) 31 · 6 N~pm) arithmetic 
operations in IF 'I' where q =pm, and N; = [1;=/n 1 + 1 ). 

Proof First assume that f is primitive. We apply (3.H). From (3.10) and 
Theorem 2.18 it follows that the factors off of degree > 0 in X 1 can be found in 
O(n7(2ni) 2'- 4 N~+ (2ni) 31 6 N~pm) operations in IF</. Repeated application of(3.7) 
takes 0( (2n 1 ) 21 N~Nj) operations in IF</ according to Proposition 3.9. If f contains 
multiple factors, the gcd g off and f' can be computed in O(ni 1 ··· 1 ND operations in 
IF" ( cf. [3] ), and the same estimates as above are valid for the factorization of f/g 
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because i>J//g) ~ i>J It follows that a primitive polynomial can be factored in 

0((2ni) 2' N~Nj+(2n 1 ) 3 '- 6 N~pm) arithmetic operations in IF". 
Now consider the case that f is not primitive. The computation of the 

gcdcont(f) of the coefficients in IF"[X1 ,X3 , •.• ,X,] off takes O(n 1 n~' 4N~) 

operations in IF q· Because 13J= 6;(cont(f)) + fJ;(f/cont(f )), the proof follows by 

repeated application of the above reasoning. I 

3.13. Remark. It is possible to replace the factor h of Jin the above algorithm 

by a factor (ii mod Fk) of (]mod Fk), for a suitably chosen irreducible polynomial 

FE 1Fq[X2 ] and a positive integer k. The presentation of the resulting algorithm 

becomes somewhat more complicated in that case, but the ideas remain basically 

the same. An advantage of the alternative formulation is that the algorithm does 

not depend on Theorem 2.18, and that the algorithm can be regarded as a direct 

generalization of the algorithm from Section 2. 

3.14. Remark. Because we may assume that n 1 ~ 2 and n; ~ ni for l ~ i <} ~ t, 

we have (2n I r = O(Ni). This proves our claim that the running time given in 

Theorem 3.12 is a polynomial function of CT~~ 1 n; and pm. 
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